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Conformal transformation of f(Q) gravity and its cosmological perturbations

Dehao Zhao∗

School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

Symmetric teleparallel gravity (STG) is a gravity theory which takes non-metricity tensor to

describe gravity effects. In the STG framework, we study the conformal equivalent scalar-tensor

theory of f(Q) model and calculate the cosmological linear perturbations of the conformal trans-

formed action. We confirm the result already present in references that f(Q) gravity shows different

degrees of freedom on different backgrounds at linear perturbation level. We also explain that this

situation often means the linear perturbation theory breaks down and the model may suffer from

strong coupling problem.

I. INTRODUCTION

Although General Relativity (GR) has achieved great success, it faces the difficulties in both theoretically and

observationally, such as singularity of the universe, dark matter and dark energy. Therefore, GR is now generally

considered as an effective theory and thought to be modified at high energy and/or large length scales. One of the

simplest modifications to GR is the f(R) gravity in which the Lagrangian density (R) of GR is replaced by its arbitrary

function f(R) [1, 2]. There are two major reasons to explain why people study f(R) gravity. First of all, f(R) gravity

is sufficient enough to capture some of the basic characteristics of higher-order gravity, such as considering f(R) as a

series expansion

f(R) = . . .+
α2

R2
+
α1

R
− 2Λ +R+

R2

β2
+
R3

β3
+ . . . , (1)

where α, β are coefficients and have suitable dimensions. Second, it is well-known that modified gravity theories in

Riemann geometry in which gravity effects are described by the Riemann curvature, generally suffer from the so-called

Ostrogradski instability [3, 4] or higher-order derivative instability, because the Riemann curvature hides second time

derivative of metric. But f(R) gravity can avoid this type of instability. This result can be easily understand by

the conformal transformed action of f(R) gravity which is just a Einstein-Hilbert action plus a minimally coupled

scalar field, and since conformal transformation does not change the ghost behavior of theories, the f(R) gravity is

ghost-free.

Since in the framework of Riemann geometry, it is difficult to modify gravity to avoid higher-order derivative insta-

bility, then we can do it in non-Riemann geometry. In this paper, we will consider the so-called symmetric teleparallel

gravity (STG) [5, 6] framework. STG theory can be considered as a constrained metric-affine theory, and the quantity

which describes gravity effects is non-metricity tensor, Qαµν = ∇αgµν , where ∇ is covariant derivative which satisfies

curvature-free and torsion-free conditions. Non-metricity tensor measures the failure of the affine connection to be

metric-compatible. The STG model we are most concerned about is the so-called symmetric teleparallel equivalent

of general relativity (STEGR), which is equivalent to GR and its action is equal to the Einstein-Hilbert action up to

a surface term. The Lagrangian density of STEGR can be written as scalar Q, then a straightforward modification of

STEGR is just to replace the scalar Q to its arbitrary function f(Q) [7, 8]. Meanwhile, because non-metricity tensor

only contains first-derivative of metric, the field equations will always be second order equations, remarkably simpler

than f(R) theories. This feature has led to a rapidly increasing interest in literature.

Just like in f(R) case, the paper [9] has written down the conformal equivalent scalar-tensor theory of f(Q) case,
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whose action is

S =
1

2

∫

√

−g̃
[

Q̃+

√

2

3
( ˜̄Qσ

σµ − Q̃µσ
σ)∂µθ + g̃µν∂µθ∂νθ − 2U(θ)

]

+ Sm(g̃µν/fs). (2)

where the quantities which denoted by a tilde over the head are associated the transformed metric g̃µν = fQgµν and

θ =
√

3/2 ln fQ. It is easy to see that, unlike in f(R) case, there is a nontrivial scalar non-metricity interaction term
√

2
3 (

˜̄Qσ
σµ − Q̃µσ

σ)∂µθ, so the conformal scalar field θ is non-minimally coupled. This feature can also be found in

the torsional teleparallel gravity case presented in [10]. Meanwhile, since our signature of metric is {−1, 1, 1, 1}, then
the sign of kinetic term of scalar φ is minus. References [9, 15, 17] think the scalar φ is a ghost field and suffer from

vacuum instability. But since there is a nontrivial scalar non-metricity coupling, we can not say it is a ghost directly.

So in this paper, we study its cosmological perturbation to study this problem.

The outline of the paper is as follows. In Sec. II, we give a brief introduction to f(Q) gravity and write down

the corresponding conformal transformed scalar-tensor action. In Sec. III, cosmological applications of the conformal

transformed action are studied, containing background equations and linear perturbations. In Sec. IV, we show the

relations between result in Sec. III and the original f(Q) theory. And we can see that since linear perturbation

of f(Q) theory has different degrees of freedom, the theory may suffer from strong coupling problem. Sec. V is a

summary of this paper.

