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I calculate elastic properties of three-dimensional Yukawa or dust crystals using molecular dynamic
simulations. The elastic properties are computed by deforming (compressing/expanding) a cubic
dust crystal along different directions. The bulk modulus, shear modulus, and Poisson’s ratio are
determined as a function of shielding parameter κ and strong coupling parameter Γ. Furthermore,
I calculate sound wave velocity and shear wave velocity using bulk and shear modulus values and
compare them with the velocities obtained from the slope of longitudinal and transverse wave
dispersion relations. It is found that the sound and shear velocities obtained using bulk and shear
modulus agree with the previously observed experimental values.

I. INTRODUCTION

Dusty plasmas are composed of electrons, ions, neutrals,
and immersed dust particles. It is observed in both nat-
ural and laboratory settings. In nature, dusty plasmas
are observed in Saturn’s ring, interstellar clouds, and
cometary tails [1]. In laboratory, it is present in the plas-
mas of fusion devices, rocket exhaust, and created in ex-
perimental devices under controlled conditions [2, 3]. The
dusty plasma offers a model system to study generic phe-
nomena such as self-organization and transport at par-
ticle level [4]. Both theoretical and experimental stud-
ies have been carried out to study generic phenomena in
dusty plasmas, such as crystallization [5–7], single parti-
cle dynamics [8, 9], solitons [10–13], shocks [14, 15], spiral
waves [16, 17], vortices [18, 19], and Mach cones [20].
A typical micron-sized dust particle carries an electronic
charge ranging from approximately -10,000e to -20,000e
and possesses a mass approximately 1013 to 1014 times
that of ions. Dusty plasma can be modeled by a system of
point particles interacting through a Yukawa potential,
also known as a shielded Coulomb potential, described
by the following expression [21]:

U(r) =
Q2

4πϵ0r
exp(− r

λD
) , (1)

where Q = −Zde is the charge on a typical dust particle,
r is the separation between two dust particles, and λD

is the Debye length of background plasma. The Yukawa
system can be characterized in terms of two dimension-
less parameters Γ = Q2/4πϵ0akBTd (known as the strong
coupling parameter) and κ = a/λD (known as the shield-
ing parameter). Here, Td and a are the dust temperature
and the Wigner-Seitz (WS) radius, respectively. The
Yukawa inter-particle interaction is also used to model
other systems, including charged colloids [22, 23], elec-
trolytes [24, 25], and strongly coupled electron-ion plas-
mas [26, 27].
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Elastic properties are crucial material characteristics that
indicate the stiffness of a material. They are linked to
the propagation of waves and their velocities along spe-
cific crystallographic directions within a material. Wave
propagation and viscoelasticity in dusty plasmas have
been extensively investigated through experiments and
simulations over the past few decades [4]. Earlier studies
have been carried out to calculate the elastic properties
of Yukawa systems. Robbins et al. [28] and Khrapak and
Klumov [29] have conducted simulations where sound ve-
locities and radial distribution functions have been uti-
lized in the calculations of elastic properties of Yukawa
systems, respectively. Wang et al. [30] have determined
the shear modulus of two-dimensional dusty plasmas by
considering the viscoelasticity of the liquid state. More
recently, Kozhberov [31] have studied the elastic prop-
erties of Yukawa crystals using analytical expressions,
incorporating the electrostatic energies of deformed crys-
tals in the calculations. The investigation into the elastic
properties of Yukawa or dust crystals continues to be an
area of sustained interest.
In this paper, I calculate the elastic properties of dusty
plasma by deforming (compressing/expanding) a cubic
dust crystal along different directions. The stress and
strain of the deformed crystal are used in the calculation
of the elastic stiffness constants of dusty plasma. Fur-
thermore, these elastic constants are utilized to calculate
the bulk modulus, shear modulus, and Poisson’s ratio of
the Yukawa crystal. I determine the bulk modulus, shear
modulus, and Poisson’s ratio as functions of the shield-
ing parameter κ and the strong coupling parameter Γ.
These elastic properties are calculated using experimen-
tal dusty plasma parameters. I assess the accuracy of
my elastic property calculations by comparing the sound
velocity and shear velocity obtained using it with those
obtained from the slope of longitudinal and transverse
wave dispersion relations.
The paper is organized as follows. Section II provides de-
tails of molecular dynamic (MD) simulations. In Section
III, I report the results for elastic properties as a function
of strong coupling parameter Γ and shielding parameter
κ. Section IV contains a summary of the work.
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II. SIMULATION METHOD

