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Abstract—In many real-world applications where the system dynam-
ics has an underlying interdependency among its variables (such as
power grid, economics, neuroscience, omics networks, environmental
ecosystems, and others), one is often interested in knowing whether the
past values of one time series influences the future of another, known
as Granger causality, and the associated underlying dynamics. This
paper introduces a Koopman-inspired framework that leverages neural
networks for data-driven learning of the Koopman bases, termed Neu-
roKoopman Dynamic Causal Discovery (NKDCD), for reliably inferring
the Granger causality along with the underlying nonlinear dynamics.
NKDCD employs an autoencoder architecture that lifts the nonlinear
dynamics to a higher dimension using data-learned bases, where the
lifted time series can be reliably modeled linearly. The lifting function, the
linear Granger causality lag matrices, and the projection function (from
lifted space to base space) are all represented as multilayer perceptrons
and are all learned simultaneously in one go. NKDCD also utilizes
sparsity-inducing penalties on the weights of the lag matrices, encour-
aging the model to select only the needed causal dependencies within
the data. Through extensive testing on practically applicable datasets,
it is shown that the NKDCD outperforms the existing nonlinear Granger
causality discovery approaches.

Index Terms—Granger causality, Time series, Koopman operator, Non-
linear dynamics

1 INTRODUCTION

1.1 Motivation and Related Works

CAUSALITY analysis is vital in multivariate time se-
ries study for identifying potential cause and effect-

informed networked dynamic relationships present in the
observational data [1]. Granger causality (GC) corresponds
to the situation in which the past of one time series helps
predict the future of another [2], [3]. The notion of GC
has been utilized in many fields of networked dynamics,
including finance [4], neuroscience [5], meteorology [6],
economics [7]. In neuroscience [8], [9] and biology [10], [11],
for example, such analyses help determine whether a past
activity in one brain region influences a later activity in
another region, and to infer the underlying gene regulatory
networks, respectively.

Many traditional methods for estimating GC assume that
the time series follows linear dynamics and thus use a vector
autoregressive (VAR) model [3], [11], where for a vector of
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n variables at time t, xt = (xt(1), . . . , xt(n)), the following
linear regression holds:

xt =
L∑

l=1

Wlxt−l + et. (1)

Here Wl, l = 1, . . . , L are lag matrices, L is the maximum
lag (“memory of the system”), and et is additive noise,
typically assumed to be a zero mean white noise. GC
dependency then corresponds to the non-zero entries in
Wl, l ∈ [1, L]. Authors in [12] later gave an equivalent
definition of GC based on coefficients in a moving average
(MA) representation (see [13]). GC for an (i, j) ∈ [1, n]2 pair
can be tested statistically using an F -test [14] comparing two
models: an estimated model, which includes past values
of both x(i) and x(j) versus another estimated model,
that includes the past values of only x(i). x(j) is declared
Granger causal for x(i) if the F -test hypothesis of x(i)’s
dependence on x(j) is accepted.

Sparsity-inducing regularizers, such as lasso [15] or
group lasso [16], are used to identify the minimally required
number of causal dependencies [11]. These regularizers
result in only a limited number of GC connections for
each time series. Additionally, it is necessary to define the
maximum time delay to be considered in GC analysis. To
address the issue of choosing the relevant number of lags
without causing overfitting, methodologies such as the hier-
archical [17] and truncating lassos [18] have been proposed.

When data dynamics are nonlinear, imposing linear
models can lead to inconsistent estimation of the true
Granger causal interactions [19], [20]. Model-free methods
like transfer entropy [21] or directed information [22] avoid
linearity assumption, but only infer connectivity informa-
tion and not the underlying dynamics [23]. Deep Learning
(DL) and ML methods have shown promise in learning
the complex dynamics of a system. Neural networks (NNs)
and their variants, such as autoregressive multilayer per-
ceptrons [24], [25] (MLPs) and long-short term memory
networks (LSTMs) [26], are capable of modeling nonlinear
interactions [27]. However, these methods may lack inter-
pretability if not carefully modeled. Accordingly, [28] in-
troduced component-wise MLPs and LSTMs, termed cMLP
and cLSTM, that support the interpretability of GC from the
learned models. Search for parameters of these models is
also coupled with sparsity-inducing penalties.

In this research, we propose our approach of infer-
ring causal structure and underlying dynamics using a
Koopman-inspired lifting of the given time series data into
a higher-dimensional space where the evolution appears
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linear reliably; use data-driven auto-learning of the lifting
and projection functions in the form of neural networks;
and next infer a sparse linear regressive model in the
lifted domain. The traditional approach to Koopman linear
embedding employs a large number of nonlinear basis
functions for approximating nonlinear systems into higher
dimensional linear representations [29] and for projecting
the lifted linear dynamics back to the base space [30]. How-
ever, to select the basis functions for lifting/projection, the
traditional methods rely on ad hoc predefined dictionaries
of bases, such as polynomial or radial functions, which may
not be optimal. Some ways to obtain approximations of the
Koopman operators involve utilizing the methods of dy-
namic mode decomposition (DMD) [31] and the extended-
DMD (EDMD) [30], [32], where again, one assumes the
knowledge of a predefined dictionary of basis functions.
Inferring causal interactions, utilizing the Koopman embed-
ding, is a relatively young field. Authors in [33] infer causal
interaction in a dynamical system by using transfer Perron-
Frobenius (P-F) and Koopman operators, whereas [34] uti-
lized the setting of DMD towards GC inference.

