
Robot Swarm Control Based on Smoothed Particle Hydrodynamics
for Obstacle-Unaware Navigation*

Michikuni Eguchi1,2, Mai Nishimura3, Shigeo Yoshida3, and Takefumi Hiraki1,Member, IEEE

Abstract— Robot swarms hold immense potential for per-
forming complex tasks far beyond the capabilities of individual
robots. However, the challenge in unleashing this potential is the
robots’ limited sensory capabilities, which hinder their ability
to detect and adapt to unknown obstacles in real-time. To
overcome this limitation, we introduce a novel robot swarm
control method with an indirect obstacle detector using a
smoothed particle hydrodynamics (SPH) model. The indirect
obstacle detector can predict the collision with an obstacle and
its collision point solely from the robot’s velocity information.
This approach enables the swarm to effectively and accurately
navigate environments without the need for explicit obstacle
detection, significantly enhancing their operational robustness
and efficiency. Our method’s superiority is quantitatively vali-
dated through a comparative analysis, showcasing its significant
navigation and pattern formation improvements under obstacle-
unaware conditions.

I. INTRODUCTION

The use of large groups of robots, as opposed to individual
robots, to perform complex tasks has attracted considerable
interest. These groups, referred to as robot swarms, draw
inspiration from natural phenomena where animal collectives
interact to coordinate behavior and demonstrate collective
intelligence that enables them to accomplish tasks beyond
the capabilities of individual members [1], [2]. Distinctive
aspects of robot swarms are their ability to effectively operate
in environments with unknown obstacles, their scalability,
and their reliance on autonomous decentralized control based
on local interactions rather than on centralized control.

Owing to their small size, which inherently limits their
sensory capabilities, most robots are only able to collect
limited environmental data. Although swarm robotics holds
immense potential in applications such as teleoperation in-
terfaces for human-computer interaction (HCI) [3], it still
requires significant departures from staging environments. In
real-world applications, the robots lack any prior knowledge
about the environment and often encounter unexpected obsta-
cles that they cannot perceive owing to their limited sensory
capabilities. This significantly limits their ability to adapt to
unknown environments, leading us to a key question: “Can
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Fig. 1: Conceptual image of the situation we are challenged
to solve and our proposed method. When robots collide with
an undetected obstacle, they detect the collision indirectly
from the change in their velocity. We add an element of
repulsion force from these collision points to the SPH-based
controller to achieve obstacle-unaware navigation.

we navigate a swarm of robots without the need for explicit
obstacle localization?”

We introduce a new concept named obstacle-unaware nav-
igation. Given only the positions and velocities of the robots,
with no sensory perception of any obstacles, our aim is to
efficiently navigate a robot swarm toward their destination
while avoiding obstructions in the environment. To this end,
this study proposes a new control method enabling robot
swarms to navigate through and form patterns in complex
environments by utilizing indirect obstacle detection. Our
proposed method allows robot swarms to avoid obstacles
and organize themselves into specific patterns and shapes
in complex environments, especially when obstacles cannot
be directly detected.

Under the concept of indirect obstacle detection, the robots
themselves detect that they are in a collision state based on
the difference between the commanded and observed velocity
values, without using external sensors. We integrate this
collision detector into a feedback control method based on
the smoothed particle hydrodynamics (SPH) model, which
conceptualizes the robot swarm as a fluid. In particular, by
integrating the repulsive force when the robots encounter
obstacles into this SPH model, we equip the robots with
the ability to adapt to obstacle-unaware environments. Fig. 1
shows the situation we intend to solve and the proposed
control method. This advancement enhances the capability
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of the swarm to robustly operate in environments where
obstacles cannot be directly detected, thereby significantly
increasing the swarm’s usefulness in various applications,
including HCI.

We also demonstrate the effectiveness of our approach
through a comparative analysis with conventional navigation
methods in obstacle-unaware scenarios. The results from
both the simulations and real robot experiments confirm that
our proposed method significantly improves the applicability
of swarm robotics and provides a solid framework for
navigation and patterning in obstacle-unaware environments.