II. F(Q) GRAVITY AND CONFORMAL TRANSFORMATION

A. f(Q) gravity

Symmetric teleparallel gravity (STG) [5, 6] is a constrained metric-affine theory whose affine connection satisfies

the curvature-free and torsion-free conditions

Rµνσ
ρ = −∂µΓρ

νσ + ∂νΓ
ρ
µσ + Γλ

µσΓ
ρ
νλ − Γλ

νσΓ
ρ
µλ = 0, T λ

µν = Γλ
µν − Γλ

νµ = 0, (3)

then the quantity that describes the gravity effects is non-metricity tensor

Qαµν = ∇αgµν = ∂αgµν − Γλ
αµgλν − Γλ

ανgµλ, (4)

where the signature of metric gµν is {−1, 1, 1, 1}. The non-zero non-metricity tensor means that the length of vector

can change if we parallel transport (described by connection Γλ
µν) it along curves. Since the curvature tensor vanishes,

the parallel transport is independent of the path, which is the reason for the terminology – ’teleparallel’ and the zero

torsion means affine connection is symmetric in its lower indices and which is corresponded to the terminology –

’symmetric’. The differences between STG and GR should be clarified. It can be simply understood as that there are

many parallel structures on a manifold, GR chooses one class (Q = T = 0) of them to describe gravity effects and

STG chooses another class (R = T = 0).

For affine connections satisfy the curvature free and torsion free conditions, we can always choose a particular

coordinate system in which Γλ
µν = 0. Hence STG theory can be considered as a gravity theory which only takes

metric as fundamental variables but does not own diffeomorphism symmetry. There is also a diffeomorphism invariant

version of STG. Using Stüeckelberg trick, we can recover the diffeomorphism symmetry. The contents of this tick

is as follows. Since there is a particular coordinate system in which affine connection vanishes, in other coordinate

systems the connection will become

Γλ
µν =

∂xλ

∂yβ
∂µ∂νy

β , (5)

where xµ are coordinates and yµ can be considered as four scalar fields. It can be easily to see that if yµ = xµ, affine

connection becomes zero. Then we can take metric gµν and yµ as fundamental variables, where {yµ} represents the

particular coordinate system in which affine connection vanishes and now the theory is diffeomorphism invariant.
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There is a special STG theory which is called symmetric teleparallel equivalent of general relativity (STEGR) whose

Lagrangian density is

Q ≡ −1

4
QαµνQ

αµν +
1

2
QαµνQ

µνα +
1

4
QαQα − 1

2
Q̄

α
Qα, (6)

where

Qα = gσλQασλ, Q̄α = gσλQσαλ (7)

are two different contractions of non-metricity tensor. It can be proved that

Q = R̊+ ∇̊µ(Q
µ − Q̃µ), (8)

where R̊ is the scalar curvature corresponding to the Levi-Civita connection which is the connection chosen by GR.

Also we should point out that in this paper, all quantities which denoted by a ring over the heads are associated with

the Levi-Civita connection. Therefore the action of STEGR

Sg =
1

2

∫

d4x
√−gQ =

1

2

∫

d4x
√−g

[

R̊+ ∇̊µ(Q
µ − Q̃µ)

]

(9)

is only one total derivative away from GR. Since total derivative in action does not influence equations of motion, in

this sense, STEGR is equivalent to GR. Because of this equivalence, it is easy to construct modified gravity models

with little deviation from GR. f(Q) gravity [7, 8] is a simple case which replaces the non-metricity scalar Q of the

action (9) to its arbitrary function f(Q), and this model is what we consider in this paper.

B. Conformal transformation of f(Q) gravity

The dynamical equivalence between f(R) gravity and a particular scalar-tensor theory is well-studied, both in the

case of metric [13] and Palatini formalism [14]. Imitating those procedures, paper [9] wrote down the equivalent

scalar-tensor theory of f(Q) gravity. Here we briefly repeat the process.

The conformal transformation of metric can be expressed as

g̃µν = Ω2(x)gµν , g̃µν = Ω−2(x)gµν , (10)

which means we will use the new metric g̃µν to describe gravity effects. Just as we have said in previous subsection,

STG gravity can be considered as a theory of diffeomorphism symmetry breaking and takes the metric as the only

fundamental variable. Then under the transformation of Eq.(10), one can find the non-metricity tensor transforms as

Qαµν = ∂αgµν = Ω−2
(

Q̃αµν − 2∂α lnΩ g̃µν

)

, (11)

the non-metricity scalar (6) transforms as

Q = Ω2
[

Q̃− 2(Q̃µ − ˜̄Qµ)∂µ lnΩ + 6g̃µν∂µ lnΩ∂ν lnΩ
]

(12)

Define boundary term

B = ∇̊µ(Q̄
µ −Qµ) ⇒ R̊ = Q+B, (13)

then it transforms as

B = Ω2
[

B̃ + 6g̃µν
˜̊∇µ

˜̊∇ν lnΩ + 2(Q̃µ − ˜̄Qµ)∂µ lnΩ− 12g̃µν∂µ lnΩ∂ν lnΩ
]

. (14)

It can be easily checked that the scalar curvature corresponding to Levi-Civita connection transforms as usual

R = Ω2
[

R̃+ 6g̃µν
˜̊∇µ

˜̊∇ν lnΩ− 6g̃µν∂µ lnΩ∂ν lnΩ
]

. (15)
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Using Lagrangian multiplier, we can express f(Q) theory as

S =

∫

d4x
√−g [f(s) + λ(Q − s)] + Sm(gµν). (16)

Variation with respect to s gives

∂f(s)