In contrast to the traditional predefined basis dictionary,
the data-driven approach provides a potential to learn basis
functions accurately, without needing any user-designated
bases [35], thereby enabling a scalable auto-encoding of the
basis functions. NNs have been used to learn Koopman
embeddings [36], [37]. Recently, we have also demonstrated
their application to model-predictive control (MPC) of smart
grids by employing auto-learned Koopman bases to accel-
erate MPC computation [38]. In this research, we learn the
GC relation and dynamics via a linear regression applied to
the nonlinearly transformed time series, employing a data-
driven NN-based autoencoder for the first time:

φ(xt) =
L∑

l=1

Wlφ(xt−l) + et, (2)

where the intrinsic nonlinear lifting map φ, the causal inter-
actions among the lifted variables captured by lag matrices
Wl, l ∈ [1, L], as well as their projection map φ−1(·), are all
learned simultaneously in one go from the observed time
series data. (The dimension of the auto-encoded lifted space
is a hyperparameter and is chosen by exploration.)

1.2 Our Approach and Key Contributions

We summarize here the key contributions of our framework
“NeuroKoopman Dynamic Causal Discovery (NKDCD)”
with the following key contributions:

• We introduce the NKDCD architecture for causal
discovery and learning underlying dynamics, com-
prising of:

– A data-driven basis-dictionary free approach
to learning the NN-based bases for linear
Koopman embedding required of capturing
sparse nonlinear dependency in from a higher-
dimensional sparse linear model (5);

– A NN-based data-driven learning of sparse
linear model in the lifted domain to infer GC
and underlying dynamics;

– A data-driven learning of projection function
to map down both the lifted domain time
series and the estimated high-dimensional
sparse linear models to the base space.

• The linear embedding approach is basis dictionary-
free, in which the bases are auto-learned from the
data, unlike the traditional approaches that manually
pick basis functions that generally do not lead to
optimal solutions.

• Each element of the time series is lifted identically to
its higher-dimensional representation, x(i) ∈ R1 7→
φ(x(i)) ∈ R1×N , i ∈ [1, n], thereby preserving
variable-wise separation at the lifted level, to ensure
variable-wise disentanglement of the signals and
their interdependencies in the lifted domain.

• For preserving the structure of sparsity and inter-
dependencies of the original variables, group-level
sparsity-inducing penalties are imposed in the lifted
high-dimensional setting, where all lifted variables
corresponding to a single variable of the original
domain are placed in the same group.

• The autoencoder-based architecture is trained end-
to-end in one go, learning directly from data the
unknown basis function, the lag matrices associated
with the lifted domain model, and the projection
function together while minimizing the least-square
prediction error and maximizing the sparsity of in-
terdependencies. Such an end-to-end learning also
eliminates the risks of numerical issues associated
with iterative learning of the individual components
(lifting, lag dynamics causality, and projection) [38].

• For accuracy and reliability, the loss function in-
volves multiple terms to individually account for
the accuracy of each NN block’s input-output rela-
tionship, making the overall autoencoder architec-
ture robust. These correspond to the accuracy of the
temporal dependencies, the GC constraints, and the
lifting and projection functions.

• Since appropriate lag selection is crucial for GC and
underlying dynamics discovery, we impose addi-
tional structured group penalties that infer both the
GC and the lags for each of the inferred interactions.
Our formulation automatically selects a subset of the
time series for each output time series that Granger
causes it, regardless of the lag of the interaction.

• Our method is validated via simulations on a va-
riety of datasets: a finance dataset [39], a nonlinear
Lorenz-96 model dataset [40], brain-imaging fMRI
dataset [41], and the DREAM3 gene regulatory net-
work benchmark dataset [42]. Our results are able to
outperform the ones reported in the literature.

2 MATHEMATICAL FRAMEWORK

As outlined in [2], the notion of Granger causal interaction
is formulated as follows: A time series y Granger causes
time series x if the variance of the prediction error when
the history of y is included is lower than the variance of the
prediction error when the history of y is excluded, i.e.,
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σ2(xt|H<t) < σ2(xt|H<t\y<t), (3)

where H<t represents the history containing all relevant
information prior to time t, H<t\y<t indicates the exclusion
of y<t values from H<t, and σ2(·) denotes the variance.
Essentially, y is causal for x if past values of y improve the
prediction of x.

2.1 Traditional VAR models for GC

Considering the model of (1), a time series element x(j)
Granger-causes another time series element x(i) if there
exists a value at any lag l for which Wl(i, j) ̸= 0. GC analysis
thus amounts to estimating the lag matrices from the time
series observations, and determining the non-zero entries.
The loss function includes the square of the prediction error
together with lasso penalty [16], [43] on the lag matrices to
attain their sparsity:

min
W1,...,WL

T∑
t=L+1

∥xt −
L∑

l=1

Wlxt−l∥22

+ λΩ(W1, . . . ,WL), (4)

where ∥ · ∥2 denotes the L2 norm, and λ > 0 is a hyper-
parameter that controls the weight ascribed to the sparsity-
inducing lasso term Ω(W1, . . . ,WL) in the loss function. In
our work, we explore multiple types of group lasso loss
terms for inducing sparsity as described in (10)-(12).