II. RELATED WORK

A. Collision Avoidance

Collision avoidance has received significant research at-
tention in robotics owing to its importance in real-world
applications. Many studies have reported the potential func-
tion method [4] and the graph search method [5] owing
to the clarity of their theories. In recent years, collision
avoidance methods that use machine learning have alse been
reported [6].

Several collision avoidance measures have been reported
for robot swarms. The Reciprocal Velocity Obstacles (RVO)
method [7] calculates collision-free velocity commands by
considering the velocities of the surrounding robots and
obstacles, enabling individual robots to predict and avoid col-
lisions. Furthermore, the performance of swarm robot control
based on deep reinforcement learning (DRL) [8] reportedly
surpasses that of the RVO method. This is attributable to
DRL’s ability to autonomously acquire optimal obstacle
avoidance strategies based on environmental information.

However, note that these collision avoidance methods rely
on the accurate acquisition of obstacle location, which may
not always be possible. Therefore, it is difficult for existing
collision avoidance methods to satisfactorily demonstrate
their performance in situations common to small swarm
robots, such as when no sensor is available for obstacle
detection.

B. Robot Swarm Control Based on Hydrodynamic Models

Motion planning and control for robot swarms originated
from mimicking biological behaviors observed in insects and
birds. Methods grounded in physical principles emulating
the behavior of gases, fluids, and solids have recently been
actively explored [9].

Among these methods, the SPH model [10], used in fluid
dynamic simulations, is of interest for controlling robot
swarms to mimic fluid behavior. This approach has been
effective in applications such as collision avoidance [11],
[12], trajectory tracking [13], and swarm shape control [14].
In particular, Pac et al. [15] and Pimenta et al. [16] have
proposed the use of the SPH method to model a robot swarm
as a fluid analogy, allowing for the control of swarm flow by
adjusting the flow parameters. These methods enable control
over the behavior of the robot swarm via the parameters in
the governing equations. Our method builds upon this notion,
extending the capabilities of SPH-based methods.

The SPH model shares several benefits with other phys-
ical concept-based controls for swarm robots. However,
its advantage is its decentralized and scalable approach,
which requires only information from robots in the local
neighborhood. Although some methods [17], [18] offer this
advantage, the SPH method stands out for its unique feature
to control the density of robots. This feature makes the
method suitable for controlling swarms to a specific target
position or region.

In SPH-based robot swarm control, real-time obstacle
avoidance can be achieved utilizing high-density particles
at the boundaries of detected obstacles [15]. However, this
assumes that obstacles are detected in advance, which poses
challenges in situations where obstacles are indirectly de-
tected when robots collide and subsequently get stuck.

C. Robot Swarm Application Using Obstacle-Unaware Nav-
igation

Real-world applications leveraging small robot swarms’
robustness, flexibility, and scalability have been extensively
explored [19], [20]. Notably, the Swarm User Interface
(Swarm UI) concept, first introduced through Zooids [21],
has focused on expanding robot functionalities and integrat-
ing mixed-reality systems for enhanced interaction [22], [23].
Moreover, small flying robot swarms have shown promise in
display technologies via formation flying [24].

A challenge for these applications is the limited sensory
capability of the swarm owing to the robot’s size, neces-
sitating control mechanisms that do not rely on detailed
environmental data, such as obstacle or collision information.
Scalability and autonomous operation are achieved through
decentralized control predicated based on local interactions.
For navigation and obstacle avoidance, swarms often em-
ploy potential field-based control methods [25], with sev-
eral Swarm UI implementations adopting projective control
strategies for enhanced spatial manipulation [21]–[23].

Although these control methods are effective in obstacle-
free environments, real-world conditions present numerous
unforeseen obstacles, leading to potential control challenges.
Some approaches have allowed intentional collisions with
obstacles, especially in small flying robot swarms [26], [27].
However, these studies have focused on collision avoidance
and have not evolved to robot swarm control that can
adaptively update the controller with the information after
detecting an obstacle owing to collision to reach a goal or
form a desired shape or pattern.