∂s
− λ = 0, (17)

and taking it back into the action, we obtain

S =

∫

d4x
√−g [fsQ+ (f − sfs)] + Sm(gµν), (18)

where fs = ∂f/∂s. It is easy to prove that action (16) and (18) share the same equations of motion. Using Eq.(12),

the action (18) can be written as

S =
1

2

∫

d4x
√

−g̃
[

Ω−2fs

(

Q̃− 2(Q̃µ − ˜̄Qµ)∂µ lnΩ + 6g̃µν∂µ lnΩ∂ν lnΩ
)

+ Ω−4(f − sfs)
]

+ Sm(g̃µν/Ω
2). (19)

Defining the conformal factor Ω2 = fs and

θ =
√
6 lnΩ =

√

3

2
ln fs, U(θ) =

1

2f2
s

(sfs − f), (20)

finally we obtain

S =
1

2

∫

d4x
√

−g̃
[

Q̃+

√

2

3
( ˜̄Qµ − Q̃µ)∂µθ + g̃µν∂µθ∂νθ − 2U(θ)

]

+ Sm(g̃µν/fs). (21)

From here we can find that, not like f(R) theory, f(Q) theory is not equivalent to a theory whose Lagrangian is Q

plus a minimaly coupled scalar field, because the second term of action (21). Meanwhile, since our signature of metric

is {−1, , 1, 1, 1}, the sign of kinetic term of θ is minus. Just from this action (21), many papers [9, 15–17] say it is

ghost field, but since the scalar field θ is also coupled with non-metricity tensor, we can not say it is a ghost directly.

Such as a gravity action in Riemann geometry

S =

∫

d4x
√−g

[

e2sR̊+ cgµν∂µs∂νs
]

, (22)

defining conformal factor Ω2 = e2s, then the conformal transformed form of this action is

S =

∫

d4x
√−g

[

˜̊
R − (6− ce2s)g̃µν∂µs∂νs

]

. (23)

It can be seen that if 6− ce2s > 0 the sign kinetic term of s is plus. It can be easily achieved by requiring a small c.

Therefore, whether the action (21) contains ghost fields still needs more studies.

In this section, we consider metric as the only fundamental variable of STG theory. One can also consider the

effects of affine connection. It is easily to show that under conformal transformation, if the affine connection does not

change, we can obtain the same result since the relation Eq.(11)

Qαµν = Ω−2
(

Q̃αµν − 2∂α lnΩ g̃µν

)

, (24)

is still maintained. One can also consider such transformation under which affine connection changes but still is a

STG connection with form (5). It is an interesting direction of future studies.
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C. Conformal transformation and field redefinition

Here we summarize what we have done in previous subsection. Using Lagrangian multiplier, we found the equivalent

action (18) of f(Q) gravity, which is also called the Jordan frame of gravity, and it is the starting point. Then we did

redefinition of fields from {gµν , s} to {g̃µν , θ}

g̃µν = fsgµν , θ =
√
6 lnΩ =

√

3

2
ln fs, (25)

to re-express the action (18) to the action (21) which we will use to analyze the stability. It should be emphasized that

the action (18) and the action (21) are just different manifestations of the same action. Hence if the field redefinition

is reversible, the equations of motion do not change. This fact is easy to understand. Since the action are the same,

then the variation of the action is

δS =

∫

d4x
δS

δgµν

∣

∣

∣

s
δgµν +

δS

δs

∣

∣

∣

g
δs

=

∫

d4x
δS

δgµν

∣

∣

∣

s

(

δgµν
δg̃αβ

∣

∣

∣

θ
δg̃αβ +

δgµν
δθ

∣

∣

∣

g̃
δθ

)

+
δS

δs

∣

∣

∣

g

(

δs

δθ

)

δθ, (26)

then if the field redefinition is reversible, whether the fundamental variables are {gµν, s} or {g̃µν , θ}, it will give the

same equations of motion, δS/δgµν |s = 0 and δS/δs|g = 0. In other words, if the EOM corresponding to {gµν , s} is

H(g, s) = T (g, s), (27)

then the EOM corresponding to {g̃µν , θ} is

H(g(g̃, θ), s(θ)) = T (g(g̃, θ), s(θ)). (28)

Hence for f(Q) case, if we find a solution {g̃, ψ} for the EOMs of conformal transformed action (21), then {g̃/fs, s}
is a solution of the EOMs of action (18). There are many works to do this solution transformation.

In this paper, the conformal transformation is just a mathematical tool to simplify our calculation and from other

point of view to check the stability of f(Q) theory. There are also many papers [36, 37] to talk about the physical

meanings of conformal transformation.

III. COSMOLOGICAL APPLICATION

A. Action and equations of motion

The main purpose of this paper is to study original action by using conformal transformed action. For f(Q) gravity,

the conformal transformed action is Eq.(21), and we will study its cosmological applications in this section. For writing

convenient, we will omit the tilde over the transformed quantities in this section, hence the action we study here is

S =
1

2

∫ √−g
[

Q+

√

2

3
(Q̄µ −Qµ)∂µθ + gµν∂µθ∂νθ − 2U(θ)

]

+ Sm(gµν/fs). (29)

The arbitrariness of the functional form of f(Q) is reflected in the form of potential function U(θ). The action of

matter sector we choose is

Sm =
1

2

∫

d4x
√−gP (Y, φ), (30)

where

Y = fsg
µν∂µφ∂νφ, fs = e

√
2

3
θ, (31)
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and it is just transformed k-essence action. The fundamental variables are scalar fields φ, θ, metric gµν and constraint

affine connection Γλ
µν = ∂xλ

∂yβ ∂µ∂νy
β . Because the constraint affine connection can be considered as the Stüeckelberg

fields to restore the broken diffeomorphism symmetry, it can be shown that the equation of motion corresponding to

affine connection is contained by the EOM of metric [18, 35]. Hence here we will do not write the EOM of connection.