2.2 Nonlinear autoregressive (NAR) model

The VAR model assumes linear dependence, which might
not be the case for a practically applicable setting, in
which case, the model may not yield the GC dependencies
correctly. In practice, xt ∈ Rn can evolve according to
more general nonlinear dynamics. A general element-wise
nonlinear autoregressive (NAR) model is of the following
form [44]:

xt(i) = fi

(
xt−1:t−L(1), . . . , xt−1:t−L(n)

)
+ et(i), (5)

where xt−1:t−L(j), j ∈ [1, n] is an abbreviation to denote the
past L values, xt−1(j), . . . , xt−L(j), and fi is a function that
specifies how the past lags are mapped to xt(i). Granger
non-causality of x(j) for x(i) corresponds to the situation
when fi does not depend on xt−1:t−L(j).

2.3 Proposed framework of NeuroKoopman Dynamic
Causal Discovery (NKDCD)

Suppose we have an NAR time series data x =
[x1, . . . , xT ] ∈ Rn×T . We first lift each element of vector
data at each time point to higher-dimensional intrinsic coor-
dinates:

Xkoop
t (i) = φ(xt(i)) (6)

φ ∈ R1×N ;Xkoop
t (i) ∈ R1×N (N >>> 1); i ∈ [1, n].

The lifted data is then modeled following VAR as in (2):

X̂koop
t =

L∑
l=1

WlX
koop
t−l (7)

Wl ∈ R(n×N)×(n×N), l ∈ [1, L];Wl(i, j) ∈ RN×N , i, j ∈ [1, n],

where Wl’s are the lag matrices in the lifted domain, and
X̂koop

t , t ∈ [L + 1, T ], is the model estimate of Xkoop
t . Both

X̂koop
t and Xkoop

t are projected element-wise using φ−1 ∈
RN×1 to the base space to yield:

x̂t(i) = φ−1(X̂koop
t (i)) t ∈ [L+ 1, T ] (8)

xt(i) = φ−1(Xkoop
t (i)) t ∈ [1, T ]. (9)

Figure 1 depicts the NKDCD architecture and labels the
base, lifted, and projected variables, the encoder that per-
forms the lifting from the base space to a higher dimensional
space, the decoder that performs the opposite, and the lag
matrices for linear regression in the lifted domain.

Definition 1 (NKDCD Model-based GC). Referring to the
NKDCD model (7), the time series x(j) is Granger non-causal
for time series x(i) if for all l ∈ [1, L],Wl(i, j) ∈ RN×N = 0,
so the jth time series does not contribute to the prediction of the
ith time series.

The lifting function, φ, the projection function, φ−1,
and the lag matrices, {Wl, l ∈ [1, L]}, are learned from
the observed time series data {x1, . . . , xT } in one go. To
ensure learning robustness, we define a multi-term loss
function, addressing the correctness of each component of
the proposed NKDCD architecture.

1) Correctness of mapping to lifted space and its pro-
jection to base space: In the NKDCD framework,
the dynamics evolve over the intrinsic coordinates
Xkoop = φ(x) in the lifted domain, whereas the
inverse x = φ−1(Xkoop) recovers the base space
value. For the accuracy of the lifting and projection
pair, we introduce the following loss term:

T∑
t=1

∥xt − φ−1(φ(xt))∥2.

2) Correctness of linear VAR model in lifted space: To
discover the lag matrices that govern the GC and
underlying dynamics, we learn the lag matrices
{Wl, l ∈ [1, L]} over the intrinsic coordinates, so
that X̂koop

t =
∑L

l=1 WlX
koop
t−l holds. The accuracy of

learning the lag matrices is achieved by introducing
this loss term:

T∑
t=L+1

∥φ(xt)−
L∑

l=1

Wlφ(xt−l)∥2.

3) Correctness of NAR model in base space: The projection
operation allows us to map the linear VAR model
of the lifted space to the NAR model of the base
space. To achieve reconstruction accuracy of the
NAR model, we introduce this additional loss term:

T∑
t=L+1

∥xt − φ−1(
L∑

l=1

Wlφ(xt−l))∥2.
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Fig. 1. Proposed NKDCD Architecture

4) Correctness of NAR model with autoencoder: The lifting
and projection can be applied on the input side
before comparing to the NAR output to enhance
the end-to-end accuracy further, and for which we
introduce this another loss term:

T∑
t=L+1

∥φ−1(φ(xt))− φ−1(
L∑

l=1

Wlφ(xt−l))∥2.

5) Sparsity of GC: To have as few GC dependencies as
needed, we add a fifth term to the loss function of
the form λΩ(W1, ...,WL), where λ > 0 is a tunable
scalar hyperparameter, that penalizes having a large
number of non-zero entries in {Wl, l ∈ [1, L]}. Since
minimizing the count of non-zero entries is equiv-
alent to minimizing the L0-norm, which is discrete
and hence discontinuous, one instead considers a
relaxation to the L1-norm. Since each Wl(i, j), l ∈
[1, L] is a N × N matrix representing the lag-l
weights between the N lifted components of the ith
time series element and the N lifted components of
the jth time series element, all such N×N elements
of Wl(i, j) for each (i, j) ∈ [1, n]2, l ∈ [1, L] are
grouped together, thereby the sparsity penalty be-
comes an L1-norm over groups, termed group lasso.

In addition, since all elements Wl(i, j), l ∈ [1, L]
must be zero to ensure that x(i) is not GC depen-
dent on x(j), a grouping across the lags can be
further employed. Grouping all the lags into a single
group treats them equally, resulting in a “uniform-
lag group lasso (ulg-lasso)”:

Ω(W1, ...,WL)=
∑
ij

∥W1(i, j), . . . ,WL(i, j)∥2. (10)

The ulg-lasso of (10), however, runs the risk of
treating the distant lag terms that may be absent
in the ground truth the same as the near ones
that are actually present in the ground truth. So a
“hierarchical-lag group lasso (hlg-lasso)” that dis-
counts more distant lags more severely is instead
used sometimes:

Ω(W1, ...,WL) =
∑
ij

L∑
l=1

∥Wl(i, j), . . . ,WL(i, j)∥2.