III. METHOD

A. Controller based on Smoothed Particle Hydrodynamics

In this study, we extend a controller for swarm robot nav-
igation using the SPH approach, initially introduced in [15].
This subsection elaborates on the SPH-based approach for
controlling robot swarms. In the SPH approach, fluids are
modeled through a multitude of discrete particles, where
each particle embodies the fluid’s physical characteristics
and contributes to simulating fluid dynamics by tracking
changes in these characteristics over time. The SPH-based



controller for robot swarms replaces particles with robots
to achieve swarm robot control such that the robot swarm
behaves like a fluid. The SPH method is known for its ability
to approximate the physical quantities of the fluid at any
given point by aggregating the attributes of the neighboring
robots, using a kernel function. This function weighs the
contributions of robots based on their proximity, facilitating
the smooth estimation of local physical phenomena. We
adopt the Gaussian kernel, denoted by W (Rij), for this
purpose, can be expressed as follows:

W (Rij) =

αde
−

R2
ij

h2 for Rij ≤ κh

0 otherwise

αd =
1

πh2
, Rij =

∥qi − qj∥
h

, κ = 2

(1)

where Rij represents the normalized distance between the
two-dimensional (2D) position qi = (xi, yi) of a robot i and
that of another robot j within a swarm, comprising of N
robots in total. The parameter h, known as the smoothing
length, defines the spatial extent influenced by the kernel.
In the SPH model, each robot’s density ρi is calculated as
shown in (2).

ρi =

N−1∑
j=0

mjW (Rij), (2)

Here, ρi represents the density at robot i, calculated by
summing the products of the masses mj of all robots j
and the kernel function W (Rij), which adjusts the influence
based on distance. The fluid force f sph

i acting on each robot
in the swarm can be expressed as follows.

f sph
i =

N−1∑
j=0

mj

(
σi

ρ2i
+

σj

ρ2j

)
∇iWij (3)

Here, ∇iWij ∈ ℜ2 represents the gradient of the kernel
function with respect to robot positions, and σi denotes
the stress tensor, incorporating both pressure and viscous
contributions as described in the following equations.

σxx
i =− pi + µi

(
2
∂vxi
∂x
− 2

3

(
∂vxi
∂x

+
∂vyi
∂y

))
σxy
i = µi

(
∂vyi
∂x

+
∂vxi
∂y

)
σyy
i =− pi + µi

(
2
∂vyi
∂y
− 2

3

(
∂vxi
∂x

+
∂vyi
∂y

))
,

(4)

where the total stress tensor σi is expressed in terms of
fluid pressure and viscous stress. The pressure pi produces
repulsive and attractive forces between robots and creates
a flow that directs the swarm toward uniform distribution.
Viscous stress is expressed as the product of the viscosity
coefficient µi and the velocity of the robots vi = (vxi , v

y
i ),

and generates an attractive force that makes the velocity
vector of the entire swarm uniform.

Because this study uses the model of incompressible fluids
such as water [14], the pressure pi is expressed as follows:

pi = Kρ0

[(
ρi
ρ0

)γ

− 1

]
, (5)

where K represents the stiffness constant, ρ0 is the reference
density, and γ is the adiabatic constant, typically set to 7
to match the convenient incompressibility as suggested by
Zhao et al. [14].

We incorporate two additional forces to facilitate collision
avoidance within the swarm and position control for nav-
igating the swarm to the target point. The repulsive force
f rep
i between the robots to prevent robot collisions can be

expressed as follows:

f rep
i = Krep

N−1∑
j=0

qi − qj
∥qi − qj∥2

W (Rij), (6)

where Krep is the repulsive gain between the robots. The
position control force fpos

i is introduced to control the
position of the swarm to reach the target point. Here, position
control is based on the Proportional-Differential (PD) control
law for the error ei between the target point qref and qi,
which is expressed as follows:

fpos
i =Kpei −Kd

dei
dt

ei = qref − qi,
(7)

where Kp and Kd are the proportional and derivative gains
for PD control, respectively.