The variation of action (29) with respect to metric gives the metric EOM

G̊µν +

√

2

3

(

1

2
Q̄λ∂λθgµν − 1

2
∂(µθQν) +∇µ∇νθ −∇λ∇λθgµν

)

= T θ
µν + T φ

µν , (32)

where G̊µν = R̊µν − 1/2R̊gµν is the Einstein tensor corresponding to Levi-Civita connection and

T θ
µν = −∂µθ∂νθ +

1

2
gµν(g

αβ∂αθ∂βθ − 2U), (33)

T φ
µν = −PY fs∂µφ∂νφ+

1

2
Pgµν , (34)

are energy-momentum tensor of θ and φ separately. Meanwhile we can get the EOM of θ

−∇̊µ∇̊µθ − Uθ +
1

2
PY Y

fss
fs
sθ −

√

1

6
∇̊µ

(

Q̄µ −Qµ
)

= 0, (35)

and the EOM of φ is

−2∇̊µ (PY fs∂
µφ) + Pφ = 0. (36)

Using those EOMs, we can find the background solutions with any spacetime symmetries.

For cosmological background, the metric form in Cartesian coordinate system is

ds2 = a(η)2(−dη2 + dx2 + dy2 + dz2). (37)

Since the curvature free and torsion free condition means that there is a particular coordinate system in which

Γλ
µν = 0, here we just assume that Cartesian coordinate system is that particular coordinate system (there are other

choices of connection which we will talk about in next section). This assumption has been chosen in many papers

and give the consistent results. Then taking metric (37) and Γλ
µν = 0 into the equations of motion, we obtain the

equations of cosmological background

3H2 −
√
6Hθ′ = −1

2
θ
′2 + a2U − P1φ

′2 − 1

2
a2P , (38)

H2 − 2
a′′

a
−
√

2

3
Hθ′ +

√

2

3
θ′′ = −1

2
θ
′2 − a2U +

1

2
a2P, (39)

θ′′ + 2Hθ′ − a2Uθ −
√
6

(

H2 +
a′′

a

)

+H(θ, φ) = 0, (40)

P1 (φ
′′ + 2Hφ′) + 1

2
a2Pφ + P ′

1φ
′ = 0, (41)

where the first two equations are metric equations and we have define

P1 = PY fs, H(θ, φ) =
a2

2
PY Y

fss
fs
sθ. (42)

Finding solutions of those equations, we can get the evolution of universe. Relevant contents can be referred to [20].

In the following, we will use those equations to get the quadratic action of perturbation variables.

B. Cosmological perturbations

Now we turn to the linear perturbations around this background. The line element of perturbed metric is

ds2 = a(t)2
[

−(1 + 2A)dη2 − 2(∂iB +Bi)dηdx
i + ((1− 2ψ)δij + 2∂i∂jE + ∂iEj + ∂jEi + hij) dx

idxj
]

, (43)
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where we have used scalar-vector-tensor (SVT) decomposition. A, B, ψ, E are four scalar perturbations, Bi, Ei

are four vector perturbations satisfying transverse condition, ∂iBi = ∂iEi = 0, and hij are two tensor perturbations

satisfying transverse and traceless conditions, ∂ihij = δijhij = 0. For the constraint affine connection, since its

background value is zero, we can choose the fundamental variables yµ of Eq.(5) as yµ = xµ + uµ, where xµ are

background, uµ are perturbations. Imitating SVT decomposition of metric, we can decompose uµ as

uµ = {u0, ∂iu+ ui}. (44)

Gauge transformation play important roles in cosmological perturbation theory. Since the gravity action is diffeo-

morphism invariant, linear perturbation equations can be written only using gauge invariant variables. Then under a

gauge transformation xµ → xµ + ζµ, where ζµ = {ζ0, ∂iζ + ζi}, the perturbation variables uµ transform as

u0 → u0 − ζ0, u→ u− ζ, ui → ui − ζi. (45)

From this transformation rule, one can choose the so-called coincident gauge, u0 = u = ui = 0, to calculate perturba-

tion equations. This gauge is used in almost all the papers which calculate perturbations in the framework of STG

theory. But in this paper, we will use the so-called unitary gauge

E = Ei = 0, δθ = 0 (46)

which are frequently used in GR framework to calculate. One reason to choose unitary gauge is that we can easily

compare the results with GR, the other is that we can see the behaviors of Stüeckelberg field uµ more clearly.

We will calculate the quadratic action for perturbations in the following. From this we can not only obtain the

linear perturbation equations, but also analyze if there are ghost fields in theory. Meanwhile since in the linear

cosmological perturbation theory, the scalar, vector and tensor perturbations evolve independently, we will deal with

them separately.