(11)

Finally, the most general case is when all the lags,
near or distant, are treated independently, resulting
in “independent-lag group lasso (ilg-lasso)”:

Ω(W1, ...,WL) =
∑
ijl

∥Wl(i, j)∥2. (12)

Note as discussed above, the grouping in (12) corre-
sponds to putting all N × N elements of Wl(, i, j)
into its own group for each (i, j) ∈ [1, n]2, l ∈ [1, L].
Such grouping is also applicable to ulg- and hlg-
lassos.

In summary, the overall loss function is defined as:

J =
T∑

t=1

∥xt − x̄t∥2 +
T∑

t=L+1

∥Xkoop
t − X̂koop

t ∥2

+
T∑

t=L+1

∥xt − x̂t∥2 +
T∑

t=L+1

∥x̄t − x̂t∥2

+ λΩ(W1, ...,WL), (13)

where Ω(·) takes the one of the forms in (10)-(12). For
notational convenience, we denote the first four terms in
J as J1 (which involves four L2-norm terms, each of
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which is differentiable and so allows gradient descent for
loss minimization) and denote the last term in J as J2,
which being group lasso, involves inter-group L1-norm
and intra-group L2-norm, that is not differentiable, requir-
ing proximal-gradient descent for J2-loss minimization (in
contrast, the J1-loss minimization uses the usual gradient
descent).

In Section 3, we employ all three instances of group lasso
for comparison and demonstrate how ilg-lasso outperforms
hlg-lasso, which in turn surpassed ulg-lasso in performance.

2.4 Hyperparameters of NKDCD and loss function

In our autoencoder model of Figure 1, each time series is
lifted to N dimensions, which is one of the hyperparame-
ters. The maximum amount of lag is L, which is another
hyperparameter. We have chosen the lifting and projection
functions to have 2 hidden layers, where when the data
has nonlinear dynamics, each hidden layer uses the leaky
rectified linear unit (leakyReLU) as the activation function:
max{0.1y, y} and no activation function when the data has
linear dynamics. The lifting hidden layer weight sizes are
parameterized by h and are respectively, 1 × h

2 , h
2 × h, and

h × N , while the projection hidden layer weight sizes are
respectively, N × h, h× h

2 , and h
2 × 1. The hyperparameter

of the loss function is the sparsity weight factor λ. During
the training of NKDCD, the learning rate (also called step-
size) τ is yet another hyperparameter, and so is the threshold
ϵ > 0 used to view a weight parameter below the threshold
as zero.

2.5 NKDCD optimization: (Proximal) gradient descent

Recall the decomposition J (= J1+J2) of the loss function,
in which the J2 portion of the loss function is only a
function of the lag matrices {Wl, l ∈ [1, L]}, and it does
not depend on the lifting and projection functions φ,φ−1.
As a result, the gradient of loss J with respect to φ,
denoted ∆φ(J ), satisfies: ∆φ(J ) = ∆φ(J1), and similarly,
∆φ−1(J ) = ∆φ−1(L1). In contrast, the gradient of J vs.
J1 with respect to the lag matrices are different from each
other: ∆Wl

(J ) ̸= ∆Wl
(J1), l ∈ [1, L], because ∆Wl

(J2) ̸=
0, l ∈ [1, L] (whereas in contrast, ∆φ(J2) = ∆φ−1(J2) = 0).

Accordingly, in the mth iteration (m ≥ 0) of update, the
lifting and projection functions are updated using gradient
descent with respect to only the respective J1 portions of
the gradients, applied to the corresponding values from the
mth iteration, as follows:

φ(m+1) = φ(m) − τ∆φ(J1)
∣∣∣
W

(m)
1:L ,φ(m),(φ−1)(m) , (14)

(φ−1)(m+1) = (φ−1)(m) − τ∆φ−1(J1)
∣∣∣
W

(m)
1:L ,φ(m),(φ−1)(m) ,

(15)

in which τ > 0 is the step size of the update (also called
learning rate), and (·)(m) denotes the value of (·) at an
m ≥ 0 iteration of the update. In contrast, the update
for the lag matrices follows the following computation in
the case of ulg-lasso, involving gradient descent for the J1

part of the loss (that is differentiable) and subsequently

proximal gradient descent for the J2 part of the loss (that
is not differentiable):

W̃
(m)
l :=W

(m)
l − τ∆Wl

(J1)
∣∣∣
W

(m)
1:L ,φ(m),(φ−1)(m) (16)

W
(m+1)
l = proxτλΩ

(
W̃

(m)
l

)
, (17)

proxτλΩ
(
·
)
(i,j)=

(
1− τλ

||W (m)
1 (i,j),. . .,W

(m)
L (i,j)||2

)
+

(
·
)
(i,j),

(18)

where the notation
(
·
)
+
:= max{0,

(
·
)
}, and (18) computes

the proximal gradient [45] for the case of ulg -group lasso. In
the case of the hlg-lasso, the proximal gradient is computed
iterating over a total of L rounds, where in the lth round
(l ≥ 1), the subset

{
W

(m,l)
l , . . . ,W

(m,l)
L

}
of round-l values

are updated using the corresponding round-(l − 1) ones:

proxτλΩ
(
·
)
(i,j)

=

(
1− τλ

||W (m,l−1)
l (i,j),. . .,W

(m,l−1)
L (i,j)||2

)
+

(
·
)
(i,j), (19)

where for the round-1 update (l = 1), the values used are:

W
(m,0)
l = W̃

(m)
l , l ∈ [1, L].