From (3), (6), and (7), the total force applied to each robot,
which combines the fluid dynamic forces with repulsive and
position control forces, is calculated as follows:

dvi

dt
= f sph

i + f rep
i + fpos

i . (8)

Finally, the velocity vector vi, which is the input to each
robot, is updated by the forward Euler method at sampling
time ∆t and can be expressed as follows:

vi(t+∆t) = vi(t) +
dvi(t)

dt
∆t (9)

By integrating the total force from (8) into this update
equation, we achieve an SPH-based control mechanism that
simulates the behavior of an incompressible fluid, enabling
effective swarm control.

B. SPH-based Controller with Indirect Obstacle Detection

We extend the SPH-based controller to explore robot
swarm control without collision avoidance using indirect
obstacle detection. In particular, we develop a robot swarm
controller that achieves obstacle avoidance by leveraging the
difference between the commanded and observed velocity
that occurs when robots collide with an obstacle and get
stuck, and by adding a repulsion force from the point of
contact with the obstacle to the SPH model.



1) Indirect Collision Detection: Conventionally, collision
detection has been mainly performed by contact sensors
installed on the robot’s exterior [28] or by acceleration
judgments during collisions [26]. However, adding sensors
for external sensing in small robot swarms such as those
in this study owing to size constraints. Also, in the case of
acceleration judgments, for low-speed robots such as those
in this study, the difference in acceleration between normal
running and collision is not significant, resulting in false
collision detection.

Therefore, we propose a new collision detection method
using the time integral of the tracking error against the
robot’s command velocity. When the robot runs normally,
its observed velocity v′ follows the command velocity v.

v′ =
q(t)− q(t−∆t)

∆t
(10)

On the other hand, when the robot collides with an
obstacle, its position is constrained by the obstacle, and
the observed velocity is close to zero, resulting in a large
difference between the command velocity and the observed
velocity. In this method, the difference between the com-
manded and observed velocities is added (integrated) at each
control time. The integral value I(t+∆t) at time t+∆t can
be expressed as follows:

I(t+∆t) = I(t) +
|∥v∥ − ∥v′∥|

Vmax
− ζ

I(t+∆t)← 0 if I(t+∆t) ≥ Ithr.

(11)

If this integral value exceeds the threshold value Ithr,
that is, I(t + ∆t) ≥ Ithr, a collision is detected, and the
robot’s position q at that time is recorded as the new collision
position c. The maximum velocity Vmax of the robot is
utilized to normalize velocity values. The attenuation value
ζ is a constant value subtracted to suppress the effect of the
tracking error that occurs during the normal running of the
robot on the velocity command value. For example, even a
robot with poor tracking performance can detect a collision
with high accuracy by increasing ζ.

2) SPH with Obstacle Avoidance: To realize SPH-based
robot swarm control with obstacle avoidance, the SPH-based
controller is modified to generate repulsion force from the
point of contact with the obstacle. Let ck be the collision
point k, the repulsion force fobs

i acting on robot i from M
collision points can be expressed as follows:

fobs
i = Kobs

M−1∑
k=0

qi − ck
∥qi − ck∥2

W (Rik)

Rik =
∥qi − ck∥

h
,

(12)

Here, Kobs is the gain of the repulsion at the collision point.
By combining this repulsion with the forces introduced by
the SPH described in Section III-A, the virtual force on each
robot in the swarm can be represented as follows:

dvi

dt
= f sph

i + f rep
i + fpos

i + fobs
i . (13)

By controlling a robot swarm with an SPH-based controller
modified to avoid this obstacle, robot swarm control can
be achieved even in environments where the obstacle is
unknown.