The quadratic action of tensor perturbations is

S
(2)
T =

∫

d4xa2
{

1

8
(h′ijh

′

ij − ∂lhij∂lhij)− (2H2 + 4H′)hijhij +

[

1

2
√
6
(θ′′ − 2θ′H) +

1

8
(θ

′2 + 2a2U)− 1

8
a2P

]

hijhij

}

(47)

and taking the background equation (38) of metric back into this action, we get the final result

S
(2)
T =

∫

d4x
a2

8

(

h′ijh
′

ij − ∂lhij∂lhij
)

, (48)

which is the same as GR. This means that gravitational waves (GWs) behavior of action (29) are the same as GR.

But since the action (29) is the conformal transformed action of f(Q), this dose not mean that the f(Q) gravity does

not change the GWs. We leave this topic for the next section.

The quadratic action of vector perturbations is

S
(2)
V =

∫

d4x
1

4
a2

[

∂iBj∂iBj +
(

6H2 − 2
√
6Hθ′ + θ

′2 − 2a2U + a2P + 2P1φ
′2
)

BiBi

]

(49)

and taking the background equation (38) of metric back into this action, we get the final result

S
(2)
V =

∫

d4x
1

4
a2∂iBj∂iBj , (50)

which is also the same as GR. There are no propagating modes of vector perturbations.
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The quadratic action of scalar perturbations is more complicated. The gravitational component is

S
(2)
S =

∫

d4xa2
[

∆B(2ψ′ + 2HA− 3

2
H2B)− 9H2Aψ − 6HAψ′ + 2A∆ψ − 9

2
H2A2 +

3

2
H2ψ2 + 3H′ψ2 − ψ∆ψ − 3ψ

′2

]

+a2
θ′√
6

[

∆B(∆u − ∂tu
0 −A+ 3ψ + 3HB) +A(−∆u0 + ∂t∆u+ 6∂tψ + 9HA+ 18Hψ)

+ψ∆u0 + 3ψ∂t∆u+ 6ψ∂tψ + 9Hψ2 + ∂tu
0∆u0 −∆u∆u0 + ∂t∆u∆u− ∂tu

0∂t∆u
]

+a2
[

(−3

4
θ
′2 +

1

2
a2U)A2 + (−3

2
θ
′2 + 3a2U)Aψ + (−3

4
θ
′2 − 3

2
a2U)ψ2 + (−1

4
θ
′2 +

1

2
a2U)B∆B

]

,

(51)

and the matter component is

S(2)
m =

∫

d4x− 1

4
a4P (A2 + 6Aψ − 3ψ2 − ∂iB∂iB) +

1

2
a4Pφ(Aδφ − 3ψδφ)

+a2PY F (−
1

2
∂tδφ∂tδφ+

1

2
∂iδφ∂iδφ+ φ′A∂tδφ− φ

′2A2 + 3φ′ψ∂tδφ− 3φ
′2Aψ − φ′∂iB∂iδφ+

1

2
φ

′2∂iB∂iB)

+
1

4
a4Pφφδφ

2 + PY Y F
2(φ

′2∂tδφ∂tδφ− 2φ
′2A∂tδφ+ φ

′4A2) + a2PY φF (−φ′δφ∂tδφ+ φ′2Aδφ).

(52)

One can see that the variable B is not dynamical field, variation with respect to it gives the constraint equation,

∆B

[

2ψ′ + 2HA+
θ′√
6
(∆u − ∂tu

0 −A+ 3ψ) + P1φ
′δφ

]

= 0. (53)

This constraint equation can be considered as an equation to get the relation of field A

A = 2Mψ′ +
Mθ′√

6
(∆u − ∂tu

0 + 3ψ) +MP1φ
′δφ, (54)

where we have define M = 1/(θ′/
√
6−2H). We can easily find that there is also no term containing time derivative of

A in quadratic action, then perturbation A is also an auxiliary field. Therefore taking the relation (54) back into the

quadratic action of scalar perturbations, we will get another quadratic action only relies on variables {ψ, u0, u, δφ}.
Since the perturbation A does not relate to the term ∂tδφ, the kinetic term of perturbation δφ is

∫

d4x

(

−1

2
a2PY F + PY Y F

2φ
′2

)

∂tδφ∂tδφ, (55)

which is no mix term with perturbations {ψ, u0, u}. We can see that if F = 1 and P = −Y which corresponds to a

minimally coupled scalar field, the kinetic term of φ is proportional to a2/2 which is always positive-defined. Since

there is no mix term of kinetic term of δφ with other perturbations, we will omit the matter component and only

consider the gravity part.

When the matter sector is empty, the equation of perturbation A gives another constraint

2H∆B − 9H2ψ − 6Hψ′ + 2∆ψ +
θ′√
6
(−∆B −∆u0 + ∂t∆u+ ∂tψ + 18Hψ) + (−3

2
θ
′2 + 3a2U)ψ − 2a2UA = 0, (56)

and this constraint can be considered as an equation solving ∆B. From Eq.(53) we knew that ∆B is something like a

Lagrangian multiplier, so this constraint does not influence the final form of quadratic action of scalar perturbations.