Finally, the proximal gradient for ilg-lasso uses:

proxτλΩ
(
·
)
(i,j)=

(
1− τλ

||W (m)
l (i,j)||2

)
+

(
·
)
(i,j). (20)

It can be seen that W
(m+1)
l , l ∈ [1, L],m ≥ 0 is

computed from W
(m)
l by first applying the gradient de-

scent to obtain an intermediate value: W̃
(m)
l = W

(m)
l −

τ∆Wl
(J1)

∣∣∣
W

(m)
1:L ,φ(m),(φ−1)(m) , accounting for only the J1

portion of the loss (ignoring the J2 portion of the loss
for the time being), and next, the value nearest to this
intermediate value that also accounts for the J2 portion
of the loss is found by applying the proximal gradient,
proxτλΩ

(
·
)
, which for the ulg-lasso as well as ilg-lasso is

given by a single round computation, employing Eqs. (18)
and (20), respectively, and for the hlg-lasso it comprises of
L-rounds of computations, where for each l ∈ [1, L], the
round-l computation is given by Eq. (19).

Considering the ulg-lasso penalty of (10) over the lag
matrices Wl(i, j), l ∈ [1, L], it shrinks each weight Wl(i, j)
equally, using (18). The hlg-lasso proximal gradient in (11),
however, shrinks more those lag matrices that are further in
the distant past, by using (19), which for each l ≥ 1, applies
l-rounds of shrinkage operations (so W1(i, j) undergoes
only one round of shrinkage, whereas WL(i, j) witnesses
L rounds of shrinkage). Finally, the shrinkage operation in
the case of ilg-lasso (12) is independent for each lag using
(20) and is also applied in a single round (like ulg-lasso).
The resulting update steps are summarized in Algorithm 1.

3 COMPARING GROUP LASSO PENALTIES

To qualitatively visualize the sparsity pattern recovered
under the three lasso penalties, we apply our framework to
data generated from a sparse VAR(3) model with n = 10,
presented in [28]. Here, each time series i depends on
itself together with one other randomly selected time series
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Algorithm 1 NKDCD

Require: time series data, x ∈ Rn×T , λ > 0, 1 ≥ τ > 0,
N >>> 1, L > 0,
Initialize: m = 0,W

(m)
l , φ(m), (φ−1)(m)

while not converged do
compute {Xkoop} as in Eq. 6
compute {X̂koop} as in Eq. 7
compute {x̂} as in Eq. 8
compute {x̄} as in Eq. 9
compute loss T as in Eq. 13
Update φ(m), (φ−1)(m), {W (m)

l , l ∈ [1, L]} using (14) -
(20) to get φ(m+1), (φ−1)(m+1), {W (m+1)

l , l ∈ [1, L]}
m = m+ 1

end while
return φ,φ−1, {Wl, l ∈ [1, L]}

among the remaining n − 1 ones, and when time series i
depends on time series j, Wl(i, j) = 0.1 for l = 1, 2, 3,
while all the other lag entries are zero. Thus, this setting
corresponds to the ground truth of L = 3. The ground truth
causal graph and three selected time series are depicted in
Figure 2. Time series 3 and 4 exhibit a causal relationship,
while neither is causally linked to the time series 9. We
collect T = 1000 sample points per time series for analysis.

(a) Ground truth causal graph (b) Observed time series

Fig. 2. VAR(3) data

Because the data already follows linear dynamics, the
nonlinear activation in each hidden layer was omitted. For
causal model discovery, we set the learning rate τ = 5 ×
10−2, the number of hidden layers in lifting and projection
networks as 2 with h = 4, the scaling-up factor of each
dimension during lifting as N = 10, batch size = 500, and
the upper bound to lag L = 5. λ = 2 × 10−2 was chosen
for the ulg- and ilg-lassos as an experimentally determined
based penalty factor, while λ = 10−4 was used for the hlg-
lasso, which again is the corresponding best value deter-
mined experimentally. The entries of the lag matrices are
shown as heat-maps in Figure 3, where each (i, j) entry is
the norm of the N ×N entries in the lifted-version Wl(i, j)
(all of which belong to a single group).

Taking a closer look at the captured blocks, i.e., for which
∥Wl(i, j)∥ > ϵ for a suitable threshold value of epsilon
(chosen experimentally), it can be seen in the cases of ilg-
and hlg-lassos that if ∥Wl(i, j)∥ is shrunk to zero for some
l, then ∥Wl′(i, j)∥, l′ > l is also shrunk to zero. ilg- and
hlg-lassos have different stopping epochs: 2500 vs 6200,
which implies ilg-lasso converges faster than hlg-lasso. On

the other hand, while ulg-lasso converges just as fast as ilg-
lasso: 2500 iterations, it cannot accurately match the right
value of L (as noted above, it runs the risk of treating the
distant lag terms that may be absent in the ground truth the
same as the near ones that are actually present in the ground
truth). Based on these comparative observations of the three
group lassos, moving forward, we have chosen to apply the
NKDCD computations only for ilg- and hlg-lasso (both of
which outperform ulg-lasso).