C. Kinematics of a Differential Drive Robot

Most of the robot swarms we consider in this study
comprise two-wheeled differential drive models owing to
their size constraints. Therefore, we must consider the non-
holonomic constraints of the differential drive model. To
address this nonholonomic constraint, we adopt the effective
center model, an approach proposed by Snape et al. [29]. In
this model, the origin of the robot’s coordinate system is a
point offset from the robot’s center by d in the direction of
the robot forward. The robot is considered a holonomic robot
with an effective center at that point and a radius R = r+d,
where r is the radius of the robot. This holonomic robot
is controlled by velocity vector v. The conversion from the
velocity vector v to the input v, ω of the differential drive
model is expressed by the following equation:[

v
ω

]
=

[
cos(θ) sin(θ)

− sin(θ)
d

cos(θ)
d

] [
vx

vy

]
. (14)

where θ is the orientation of the robots. We calculate v, ω
using (14) and use these values to control the motors of the
robot swarm.

IV. EXPERIMENTS

The evaluation experiment aimed to determine whether the
proposed swarm robot controller can navigate environments
with obstacles without obstacle information and how effi-
ciently it can handle complex environments compared with
conventional methods. Therefore, we conducted experiments
in both simulation and real settings to verify the probability
of and the time required for reaching the target in each
environment when the robot swarm moved in multiple envi-
ronments.

A. Baseline Control Methods

We used the normal SPH-based method [15], the
RVO [7] method, and the contact-based obstacle avoidance
method [27] (hereafter referred to as Bound) as our baseline
robot swarm control method. The normal SPH-based method
is described in Section III-A.

RVO is the de facto standard method in swarm robot
control as mentioned in Section II-A, and it has been adopted
in many swarm robot interfaces [21], [23]. To verify how
RVO-based swarm control behaves in an obstacle-unaware
environment, we provided the RVO method with only the
information about each robot and its target position and no
information about the obstacles in the environment.

Bound is a collision-aware control method that allows
robots to avoid obstacles by moving to repel from the point
of collision with the obstacle. In swarm control using this
method, the interaction between robots is not specifically
considered, so each robot is individually controlled. We
employed this method to confirm the obstacle avoidance



Fig. 2: Appearance of the four simulation field environments:
(a) Entry, (b) Dense pillar, (c) Barricade, (d) Pocket maze.
The robot swarm (red dots) is initially located within the
lime green square on the left side of the field. The robots
run to the goal point, shown as a lime green dot on the right
side, avoiding obstacles shown in black.

performance of the method using only collisions without
considering the interaction of the swarm.

B. Experimental Setup

1) Field Environments: We designed four environments
for the simulation experiments (Fig. 2) and two environments
for the real experiments (Fig. 3b, c). The dimensions of each
simulation and real environment were 0.9 m × 0.9 m and 0.6
m × 0.8 m, respectively. Each environment was constructed
as a field containing obstacles in different configurations to
verify obstacle avoidance in an obstacle-unaware environ-
ment. The characteristics of each environment are described
below.

• Entry: The simplest obstacle environment. To compare
the arrival time of the swarm with each method, the
shape of the obstacle is curved so that the robot does
not stop at the obstacle.

• Dense pillar: Obstacle environment as described in
Bound [27].

• Barricade: The obstacles are placed in a straight line
from the start to the goal point, which is heavily
obstructed. Unlike the Entry and Dense pillar environ-
ments, the robots here must significantly change their
path to avoid the obstacles.

• Pocket maze: Pocket-shaped obstacles are placed. The
robots must retrace its path to avoid these obstacles.

2) Robot Swarm and Control System: We have verified
the performance of the proposed controller by forming a
robot swarm with eight small robots (toio, Sony Interactive
Entertainment), as shown in Fig. 3a. The robots are cube-
shaped with a length and width of 32 mm and a height of
25 mm, and they can move on a flat surface using two drive
wheels. We attached a circular cap with a diameter of 45
mm to the top of each robot to reduce the effect of snagging
on obstacles. The robot’s control system was programmed
in Unity, written in C#, and executed on a PC (ThinkPad
X13 Gen 2, Lenovo, CPU: AMD Ryzen 5 PRO 4650U,
RAM: 16GB). We performed the simulation experiments
under the Unity software environment using this PC. Each
robot is also equipped with an optical sensor on its bottom,
allowing it to determine its absolute position by operating on
a paper mat with a printed dot pattern for position tracking.
All individual robots are controlled by a control system on
a PC via Bluetooth communication in 100 ms cycles, for
exchanging position and velocity control information.

