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Abstract

In this article we develop a graphical calculus for stable invariants of Riemannian mani-
folds akin to the graphical calculus for Rozansky–Witten invariants for hyperkähler
manifolds; based on interpreting trivalent graphs with colored edges as stably invari-
ant polynomials on the space of algebraic curvature tensors. In this graphical calculus
we describe explicitly the Pfaffian polynomials ( pfn )n∈N0 central to the Theorem of
Chern–Gauß–Bonnet and the normalized moment polynomials (Ψ◦

n )n∈N0 calculating
the moments of sectional curvature considered as a random variable on the Graßman-
nian of planes. Eventually we illustrate the power of this graphical calculus by deriving
a curvature identity for compact Einstein manifolds of dimensions greater than 2 involv-
ing the Euler characteristic, the third moment of sectional curvature and the L2–norm
of the covariant derivative of the curvature tensor. A model implementation of this
calculus for the computer algebra system Maxima is available [12].

MSC (2020): 53–08, 53C25, 53E20.
Keywords: Riemannian invariants, graph algebras, Einstein metrics.

1 Introduction

Riemannian manifolds are studied extensively in Differential Geometry from different points
of view, among which is the classical topic of classifying Riemannian manifolds up to home-
omorphisms, diffeomorphisms or isometries. Riemannian invariants provide a direct method
to distinguish non–isometric manifolds, such invariants can be constructed for example by
integrating a scalar valued polynomial ψ in algebraic curvature tensors over the manifold
in question. In order to have the integrand well–defined independent of the choice of co-
ordinates ψ needs to be a polynomial on the space Curv−T of algebraic curvature tensors
invariant under the orthogonal group O( T, g ). Tabulating the dimensions of the spaces of
such invariant polynomials in dependence on their degree n ∈ N0 and the dimension m ∈ N

∗Instituto de Matemáticas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Colonia
Lomas de Chamilpa, 62210 Cuernavaca, MEXIQUE; gw@matcuer.unam.mx.
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of the euclidean vector space with the help of the computer algebra system LiE we obtain:

❅
❅n
m

2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 2 4 3 3 3 3 3 3 3 3 3 3 3

3 1 3 9 7 8 8 8 8 8 8 8 8 8 8

4 1 4 19 20 24 25 28 26 26 26 26 26 26 26

5 1 5 39 51 83 84 101 89 90 90 90 90 90 90

6 1 7 82 150 361 359 509 403 409 408 412 409 409 409

7 1 8 151 431 1697 1761 3125 2194 2407 2240 2281 2245 2246 2246 .

Certainly the most interesting aspect of these dimensions is that they stabilize for fixed
degree n ∈ N0 provided the dimension m of the vector space T is sufficiently large, more
precisely the dimension of the space of invariant polynomials of degree n ∈ N0 on Curv−T
is constant for dim T > 2n with a last drop from dim T = 2n to dim T = 2n+ 1 for even
n. This phenomenon gives rise to the concept of stable curvature invariants.

Stability is a somewhat vague concept, it can be made precise by introducing a suitably
defined category CM of curvature models. Objects in this category are triples ( T, g, R )
formed by an algebraic curvature tensor R ∈ Curv−T over a euclidean vector space ( T, g ),
morphisms are the adjoints F ∗ : T −→ T̂ of linear isometric maps F : T̂ −→ T satisfying

R̂( F ∗X, F ∗Y ; F ∗U, F ∗V ) = R( X, Y ; U, V ) (1)

for all X, Y, U, V ∈ T . In turn a stable curvature invariant is a functor ψ : CM −→ R

from the curvature model category CM to the category R of real numbers with only the
identities as morphisms. In other words a stable curvature invariant ψ associates a real
number ψ(R) ∈ R to every curvature model ( T, g, R ) regardless of its dimension m ∈ N0

with equality ψ(R) = ψ(R̂), whenever there exists a linear isometric map F : T̂ −→ T
whose adjoint F ∗ : T −→ T̂ satisfies the constraint (1).

The category CM of curvature models captures the essence of the stabilization phe-
nomenon observed above: The adjoint F ∗ : T −→ T̂ of an isometric map F : T̂ −→ T
equals the composition F ∗ = F−1 ◦ pr of the orthogonal projection to the regular subspace
imF ⊆ T followed by the isometry F−1 : imF −→ T̂ . In turn the existence of a morphism
F ∗ : ( T, g, R ) −→ ( T̂ , ĝ, R̂ ) in the category CM tells us via equation (1) that the alge-
braic curvature tensor R is essentially the Cartesian product R̂⊕0 of the algebraic curvature
tensor R̂ on imF ∼= T̂ with the flat algebraic curvature tensor on ( imF )⊥.

The purpose of this article is to develop a graphical calculus akin to the calculus of Rozansky–
Witten invariants [8] to describe the algebra of stable curvature invariants ψ : CM −→ R

such that the induced map Curv−T −→ R, R 7−→ ψ(R ), is a polynomial on the vector space
Curv−T of algebraic curvature tensors for every euclidean vector space ( T, g ). Every such
stable polynomial curvature invariant of degree n is necessarily an 2n–fold iterated sum over
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an orthonormal basis E1, . . . , Em for T like the scalar curvature of degree n = 1

κ :=

m∑

µ, ν=1

R( Eµ, Eν ; Eν , Eµ ) =̂
1

4
❛ ❛♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

related to the Einstein–Hilbert functional or the norm square of the curvature tensor

gΛ2T ∗⊗Λ2T ∗(R, R ) :=
1

4

m∑

µ, ν, α, β=1

R(Eµ, Eν ; Eα, Eβ )
2 =̂

1

48 ❛

❛

❛

❛

♣♣
♣♣
♣♣
♣♣
♣♣
♣

♣♣
♣♣
♣♣
♣♣
♣♣
♣

of degree n = 2. In order to encode the contraction pattern of these 2n–fold iterated
sums over orthonormal bases in graphs we consider trivalent graphs, possibly with loops
or multiple edges between vertices, and with edges colored red and black, rendered in this
article as dotted and solid lines respectively, such that every vertex is adjacent to exactly one
red edge. Every black edge corresponds to one sum over an orthonormal basis, while every
red edge connects two different vertices and corresponds to a copy of the sectional curvature
tensor Sec ∈ Curv+T associated to the algebraic curvature tensor R ∈ Curv−T . A concise
formulation of this construction can be found in Definition 3.3.

Having outlined the general idea of how to convert a colored trivalent graph into a stable
curvature invariant we define the graph algebra A• as the convolution algebra RΓ• of the
graded monoid Γ• of isomorphism classes of colored trivalent graphs under the disjoint union
product. By construction this algebra comes along with an algebra homomorphisms

Inv(T, g ) : A
• −→ [ Sym•( Curv−T )∗ ]O( T, g ), [ γ ] 7−→ [ γ ] ,

for every euclidean vector space T . It turns out that this algebra homomorphism factorizes
over the quotient A

•
of the algebra A• of colored trivalent graphs by the ideal of IHX–relations

❛

❛

♣♣
♣♣
♣♣
♣♣
♣

✟✟ ❍❍

❍❍ ✟✟

+ ❛ ❛♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

✁
✁

❆
❆

❆
❆

✁
✁ + ❛ ❛♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

✁
✁

❆
❆

◗
◗
◗
✑

✑
✑

on red edges, which arose historically in the study of invariants of knots; in the present
context they reflect the first Bianchi identity. The reduced algebra A

•
of colored trivalent

graphs modulo the IHX–relations equals the algebra of stable curvature invariants:

Theorem 1.1 (Stable Algebra Isomorphism)
The algebra homomorphism from the reduced graph algebra A

•
to the algebra of invariant

polynomials on the space of algebraic curvature tensors over a euclidean vector space T

Inv(T, g ) : A
•
−→ [ Sym•( Curv−T )∗ ]O( T, g )

induces isomorphisms A
n ∼=
−→ [ Symn( Curv−T )∗ ]O(T, g ) in all degrees n < 1

2
dim T .
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Unluckily we will not even outline the proof of this theorem in this article, mainly because it
involves quite a lot of the representation theory of orthogonal and symplectic Lie algebras.
However we intend to be more specific about Theorem 1.1 in a future publications, focussing
for the time being on the description of the resulting graphical calculus. In case of doubt the
reader may easily verify Theorem 1.1 directly in small degrees: Using the general relation
between the Hilbert function of a free commutative associative graded algebra A

•
and the

numbers mA

d ∈ N0 of generators of A
•
necessary in degree d ∈ N

∑

n> 0

( ∑

d |n
dmA

d

)
tn = t

d

dt
ln
( ∑

n≥ 0

( dim A
n
) tn

)
(2)

we can deduce from the table of dimensions presented above that the algebra A
•
of stable

curvature invariants should be a free commutative graded algebra with 1, 2, 5, 15, 54, 270
and 1639 generators respectively of degrees 1, 2, 3, 4, 5, 6 and 7; numbers of generators
which coincide up to degree 4 with the number of generators of the reduced graph algebra
A

•
calculated in Section 3 as a direct consequence of Corollary 3.4.

Although characteristic numbers of compact manifolds like the Pontryagin numbers are poly-
nomial curvature invariants, it turns out that they are not stable polynomial curvature
invariants in the sense of this article, not to the least so, because the corresponding poly-
nomial ψ ∈ [ Sym•( Curv−T )∗ ]SO(T, g ) is invariant under the special orthogonal subgroup
SO( T, g ), but not under the full orthogonal group O( T, g ). The sole exception to this
rule is the Euler characteristic: We can write the Theorem of Chern–Gauß–Bonnet for every
compact, not necessarily oriented Riemannian manifold M of even dimension m in the form

χ(M ) =
1

( 2π )
m
2

∫

M

pf m
2
(R ) | volg |

with a sequence ( pfn )n∈N0 of elements of degree n in algebra A• of colored trivalent graphs.
This sequence of Pfaffian polynomials will be studied in more detail in Section 5 together with
the sequence (Ψ◦

n )n∈N0 of normalized moment polynomials, which calculate the moments
of the sectional curvature considered as a random variable on the Graßmannian of planes.
Both sequences have strikingly similar expansions in the power series completion

∑

n≥ 0

pfn = exp


 ∑

[ γ ]∈Γ•

conn

(−1)e(γ)

6n(γ)
2g(γ)

#Aut γ
[ γ ]


 (3)

∑

n≥ 0

Ψ◦
n = exp




∑

[ γ ]∈Γ•

conn
γblack even cycles

(−1)n(γ)
2g(γ)

#Aut γ
[ γ ]


 (4)

of the graph algebra A• derived in Lemmas 5.1 and 5.5 respectively, where n(γ) := 1
2
#Vert γ

is just the degree of the graph γ, whereas e(γ) and g(γ) denote the numbers of cycles of the
bivalent black subgraph γblack of even length and of length greater than 2 respectively.
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In order to illustrate the power of the graphical calculus developed in this article we eventually
consider in Section 6 the drastic algebraic simplifications in the reduced algebra A

•
of colored

trivalent graphs brought about by assuming the Riemannian manifold M to be an Einstein
manifold and use these simplification to prove the following curvature identity:

Theorem 6.4 (Cubic Curvature Identity for Einstein Manifolds)
For every compact connected Einstein manifoldM of dimension m ≥ 3 with scalar curvature
κ ∈ R the following identity of integrated stable curvature invariants of degree 3 holds true:

∫

M

pf3(R ) | volg | −
1

40

∫

M

Ψ◦
3(R ) | volg | +

2

15
|| ∇R ||2T ∗⊗Λ2T ∗⊗Λ2T ∗

= κ3
m2 − 18m+ 40

60m2
Vol(M, g ) + κ

3m− 104

30m
||R ||2Λ2T ∗⊗Λ2T ∗

In Section 2 we provide a leisurely introduction to algebraic and sectional curvature tensors.
Section 3 is certainly the central section of this article and details the construction of stable
curvature invariants from graphs and the construction of the graph algebras A• and A

•
.