(a) Uniform-lag group lasso estimated lag matrices

(b) Hierarchical-lag group lasso estimated lag matrices

(c) Independent-lag group lasso estimated lag matrices

Fig. 3. Estimated 5-step lag matrices

4 RESULTS FOR PRACTICAL APPLICATIONS

Our study demonstrates the performance of our novel
NKDCD approach in inferring Granger causality (GC) and
underlying dynamics from both synthetic and practically
applicable datasets. We conduct experiments on financial
data [39], Lorenz-96 model data [40], fMRI brain-imaging
model data [39], and DREAM3 genetic data [42], sourced
from various existing studies.

The results indicate that our NKDCD approach effec-
tively discovers the underlying GC dependencies and non-
linear dynamics across various datasets. Key components of
our model include a lifting encoder comprising multilayer
perceptron (MLP) with 2 hidden layers, GC weight matri-
ces, and a projection decoder, another MLP with 2 hidden
layers. Each node in the encoder and decoder MLP has an
activation function of a leakyReLU. We explore different
hyperparameters, such as the learning rate (τ ) varied over
[5×10−4, 5×10−3], and the sparsity weight (λ) varied over
[10−2, 5 × 10−2, 3 × 10−1]. See Table 1 for a complete list
of the hyperparameters chosen experimentally that we use
in analyzing the application datasets. We set a convergence
criterion as the average loss per time series being less
than the threshold of 0.9 and is no longer decreasing. The
performance metrics are based on the area under the ROC
curve (AUROC) and the area under the Precision-Recall
curve (AUPR). We compare our results against linear VARs
with hlg- and ilg-lasso for sparsity as formulated in Eqs. (4),
(11), and (12) for baseline comparison, as well as the state-
of-art results available in literature, including component-
wise MLP (cMLP)/LSTM (cLSTM) as reported in [28], to
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demonstrate the gain resulting from the proposed NKDCD
approach over the state-of-art. In our results, the weights
corresponding to lag matrices, if they are small compared to
a threshold ϵ > 0 (decided case-by-case for optimal result),
are viewed zero to infer GC. Our NKDCD approach shows
promising results, outperforming the ones reported in the
literature.

TABLE 1
Hyperparameters used for NKDCD Analysis

Finance Lorenz-96 fMRI Dream3 Dream3
(EC1,EC2,Y1) (Y2,Y3)

λ .01 .05 .05 .01 .3
τ .005 .0005 .0005 .0005 .005
L 3 5 3 2 2
N 15 15/45 10 5 10
h 4 16 8 8 8

batch 1024 500 500 966 966

4.1 Finance Data
The simulated finance dataset utilized in our study origi-
nates from research reported in [39] and is publicly available
on GitHub. This dataset is fitted to the Fama-French Three-
Factors Model [46], a framework that characterizes stock
returns against three factors: volatility, size, and value. For
our experiments, we specifically utilize dataset 20-1A, which
comprises a 4000-day observation period across 25 stocks.
In [39], the causal relationships among the time series
present in this dataset evolve according to linear dynamics,
and L is within 1-3. The ground truth interdependency
is provided in Figure 4a and a sample of three selected
time series elements is depicted in 4b, where the causal
relationship between time series 3 and 8 is evident. At the
same time, neither has a causal connection with the time
series 21. In this analysis, we set the maximum lag (L) to
3, and since the data already follows linear dynamics, the
nonlinear activation (namely, leakyReLU) is omitted within
the hidden layers.

(a) Ground truth causal graph (b) Observed time series

Fig. 4. Finance data

The performance metrics are reported as the mean across
five initializations with a 95% confidence interval. Results
from our experiments on this finance dataset are summa-
rized in Table 2. The AUROC and AUPR for the VAR model
with the ulg- and hlg-lasso penalties are both 99.9 ± 0.1
and 97.6 ± 1.0, respectively. Our method performs just as
well as the traditional VAR by giving AUROC and AUPR
of 99.9 ± 0.1 and 98.0 ± 1.0 for the ilg-lasso penalty and

TABLE 2
Finance Data Results

Dataset 20-1A
Metrics AUROC AUPR

NKDCD+Eq. 12 99.9± 0.1 98.0± 1.0
NKDCD+Eq. 11 99.1± 0.0 90.9± 0.1

VAR+Eq. 10 99.9± 0.1 97.6± 1.0
VAR+Eq. 11 99.9± 0.1 97.6± 1.0

99.1 ± 0.0 and 90.9 ± 0.1 respectively for the hlg-lasso
counterpart, showing that Koopman lifting preserves the
causal relationship among the time series elements. These
results demonstrate the effectiveness of our approach in
uncovering the causal relationships and the underlying dy-
namics within the financial data having the 3-Factors linear
model.

4.2 Lorenz-96 Model with Nonlinear Dynamics
The Lorenz-96 model, introduced in [40], serves as a valu-
able tool for studying essential aspects of chaos theory,
predictability, and the behavior of complex nonlinear inter-
dependent dynamics. It provides a simplified yet insight-
ful representation of the atmospheric dynamics, making it
widely used in atmospheric science and related fields. The
continuous dynamics in a Lorenz-96 model is defined for
i = 1, . . . , n, n ≥ 4 as follows:

dxt(i)

dt
=

(
xt(i+ 1)− xt(i− 2)

)
xt(i− 1)− xt(i) + F,

(21)

along with the following boundary correspondences:

xt(−1) = xt(n− 1);xt(0) = xt(n);xt(n+ 1) = xt(1),

where F is a forcing constant that determines the level of
chaos, and n is the dimension. For comparison with recent
work, we utilized publicly available data of a Lorenz-96
model, described by Eq. 21 on GitHub, supplied by [28]. For
our analysis, we chose n = 20 and a sampling rate of 0.1
for obtaining a discrete-time time series. The ground truth
causal graph and three selected time series for F = 40 are
depicted in Figure 5. Notably, time series 3 and 4 exhibit a
causal relationship, while neither is causally linked to time
series 8.