Using the relation (54), we can write down the related kinetic term of quadratic action

S
(2)
S kin =

∫

d4xM2

[

(−1

2
θ
′2)ψ′ψ′ + (−Hθ′ + 1√

6
θ
′2)θ′ψ′u0

′

+ (−2

√

2

3
Hθ′ + 1

3
θ
′2)ψ∆u′

+(−1

2
H2 +

1√
6
Hθ′ − 1

12
θ
′2)θ

′2u0
′

u0
′

+ (−2
2

3
H2 +Hθ′ − 1

3
√
6
θ
′2)θ′u0

′

∆u′
]

, (57)
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and this action can be written as a more compact form

S
(2)
S kin =

∫

d4xM2ΦTKΦ, (58)

where Φ = {ψ′, θ′u0
′

,∆u′} and K is kinetic matrix. It is easy to show that this kinetic matrix has three eigenvalues

λ0 = 0,

λ1,2 =
1

72
(−18H2 + 6

√
6Hθ′ − 21θ

′2)±
√
3

√

1260H4 − 648
√
6H2θ′ + 2100H2θ′2 − 324

√
6Hθ′3 + 203θ′4. (59)

The eigenvector corresponds to 0 is

{ θ
′

√
6
−H, 1, 0} (60)

which means we can define three new variables

α0 = (
θ√
6
− ln a)ψ + θ′u0, α2 = ψ − (

θ√
6
− ln a)θ′u0, α2 = ∆u, (61)

and α0 does not have kinetic term. If we follow the usual process, the next we should do is to use those new variables

α to rewrite quadratic action of scalar perturbations (51) and obtain the constraint of α0. But from Refs.[16, 21] we

know that α0 is a dynamical variable on other background. At linear perturbation level, if a model shows different

degrees of freedom on different backgrounds, it means linear perturbation theory breaks down on the background of

decreasing number of degrees of freedom and may suffer from strong coupling issue. Since the linear perturbation is

not reliable, we need analyze its higher order behaviors.

IV. TRANSFORMATION RULES AND STRONG COUPLING PROBLEM

A. The transformation rules of perturbation variables

In the previous section, we studied the cosmological applications of conformal transformed action (29) of f(Q)

model. Particularly, we calculated the linear cosmological perturbation of the action (29). Then in this part, we will

talk about how to relate the transformed result and the original model.

The perturbed cosmological metric of original model can be written as

ds2 = a(t)2
[

−(1 + 2A)dη2 − 2(∂iB +Bi)dηdx
i + ((1− 2ψ)δij + 2∂i∂jE + ∂iEj + ∂jEi + hij) dx

idxj
]

. (62)

Perturbed conformal factor can be expanded as

fs ≡ F (s), F (s) = F0 +
∂F

∂s
δs, (63)

and since the background of transformed metric g̃µν = F (s)gµν also should be homogeneous and isotropic, its per-

turbed form can be also written as

ds̃2 = Fds2

= ã(t)2
[

−(1 + 2Ã)dη2 − 2(∂iB̃ + B̃i)dηdx
i +

(

(1 − 2ψ̃)δij + 2∂i∂jẼ + ∂iẼj + ∂jẼi + h̃ij

)

dxidxj
]

, (64)

Finally we have the relations of perturbation variables

Ã = A+
1

2

∂ lnF0

∂s
δs,

ψ̃ = ψ − 1

2

∂ lnF0

∂s
δs,
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and other perturbation variables are not changed. Background quantities changes as follows:

ã2 = F0a
2, dt = adη =

1√
F0

ãdη =
1√
F0

dt̃, (65)

and

H̃ = H +
d ln

√
F0

dη
, H̃ =

1√
F0

[

H +
d ln

√
F0

dt

]

. (66)

From these transformation rules, we can find that the transformed perturbation variables are just recombinations

of the ordinary variables. Since we also need to recombine the variables to diagonalize kinetic matrix to analyze

whether there are ghost, it means that the conformal transformation or other non-singular transformations [22, 23],

such as non-singular disformal transformation, does not change the ghost behavior. This is also the reason we can use

the transformed action to study the original action. Meanwhile We can define the gauge invariant Mukhanov-Sasaki

variable

ζ = φ+Hδs

s′
, (67)

then we have relation

ζ̃ = φ̃+ H̃δs

s′

= φ− 1

2

∂ lnF0

∂s
δs+ (H +

d lnF
1/2
0

dη
)
δs

s′

= ζ, (68)

which means this variable is a conformal invariant variable [24, 25].

Therefore, using the transformation rules given above, we can write down the final quadratic action of perturbations

of f(Q) theory. For background quantities, we have

ã2 → fQa
2, θ →

√

3

2
ln fQ. (69)

Then the quadratic action for tensor perturbations of f(Q) model is

S
(2)
T =

∫

d4x
fQa

2

8

(

h′ijh
′

ij − ∂lhij∂lhij
)

, (70)

and we need to require fQ > 0 to avoid ghost modes. Meanwhile, since conformal transformation is g̃µν = fQgµν ,

fQ > 0 also means that the transformed metric shares the same signature with the original metric. From this quadratic

action we can get the equations of gravitational waves (GWs)

h′′ij +

(

f ′

Q

fQ
+ 2H

)

h′ij + ∂l∂lhij = 0. (71)

Then we know that the dissipative terms of this wave equation in f(Q) model are different compared to GR, and it

will influence the amplitude of gravitational waves. Therefore by detecting the amplitude of the gravitational waves

we can limit the parameters in the model. The quadratic action of vector perturbations is

S
(2)
V =

∫

d4x
1

4
fQa

2∂iBj∂iBj . (72)

Since there are no kinetic term of vector perturbations, the vector modes do not propagate, just like them in GR.