Graphs are evaluated combinatorially on algebraic curvature tensors of constant sectional
curvature in Section 4. In Section 5 we define the Pfaffian and normalized moment polyno-
mials and present the combinatorial arguments behind the expansions (3) and (4) of their
generating series. Last but not least we establish Theorem 6.4 in Section 6. A model imple-
mentation for the computer algebra system Maxima of the functionalities of the graphical
calculus presented below can be found under the link [12].
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•
in Maxima leading to numerous new insights was

done while the author enjoyed a very pleasant research stay at the Max Planck Institut für
Mathematik in Bonn, whose hospitality and generosity is gratefully acknowledged.

2 Algebraic and Sectional Curvature Tensors

Algebraic curvature tensors are discussed in detail in many textbooks on differential geome-
try, a good reference is for example [2]. In this introductory section we will focus on the less
well–known symmetric counterparts of algebraic curvature tensors, the sectional curvature
tensors, with the aim to establish the equivalence between both ways to describe curvature.
Sectional curvature tensors are however easier to deal with, a statement illustrated by the
derivation of the polarization formula for algebraic curvature tensors given in this section.
In the development of a graphical calculus for stable curvature invariants this simplicity of
sectional compared to algebraic curvature tensors will be a crucial advantage.

A euclidean vector space will be for the purpose of this article a finite dimensional vector
space T over R endowed with a non–degenerate, not necessarily positive definite symmetric
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bilinear form g : T ×T −→ R called its scalar product. An isometric map between euclidean
vector spaces T and T̂ is a linear map F : T −→ T̂ with the characteristic property that
ĝ(FX, FY ) = g(X, Y ) for allX, Y ∈ T , isometries are invertible isometric maps. Declaring
for example the mutually inverse musical isomorphisms ♭ : T −→ T ∗, X 7−→ g(X, · ),
and ♯ := ♭−1 to be isometries defines a scalar product g−1 : T ∗ × T ∗ −→ R such that
g−1(α, β) := α(β♯). The scalar products g and g−1 extend to symmetric and exterior powers
of both T and T ∗ by using Gram’s permanent or determinant respectively, for example:

gΛkT ∗( α1 ∧ . . . ∧ αk, β1 ∧ . . . ∧ βk ) := det
{
g−1(αµ, βν )

}
µ, ν=1, ..., k

.

Coming back to our main topic we define an algebraic curvature tensor on a euclidean vector
space T to be a quadrilinear form R : T ×T ×T ×T −→ R, which is skew symmetric in the
first R(X, Y ;U, V ) = −R(Y,X ;U, V ) and second pair R(X, Y ;U, V ) = −R(X, Y ;V, U) of
its arguments X, Y, Z, U, V ∈ T and satisfies the so called first Bianchi identity:

R( X, Y ; Z, V ) + R( Y, Z; X, V ) + R( Z, X ; Y, V ) = 0 . (5)

Due to the presence of the musical isomorphisms ♭ and ♯ algebraic curvature tensors can be
interpreted alternatively as trilinear products R : T × T × T −→ T, (X, Y ; U ) 7−→ RX, Y U
on the vector space T by setting RX, Y U := R(X, Y ;U, · )♯ or even as 2–forms with values
in the Lie subalgebra so( T, g ) ⊆ EndT of skew symmetric endomorphisms of T :

R : T × T −→ so( T, g ), (X, Y ) 7−→ RX, Y .

The latter interpretation is particularly interesting due to the vector space isomorphism

Λ2T
∼=

−→ so( T, g ), X ∧ Y 7−→
(
U 7−→ g(X, U ) Y − g( Y, U )X

)

characterized completely by the identity gΛ2T (X, U ∧ V ) = g(XU, V ) for every bivector
X ∈ Λ2T and all U, V ∈ T . In accordance with this isomorphism an algebraic curvature
tensor R can be interpreted as a bivector valued 2–form on T , namely the 2–form

R =
1

4

m∑

µ, ν, α, β=1

R(Eµ, Eν ; Eα, Eβ ) dEµ ∧ dEν ⊗ dE♯
α ∧ dE♯

β , (6)

where the sum is over an arbitrary pair of dual bases {Eµ } and { dEµ } for the euclidean
vector space T and its dual T ∗. Of course the latter sum simplifies somewhat for an orthonor-
mal basis due to the equations E♭

α = ±dEα and dE♯
α = ±Eα characterizing orthonormal

bases in general. Last but not least we want to recall the definitions of the Ricci tensor

Ric( X, Y ) := tr
(
U 7−→ RU,XY

)
!
=

m∑

µ=1

R( Eµ, X ; Y, dE♯
µ ) (7)

and the scalar curvature κ ∈ R associated to an algebraic curvature tensor R:

κ :=
m∑

ν=1

Ric( Eν , dE
♯
ν ) =

m∑

µ, ν=1

R( Eµ, Eν ; dE
♯
ν , dE

♯
µ ) . (8)
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Sectional curvature tensors on a euclidean vector space T are defined in complete analogy
to algebraic curvature tensors as quadrilinear forms S : T × T × T × T −→ R, which are
symmetric in the first and second pair S(X, Y ;U, V ) = S(Y,X ;U, V ) = S(X, Y ;V, U) of
arguments and satisfy S(X,X ;X, V ) = 0 for all X, V ∈ T ; the latter becomes

S( X, Y ; Z, V ) + S( Y, Z; X, V ) + S( Z, X ; Y, V ) = 0 (9)

upon polarization in X, Y, Z ∈ T . Algebraic curvature tensors are well–known to satisfy
the symmetry in pairs R(X, Y ;U, V ) = R(U, V ;X, Y ) identically in their arguments:

2R(X, Y ;U, V ) = +R(X, Y ;U, V ) − R(X, Y ;V, U )

= −R( Y, U ;X, V ) − R(U,X ; Y, V ) + R( Y, V ;X,U ) + R( V,X ; Y, U )

= +R( Y, U ;V,X ) + R( V, Y ;U,X ) − R(X,U ;V, Y ) − R( V,X ;U, Y )

= −R(U, V ; Y,X ) + R(U, V ;X, Y )

= 2R(U, V ;X, Y ) .

Mutatis mutandis the reader may easily verify that sectional curvature tensors are symmetric
in pairs S(X, Y ;U, V ) = S(U, V ;X, Y ) as well. However it is more elegant to use the
unpolarized first Bianchi identity S(X,X ;X, V ) = 0 directly to obtain the equality

0 =
d

dt

∣∣∣∣
0

S(X + tU,X + tU ; X + tU, U ) −
d

dt

∣∣∣∣
0

S(U + tX, U + tX ; U + tX,X )

= 2S(X,U ; X,U ) + S(X,X ; U, U ) − 2S(U,X ; U,X ) − S(U, U ; X,X )

= S(X,X ; U, U ) − S(U, U ; X,X )

establishing the restricted symmetry S(X,X ;U, U) = S(U, U ;X,X) for all X, U ∈ T . The
general symmetry in pairs S(X, Y ;U, V ) = S(U, V ;X, Y ) follows directly from its restricted
version by means of the following polarization formula for sectional curvature tensors

16S( X, Y ; U, V )

= + S( X + Y,X + Y ; U + V, U + V ) − S( X − Y,X − Y ; U + V, U + V ) (10)

− S( X + Y,X + Y ; U − V, U − V ) + S( X − Y,X − Y ; U − V, U − V )

valid for all X, Y, U, V ∈ T , which is simply an iteration of the binomial polarization
formula 4 a(X, Y ) = a(X + Y,X + Y ) − a(X − Y,X − Y ) for symmetric bilinear forms
a ∈ Sym2T ∗. By definition the sets of algebraic or sectional curvature tensors are natural
subspaces Curv−T or Curv+T respectively of the vector space

⊗4 T ∗ of quadrilinear forms:

Lemma 2.1 (Equivalence of Algebraic and Sectional Curvature)
For every euclidean vector space T the vector spaces Curv−T and Curv+T of algebraic and
sectional curvature tensors on T are naturally isomorphic via the mutually inverse isomor-
phisms Φ+ : Curv−T −→ Curv+T and Φ− : Curv+T −→ Curv−T defined by:

( Φ+R )( X, Y ; U, V ) := − 2
(
R( X, U ; Y, V ) + R( X, V ; Y, U )

)

( Φ−S )( X, Y ; U, V ) := −
1

6

(
S( X, U ; Y, V ) − S( X, V ; Y, U )

)
.

7



The scalar factors in the definitions of Φ+ and Φ− are a matter of taste up to their product
being equal to 1

3
. With our choice the sectional curvature tensor Sec := Φ+R associated to

an algebraic curvature tensor R ∈ Curv−T satisfies for all X, U ∈ T the identity:

1

4
Sec( X, X ; U, U ) = R( X, U ; U, X ) .

In particular the inequalities Sec(X,X ; U, U ) ≥ 0 or Sec(X,X ; U, U ) > 0 for all or for
all linearly independent arguments X, U ∈ T respectively characterize the cones of algebraic
curvature tensors of non–negative or positive sectional curvature.

Proof: Leaving the straightforward verification of Φ+R ∈ Curv+T and Φ−S ∈ Curv−T
for all R ∈ Curv−T and S ∈ Curv+T to the reader we simply expand the definitions of the
linear maps Φ+ and Φ− to find for example for every algebraic curvature tensor R ∈ Curv−T

( Φ−Φ+R )( X, Y ; U, V )

= −
1

6

(
( Φ+R )( X, U ; Y, V ) − ( Φ+R )( X, V ; Y, U )

)

=
1

3

(
R(X, Y ; U, V ) + R(X, V ; U, Y ) − R(X, Y ; V, U ) − R(X,U ; V, Y )

)

=
2

3
R( X, Y ; U, V ) −

1

3

(
R( V, X ; U, Y ) + R(X, U ; V, Y )

)

=
2

3
R( X, Y ; U, V ) +

1

3
R( U, V ; X, Y ) = R( X, Y ; U, V )

using the first Bianchi identity (5) and the symmetry in pairs in the last line. The slightly
simpler analogous argument establishing Φ+Φ−S = S for every sectional curvature tensor
S ∈ Curv+T is omitted to reduce redundancy. �

With Φ+ and Φ− being inverse isomorphisms we can write every algebraic curvature tensor
in the form R = Φ−Sec for its associated sectional curvature tensor Sec := Φ+R and so

24R(X, Y ; U, V ) = 4 Sec(X, V ; Y, U ) − 4 Sec(X,U ; Y, V )

for all arguments X, Y, U, V ∈ T . In particular the polarization formula (10) for sectional
curvature tensors entails a polarization formula for algebraic curvature tensors R ∈ Curv−T

24R(X, Y ;U, V ) = +R(X + V, Y + U ; Y + U,X + V )− R(X + U, Y + V ; Y + V,X + U)

−R(X + V, Y − U ; Y − U,X + V ) +R(X + U, Y − V ; Y − V,X + U)

−R(X − V, Y + U ; Y + U,X − V ) +R(X − U, Y + V ; Y + V,X − U)

+R(X − V, Y − U ; Y − U,X − V )− R(X − U, Y − V ; Y − V,X − U)

for all X, Y, U, V . Likewise the definitions (7) and (8) of the Ricci tensor Ric ∈ Sym2T ∗ and
the scalar curvature κ ∈ R associated to an algebraic curvature tensor R can be rewritten

Ric( X, Y ) =
1

4

m∑

µ=1

Sec(Eµ, dE
♯
µ; X, Y ) κ =

1

4

m∑

µ, ν=1

Sec(Eµ, dE
♯
µ; Eν , dE

♯
ν )

8



in terms of the sectional curvature tensor Sec = Φ+R. In order to discuss a more important
consequence of Lemma 2.1 we observe that the vector space Sym2T ∗⊗Sym2T ∗ of quadrilinear
forms symmetric in their first and second pair of arguments is spanned by the tensor products