3) Procedure: We measured the success rate of the robot
swarm reaching the goal point and the mean time to reach the
goal point in both simulation and real environments, when
the robot swarm traveled from the start to the goal point
at a maximum speed of 0.2 m/s. We judged a robot swarm
to have reached the goal when all robots in the swarm were
within a 0.15 m radius of the goal, and the speed was 0.1 m/s
or less. In all experiments, we set a time limit of 100 seconds
from the start of the run and considered a trial a failure if
it did not meet the arrival condition within this time limit.
The mean arrival time was calculated using only those trials
where the arrival conditions were met. We performed these
experiments 50 times each in the simulation environment and
five times each in the real environment for each robot swarm
using a different controller.

C. Results

1) Experiment in Simulation Environment: In the simula-
tion experiment, the goal reachability rate and the mean time
to reach the goal for each trial of the robot swarm guided
by each control method are shown in Table I. In addition,
the robot swarm’s paths across different environments are
depicted in Fig. 4. The proposed method consistently outper-
formed all baselines, achieving the highest goal reachability
rates and the shortest mean times to reach the goal point
across all tested scenarios.

Our method achieved over 98% success in the Entry,
Dense Pillar, and Barricade environments, and over 90%
in the complex Pocket maze environment. This performance

TABLE I: Results of the simulation experiment. We measured the goal reachability rate and the mean time to reach the goal
for each environment. Our proposed method showed the best performance in all environments.

Entry Dense pillar Barricade Pocket maze
Controllers Reachability rate Mean time Reachability rate Mean time Reachability rate Mean time Reachability rate Mean time

SPH [15] 76 % (38/50) 17.64 s 8 % (4/50) 14.80 s 0 % (0/50) – 0 % (0/50) –
RVO [7] 78 % (39/50) 16.74 s 6 % (3/50) 14.69 s 0 % (0/50) – 0 % (0/50) –

Bound [27] 100 % (50/50) 22.73 s 72 % (36/50) 10.87 s 74 % (37/50) 41.34 s 0 % (0/50) –
Ours 100 % (50/50) 5.73 s 98 % (49/50) 9.69 s 98 % (49/50) 8.52 s 92 % (46/50) 15.41 s



Fig. 3: Appearance of the robots and the experimental environment; (a) the eight swarm robots used in the experiment, (b,
c) the environment imitating (b) the Dense pillar, and (c) the Pocket maze in the simulation.

Fig. 4: Trajectories of robot swarms in the simulation experiment. The blue lines in the figures represent the running trajectory
of each robot, and the red dots represent the positions of the robots at the end of the simulation. The magenta dots represent
the detected collision positions using our proposed method.

underscores our method’s superior obstacle navigation capa- bilities, even in obstacle-unaware environments. Compared



to the baseline methods, which maintained a success rate
of above 70% in the Entry environment, our method’s
adaptability to more challenging environments such as the
Dense Pillar and Barricade was notably superior.

We found that all baseline methods had a success rate
of over 70% in the Entry environment, whereas the Bound
method also achieved this success rate in the Dense Pillar and
Barricade environments. In particular, the Bound method,
designed for contact-based obstacle avoidance, outperformed
others such as RVO and standard SPH in certain environ-
ments. However, its effectiveness waned in complex scenar-
ios requiring navigational retreats, such as the Pocket Maze,
where only our proposed method effectively circumvented
pocket-shaped obstacles by reversing direction.

In terms of mean arrival time, the proposed method
reduced the time to reach the goal in all environments,
achieving goals in under one-third the time taken by the
baseline methods in the Entry and Barricade environments.
This efficiency is attributed to our method’s proactive avoid-
ance strategy, which prevents prolonged obstacle encounters
by steering clear from previous collision points, as illustrated
in Fig. 4.