A three-dimensional cubic box containing point particles
is created to study the elastic properties of dust crystals.
Yukawa interaction potential is taken among the dust
particles, which mimics the screening from background
electrons and ions. The state-of-the-art open-source code
LAMMPS [32] is used for the molecular dynamic simula-
tions. The simulation box contains 10235 dust particles
within dimensions of 35a×35a×35a (ranging from 0 to
35a) along the X, Y, and Z directions, respectively, where
a is average inter-particle distance. Experimental param-
eters [18] are employed in the simulations: Q = -20000e
(where e denotes the charge of an electron), dust mass m
= 1.7×10−13 Kg, and average inter-particle distance a =
6×10−4 m. The average inter-particle distance sets the
number density of dust particles n = 1.1×109 per m3,
corresponding to a mass density ρ of 1.87×10−4 Kg/m3.
In the simulations, the value of shielding parameter κ is
increased by decreasing the screening length λD of the
Yukawa interaction, and the value of strong coupling pa-
rameter Γ is increased by decreasing the temperature of
dust particles.
The particles are equilibrated at a given temperature us-
ing Langevin dynamics, which reads as

mr̈i = −
∑

j

∇Uij + Ff + Fr , (2)

where Uij is interaction potential, Ff is frictional force
on the particles, and Fr is random force (kicks) on the
particles. I choose simulation time step of 100 µs, which
ensures a fine discretization along the temporal domain
and good resolution of the underlying dust kinetics. The
dust particles are evolved for the 40000 time steps for the
equilibration of the system. Fluctuations in temperature,
pressure, and total energy of the system over time are
monitored to verify system equilibration.
Following equilibration, the system is prepared for the
calculation of elastic properties under isothermal con-
ditions. The cubic box is transformed into a triclinic
box and equilibrated again for 450000 time steps. Sub-
sequently, the triclinic box undergoes deformation (Voigt
deformation) along various directions. After each expan-
sion and contraction, the triclinic box is equilibrated for
50000 time steps. The change in the stress of crystal Px,
Py, Pz, Pxy, Pxz, Pyz with deformation (strain) along
X, Y, Z, XY, XZ, and YZ directions (Voigt deformation
component), respectively, are used in the calculations of
elastic stiffness constants.
The convergence of elastic properties with magnitude
of deformation (expansion/compression) is checked care-
fully. A deformation magnitude of 0.075 (in strain units)
is employed in my calculations. The average of stresses
are taken at 1000 time steps. The finite size effects on
elastic properties are examined, which reveals that 10235
atoms are adequate to mitigate such effects.

III. RESULTS

The purpose of this study is to calculate elastic properties
of three-dimensional Yukawa or dust crystal as a function
of κ and Γ. Specifically, I compute the bulk modulus,
shear modulus, and Poisson’s ratio to characterize the
elastic properties.

A. Bulk Modulus

The bulk modulus K is a measure of the resistance of a
material to an applied bulk compression. I calculate bulk
modulus using the following expression [28, 33]:

K =
C11 + 2C12

3
. (3)

In the above expression, C11 and C12 are the elastic stiff-
ness constants. The bulk modulus at Γ = 2000 as a func-
tion of screening parameter κ is displayed in Fig. 1. It de-
creases with an increase in the κ. This reduction occurs
because as κ increases, the interaction potential length
decreases, making compression of the material easier. For
large κ, the Yukawa potential becomes extremely short-
range, leading to interactions among particles resembling
those in a hard sphere system. The characteristics of bulk
modulus at κ = 2 with varying strong coupling param-
eter Γ is shown in Fig. 2. The bulk modulus decreases
with an increase in Γ. In this study, Γ is increased by
reducing the temperature of the dust particles, making
it easier to compress the particles due to reduced thermal
pressure. However, at higher Γ values, the rigidity driven
by the interaction potential overtakes the rigidity driven
by temperature, resulting in no further change in bulk
modulus with decreasing temperature (see Fig. 2).
To validate the accuracy of my bulk modulus calcula-
tions, I compute the longitudinal sound velocity CS us-
ing it. I utilize the relationship CS =

√
K/ρ for the

calculation of sound velocity [33]. At κ = 2.0 and Γ =
3000, the sound velocity obtained using bulk modulus
is 2.01 cm/s, which closely matches the sound velocity
value of 2.15 cm/s obtained from the slope of the lon-
gitudinal wave dispersion relation, see Fig. S1 in sup-
plementary material. The details of the sound velocity
calculation from the dispersion relation are provided in
the supplementary material [34] and have also been re-
cently reported by Kumar et al. [35]. The experimentally
measured and theoretically calculated values of sound ve-
locity by Bailung et al. [18] at the same parameters are
4.5 cm/s and 3.06 cm/s, respectively. From these com-
parisons, it is evident that my bulk modulus values yield
correct sound velocity in the dusty plasma medium. The
strongly coupled dusty plasmas are extremely soft, so
that the bulk modulus of solid dusty plasma is much
smaller than those of typical solids like metals. For ex-
ample, bulk modulus of aluminum at ambient condition
is 79 GPa [36].
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FIG. 1. Bulk modulus K of dust crystal at the strong coupling
parameter Γ = 2000 as a function of shielding parameter κ.