( a ⊗ b )( X, Y ; U, V ) := a( X, Y ) b( U, V )

of symmetric bilinear forms a, b ∈ Sym2T ∗. In addition we can define the projection

pr : Sym2T ∗ ⊗ Sym2T ∗ −→ Curv+T, S 7−→ prS ,

from the vector space Sym2T ∗ ⊗ Sym2T ∗ to the vector space Curv+T by setting

6 ( pr S )( X, Y ; U, V ) := + 2S( X, Y ; U, V ) + 2S( U, V ; X, Y )

− S( X, U ; Y, V ) − S( X, V ; Y, U ) (11)

− S( Y, U ; X, V ) − S( Y, V ; X, U )

for all arguments X, Y, U, V ∈ T ; note that pr S = S for every sectional curvature tensor
S ∈ Curv+T due to the first Bianchi identity (9), the symmetry in pairs and the compensa-
tion factor 6. On the other hand the image of every quadrilinear form S ∈ Sym2T ∗⊗Sym2T ∗

symmetric in its first and second pair of arguments is a well–defined sectional curvature ten-
sor pr S ∈ Curv+T , because the right hand of equation (11) is evidently symmetric under
X ↔ Y and U ↔ V while vanishing for X = Y = U . With pr being a projection and
thus surjective we conclude that the vector space Curv−T of algebraic curvature tensors on
a euclidean vector space T is spanned by the Nomizu–Kulkarni products

( a × b )( X, Y ; U, V )

:= a(X,U) b(Y, V ) − a(X, V ) b(Y, U) − a(Y, U) b(X, V ) + a(Y, V ) b(X,U)
(12)

of symmetric bilinear forms a, b ∈ Sym2T ∗, because we find by expanding definition (11)

− 36 ( Φ− ◦ pr )( a ⊗ b )( X, Y ; U, V )

= + 6 pr( a ⊗ b )( X, U ; Y, V ) − 6 pr( a ⊗ b )( X, V ; Y, U )

= + 2 a(X,U) b(Y, V ) + 2 a(Y, V ) b(X,U) − 2 a(X, V ) b(Y, U) − 2 a(Y, U) b(X, V )

− a(X, Y ) b(U, V ) − a(X, V ) b(U, Y ) + a(X, Y ) b(V, U) + a(X,U) b(V, Y )

− a(U, Y ) b(X, V ) − a(U, V ) b(X, Y ) + a(V, Y ) b(X,U) + a(V, U) b(X, Y )

= + 3 ( a × b )( X, Y ; U, V )

for allX, Y, U, V ∈ T . Put differently the Nomizu–Kulkarni product a×b ∈ Curv−T of two
symmetric bilinear forms a, b ∈ Sym2T ∗ equals the algebraic curvature tensor corresponding
to the sectional curvature tensor pr( a⊗ b ) ∈ Curv+T up to the scalar factor −12:

Φ+( a × b ) = − 12 pr( a ⊗ b ) . (13)

Taking a closer look at definition (12) we see that the Nomizu–Kulkarni product is commu-
tative a × b = b × a, hence we may polarize a × b = 1

4
(a+b) × (a+b) − 1

4
(a−b) × (a−b)

to argue that the vector space Curv−T is actually spanned by Nomizu–Kulkarni squares:

Curv−T = spanR{ a× a | a ∈ Sym2T ∗ symmetric bilinear form } ⊆
⊗4T ∗ . (14)
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Somewhat better every algebraic curvature tensor R ∈ Curv−T can be written as a sum of
Nomizu–Kulkarni squares of symmetric bilinear forms a1, . . . , ar ∈ Sym2T ∗ of rank two:

R = a1 × a1 + a2 × a2 + . . . + ar × ar . (15)

The argument relies on the following weak form of Sylvester’s Theorem of Inertia: For every
symmetric bilinear form a ∈ Sym2T ∗ on a finite dimensional vector space T over R there
exists a unique tuple ( p, n ) ∈ N2

0 called the signature of a such that a can be written as a
sum of signed symmetric squares of linearly independent forms α1, . . . , αp, β1, . . . , βn ∈ T ∗

a = ( 1
2
α2
1 + . . . + 1

2
α2
p ) − ( 1

2
β2
1 + . . . + 1

2
β2
n ) ;

by convention the square 1
2
α2 ∈ Sym2T ∗ of a linear form α ∈ T ∗ denotes the symmetric

bilinear form α⊗α : T×T −→ R, (X, Y ) 7−→ α(X)α(Y ). In particular a symmetric bilinear
form a ∈ Sym2T ∗ is non–degenerate and hence defines a scalar product on T , if and only if
its rank p+ n = m equals the dimension of T so that the α1, . . . , αp, β1, . . . , βn become a
basis of T ∗, namely an orthonormal basis with respect to the dual scalar product a−1.

According to equation (14) every algebraic curvature tensor R ∈ Curv−T can be ex-
panded into a finite sum of scaled Nomizu–Kulkarni squares λ a× a with a ∈ Sym2T ∗ and
a scalar λ ∈ R \ {0}. Replacing a  

√
|λ|a, λ  λ

|λ| if necessary we may assume without
loss of generality that all scalars occurring in this expansion of R equal λ = ±1 so that:

R = ± a1 × a1 ± a2 × a2 ± . . . ± ar × ar .

Sylvester’s Theorem of Inertia allows us to expand each of the symmetric bilinear forms
a1, . . . , ar ∈ Sym2T ∗ further into a finite sum of signed symmetric squares. Using the
distributivity law entailed by the bilinearity of the Nomizu–Kulkarni product × we thus
arrive at an expansion of the algebraic curvature tensor R into a finite sum of terms

± 1
2
α2 × 1

2
β2

with linear forms α, β ∈ T ∗. Recalling the conventional equality 1
2
α2 = α⊗α we calculate

( 1
2
α2 × 1

2
β2 )(X, Y ; U, V ) = + α(X)α(U) β(Y ) β(V ) − α(X)α(V ) β(Y ) β(U)

− α(Y )α(U) β(X) β(V ) + α(Y )α(V ) β(X) β(U)

=
(
α(X)β(Y ) − α(Y )β(X)

)(
α(U)β(V ) − α(V )β(U)

)

= (α ∧ β ⊗ α ∧ β )( X, Y ; U, V )

and conclude that 1
2
α2 × 1

2
β2 = 0 for linearly dependent forms α, β ∈ T ∗. In consequence

± 1
2
α2 × 1

2
β2 = 1

8
( α2 ± β2 ) × ( α2 ± β2 )

due to the commutativity of the Nomizu–Kulkarni product and α2 × α2 = 0 = β2 × β2.
Needless to say the symmetric bilinear forms 1√

8
(α2 + β2) and 1√

8
(α2 − β2) have rank 2 and

signature (2, 0) and (1, 1) respectively unless α and β are linearly dependent forms.

Corollary 2.2 (Description of Algebraic Curvature Tensors)
The vector space Curv−T of algebraic curvature tensors on a finite dimensional euclidean
vector space T over R is spanned by the curvature tensors 1

2
α2 × 1

2
β2 = α ∧ β ⊗ α ∧ β:

Curv−T = spanR{ α ∧ β ⊗ α ∧ β | α, β ∈ T ∗ linear forms } ⊆
⊗4T ∗ .
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3 Graph Algebras

Graphs are used in many different areas of mathematics as a means to encode information in a
form easily accessible for humans. In mathematical physics for examples graphs or Feynman
diagrams are used to encode specific analytic integrals by assigning Feynman rules to the
different types of edges and vertices comprising a graph. In this section we will use trivalent
graphs with edges colored red and black in a similar way to encode the contraction scheme
corresponding to a stable curvature invariant. In due course we will construct the algebra
A• of colored trivalent graphs and its quotient A

•
by the IHX–relations on red edges, which

arose originally in knot theory, to obtain a graphical calculus for curvature polynomials.

Recall first of all that a labelling of a finite set S is a bijection L : S
∼=

−→ {1, . . . , n} with the
set of the first n = #S natural numbers. In turn an orientation of S is an equivalence class
o = [L, ε ] of a labelling L of S and a sign ε ∈ {+1, −1 } under the equivalence relation:

(L, ε ) ∼ ( L̂, ε̂ ) ⇐⇒ sgn(L ◦ L̂−1 ) = ε ε̂ .

Because all one point sets as well as the empty set ∅ have unique labellings Lcan, these sets
have two distinguished orientations o± := [Lcan, ±1 ]. In the same vein every labelling L
of a finite set S represents the orientation oL := [L, +1 ]. Finite sets with at least two
elements have odd permutations and hence lack distinguished orientations, nevertheless we
can still talk about the orientation −o := [L, −ε ] opposite to +o = [L, +ε ].

It is convenient for our purposes to define a finite graph as a quadruple γ := ( V, F ; θ, at )
consisting of finite sets V and F called the sets of vertices and flags of γ respectively, a fix
point free involution θ : F −→ F called the flag involution and a map at : F −→ V called
the attaching map. By assumption θ is fix point free with f 6= θ(f) for all f ∈ F , hence
all orbits of θ in the set of flags have exactly two elements, namely the edges of the graph γ:

Edge γ := F/〈 θ 〉 = { { f, θ(f) } | f ∈ F } .

The analogous back references Vert γ := V and Flag γ := F reduce the need to specify
the vertex and flag sets of a finite graph γ by name, nevertheless θ and at will always refer
to the flag involution and the attaching map of the finite graph in question. By definition
every flag f ∈ F is adjacent to the vertex at(f) ∈ V , similarly an edge e = {f1, f2} is
adjacent to the not necessarily different vertices at(f1) and at(f2). The cardinality of the set
Flagvγ := at−1( v ) of flags adjacent to a vertex v ∈ Vert γ is called its valence #Flagvγ, in
a bivalent and trivalent graphs respectively all vertices are required to have the same valence
2 or 3. According to the definitions above finite graphs may have multiple edges between
vertices and loops, i.e. edges from a vertex to itself.

In order to talk about isomorphic graphs we consider finite graphs as the objects in a
suitable category of graphs. Morphisms ϕ : γ −→ γ̂ in this category are pairs of maps
between the sets of vertices ϕVert : Vert γ −→ Vert γ̂ and flags ϕFlag : Flag γ −→ Flag γ̂

respectively, which intertwine the flag involutions θ̂ ◦ ϕFlag = ϕFlag ◦ θ and the attaching
maps ât ◦ ϕFlag = ϕVert ◦ at. In consequence the automorphism group of a finite graph γ
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comes along with a group homomorphism Aut γ −→ SVert γ , ϕ 7−→ ϕVert, whose image and
kernel are the groups of pure and trivial automorphisms of γ respectively:

Aut γ := { ϕVert | ϕ automorphism of γ }

Aut◦γ := { ϕFlag | ϕ automorphism of γ with ϕVert = idVert γ } .
(16)

Remarkably the induced short exact sequence Aut◦γ
⊂

−→ Aut γ −→ Aut γ splits on the right.
The underlying argument is rather important for our calculations, because it ensures that
the group Aut γ of pure automorphisms is effectively computable as the subgroup of SVert γ

preserving the adjacency numbers of the graph γ for all pairs v, w ∈ Vert γ of vertices

Aut γ = { σ ∈ SVert γ | #Flagσ(v), σ(w)γ = #Flagv, wγ for all v, w ∈ Vert γ } ,

where Flagv, wγ := Flagvγ ∩ θ( Flagwγ ) is the set of flags adjacent to v on edges to w.

Definition 3.1 (Colored Trivalent Graphs)
A colored trivalent graph is a trivalent graph γ endowed with a coloring of its edges by colors
red and black or equivalently by a θ–invariant coloring c : Flag γ −→ { red, black } of its
flags in the sense c ◦ θ = c such that every vertex of γ is adjacent to exactly one red flag.