2) Experiment in Real Environment: Table II shows the
goal reachability and the mean time of the robot swarm
to reach the goal for each trial in the real experiment,
and the trajectory of the robot swarm with the proposed
controller in each environment is shown in Fig. 5. In the real
experiment, as in the simulation environment, the proposed
method reached the goal with the highest reachability rate
and the shortest mean arrival time.

However, some differences were noted between the actual
and simulation results. First, the collision points detected via
indirect obstacle detection were not only near the obstacles

TABLE II: Results of the experiment in real environment.
The measured metrics are the same as in the simulation
experiment. Our proposed method also showed the best
performance.

Dense pillar Pocket maze
Controllers Reachability rate Mean time Reachability rate Mean time

SPH [15] 0 % (0/5) – 0 % (0/5) –
RVO [7] 0 % (0/5) – 0 % (0/5) –

Bound [27] 100 % (5/5) 45.11 s 0 % (0/5) –
Ours 100 % (5/5) 41.52 s 80 % (4/5) 68.82 s

Fig. 5: Trajectories of the robot swarm with the proposed
controller in the real environments. The content represented
by colored lines and dots is the same as in Fig. 4.

but also near other obstacles. This is probably attributable to
the velocity control performance of the actual machine being
worse than that of the simulator, which could be overcome
by increasing the detection threshold Ith and the attenu-
ation value ζ of the indirect obstacle detection. However,
this change would increase the time to collision detection,
creating a trade-off between detection accuracy and time.
In addition, the position convergence of the robots was low
near the target arrival position, resulting in vibrations. This is
thought to be attributable to a large lag in the actual velocity
of the two-wheel robots following the 2D velocity vector vi
output by the proposed controller.

V. DISCUSSION

A. Computation Time for Controller Update

To robustly navigate robot swarms using our proposed
control method for obstacle-unaware environments, the con-
troller must be updated in real-time when robots detect
collisions through indirect collision detection. Here, we
investigate the computation time as a function of the number
of robots.

Fig. 6 shows the processing time per step of the proposed
method as a function of the number of robots. We measured
this processing time with a single thread on the PC used
in the experiments. As observed, the processing time for
updating the controller for 100 robots using the proposed
method is about 50 ms. This corresponds to 20 Hz in terms of
the robot control cycle, indicating that the proposed method
can be easily applied to robot swarms comprising 100 robots
or less.

In addition, when the number of robots is N , the com-
putational complexity of the proposed controller per robot
is O(N), as obtained from (3), (6), (7), and (12). Accord-
ingly, the computational complexity for N robots is O(N2);
however, each robot’s computational process can be easily
parallelized. For example, if parallelization is implemented
with 10 cores, it can be applied to a large swarm system
with about 1,000 robots.

B. Application for Pattern Formation

Here, we evaluated the proposed control method with
a focus on the ability of robot swarms to reach a single
target point, however, the SPH-based control method can

Fig. 6: Relationship between the number of robots and the
computation time required to update the proposed controller.



be applied not only to target navigation but also for pat-
tern formation [15], [16]. This feature is essential in robot
swarm applications because they require, for example, the
representation of geometric shapes [21] and body shapes,
such as hands [23], by robot swarm formations. These
applications mainly use RVO-based controllers, which can
be immediately adapted to obstacle-unaware environments
by replacing them with our proposed controllers.

VI. CONCLUSION

In this paper, we present a novel control method that
significantly improves the navigation of robot swarms in
environments with unknown obstacles. Our approach, which
utilizes the SPH model with indirect obstacle detection,
enables robot swarms to dynamically adapt to complex
scenarios. We evaluated whether the proposed robot swarm
controller allows a swarm to navigate through obstacles with-
out prior obstacle information and the method’s efficiency
compared with conventional methods. We also demonstrated
our method’s superior robustness and efficiency compared
with conventional methods. Our results, validated by simula-
tions and real-world experiments, indicate the potential of the
proposed method to expand the application range of swarm
robotics, especially in areas requiring high adaptability and
autonomy. This research not only advances the field of swarm
robotics but also lays the foundation for future research to
overcome the unavailability of information about the external
environment owing to the lack of sensors.
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