FIG. 2. Bulk modulus K of dust crystal at shielding param-
eter κ = 2 as a function of strong coupling parameter Γ.

B. Shear Modulus

The shear modulus G is a measure of a material’s resis-
tance to an applied shearing deformation. I calculate the
shear modulus using the following formulas [28, 33]:

G1 = C44 (4)

and

G2 =
C11 − C12

2
. (5)

Here, G1 and G2 are the shear modulus along 100 and
110 crystallographic directions, respectively. The shear
modulus G1 as a function of Γ at different κ values is
displayed in Fig. 3. Additionally, the shear modulus
as a function of κ at Γ = 2000 along the 100 and 110
crystallographic directions are shown in Fig. 4. The val-
ues of G1 and G2 differ at small κ values because the
particles are in a crystalline phase, resulting in different
particle arrangements along the 100 and 110 directions,
leading to different shear strains along these directions.
However, at high κ values, the particles are in a liquid
phase and exhibit a uniform distribution along all direc-
tions resulting in G1 and G2 are equal. In the crystalline
phase, the shear modulus decreases with an increase in
the shielding parameter, which is a direct consequence
of the reduction in inter-particle interactions. The shear
modulus initially decreases with an increase in the strong
coupling parameter Γ, and later it increases with fur-
ther increases in the strong coupling parameter due to
an increase in inter-particle interactions. This increase
in inter-particle interaction results in an increase in re-
sistance to an applied shear deformation. At very high
Γ values, temperature-driven shear deformation becomes
very low and is suppressed by inter-particle driven shear
resistance, consequently causing the shear modulus to
saturate (see Fig. 3).

FIG. 3. Shear modulus G1 of dust crystal at different shield-
ing parameters κ as a function of strong coupling parameter
Γ.

At κ = 2.0 and Γ = 3000, the shear velocity obtained
from the shear modulus relation CT =

√
G/ρ [33] is 3.61

mm/s and 3.59 mm/s along the 100 and 110 directions,
respectively. These values are close to the experimentally
measured value of 4.2 mm/s reported by Pramanik et al.
[37]. Nunomura et al. [38] have also reported similar val-
ues of shear velocity in their experiments. From the slope
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FIG. 4. Shear modulus of dust crystal along crystallographic
directions of 100 and 110 as a function of shielding parameter
κ. The strong coupling parameter Γ of the Yukawa crystal is
2000.

of the transverse wave dispersion relation, the obtained
shear velocity is 5.36 mm/s, see Fig. S2 in the supple-
mentary material [34]. Nevertheless, my shear modulus
values are providing correct shear velocity in the dusty
plasma medium. Similar to the bulk modulus, the shear
modulus is much smaller than that of typical solids. For
instance, the shear modulus for aluminum at ambient
conditions is 25.5 GPa [39].

C. Poisson’s Ratio

The Poisson’s ratio ν quantifies the deformation (com-
pression/expansion) of a material in directions perpen-
dicular to a specific direction of loading. It is defined
as the negative ratio of transverse strain to axial strain.
I calculate Poisson’s ratio using the elastic constants,
which is given by

ν =
1

1 + C11

C12

. (6)

The Poisson’s ratio at Γ = 2000 as a function of κ is dis-
played in Fig. 5. Initially, Poisson’s ratio decreases with
an increase in κ because transverse strain decreases with
the reduction in interaction length of potential. How-
ever, above κ > 2.5, it increases because the Yukawa
interaction becomes extremely short-range, resulting in
interactions among particles resembling those in a hard
sphere system that leads to much less axial strain. The
characteristics of Poisson’s ratio at κ = 2 as a function
of Γ is shown in Fig. 6. With an increase in the strong

coupling parameter Γ, Poisson’s ratio decreases, which
is a direct consequence of less strain in the transverse
direction due to the reduced thermal motion (thermal
pressure) of particles at low temperatures.