The attaching map at of a colored trivalent graph γ restricts by definition to a bijection
atred : c−1( red ) −→ Vert γ between the set of red flags of γ and its set of vertices. In turn
the flag involution θ induces a fix point free involution θred := atred ◦ θ ◦ at−1

red on the set of
vertices of the graph γ. Evidently the red edges in a colored trivalent graph are completely
determined by the fix point free involution θred, hence we may think of a colored trivalent
graph γ as the bivalent graph γblack we obtain by removing all red edges from γ endowed
with the fix point free involution θred on its set of vertices. In diagrams we will depict the
red and black edges of a colored graph by dotted and solid lines respectively, the six graphs

❛ ❛♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

❛

❛
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♣♣

❛ ❛♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

❛
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♣♣
♣♣
♣♣
♣

��

❅❅ ❛

❛

❛

❛
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♣♣
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♣♣
♣♣
♣♣

❛

❛

❛

❛
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♣♣
♣♣
♣♣
♣♣
♣♣

♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣

❛

❛

❛

❛

♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣

♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣

�
�
�

❅
❅

❅
(17)

say are among the simplest colored trivalent graphs. Homomorphisms and isomorphisms of
colored trivalent graphs ϕ : γ −→ γ̂ are required to preserve the flag coloring c = ĉ ◦ ϕFlag

of course. With this definition in place we can consider the sets of isomorphism classes

Γn := { [ γ ] | γ colored trivalent graph with 2n vertices }

of colored trivalent graphs with 2n, n ∈ N0, vertices and their union Γ• :=
⋃

n∈N0
Γn, which

is a graded commutative monoid under the multiplication induced by the disjoint union ∪̇

Vert( γ ∪̇ γ̂ ) := Vert γ ∪̇ Vert γ̂ Flag( γ ∪̇ γ̂ ) := Flag γ ∪̇ Flag γ̂

of colored graphs with the obvious definitions for the flag involution θ, the attaching map at
and the coloring c. On the level of graphs the disjoint union may or may not be commutative
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and associative depending on the model of set theory in use, this minor nuisance however
disappears on the level of isomorphism classes of colored trivalent graphs. Up to isomorphism
for example the fourth graph in diagram (17) equals the disjoint union γ ∪̇ γ of the second
graph γ with itself. The unit element of the monoid Γ• is represented by the unique empty
colored trivalent graph γempty := ( ∅, ∅; θ, at, c ) without vertices or flags at all.

Definition 3.2 (Algebra of Colored Trivalent Graphs)
The algebra of colored trivalent graphs is the graded convolution algebra of the monoid Γ•

over R. Put differently the algebra of colored trivalent graphs is the free graded vector space

A
• := R Γ•

over R generated by the graded set Γ• =
⋃
Γn with multiplication given by the R–bilinear

extension of the disjoint union multiplication of the commutative monoid Γ•. In passing we
remark that the grading on A• is completely determined by the number operator derivation:

N : A
• −→ A

•, [ γ ] 7−→
#Vert γ

2
[ γ ] .

From an algebraic point of view the algebra of colored trivalent graphs is not particularly
interesting, because the underlying commutative monoid Γ• is evidently the free commutative
monoid generated by the subset Γ•

conn ⊆ Γ• of isomorphism classes of connected colored
trivalent graphs. In consequence the inclusion RΓ•

conn ⊆ A• induces an algebra isomorphism

Sym•( RΓ•
conn )

∼=
−→ A

•

exhibiting A
• as the free polynomial algebra generated by the graded vector space RΓ•

conn.
From the differential geometric point of view it is much more interesting that every isomor-
phism class [ γ ] of colored trivalent graphs with 2n vertices defines a homogeneous polynomial

[ γ ] : Curv−T −→ R, R 7−→ [ γ ]( R ) ,

of degree n on the space of algebraic curvature tensors on an arbitrary euclidean vector space:

Definition 3.3 (Stable Curvature Invariants)
Every isomorphism class of colored trivalent graphs γ with 2n vertices gives rise to a homoge-
neous polynomial [ γ ] : Curv−T −→ R of degree n ∈ N0 for algebraic curvature tensors over
an arbitrary euclidean vector space T . More precisely γ evaluates on an algebraic curvature
tensor R ∈ Curv−T to an iterated sum over an orthonormal basis E1, . . . , Em of T

[ γ ]( R ) :=
∑

µ: Edge γblack−→{1,...,m}

∏

{ v+, v− }⊆Vert γ
θred(v+)= v−

Sec( Eµ(f1
+), Eµ(f2

+); Eµ(f1
−
), Eµ(f2

−
) ) ,

where Sec := Φ+R denotes the corresponding sectional curvature tensor. Sum and product
extend over all maps µ : Edge γblack −→ {1, . . . , m} and all orbits {v+, v−} ⊆ Vert γ of the
fixed point free involution θred of Vert γ. The flags f 1

+, f
2
+ and f 1

−, f
2
− in this formula denote

the pairs of black flags adjacent to v+ and v−, while µ : Flag γblack −→ {1, . . . , m} refers to
the composition of µ with the canonical projection Flag γblack −→ Edge γblack.
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In order to simplify the definition of the polynomial [ γ ] we have omitted the usual sign
factors ± appearing in iterated sums over orthonormal bases in cases the scalar product g
of the euclidean vector space T is not positive definite. The polynomial [ γ ] is of course well
defined independent of the choices made in labelling the two vertices in an orbit of θred and in
labelling the two black flags adjacent to each vertex. Extending the preceding construction
linearly we may associate a polynomial on Curv−T to every element of the algebra A• of
colored trivalent graphs, more precisely we obtain a homomorphism of graded algebras

Inv(T, g ) : A
• −→ Sym•( Curv−T )∗, [ γ ] 7−→

(
R 7−→ [ γ ]( R )

)
,

because both the sum and the product split over a disjoint union of graphs to provide for:

[ γ ∪̇ γ̂ ]( R ) = [ γ ]( R ) · [ γ̂ ]( R ) .

A discussion of the dependence of the algebra homomorphism Inv(T, g ) on the euclidean vector
space T necessarily involves the category CM of curvature models. Objects in this category
are triples ( T, g, R ) describing algebraic curvature tensors R on euclidean vector spaces
( T, g ), morphisms are the adjoints F ∗ : T −→ T̂ of isometric maps F : T̂ −→ T between
the euclidean vector spaces T and T̂ satisfying either of the two equivalent constraints

R̂( F ∗X, F ∗Y ; F ∗U, F ∗V ) = R( X, Y ; U, V )

Ŝec( F ∗X, F ∗Y ; F ∗U, F ∗V ) = Sec( X, Y ; U, V )
(18)

for all X, Y, U, V ∈ T . For every such morphism ( T, g, R ) −→ ( T̂ , ĝ, R̂ ) we have equality

[ γ ]( R ) = [ γ ]( R̂ ) , (19)

because the adjoint F ∗ : T −→ T̂ of an isometric map F : T̂ −→ T factors into the
orthogonal projection to the regular subspace im F ⊆ T and the isometry F−1 : im F −→ T̂ .
In consequence we can choose an orthonormal basis E1, . . . , Em for the euclidean vector space
T in such a way that F ∗E1, . . . , F

∗Em̂ is an orthonormal basis for T̂ , while F ∗Eµ = 0 for
all µ > m̂. Due to the constraint (18) imposed on morphisms in the category CM we find

Ŝec( F ∗Eµ(f1
+), F

∗Eµ(f2
+); F

∗Eµ(f1
−
), F

∗Eµ(f2
−
) ) = Sec( Eµ(f1

+), Eµ(f2
+); Eµ(f1

−
), Eµ(f2

−
) )

for this particular choice of orthonormal bases and all µ : Edge γblack −→ {1, . . . , m̂}, while

∏

{ v+, v− }⊆Vert γ
θred(v+)= v−

Sec( Eµ(f1
+), Eµ(f2

+); Eµ(f1
−
), Eµ(f2

−
) ) = 0

for all µ : Edge γblack −→ {1, . . . , m} with maximum larger than m̂. A particular case of the
invariance (19) of the polynomial [ γ ] under morphisms in the category CM occurs for the
adjoints F ∗ = F−1 of self isometries F : T −→ T of a given euclidean vector space T . In
this case the invariance (19) reads [ γ ](F ⋆ R̂ ) = [ γ ]( R̂ ) for all algebraic curvature tensors
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R̂ ∈ Curv−T in terms of the natural representation ⋆ of the orthogonal group O( T, g ) of
isometries of T on Curv−T ; in other words the homomorphism of graded algebras

Inv(T, g ) : A
• −→ [ Sym•( Curv−T )∗ ]O(T, g )

take values in the subalgebra of O( T, g )–invariant polynomials on Curv−T . A pretty similar
argument to the one used to prove the invariance (19) implies that the polynomial associated
to a linear combination [ γ ] ∈ RΓ•

conn of connected colored trivalent graphs is additive

[ γ ]( R ⊕ R̂ ) = [ γ ]( R ) + [ γ ]( R̂ )

under Cartesian products of curvature models. For general elements of the algebra A
• of

colored trivalent graphs we can thus use the comultiplication ∆ : A• −→ A• ⊗ A• induced
by the algebra isomorphism A• ∼= Sym•(RΓ•

conn ) to find [ γ ](R⊕ R̂ ) = [∆γ ](R, R̂ ).

Perhaps the best way to think about Definition 3.3 is as a set of Feynman rules for some
unspecified field theory, which allow us to evaluate the isomorphism class [ γ ] of a colored
trivalent graph γ on the sectional curvature tensor Sec := Φ+R associated to an algebraic
curvature tensor R ∈ Curv−T . These Feynman rules stipulate a summation over an or-
thonormal basis for every black edge and the multiplication of the red edge interactions:

❛

❛

✟✟

❍❍

❍❍

✟✟

♣♣
♣♣
♣♣
♣♣
♣

X Y

V U

=̂ Sec( X, Y ; U, V ) . (20)

In light of this Feynman rule description of Definition 3.3 we readily observe that the algebra
homomorphism Inv(T, g ) can not be injective, because the Feynman interpretation of

❛

❛

♣♣
♣♣
♣♣
♣♣
♣

✟✟ ❍❍

❍❍ ✟✟

+ ❛ ❛♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

✁
✁

❆
❆

❆
❆

✁
✁ + ❛ ❛♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

✁
✁

❆
❆

◗
◗
◗
✑

✑
✑ (21)

is exactly the left hand side of the first Bianchi identity (9) for sectional curvature tensors.
Whenever colored trivalent graphs γI , γH and γX are isomorphic except for a pair of vertices
connected by a red edge and four black flags attaching to these two vertices according to

γI :
❛

❛

♣♣
♣♣
♣♣
♣♣
♣

✟✟ ❍❍

❍❍ ✟✟

γH : ❛ ❛♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

✁
✁

❆
❆

❆
❆

✁
✁ γX : ❛ ❛♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

✁
✁

❆
❆

◗
◗
◗
✑

✑
✑ , (22)

then Inv( T, g )([ γI ] + [ γH ] + [ γX ]) = 0. The subspace spanned by these IHX–relations

〈 IHX 〉 := spanR{ [ γI ] + [ γH ] + [ γX ] | γI , γH , γX isomorphic except for (22) } (23)

is by construction a homogeneous ideal in the graph algebra A•, because an IHX–relation for
some red edge remains an IHX–relation at the same red edge after taking the disjoint union
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product with another graph. In consequence the algebra homomorphism Inv(T, g ) factorizes
through the canonical projection to the reduced algebra of colored trivalent graphs

A
•

:= A
•/〈 IHX 〉 (24)

and an algebra homomorphism Inv(T, g ) : A
•
−→ [ Sym•( Curv−T )∗ ]O(T, g ). One of the

simplest examples of a congruence modulo the ideal 〈 IHX 〉 is given by the IHX–relation:
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Another useful family of congruences modulo 〈 IHX 〉 is described by the Feynman rules:

❛ ❛�
X

❅ Y
♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ≡ − 2

❛

❛

X

Y
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♣♣
♣♣
♣♣
♣

=̂ 4 Ric(X, Y ) . (26)

Concerning the structure of the reduced graph algebra we remark

A
• ∼= Sym•(RΓ•

conn ) =⇒ A
• ∼= Sym•

(
RΓ•

conn/RΓ•
conn ∩ 〈 IHX 〉

)

by decomposing a colored trivalent graph γ into its connected components as before. In
order to establish a much stronger result we will make use of the bivalent black subgraph
γblack obtained from a colored trivalent graph γ by removing all its red edges. Consider for
the moment an arbitrary red edge in a connected colored trivalent graph γ:

❛

❛
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♣♣
♣♣
♣♣
♣♣

❍❍✟✟

✟✟❍❍❨

H X .