(a) Ground truth causal graph (b) Observed time series (selected)

Fig. 5. Lorenz-96 model data

We conduct simulations for F = 10, 40 and T =
250, 500, 100, as specified in Table 3, where our objective
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TABLE 3
Lorenz-96 Data AUROC Results as a function of Forcing Constant F and time series Length T

F = 10 F = 40
T 250 500 1000 250 500 1000

NKDCD+Eq. 12 94.1± 0.7 98.5± 0.2 99.8± 0.1 80.8± 0.1 92.0± 1.1 98.7± 0.1
NKDCD+Eq. 11 94.1± 0.6 98.5± 0.1 99.7± 0.1 82.6± 0.3 90.8± 0.7 96.7± 0.2

cMLP 86.6± 0.2 96.6± 0.2 98.4± 0.1 84.0± 0.5 89.6± 0.2 95.5± 0.3
cLSTM 81.3± 0.9 93.4± 0.7 96.0± 0.1 75.1± 0.9 87.8± 0.4 94.4± 0.5

VAR+Eq. 10 86.1± 0.6 86.2± 0.2 93.0± 0.4 70.0± 0.0 80.6± 0.0 84.7± 0.0
VAR+Eq. 11 86.1± 0.6 86.2± 0.2 93.0± 0.4 70.4± 0.0 81.1± 0.0 84.7± 0.0

is to compare the performance of the NKDCD approach
against other state-of-art methods in literature, including
component-wise MLP (cMLP)/LSTM (cLSTM) as reported
in [28], and the standard linear VAR method. The perfor-
mance metrics are reported as the mean across five initial-
izations with a 95% confidence interval.

The results, summarized in Table 3, reveal a tradeoff
between accuracy and length of observation as F increases.
Despite challenges posed by shorter data lengths and higher
chaos levels, NKDCD demonstrates superior performance
over alternative methods in most scenarios, except for a
single scenario when the data length is small (T = 250),
and chaos is greater (F = 40), it is cMLP performs the
best with NKDCD being the second best. At F = 10, T =
250, 500, 1000, the AUROCs for the VAR with ulg- and hlg-
lassos are both 86.1± 0.6, 86.2± 0.2 and 93.0± 0.4 respec-
tively. The AUROCs for cMLP are reported to be 86.6± 0.2,
96.6 ± 0.2 and 98.4 ± 0.1 respectively, while those for
cLSTM are 81.3± 0.9, 93.4± 0.7 and 96.0± 0.1 respectively.
NKDCD with ilg-lasso penalty gives AUROC of 94.1± 0.7,
98.5±0.2 and 99.8±0.1 while its counterpart with hlg-lasso
is 94.1 ± 0.6, 98.5 ± 0.1 and 99.7 ± 0.1 respectively. When
F is increased to 40, for T = 250, 500, 1000 the AUROCs
for the VAR with ulg-lasso are 70.0 ± 0.0, 80.6 ± 0.0, and
84.7± 0.0, and with hlg-lasso are 70.4± 0.0, 81.1± 0.0, and
84.7± 0.0 respectively. The AUROCs for cMLP are reported
to be 84.0 ± 0.5, 89.6 ± 0.2, and 95.5 ± 0.3, while those of
cLSTM are 75.1±0.9, 87.8±0.4, and 94.4±0.5 respectively.
NKDCD with ilg-lasso penalty gives AUROC of 80.8± 0.1,
92.0±1.1, and 98.7±0.1 while its counterpart with hlg-lasso
is 82.6± 0.3, 90.8± 0.7, and 96.7± 0.2 respectively.

4.3 fMRI Data with Nonlinear Dynamics

(a) Ground truth causal graph (b) Observed time series

Fig. 6. fMRI data

Another benchmark, functional magnetic resonance
imaging (fMRI), contains realistic, simulated Blood-oxygen-

level dependent (BOLD) datasets for 28 different underly-
ing brain networks [41]. BOLD fMRI measures the neural
activity of different regions of interest in the brain based on
the changes in blood flow. Each region (i.e., a node in the
brain network) has its associated time series of electrical
excitation. All time series have an external input, white
noise, and are fed through a nonlinear model [47]. All 28
datasets are also made available on GitHub. Brain network
20 has a dataset of size 2400 × 5 that corresponds to one
of the 28 brain networks. Its ground truth causal graph
and three selected time series are depicted in Figure 6, in
which time series 2 and 3 exhibit a causal relationship, while
neither is causally linked to time series 5.

TABLE 4
fMRI Results

Dataset Brain network 20
Metrics AUROC AUPR

NKDCD+Eq. 12 93.3± 0.0 93.0± 0.1
NKDCD+Eq. 11 95.3± 0.0 93.9± 0.1

VAR+Eq. 10 79.3± 3.9 82.5± 3.3
VAR+Eq. 11 79.3± 3.9 82.5± 3.3

The performance metrics are reported as the mean across
five initializations with a 95% confidence interval. The re-
sults, summarized in Table 4, show that our formulation
is promising and can be utilized in realistic datasets. The
AUROC and AUPR for the standard VAR method using
ulg- and hlg-lasso penalties are 79.3 ± 3.9 and 82.5 ± 3.3,
respectively. Our method outperforms the VARs by having
AUROC and AUPR of 93.3± 0.0 and 93.0± 0.1 for the ilg-
lasso penalty and 95.3± 0.0 and 93.9± 0.1 respectively for
the hlg- counterpart.