The quadratic action of scalar perturbations are complicated, we are not going to write it here. But it should be

clarified that since the conformal transformation leads to just variables recombination, there are also only 2 scalar

gravitational degrees of freedom show up on the background (Γλ
µν = 0) in f(Q) gravity. But from papers [16, 21]

we know the disappeared variable α0 shows up on other background. At linear perturbation level, some variables

vanished on some particular backgrounds always means that the linear perturbation theory breaks down and suffer

from strong coupling problem. So we stop our calculation here and talk about related questions in the following

subsection.



11

B. Strong coupling problem

As we have said in Sec. II, STG theory is a constrained metric-affine theory, and it takes metric and constrained

affine connection (5) as its fundamental variables. According to the symmetries of flat space FRW universe, we chose

the form of metric as

ds2 = −a2(dη2 + dx2 + dy2 + dz2). (73)

But how to choose suitable constrained affine connection still need more consideration. In Sec. III, we chose Γλ
µν = 0

for simplicity. There are also other choices, such as requiring the affine connection also to satisfy the symmetries of

spacetime [26–28]. This requirement can be expressed as LζΓ
λ
µν = 0, where L is Lie derivative and ζ are all Killing

vectors of background. Following this requirement, there are three branches of the form of affine connection. Here we

only write down the relevant third branch in [21], and the non-zero components of affine connection is

Γ0
00 = K1(η), Γ0

ij = K2(η)δij , (74)

with K1 = −γ′/γ, K2 = γ. Where γ = γ(η) is an arbitrary function and ’prime’ represent the derivative with respect

to the conformal time η. It should be clarified that different forms of affine connection mean different backgrounds.

And on this different background, the papers [16, 21] have shown that there are 7 degrees of freedom at linear

perturbation level, i.e., two tensor modes, two vector modes and three scalar modes. But we have shown that only

two scalar modes and two tensor modes appear on Γλ
µν = 0 background.

It is easy to understand that a model shows different degrees of freedom on different backgrounds, since the

backgrounds we usually study has a high degree of symmetry . Such as if the kinetic term of a perturbation variable

λ is ∂xφ̄ × λ̇2(t, x, y, z), where φ̄ is background field, we can find that on cosmological case the background field

φ̄ = φ̄(t), there is no kinetic term of λ. For f(Q) gravity on Minkowski background, the Lagrangian can be expanded

perturbatively as

f(Q) = f(Q0) + fQδQ+
1

2
fQQδQδQ+ ..., (75)

and since scalar Q is quadratic in non-metricity tensor Qαµν , hence at linear perturbation level only fQδQ term

survives. Meanwhile we know that scalar Q = R̊ + B from Eq.(13), where B is boundary term, so the linear

perturbation of f(Q) gravity is the same as GR. It means that only two tensor modes appear on Minkowski background.

This phenomenon appears in many modified gravity models, such as nonlinear extension of Fierz-Pauli action in

massive gravity case [29, 30] and f(Q) case [31, 32]. This phenomenon is always linked to the strong coupling problem

[33].

For f(Q) gravity case, the papers [16, 21] have shown that the on the background (74) quadratic action of vector

perturbations in momentum space

S
(2)
V =

∫

dηd3ka2N2
[

u
′2
i − ω2u2i

]

, (76)

where

N2 =
K2f

′

Q

1 + 2k−2K2(ln fQ)′
, ω2 = k2 + 2K2(ln fQ)

′. (77)

It is easy to find that if K2 = 0 which means Γλ
µν = 0, there is no kinetic term of vector perturbations, just like we

have shown in Sec. III. Here we study the behaviors as K2 → 0. It is not a good idea to take this limit in the form

of Eq.(76). So we define new variables vi = Nui, then the quadratic action (76) becomes

S
(2)
V =

∫

dηd3ka2
[

v
′2
i − ω2v2i +

2HN ′ +N ′′

N
v2i

]

. (78)

The third term of Eq.(78) is a mass term of vector perturbations, and as K2 → 0, if K ′

2 6= 0, this mass term goes to

infinity. A particle with large mass are not excited at low energy scale. But for scalar perturbation case, the situation
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is different. It has been shown that there are three gravitational scalar degrees of freedom, and the determinant of

kinetic matrix is

36k4K2
2f

′

Qf
2
QfQQ

2a2K2f ′

Q + k2fQQ(2H−K1)2
. (79)

When K2 → 0, the determinant of kinetic matrix is zero, which means that there are only two scalar degrees of

freedom just like we have shown in Sec. III. But since the scalar perturbations are coupled with each other, the f(Q)

theory may suffer from strong coupling problem at linear perturbation level. This situation can be understood as

follows. For a simple quadratic action of perturbation variables x1 and x2

S =

∫

dη a1(η)x
′2
1 + a2(η)x

′2
2 + a3(η)x1x2 + a4(η)x

2
1, (80)

where a1, a2, a3 and a4 are background quantities. If a1 = 0, there are only one degrees of freedom, i.e, x2. If we

want to study the behaviors as a1(η) → 0, we can define new variable y = a1x1, then the action becomes

S =

∫

dη y
′2 + a2(η)x

′2
2 +

a3(η)

a1(η)
yx2 +

a4(η) + a1(η)a
′′

1 (η)

a21(η)
y2. (81)

One can see that the coupling coefficient of y and x2 goes to infinity as a1(η) → 0. Which means variables y and x2
are strongly coupled and linear perturbation theory breaks down in this situation.