I

After leaving this red edge along the top left flag we will necessarily return to this red edge
at some point or other along a different black flag, because every finite bivalent graph like
γblack equals the disjoint union of cycles of length ≥ 1. Depending on the black flag of
first return exactly one of the three configurations in the IHX–relation corresponding to the
chosen red edge will have one black cycle more than the other two configurations. Say the
H configuration will have one cycle more than both the I and X configurations, if we return
first along the black flag marked with H, analogous considerations apply for a first return
along the black flag marked with I or X.

Given a connected graph γ such that γblack has at least two cycles there necessarily exists
a red edge connecting two different black cycles. In turn the IHX–relation for such a red
edge becomes a congruence [ γ ] ≡ −([ γ̂ ] + [ γ̃ ]) modulo the ideal 〈 IHX 〉 with connected
graphs γ̂ and γ̃ such that γ̂black and γ̃black both have one cycle less than γblack. Repeating this
process with γ̂ and γ̃ we eventually end up with a congruence [ γ ] ≡ ±([ γ̂1 ] + . . . + [ γ̂r ])
modulo the ideal 〈 IHX 〉, in which all graphs γ̂1, . . . , γ̂r have connected black subgraphs:
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Corollary 3.4 (Generators for the Reduced Graph Algebra)
The reduced graph algebra A

•
, the quotient of the algebra A• of colored trivalent graphs modulo

the ideal 〈 IHX 〉 of IHX–relations, is generated as an algebra, albeit not freely generated, by
the classes [ γ ] of colored trivalent graphs γ with connected bivalent black subgraph γblack:

A
•

:= A
•/〈 IHX 〉 = 〈 { [ γ ] + 〈 IHX 〉 | γ colored trivalent graph, γblack connected } 〉 .

In consequence the list of generators of the reduced graph algebra A
•
up to degree 3 reads:

❛

❛

♣♣
♣♣
♣♣
♣♣
♣♣

❛ ❛

❛ ❛

♣♣
♣♣
♣♣
♣♣
♣♣

♣♣
♣♣
♣♣
♣♣
♣♣

❛ ❛

❛ ❛

♣♣♣
♣♣♣
♣♣♣
♣♣♣
♣♣♣
♣♣

♣♣♣
♣♣♣
♣♣♣
♣♣♣
♣♣♣
♣♣

❛

❛

❛ ❛

❛ ❛

✟❍

❍✟♣ ♣ ♣ ♣ ♣ ♣ ♣

♣ ♣ ♣ ♣ ♣ ♣ ♣
♣♣
♣♣
♣♣

❛

❛

❛ ❛

❛ ❛

✟❍

❍✟
♣♣
♣♣
♣♣

♣♣
♣♣
♣♣
♣♣
♣♣
♣♣

♣♣
♣♣
♣♣

❛

❛

❛ ❛

❛ ❛

✟❍

❍✟♣ ♣ ♣ ♣ ♣ ♣ ♣

♣♣♣
♣♣♣
♣♣♣
♣♣♣

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣
❛

❛

❛ ❛

❛ ❛

✟❍

❍✟

♣♣
♣♣
♣♣
♣♣
♣♣
♣♣

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

❛

❛

❛ ❛

❛ ❛

✟❍

❍✟

♣♣
♣♣
♣♣
♣♣
♣♣
♣♣

♣ ♣ ♣
♣ ♣ ♣
♣ ♣ ♣
♣ ♣ ♣

♣♣♣
♣♣♣

♣♣♣
♣♣♣

. (27)

Interestingly there exist no further IHX–relations between these generators with connected
black subgraphs up to degree 3. In degree 4 however there exist exactly two independent
relations between the 17 isomorphism classes of colored trivalent graphs with 8 vertices and
connected black subgraph in the reduced graph algebra A

•
induced by the congruences

❛ ❛

❛

❛

❛ ❛

❛

❛

❅❅ ��

�� ❅❅

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

−

❛ ❛

❛

❛

❛ ❛

❛

❛

❅❅ ��

�� ❅❅

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣ ♣ ♣ ♣ ♣
♣ ♣ ♣ ♣ ♣
♣ ♣ ♣ ♣ ♣
♣ ♣ ♣ ♣ ♣
♣ ♣♣ ♣ ♣ ♣ ♣

♣ ♣ ♣ ♣ ♣
♣ ♣ ♣ ♣ ♣
♣

=

❛

❛❛

❛❛
❛

❛ ❛

❇
❇❇

✂
✂✂

✑
✑

◗
◗

✡✡❏❏

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

♣♣
♣♣
♣

♣♣♣♣
♣♣♣♣

♣ ♣ ♣ ♣
♣ ♣ ♣ ♣

A B

∗

+

❛ ❛

❛

❛

❛ ❛

❛

❛

❅❅ ��

�� ❅❅

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

A B

+

❛ ❛

❛

❛

❛ ❛

❛

❛

❅❅ ��

�� ❅❅

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

B A

−

❛

❛❛

❛❛
❛

❛ ❛

❇
❇❇

✂
✂✂

✑
✑

◗
◗

✡✡❏❏

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

♣♣
♣♣
♣

♣♣♣♣
♣♣♣♣

♣ ♣ ♣ ♣
♣ ♣ ♣ ♣

A

B
∗ −

❛ ❛

❛

❛

❛ ❛

❛

❛

❅❅ ��

�� ❅❅

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣
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♣ ♣ ♣ ♣ ♣
♣ ♣ ♣ ♣ ♣
♣ ♣ ♣ ♣ ♣
♣ ♣♣ ♣ ♣ ♣ ♣

♣ ♣ ♣ ♣ ♣
♣ ♣ ♣ ♣ ♣
♣ B

A

−

❛ ❛

❛

❛

❛ ❛

❛

❛

❅❅ ��

�� ❅❅

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

A

B

≡ 0

and

❛ ❛

❛

❛

❛ ❛

❛

❛

❅❅ ��

�� ❅❅
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♣♣
♣♣
♣♣
♣♣
♣♣
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♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

+

❛ ❛

❛

❛

❛ ❛

❛

❛

❅❅ ��

�� ❅❅

♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣

♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
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♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

−

❛ ❛

❛

❛

❛ ❛

❛

❛
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�� ❅❅
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♣
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−

❛ ❛

❛

❛

❛ ❛

❛

❛
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♣♣
♣♣
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❛❛
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❛
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❇❇
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✑
✑
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◗

✡✡❏❏
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♣♣
♣
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+
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❛
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❛
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+
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❛

❛
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❛

❛
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−
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❛
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♣♣♣
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♣
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A

B

−

❛ ❛

❛

❛

❛ ❛

❛
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❅❅ ��
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♣♣♣
♣♣♣
♣♣♣
♣♣♣
♣♣♣
♣♣♣
♣♣♣
♣

♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣

♣ ♣ ♣ ♣ ♣ ♣
♣ ♣ ♣ ♣ ♣ ♣
♣ ♣ ♣ ♣ ♣

B

A

≡ 0

in the graph algebra A• modulo the ideal of IHX–relations. For the convenience of the reader
we have marked the relevant red edge for these IHX–relations with ∗, in addition we have
traced the images of a pair of interesting vertices marking them with the letters A and B.

Before closing this section let us briefly discuss a modification of the construction of the alge-
bra A• of colored trivalent graphs and its quotient A

•
by the IHX–relations, which allows us

to use the curvature tensor R directly in the emerging graphical calculus for stable curvature
invariants. For this purpose we need to allow tetravalent besides trivalent vertices, more-
over all these tetravalent vertices need to come along with an orientation and an unordered
partition of the set of adjacent flags into two pairs of flags:
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Definition 3.5 (Extended Colored Trivalent Graphs)
An extended colored trivalent graph is a graph γ with tri– and tetravalent vertices endowed
with a coloring of its edges in red & black as before such that every trivalent vertex is adjacent
to exactly one red flag and vice versa. Moreover the set Flagvγ = { f1, f2, f3, f4 } of black
flags adjacent to each tetravalent vertex v ∈ Vert γ is endowed with an orientation and an
unordered partition Flagvγ = { f1, f2 } ∪̇ { f3, f4 } into two pairs of flags.

Concerning homomorphisms and isomorphisms we stipulate that every homomorphism be-
tween extended colored trivalent graphs ϕ : γ −→ γ̂ needs to respect the θ–invariant coloring
c : Flag γ −→ {red, black} of the flags and the orientation as well as the partition of the
sets of flags adjacent to tetravalent vertices. In diagrams we will depict tetravalent vertices
by circles with horizontal or vertical chords indicating the partition of flags into two pairs:

❡�
�❅❅

❅❅��

!
= ❡ o�

��❅❅

❅❅��■

21

34

.

Unless stated otherwise we will tacitly assume that the orientation on the set of flags adjacent
to such a tetravalent vertex is the variant o� of the so called blackboard orientation: Starting
on one of the two end points of the chord and continuing counterclockwise around the vertex
results in a labelling L of the adjacent flags representing o� := [L, +1 ]. Note that this
orientation does not depend on which end of the chord we begin with.

In passing we remark that the joint stabilizer of the unordered partition {{1, 2}, {3, 4}}
into pairs and the tautological orientation of the set {1, 2, 3, 4} in the symmetric group S4

equals the normal Kleinian Four subgroup K ⊆ S4. Instead of requiring both an orientation
and a partition into pairs we may hence require alternatively that the set of flags adjacent
to each tetravalent vertex v of the graph γ is decorated by an equivalence class of a labelling

L : Flagvγ
∼=

−→ { 1, 2, 3, 4 } modulo postcomposition with elements of K. In this alternative
formulation of Definition 3.5 the six different decorations on a tetravalent vertex read

❡�
�❅❅

❅❅��

21

34

❡�
�❅❅

21

43

❡❅❅

��

31

24

❡❅❅

❅❅

41

32

❡❅❅
41

23

❡❅❅
31

42

,

where the numbers indicate a representative labelling L under postcomposition with elements
of K ⊆ S4. Mimicking the construction of the algebra A• of colored trivalent graphs and
its quotient A

•
by the IHX–relations we consider the set of isomorphism classes

Γn
ext := { [ γ ] | γ extended colored trivalent graph with n = 1

2
#Flag γ −#Vert γ }

of extended colored trivalent graphs with 2n vertices counting all tetravalent vertices twice.
Unlike A• the algebra A•

ext of extended colored trivalent graphs is not the convolution algebra
RΓ•

ext associated to the commutative monoid Γ•
ext, but its quotient by the ideal 〈O 〉 ⊆ RΓ•

ext
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spanned by a change of orientation for the set of flags adjacent to some tetravalent vertex:

❡�
�❅❅

❅❅��

+o + ❡�
�❅❅

❅❅��

−o . (28)

Endowed with the R–bilinear extension of the disjoint union the quotient A•
ext := RΓ•

ext/〈O 〉
becomes a graded commutative algebra with its own version 〈 IHX 〉 ⊆ A•

ext of the ideal of
IHX–relations defined for all red edges by equations (22) and (23) as before. The quotient