4.4 Dream3 Genetic Data with Nonlinear Dynamics

(a) Ground truth causal graph (b) Observed time series (selected)

Fig. 7. Dream3 genetic data for Yeast 1
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TABLE 5
DREAM3 Genetic Data

EC1 EC2 Y1 Y2 Y3
Metric AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR

NKDCD+Eq. 12 81.1 50.6 80.0 45.1 71.5 45.5 65.2 28.6 60.6 25.7
NKDCD+Eq. 11 81.2 50.6 80.2 45.5 71.6 45.6 65.1 29.2 60.4 25.6

cMLP < 65 < 12 < 65 < 14 < 70 < 16 < 60 < 12 < 60 < 14
cLSTM < 75 < 12 < 75 < 14 < 75 < 12 < 65 < 16 < 60 < 16

VAR+Eq. 10 51.8 2.6 50.9 2.6 50.2 2.9 51.3 5.3 52.4 7.6
VAR+Eq. 11 51.8 2.6 50.9 2.6 50.2 2.9 51.3 5.3 52.4 7.6

DREAM3 challenge dataset [42] provides a rigorous
benchmark for comparing GC detection methods for gene
regulatory networks [28], [48], [49]. The data are syntheti-
cally generated to mimic continuous gene expression and
regulation dynamics, incorporating multiple unobserved
hidden factors. The DREAM3 challenge comprises 5 distinct
simulated datasets, each associated with different ground
truth GC dependencies. Specifically, there are two datasets
based on E.coli (EC 1-2) and three datasets based on Yeast
(Y 1-3). In each dataset, there are 100 time series, with 46
replicates sampled at 21 time points, resulting in a times
series data of size 100×966. This setup presents a significant
challenge due to the limited amounts of data relative to
the complexity of the networks and underlying dynamic
interactions, as shown in Figure 7a, whereas 3 selected time
series elements from a single replicate of the Y1 dataset are
shown in Figure 7b. This snapshot provides insight into the
intricacies of the gene expression dynamics encapsulated
within the dataset, offering a stage for our GC estimation
efforts. In this simulation, the ADAM [50] with parameters
β = (0.9, 0.999) and ϵ = 10−8, was used to initially update
the learnable parameters in place of the ordinary gradient
descent, followed by the proximal gradient descent was
used to sparsify the lag matrices Wl, l ∈ [1, L]. We applied
our results to all five data sets. Results for AUROC are
visualized in Figure 8a and for AUPR in Figure 8b. The ROC
plots for both the ilg- and hlg-lassos are shown in Figure 9.

(a) AUROC bar-plots (b) AUPR bar-plots

Fig. 8. Accuracy plots of DREAM3 dataset

We compared our results based on the bar plots in the
recent work reported in [28] in Table 5. For the EC1 dataset,
the AUROC values for the standrad VAR with ulg-lasso and
with hlg-lasso, cMLP, cLSTM, NKDCD with ilg-lasso, and
with hlg-lasso respectively are 51.8, 51.8,65, 75, 81.1, 81.2
and their corresponding AUPRs are 2.6, 2.6, 12, 12, 50.6,
50.6, respectively. Following the same pattern for the EC2
dataset, the AUROCs are 50.9, 50.9,65, 75, 80.0, 80.2 and
their corresponding AUPRs are 2.6, 2.6, 14, 14, 45.1, 41.5,

(a) EC1 (b) EC2

(c) Y1 (d) Y2

(e) Y3

Fig. 9. ROC plots of DREAM3 dataset

respectively. The performance of the Y1 dataset for AUROCs
are 50.2, 50.2,70, 75, 71.5, 71.6 and their corresponding
AUPRs are 2.9, 2.9, 16, 12, 45.5, 45.6, respectively. The Y2
dataset yields AUROCs are as, 51.3, 51.3,60, 65, 65.2, 65.1
and their corresponding AUPRs as, 5.3, 5.3, 12, 16, 28.6,
29.2, respectively. The Y3 Dataset gives AUROCs as, 52.4,
52.4,60, 60, 60.6, 60.4 and their corresponding AUPRs as,
7.6, 7.6, < 14, < 16, 25.7, 25.6, respectively. Results suggest
that the dynamics for Y 1-3 may be more complex than that
for EC 1-2. In all cases, our results outperform the existing
linear and nonlinear methods.

5 CONCLUSION

We have introduced the NeuroKoopman Dynamic Causal
Discovery (NKDCD) framework, which leverages a
Koopman-inspired regularized deep neural network au-
toencoder architecture for the inference of nonlinear
Granger causality and underlying dynamics in observed
multivariate time series data. This framework enables the
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learning of underlying dynamics and their interdependen-
cies through sparse nonlinear regressive models. By em-
ploying a data-driven NN-based basis function for lifting
the NAR dependency for a linear Koopman embedding
and next for learning a linear vector autoregressive model
in the lifted domain, we infer Granger causality and the
underlying dynamics. We employ structured group-level
sparsity-inducing penalties that preserve the structure of
interdependencies of the original variables, ensuring reliable
model learning. Validation through simulations on various
application datasets shows that our NKDCD outperforms
the state-of-the-art results from recent literature.
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