FIG. 5. Poisson’s ratio of dust crystal at coupling parameter
Γ = 2000 as a function of shielding parameter κ.

FIG. 6. Poisson’s ratio of dust crystal at shielding parameter
κ = 2 as a function of coupling parameter Γ.

For dusty plasma, the bulk modulus is much larger com-
pared to the shear modulus, so they can be regarded
as effectively incompressible, as it is easier to change
shape than to compress. Soft materials with similar
characteristics are also considered incompressible in na-
ture [40]. A perfectly incompressible isotropic material
has a Poisson’s ratio of exactly 0.5; for dusty plasma, it
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is approximately 0.5. However, the incompressible na-
ture of dusty plasma changes with variations in κ and Γ,
see Fig. 5 and Fig. 6. For comparison, it is worth men-
tioning that the Poisson’s ratio of natural rubber and
aluminum is 0.4999 and 0.33, respectively [41].

IV. SUMMARY

I have calculated bulk modulus, shear modulus, and
Poisson’s ratio of a cubic Yukawa or dusty crystal in
the molecular dynamic simulations. These properties
are computed by deforming (compressing/expanding) the
dust crystal along different directions. The characteris-
tics of elastic properties as a function of shielding param-
eter and strong coupling parameter have been studied.
The shear modulus has also been calculated along the
crystallographic directions of 100 and 110, and it is found
that the values are different at small screening parame-
ters. Furthermore, I have calculated sound and shear
wave velocities using bulk and shear modulus and com-
pared them with the velocities obtained from the slope
of longitudinal and transverse wave dispersion relations.

It is found that the sound and shear velocities obtained
using bulk and shear modulus agree with the previously
observed experimental values.
Strongly coupled dusty plasmas exhibit solid-like traits,
but they are extremely soft. As a result, the bulk mod-
ulus and shear modulus of solid dusty plasmas are much
smaller than those of typical solids, such as metals. In
fact, the bulk modulus is much larger compared to the
shear modulus, which effectively renders dusty plasma
as incompressible. This is because it is easier to change
shape than to compress a dusty plasma system.
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1 Longitudinal and Transverse Wave Velocity S2

1 Longitudinal and Transverse Wave Velocity

The longitudinal sound wave velocity and transverse shear wave velocity of a material can be

determined from the slope of the dispersion relation ω(q) at small q values. The longitudinal

λ(q, t) and transverse π(q, t) currents of dust particles are defined as

λ(q, t) =
∑

j

vjx(t)e
iq.xj(t) (1)

and

π(q, t) =
∑

j

vjy(t)e
iq.xj(t) . (2)

Here, xj, vjx, and vjy are the position, velocity in the X-direction, and velocity in the Y-

direction of the j-th particle, respectively. The wave vector q depends on the simulation

system length Lx. The longitudinal and transverse current correlation spectrum

L(q, ω) =
1

2πN
lim
τ→∞

1

τ
|λ(q, ω)|2 (3)

and

T (q, ω) =
1

2πN
lim
τ→∞

1

τ
|π(q, ω)|2 , (4)

respectively, are calculated from the longitudinal λ(q, ω) and transverse π(q, ω) current

spectrum that are Fourier transform of longitudinal and transverse current

S2



λ(q, ω) =

∫ τ

0

λ(q, t)e−iωtdt (5)

and

π(q, ω) =

∫ τ

0

π(q, t)e−iωtdt . (6)

In the above expression, N and τ are the number of dust particles and simulation time,

respectively. The peak position in L(q, ω) and T (q, ω) provides ω value for the given wave

vector q value. The peak in the L(q, ω) and T (q, ω) indicates the maximum energy of the

longitudinal and transverse collective modes, respectively. The ω versus q plot gives the lon-

gitudinal and transverse wave dispersion relations, which are displayed in Fig. S1 and Fig. S2,

respectively. The slope of plot at small q values provides the longitudinal sound and trans-

verse shear wave velocity in the Yukawa system or dusty plasma. The obtained values of

sound wave velocity and shear wave velocity at Γ = 3000 and κ = 2 are 2.15 cm/s and 5.36

mm/s, respectively.

Figure S1: Longitudinal sound wave dispersion relation at the strong coupling parameter Γ
= 3000 and shielding parameter κ = 2. The slope of plot at small q values (red line) provides
sound wave velocity in the dusty plasma.
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Figure S2: Transverse shear wave dispersion relation at the strong coupling parameter Γ =
3000 and shielding parameter κ = 2. The slope of plot at small q values (red line) provides
shear wave velocity in the dusty plasma.
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