A
•
ext = A

•
ext/〈 IHX 〉

is the reduced algebra of extended colored trivalent graphs. In order to extend the definition
of stable curvature invariants from A• to A•

ext we specify the additional vertex interaction

❡�
�
Y

❅❅
X

❅❅U
��V

=̂ R( X, Y ; U, V ) (29)

besides the red edge interaction (20). The entire point of this construction is that the
extended graph algebra A•

ext comes along with a surjective algebra homomorphism

Φ− : A
•
ext −→ A

• ,

which descends to a surjective algebra homomorphism Φ
−
: A

•
ext −→ A

•
between the respec-

tive quotients by the ideal of IHX–relations. More precisely the algebra homomorphism Φ−

expands every tetravalent vertex into a pair of trivalent vertices connected by a red edge

❡�
�

❅
❅

❅
❅

�
�

Φ−

7−→
1

6
❛ ❛♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣❆

❆

✁
✁

✁
✁

❆
❆

−
1

6
❛ ❛♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣◗
◗

◗

✑
✑
✑

✁
✁

❆
❆

(30)

in accordance with the Feynman rules interpretation of the identity R = Φ−Sec, namely:

R( X, Y ; U, V ) =
1

6
Sec( X, V ; Y, U ) −

1

6
Sec( X,U ; Y, V ) .

An example of the usefulness of considering A•
ext in addition to A• is the congruence

Φ−

(
1

4
❡ ❡

)
=

1

144

(
❛ ❛ ❛ ❛♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ − ❛ ❛ ❛ ❛♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ − ❛ ❛ ❛ ❛♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ + ❛ ❛ ❛ ❛♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

)

=
1

72 ❛

❛

❛

❛

♣♣
♣♣
♣♣
♣♣
♣♣
♣

♣♣
♣♣
♣♣
♣♣
♣♣
♣

−
1

72 ❛

❛

❛

❛

♣♣
♣♣
♣♣
♣♣
♣♣
♣

♣♣
♣♣
♣♣
♣♣
♣♣
♣

�
��
❅

❅❅ ≡
1

48 ❛

❛

❛

❛

♣♣
♣♣
♣♣
♣♣
♣♣
♣

♣♣
♣♣
♣♣
♣♣
♣♣
♣
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modulo the ideal 〈 IHX 〉 based on the congruence (25). Using the Feynman rules (20) and
(29) to work out the curvature invariants associated to the left and right hand sides we find
[
1

4
❝ ❝

]
( R ) =

1

4

m∑

µ, ν, α, β=1

R(Eµ, Eν ; Eα, Eβ )
2 = gΛ2T ∗⊗Λ2T ∗( R, R )

[
1

4 ❛

❛

❛

❛

♣♣
♣♣
♣♣
♣♣
♣♣
♣

♣♣
♣♣
♣♣
♣♣
♣♣
♣ ]

( R ) =
1

4

m∑

µ, ν, α, β=1

Sec(Eµ, Eν ;Eα, Eβ )
2 = gSym2T ∗⊗Sym2T ∗( Sec, Sec )

and conclude that the isomorphisms Φ+ and Φ− of Section 2 are essentially isometries:

gSym2T ∗⊗Sym2T ∗( Sec, Sec ) = 12 gΛ2T ∗⊗Λ2T ∗( R, R ) . (31)

4 Explicit Values of Curvature Invariants

In order to illustrate the rather abstract construction of stable curvature invariants from
colored trivalent graphs discussed in Section 3 we want to present a combinatorial method to
calculate explicitly the values of these stable curvature invariants on all space form algebraic
curvature tensors, this is on all algebraic curvature tensors of constant sectional curvature.
Central to this presentation is a family δm of homogeneous derivations of degree −1 of the
graded graph algebras A• and A

•
indexed by a formal dimension parameter m.

The space of algebraic curvature tensors on a euclidean vector space T of dimension m ≥ 2
contains a unique curvature tensor up to scale invariant under the isometry group O( T, g ),
namely the algebraic curvature tensor RO(T, g ) ∈ Curv−T of constant sectional curvature 1:

RO(T, g )( X, Y ; U, V ) := − gΛ2T ( X ∧ Y, U ∧ V ) .

The corresponding sectional curvature tensor SecO(T, g ) ∈ Curv+T is given by:

SecO( T, g )(X, Y ;U, V ) = 4 g(X, Y )g(U, V ) − 2 g(X,U)g(Y, V ) − 2 g(X, V )g(Y, U) . (32)

The Ricci tensor of the algebraic curvature tensor RO(T, g ) of constant sectional curvature 1
is the simple multiple Ric = (m − 1) g of the scalar product g and so its scalar curvature
equals κ = m(m − 1). In passing we remark that RO( T, g ) can also be defined in terms of
the Nomizu–Kulkarni product of equation (12), more precisely RO( T, g ) := −1

2
g × g.

Definition 4.1 (Curvature Derivation)
The curvature derivation in formal dimension m ∈ N0 is the homogeneous derivation

δm : A
• −→ A

•−1, [ γ ] 7−→ δm[ γ ] ,

of degree −1 of the graded algebra A
• of colored trivalent graphs characterized by

(
δm[ γ ]

)
[ R ] =

d

dt

∣∣∣∣
0

[ γ ]
(
R + tRO( T, g )

)

for every algebraic curvature tensor R on a euclidean vector space T of dimension m.
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Due to the construction of stable curvature invariants in Definition 3.3 the value [ γ ](R ) of
such an invariant on an algebraic curvature tensor R on a euclidean vector space T is an
iterated sum over an orthonormal basis of T , whose parts are products over the red edges of
the colored trivalent graph γ. Replacing R by R + tRO( T, g ) and taking the derivative d

dt

∣∣
0

we thus obtain a sum over the red edges of γ, in which the sectional curvature tensor factor
Sec ∈ Curv+T associated to R has been replaced for this particular red edge by the factor
SecO(T, g ). In consequence the curvature derivation δm is the homogeneous derivation of A•

of degree −1, which expands each red edge in turn according to equation (32)

❛

❛

♣♣
♣♣
♣♣

✟✟ ❍❍

❍❍ ✟✟ δm7−→ 4 − 2
��

��

❅❅

❅❅ − 2 (33)

and sums all results together with the proviso that every black circle without any vertices at
all occurred in the process needs to be interpreted as the scalar factor m =

∑
g(dE♯

µ, Eµ).
Needless to say this is the only way in which the dimension m ∈ N0 of the euclidean vector
space T enters in the definition of the curvature derivation δm, in other words the derivation
δm is at most a quadratic polynomial in the formal dimension m.

Evidently every IHX–relation of the form (21) vanishes under the expansion (33) of the
curvature derivation, for this reason δm maps the ideal 〈 IHX 〉 ⊆ A

• of all IHX–relations to
itself. In turn the curvature derivation descends to a homogeneous derivation of degree −1
of the quotient algebra A

•
of colored trivalent graphs modulo IHX–relations. Calculating δm

for all the generators (27) of the reduced graph algebra A
•
up to degree 3 we find easily

δm
❛

❛

♣♣
♣♣
♣♣
♣♣
♣♣

= − 2m(m− 1) δm
❛ ❛

❛ ❛

♣♣
♣♣
♣♣
♣♣
♣♣

♣♣
♣♣
♣♣
♣♣
♣♣

= − 4 (m− 1)
❛

❛

♣♣
♣♣
♣♣
♣♣
♣♣

δm
❛ ❛

❛ ❛

♣♣♣
♣♣♣
♣♣♣
♣♣♣
♣♣♣
♣♣

♣♣♣
♣♣♣
♣♣♣
♣♣♣
♣♣♣
♣♣

= +12
❛

❛

♣♣
♣♣
♣♣
♣♣
♣♣

(34)

for the generators of degree 1 and 2 as well as:

δm
❛

❛

❛ ❛

❛ ❛

✟❍

❍✟♣ ♣ ♣ ♣ ♣ ♣ ♣

♣ ♣ ♣ ♣ ♣ ♣ ♣
♣♣
♣♣
♣♣

= − 6 (m− 1)
❛ ❛

❛ ❛

♣♣
♣♣
♣♣
♣♣
♣♣

♣♣
♣♣
♣♣
♣♣
♣♣

δm
❛

❛

❛ ❛

❛ ❛

✟❍

❍✟
♣♣
♣♣
♣♣

♣♣
♣♣
♣♣
♣♣
♣♣
♣♣

♣♣
♣♣
♣♣

= − ( 4m− 6 )
❛ ❛

❛ ❛

♣♣
♣♣
♣♣
♣♣
♣♣

♣♣
♣♣
♣♣
♣♣
♣♣

− 2
❛

❛

❛

❛

♣♣
♣♣
♣♣
♣♣
♣♣

♣♣
♣♣
♣♣
♣♣
♣♣

δm
❛

❛

❛ ❛

❛ ❛

✟❍

❍✟♣ ♣ ♣ ♣ ♣ ♣ ♣

♣♣♣
♣♣♣
♣♣♣
♣♣♣

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ = + 12
❛ ❛

❛ ❛

♣♣
♣♣
♣♣
♣♣
♣♣

♣♣
♣♣
♣♣
♣♣
♣♣

− 2 (m− 1)
❛ ❛

❛ ❛

♣♣♣
♣♣♣
♣♣♣
♣♣♣
♣♣♣
♣♣

♣♣♣
♣♣♣
♣♣♣
♣♣♣
♣♣♣
♣♣

δm
❛

❛

❛ ❛

❛ ❛

✟❍

❍✟

♣♣
♣♣
♣♣
♣♣
♣♣
♣♣

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

= + 12
❛ ❛

❛ ❛

♣♣
♣♣
♣♣
♣♣
♣♣

♣♣
♣♣
♣♣
♣♣
♣♣

+ 6
❛ ❛

❛ ❛

♣♣♣
♣♣♣
♣♣♣
♣♣♣
♣♣♣
♣♣

♣♣♣
♣♣♣
♣♣♣
♣♣♣
♣♣♣
♣♣

δm
❛

❛

❛ ❛

❛ ❛

✟❍

❍✟

♣♣
♣♣
♣♣
♣♣
♣♣
♣♣

♣ ♣ ♣
♣ ♣ ♣
♣ ♣ ♣
♣ ♣ ♣

♣♣♣
♣♣♣

♣♣♣
♣♣♣

= − 6
❛ ❛

❛ ❛

♣♣
♣♣
♣♣
♣♣
♣♣

♣♣
♣♣
♣♣
♣♣
♣♣

+ 24
❛ ❛

❛ ❛

♣♣♣
♣♣♣
♣♣♣
♣♣♣
♣♣♣
♣♣

♣♣♣
♣♣♣
♣♣♣
♣♣♣
♣♣♣
♣♣

.

(35)

It should be pointed out that the curvature derivation allows us to calculate explicitly the
values of stable curvature invariants on algebraic curvature tensors R ∈ Curv−T of constant
sectional curvature on every euclidean vector space T of dimension m ≥ 2 using the formula

[ γ ]( R ) =
1

n!

( κ

m(m− 1)

)n
δnm[ γ ] ∈ A

0
= R (36)
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valid for all isomorphism classes [ γ ] ∈ Γn of colored trivalent graphs γ of degree n ∈ N0,
where κ denotes the scalar curvature of R. In fact this formula is a direct consequence of
the homogeneity of degree n of the polynomial [ γ ] and the ensuing recursion relation:

(
δm[ γ ]

)
( RO(T, g ) ) =

d

dt

∣∣∣∣
0

( 1 + t )n [ γ ]( RO(T, g ) ) = n [ γ ]( RO( T, g ) ) .

Based on equations (34) and (35) we find say for every space form curvature tensor R:
[

❛

❛

❛ ❛

❛ ❛

✟❍

❍✟

♣♣
♣♣
♣♣
♣♣
♣♣
♣♣

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

]
( R ) = + 8

(2m− 5) κ3

m2 (m− 1)2

[

❛

❛

❛ ❛

❛ ❛

✟❍

❍✟

♣♣
♣♣
♣♣
♣♣
♣♣
♣♣

♣ ♣ ♣
♣ ♣ ♣
♣ ♣ ♣
♣ ♣ ♣

♣♣♣
♣♣♣

♣♣♣
♣♣♣

]
( R ) = − 8

(m+ 11) κ3

m2 (m− 1)2
.