STG theory can be understood as a theory without diffeomorphism symmetry which takes metric as fundamental

variable. So there are often more degrees of freedom than GR. In appendix A, one can find the ADM form of scalar

Q. From that form, we know that scalar Q contains the time derivatives of lapse function and shift vector, which

corresponding to diffeomorphism symmetry in GR case. Therefore it is not surprising that the f(Q) theory has more

than two degrees of freedom. Other STG models have similar properties. So it is common that a STG model shows

different degrees of freedom on different backgrounds at linear perturbation level, which makes the linear perturbation

theory breaks down. There are two ways to deal with this situation. One is to analyze the higher-order perturbation

effects of the model [31, 32], another is to add more gravitational interaction terms to make all variables show up at

linear order [34, 35].

V. CONCLUSION

In this paper, we studied the conformal equivalent scalar-tensor theory of f(Q) theory. Although the sign of kinetic

term of scalar is minus, we explained that because the scalar is non-minimally coupled with gravity, whether it leads

to ghost instability still needs to be studied. Then we studied cosmological applications of the conformal transformed

action, especially the linear perturbation theory. We showed that on a particular background, there are two tensor

and two scalar propagating modes. Considering the results in the papers [16, 21] that f(Q) gravity has 7 degrees

of freedom and on other cosmological background all those 7 degrees of freedom appear, it means that f(Q) theory

shows different degrees of freedom on different backgrounds at linear perturbation level. We explained that this

situation always means that the linear perturbation theory breaks down and the f(Q) theory may suffer from strong

coupling problem. Therefore, a higher-order perturbation analysis is required for f(Q) gravity. We can also add more

gravitational interaction terms to make all variables show up at linear order. We think our study clearly show that it

is necessary to know the degrees of freedom of modified gravity models before calculating the perturbation to avoid

the strong coupling problem.
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Appendix A: 3+1 decomposition of STG gravity

STG can be considered as a theory which takes metric as the only fundamental variable without diffeomorphism

invariant. Hence lapse function and shift vector are usually dynamical fields in STG theory. Here we will study its

3+1 spacetime decomposition. Metric can be written as

ds2 = −(N2 −N iNi)dt
2 + 2Nidtdx

i + hijdx
idxj , (A1)

where N is lapse function, N i is shify vector. Choosing coincident gauge, non-metricity tensor is

Qαµν = ∂αgµν . (A2)

Define projective tensor

hµν = gµν + nµnν (A3)

where the components of normal vector n are

nµ = {−N, 0, 0, 0}, nµ = {1/N,−N i/N}. (A4)

We can also define extrinsic Curvature tensor, whose spatial components are

Kij =
1

2N
(h′ij −DiNj −DjNi) =

1

2N
(h′ij − him∂jN

m − hjm∂iN
m −Nm∂mhij) (A5)

K = hijkij =
1

2N
(hijh′ij − 2∂iN

i − hijNm∂mhij). (A6)

Then the non-metricity scalar can be rewritten as

Q = −1

4
QαµνQ

αµν +
1

2
QαµνQ

µνα +
1

4
QµQ

µ − 1

2
QµQ̄

µ

= (3)Q+KijK
ij −K2 − 1

N
K∂iN

j

+
1

N2

[

∂tN

(

∂iN
i

N

)

+ ∂tN
i

(

1

2
hmn∂ihmn − ∂iN

N

)

+Nhijhmn(∂jhmn − ∂mhnj)∂iN − 1

N
N i∂iN∂mN

m + ∂iN
j

(

1

N
N i∂jN − ∂jN

i − 1

2
hmnN i∂jhmn

)]

.

(A7)

One can find that there are terms of time derivative of N and Ni in the form of non-metricity scalar, which leads to

diffeomorphism symmetry breaking in f(Q) theory. For boundary term

B = ∇̊µ(Q̄
µ −Qµ) = ∂µ(Q̄

µ −Qµ) + Γ̊σ
σµ(Q̄

µ −Qµ), (A8)

we can get

(Q− Q̄)0 =
1

N2
(−hij∂thij + hijNm∂mhij + ∂iN

i) = −2K

N
− ∂iN

i

N2
(A9)

(Q− Q̄)i =
N i

N
(2K +

∂mN
m

N
)− 1

N2
Nm∂mN

i +
2

N
hij∂jN +

1

N2
∂tN

i + hijhmn(∂jhmn − ∂nhmj), (A10)

and

Γ̊σ
σµ =

1

2
hij∂σhij +

∂σN

N
. (A11)

One can find that the boundary term contains second derivative of hij and N i.
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