5 Pfaffian and Moment Polynomials

All characteristic numbers of a compact Riemannian manifold are integrated polynomial
invariants of the curvature tensor, the corresponding polynomial however is not a stable
curvature invariant in the sense of this article. The only stable characteristic number among
the classical Euler and Pontryagin numbers turns out to be the Euler characteristic, in this
section we will identity the corresponding elements in the algebra A• of colored trivalent
graphs, the Pfaffian polynomials ( pfn )n∈N0 . Besides the Euler characteristic we will study
the normalized moment polynomials ( Ψ◦

n )n∈N0 in this section, which calculate the moments
(Ψn )n∈N0 of the sectional curvature considered as a random variable on the Graßmannian
of planes up to a normalization constant depending on the dimension.

The sequence of Pfaffian polynomials is a sequence ( pfn )n∈N0 of elements of the algebra A•

of colored trivalent graphs defined for n = 0 by pf0 = 1 and in positive degrees n > 0 by:

pfn( R ) :=
1

12n n!

∑

σ ∈S2n

( sgnσ )

m∑

µ1, ..., µ2n =1

n∏

r=1

Sec( Eµ2r−1 , dE
♯
µσ(2r−1)

; Eµ2r , dE
♯
µσ(2r)

) .

Right from this definition we can read off the corresponding element of the graph algebra A•

pfn =
1

12n n!

∑

σ ∈S2n

( sgn σ ) ❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣. . .

1

σ(1)

2

σ(2)

3

σ(3)

4

σ(4)

5

σ(5)

6

σ(6)

2n−1

σ(2n−1)

2n

σ(2n)

︸ ︷︷ ︸
n

, (37)

where it is understood that a black edge runs between every pair of flags indexed by the same
integer, one flag above and one below. According to the Theorem of Chern–Gauß–Bonnet the
Euler characteristic of every compact Riemannian manifold M of even dimension m ∈ 2N0

with Riemannian metric g can be written as the integrated curvature invariant

χ(M ) =
1

( 2π )
m
2

∫

M

pf m
2
( R ) | volg | . (38)

associated to the sequence ( pfn )n∈N0 . For Riemannian surfaces M for example we find

pf1 =
1

12

(
+ ❛ ❛♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ − ❛ ❛♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

)
≡ −

1

4
❛ ❛♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ =̂

κ

2
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using the basic IHX–relation (26) and conclude that pf1(R ) equals the Gaußian curvature of
the surface M ; keep in mind that κ denotes the scalar curvature throughout this article. In
order to relate equation (38) to the Theorem of Chern–Gauß–Bonnet in higher dimensions
we recall that it involves in its standard formulation the pointwise Berezin integral

[ ]g, o : Λ•T ∗M ⊗ Λ◦TM −→ Λ•T ∗M, ξ ⊗ X 7−→ 〈 volg, o, X 〉 ξ ,

which depends on both the Riemannian metric g and an additional orientation o via the Rie-
mannian volume form volg, o ∈ Γ(ΛmT ∗M ). Considering the curvature as a bivector valued
2–form R ∈ Γ(Λ2T ∗M ⊗ Λ2TM ) like in equation (6) we may exponentiate it pointwise in
the algebra bundle Λ T ∗M ⊗Λ TM and take the full Berezin integral of the result to obtain

χ(M ) =

∫

(M,o )

[
exp

(
−

R

2π

) ]
g, o

(39)

according to Chern ([5],[3],[10]). One way to define the oriented integration of the Pfaffian
differential form Pf( R

2π
) := [ exp(− R

2π
) ]g, o over the oriented manifold M is to think of

the orientation as the real line bundle isomorphism o : ΛmT ∗M −→ ϑ1M determined by
o( volg, o ) = | volg | to turn the Pfaffian differential form into a multiple of the volume density
| volg | ∈ Γ(ϑ1M ). Combining the pointwise Berezin integral [ ]g, o used to define Pf( R

2π
)

with this orientation vector bundle isomorphism we obtain the vector bundle homomorphism

[ ]g : Λ•T ∗M ⊗ Λ◦TM
[ ]g, o
−→ Λ•T ∗M

o
−→ ϑ1M, ξ ⊗ X 7−→ 〈 ξ, prΛmTMX 〉 | volg | ,

where prΛmTM : Λ◦TM −→ ΛmTM denotes the projection to the top dimensional term.
This vector bundle homomorphism however is defined even for non–orientable manifolds M
and so we can rewrite the Theorem of Chern–Gauß–Bonnet as an unoriented integral identity

χ(M ) =
1

( 2π )
m
2

∫

M

[ 1

(m
2
)!

(−R) ∧ . . . ∧ (−R)︸ ︷︷ ︸
m
2

]
g
,

in fact the projection of exp(− R
2π

) to the top dimensional term leaves us with the m
2
–th

power of R only. Replacing the algebraic curvature tensor R = Φ−Sec in its expansion (6)
as a bivector valued 2–form by the corresponding sectional curvature tensor Sec we find

− R

= +
1

24

m∑

µ, ν, α, β=1

(
Sec(Eµ, Eα;Eν , Eβ) − Sec(Eµ, Eβ;Eν , Eα)

)
dEµ ∧ dEν ⊗ dE♯

α ∧ dE♯
β

= +
1

12

m∑

µ1, µ2 =1
α1, α2 =1

Sec(Eµ1 , Eα1 ; Eµ2 , Eα2 ) dEµ1 ∧ dEµ2 ⊗ dE♯
α1

∧ dE♯
α2

and conclude that 1
n!
(−R)n ∈ Γ(Λ2nT ∗M ⊗ Λ2nTM ) can be expanded for all n ∈ N0 into:

1

n!
(−R) ∧ . . . ∧ (−R)︸ ︷︷ ︸

n

=
1

12n n!

m∑

µ1, ..., µ2n =1
α1, ..., α2n =1

n∏

r=1

Sec(Eµ2r−1 , Eα2r−1 ;Eµ2r , Eα2r)

dEµ1 ∧ . . . ∧ dEµ2n ⊗ dE♯
α1

∧ . . . ∧ dE♯
α2n

.
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In order to write the Theorem of Chern–Gauß–Bonnet in the form (38) it remains to observe

〈 dEµ1∧. . .∧dEµ2n , dE
♯
α1
∧. . .∧dE♯

α2n
〉 =

∑

σ∈S2n

( sgn σ ) dEµσ(1)
( dE♯

α1
) . . . dEµσ(2n)

( dE♯
α2n

)

and sum over α1, . . . , α2n = 1, . . . , m using the equality ξ♯ =
∑

α ξ( dE
♯
α )Eα. Although

the argument presented above establishes the equivalence of the versions (38) and (39) of
the Theorem of Chern–Gauß–Bonnet for all orientable compact manifolds, it does not per se
prove the validity of the unoriented version (38) for all compact manifolds. In case of doubts
the reader may simply apply equation (38) to the orientable 2–fold cover of a compact
manifold M and divide both sides by 2. Better still would be to rework Flanders’ proof [6]
of the Theorem of Chern–Gauß–Bonnet with densities instead of differential forms.

Lemma 5.1 (Generating Series of Pfaffian Polynomials)
Every isomorphism class of colored trivalent graphs occurs with non–zero coefficient in the
Pfaffian pfn ∈ An of the appropriate degree n ∈ N0. In the power series completion of the
graded algebra A• of colored trivalent graphs the total Pfaffian equals the exponential

∑

n≥ 0

pfn = exp


 ∑

[ γ ]∈Γ•

conn

(−1)e(γ)

6n(γ)
2g(γ)

#Aut γ
[ γ ]


 ,

where n(γ) := 1
2
#Vert γ equals the degree of γ, while e(γ) and g(γ) are the numbers of

cycles of the black subgraph γblack of γ of even and of length greater than 2 respectively.

Proof: Consider to begin some n ∈ N and a non–void colored trivalent graph γ with 2n
vertices. Choosing a direction of cyclically traversing each cycle in the associated bivalent
black subgraph γblack allows us to define a successor permutation σ ∈ SVert γ of the set of
vertices of γ, which sends every vertex to the next vertex on the same cycle in the chosen
direction. The signature sgn σ = (−1)e(γ) of the successor permutation reflects the parity
of the number e(γ) ∈ N0 of even length cycles as always with permutations. In addition
we chose a labelling L : Vert γ −→ { 1, . . . , 2n } of the vertices of γ such that red edges run
exactly between the pairs {L−1(1), L−1(2)}, {L−1(3), L−1(4)}, . . . , {L−1(2n−1), L−1(2n)} of
vertices. With such a choice of labelling the original colored trivalent graph γ turns out to be
isomorphic to the summand graph in the sum (37) associated to the permutation L◦σ ◦L−1

of the index set { 1, . . . , 2n } of the same signature.
Each summand graph γ̂ in the sum (37) on the other hand comes along with a tautological

labelling L : Vert γ̂ −→ { 1, . . . , 2n } of its vertices, moreover all its edges come along with a
distinguished direction from the flag below to the flag above. These edge directions assemble
together to a direction for traversing each cycle in γ̂black such that the associated successor
permutation agrees with the permutation σ ∈ S2n indexing the summand graph γ̂ in the
first place. In consequence every colored trivalent graph γ with 2n vertices occurs at least
once up to isomorphism in the sum (37) defining pfn and all its occurrences in this sum share
the same coefficient sgn σ = (−1)e(γ) leaving no place for cancellations.
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In order to prove the second statement we want to count the number of times a given colored
trivalent graph γ is isomorphic to the summand graph γ̂ indexed by a permutation σ ∈ S2n.
Fixing the labelling L : Vert γ −→ { 1, . . . , 2n } for the moment as above we observe that
reversing the direction of a cycle of γblack replaces the successor permutation σ by its inverse
σ−1 on the vertices of this cycle. A cycle is different from its inverse however unless the cycle
is of length less than or equal to 2, hence the different choices for the directions of the cycles
with labelling L fixed account for exactly 2g(γ) summands in the sum (37), where g(γ) ∈ N0

is the number of cycles of γblack of length greater than 2.
Recall now that the labelling L : Vert γ −→ { 1, . . . , 2n } was required to be such that

the pairs of vertices {L−1(1), L−1(2)}, {L−1(3), L−1(4)}, . . . , {L−1(2n−1), L−1(2n)} are con-
nected by red edges. In general there are 2n n! such labellings, however a different labelling
L̂ leads to different 2g(γ) summand graphs γ̂ in the sum (37) isomorphic to γ, if and only if
L̂−1 ◦ L /∈ Aut γ fails to be a pure automorphism of γ. Hence the colored trivalent graph γ
we consider occurs always with the same coefficient (−1)e(γ) in exactly

2n n!

#Aut γ
2g(γ) = 12n n!

( 1

6n
2g(γ)

#Aut γ

)

different summands of the sum (37) defining pfn; put differently we obtain for all n ∈ N0:

pfn =
∑

[ γ ]∈Γn

(−1)e(γ)

6n
2g(γ)

#Aut γ
[ γ ] .

Contemplating this formula a bit the reader may easily verify that the total Pfaffian is the
stipulated exponential in the power series completion of the graph algebra A

•. �

Needless to say the formula for the total Pfaffian given in Lemma 5.1 can still be simplified
using the IHX–relations. After a little bit of computation we obtain for the power series
expansion of the total Pfaffian up to degree 3 in the power series completion of A

•
:

∑

n≥ 0

pfn = exp
(

−
1

4 ❛

❛

♣♣
♣♣
♣♣
♣♣
♣♣

−
1

8 ❛ ❛

❛ ❛

♣♣
♣♣
♣♣
♣♣
♣♣

♣♣
♣♣
♣♣
♣♣
♣♣

−
1

48 ❛ ❛

❛ ❛

♣♣♣
♣♣♣
♣♣♣
♣♣♣
♣♣♣
♣♣

♣♣♣
♣♣♣
♣♣♣
♣♣♣
♣♣♣
♣♣

−
1

24 ❛

❛

❛ ❛

❛ ❛

✟❍

❍✟♣ ♣ ♣ ♣ ♣ ♣ ♣

♣ ♣ ♣ ♣ ♣ ♣ ♣
♣♣
♣♣
♣♣

−
1

16 ❛

❛

❛ ❛

❛ ❛

✟❍

❍✟
♣♣
♣♣
♣♣

♣♣
♣♣
♣♣
♣♣
♣♣
♣♣

♣♣
♣♣
♣♣

−
1

24 ❛

❛

❛ ❛

❛ ❛

✟❍

❍✟♣ ♣ ♣ ♣ ♣ ♣ ♣

♣♣♣
♣♣♣
♣♣♣
♣♣♣

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ −
5

432 ❛

❛

❛ ❛

❛ ❛

✟❍

❍✟

♣♣
♣♣
♣♣
♣♣
♣♣
♣♣

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

−
1

432 ❛

❛

❛ ❛

❛ ❛

✟❍

❍✟

♣♣
♣♣
♣♣
♣♣
♣♣
♣♣

♣ ♣ ♣
♣ ♣ ♣
♣ ♣ ♣
♣ ♣ ♣

♣♣♣
♣♣♣

♣♣♣
♣♣♣

+ . . .
)
.

Remark 5.2 (Vanishing of Stable Curvature Invariants)
The Euler characteristic is of course multiplicative under taking Cartesian products of com-
pact Riemannian manifolds, with the Theorem of Chern–Gauß–Bonnet in mind we anticipate
that the Pfaffian of algebraic curvature tensors is multiplicative under taking direct sums

pf m+m̂
2

( R ⊕ R̂ ) = pf m
2
( R ) pf m̂

2
( R̂ )

of algebraic curvature tensors R and R̂ on euclidean vector spaces of even dimensions m and
m̂ respectively. According to Lemma 5.1 the total Pfaffian is an exponential in the power
series completion of A•, hence the Pfaffian is in fact multiplicative as stipulated provided

pfn( R ) = 0
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for every algebraic curvature tensor R on a euclidean vector space T of dimension less than
2n. Of course under this assumption already the n–th power 1

n!
(−R)n ∈ Λ2nT ∗ ⊗ Λ2nT of

the algebraic curvature tensor R ∈ Curv−T considered as a bivector valued 2–form vanishes.

Let us now come to a different set of interesting polynomials in algebraic curvature tensors,
namely the normalized moment polynomials Ψ◦

n of degree n ∈ N0. Recall to begin with that
every euclidean vector space T with scalar product g can be considered as a Riemannian
manifold with translation invariant Riemannian metric g and associated Laplace–Beltrami
operator. For the purposes of this article we will take this to be the positive Laplacian

∆g := −
( ∂2

∂x21
+ . . . +

∂2

∂x2m

)

in a system of linear coordinates on T provided by an orthonormal basis x1, . . . , xm of T ∗:

Definition 5.3 (Normalized Moment Polynomials)
For every n ∈ N0 we define the normalized moment polynomial Ψ◦

n as a homogeneous, stably
invariant polynomial of degree n in algebraic curvature tensors via the generating series:

∑

n≥ 0

Ψ◦
n(R ) := exp

(
− ∆g

)∣∣∣
0

(
X 7−→ exp

( ∑

r > 0

1

2r
tr( R · ,XX )r

) )
.

Depending on the signature of the scalar product g the positive Laplacian ∆g may actually
be the d’Alembert or wave operator � of course. In order to justify calling (Ψ◦

n )n∈N0 the
normalized moment polynomials we consider a euclidean vector space T with positive definite
scalar product g. Under this assumption the sectional curvature function secR : Gr2T −→ R

associated to R ∈ Curv−T is well–defined on the Graßmannian of planes in T by

secR( E ) :=
R( X, Y ; Y, X )

gΛ2T (X ∧ Y, X ∧ Y )
=

1

4

Sec( X, X ; Y, Y )

gΛ2T (X ∧ Y, X ∧ Y )

for linearly independent vectors X, Y spanning E = spanR{X, Y } ∈ Gr2T . Endowing
the Graßmannian with the Fubini–Study metric gFS or measure |volFS| we can think of the
sectional curvature function as a random variable on Gr2T , its moments are then given by:

Lemma 5.4 (Moments of Sectional Curvature [11])
In the positive definite case the normalized moment polynomials Ψ◦

n calculate the moments
Ψn, n ∈ N0, of the sectional curvature function secR : Gr2T −→ R considered as a random
variable on the Graßmannian Gr2T of planes in T endowed with the Fubini–Study measure:

Ψn(R ) :=
1

Vol(Gr2T, | volFS | )

∫

Gr2T

secnR | volFS |
!
=

n!

[m+ 2n− 2 ]2n
Ψ◦

n(R ) .

The normalization factor depends on the falling factorial [ x ]2n := x(x− 1) . . . (x− 2n+ 1).
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In passing we remark that it is possible to calculate the maximum and minimum of the
sectional curvature function secR : Gr2T −→ R associated to an algebraic curvature tensor
R ∈ Curv−T in the positive definite case from its moments Ψn(R ), more precisely

secmax(R ) := max
E ∈Gr2T

secR(E ) = − Λ + lim
N →∞

(
N∑

n=0

(
N

n

)
Ψn(R ) ΛN−n

) 1
N

secmin(R ) := min
E ∈Gr2T

secR(E ) = − Λ + lim
N →∞

(
N∑

n=0

(−1)n
(
N

n

)
Ψn(R ) ΛN−n

) 1
N

for all shift parameters Λ ∈ R satisfying Λ ≥ −secmin(R ) or Λ ≥ +secmax(R ) respectively.
Needless to say both formulas are eventually formulas from probability theory for the essential
supremum and infimum of an almost certainly bounded random variable.

In difference to the moment polynomials Ψn with their direct interpretation as moments
the normalized moment polynomials Ψ◦

n turn out to be stable curvature invariants. In order
to identify the corresponding elements of the algebra A• of colored trivalent graphs we use the
consequence R(U,X ;X, V ) = 1

4
Sec(X,X ;U, V ) = −1

2
Sec(X,U ;X, V ) of the first Bianchi

identity (9) for Sec in order to expand the Jacobi operator U 7−→ RU,XX into the sum

R · , XX =

m∑

µ=1

R( · , X ; X, dE♯
µ ) Eµ = −

1

2

m∑

µ=1

Sec( X, · ; X, dE♯
µ ) Eµ

over a dual pair of bases {Eµ } and { dEµ } for the euclidean vector space T and its dual T ∗.
In turn the traces of the powers of the Jacobi operator become the iterated sums:

tr( R · ,XX )r

=
(
−

1

2

)r m∑

µ1, ..., µr =1

Sec(X,Eµ1 ;X, dE
♯
µ2
) Sec(X,Eµ2 ;X, dE

♯
µ3
) . . . Sec(X,Eµr ;X, dE

♯
µ1
) .

Although we have used the exponential exp(−∆g )|0 of the positive Laplacian on T in Defi-
nition 5.4, the rescaled exponential exp(− 1

2
∆g )

∣∣
0
has a rather compelling combinatorial de-

scription as a closure operation: Applying it to the diagonal polynomial X 7−→ a(X, . . . , X)
arising from a not necessarily symmetric form a ∈

⊗2n T ∗ we obtain an iterated sum

closure[ a ] := exp( − 1
2
∆g )

∣∣
0

(
X 7−→ a(X, . . . , X︸ ︷︷ ︸

2n

)
)

=
∑

θ ∈S2n fix point free
involution of { 1, ..., 2n }

∑

µ: { 1, ..., 2n }−→{ 1, ...,m }
µ=µ ◦ θ invariant under θ

a( Eµ(1), Eµ(2), . . . , Eµ(2n) )

over an orthonormal basis E1, . . . , Em of the euclidean vector space T , where the two sums
extend over all fix point free involutions θ of the index set { 1, . . . , 2n } and all θ–invariant
maps µ : { 1, . . . , 2n } −→ { 1, . . . , m } in the sense µ = µ ◦ θ. For simplicity of the

27



exposition we have pretended again that the scalar product g is positive definite to omit the
sign factors necessary otherwise. In terms of colored trivalent graphs we can hence write the
Definition 5.3 of the generating series of the normalized moment polynomials in the form

∑

n≥ 0

Ψ◦
n := closure

[
exp

( ∑

r > 0

(−1)r

2r
❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛. . .♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

︸ ︷︷ ︸
r pairs of vertices

) ]
, (40)

where the closure operation now sums over all ways to join up the open flags of the argument
in pairs to form a colored trivalent graph. In this formula the difference between the rescaled
exponential exp(− 1

2
∆g )

∣∣
0
and the actual exponential exp(−∆g )|0 of the Laplacian used

in Definition 5.4 has been compensated by changing the original factor (−1
2
)r to (−1)r.

Lemma 5.5 (Generating Series of Normalized Moment Polynomials)
In the power series completion of the algebra A• of colored trivalent graphs the generating
series of the normalized moment polynomials ( Ψ◦

n )n∈N0 can be written as the exponential of
a sum over all isomorphism classes of connected colored trivalent graphs γ with the additional
property that all cycles of the associated black subgraph γblack are cycles of even length:

∑

n≥ 0

Ψ◦
n = exp




∑

[ γ ]∈Γ•

conn
γblack even cycles

(−1)n(γ)
2g(γ)

#Aut γ
[ γ ]


 .

As before n(γ) := 1
2
#Vert γ and g(γ) counts the cycles of γblack of length greater than 2.

Proof: The most important observation by far to understand the proof is that the black
edges in the expansion (40) of the generating series of the normalized moment polynomials
( Ψ◦

n )n∈N0 either are “old” edges present already in the argument or are “new” edges joined
up during the closure operation. In order to formalize this idea we define a tricoloring for a
given colored trivalent graph γ as an extension cext : Edge γ −→ { red, blackold, blacknew }
of its coloring c : Edge γ −→ { red, black } in the sense c = pr ◦ cext for the projection pr
implied by notation such that the edges adjacent to every vertex are all colored differently.
By construction every summand in the expansion (40) of the generating series

∑
Ψ◦

n is
naturally a colored trivalent graph with a distinguished tricoloring cext.

A necessary condition for the existence of a tricoloring for a colored trivalent graph γ is
that all cycles of the black subgraph γblack associated to γ are cycles of even length, because
every tricoloring cext necessarily colors the edges of γblack alternately in blackold and blacknew
along each cycle. Provided this necessary condition is met we can on the other hand color
the edges alternately along each of the e(γ) ∈ N cycles of γblack starting with either blackold
or blacknew to obtain exactly 2e(γ) different tricolorings for γ. In difference to the black
subgraph γblack associated to γ the colored bivalent subgraph γold obtained by removing all
edges colored in blacknew certainly depends on the chosen tricoloring cext.

The set of all tricolorings of a colored trivalent graph γ comes along with a natural
action of the automorphism group Aut γ of γ in such a way that the stabilizer subgroup
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of a tricoloring cext agrees with the automorphism group Aut ( γ, cext ) of γ considered as a
tricolored trivalent graph. Both the tricolored graph ( γ, cext ) and the colored old subgraph
γold associated to γ and a given tricoloring cext have only pure automorphisms in the sense
that all their automorphisms are completely determined by a permutation of their common
set Vert γ of vertices, because the flags adjacent to each vertex are all colored differently:

Aut ( γ, cext ) ∼= Aut ( γ, cext ) Aut γold ∼= Aut γold .

Interestingly the same conclusion does not hold for the original colored trivalent graph γ,
it may have trivial automorphisms fixing all vertices, but not all flags. More precisely an
automorphism of a colored trivalent graph γ fixing all its vertices can only swap the two
flags or the two edges respectively in a short cycle of the black subgraph γblack of length 1 or
2. Under the additional assumption that all cycles of γblack have even length we thus obtain

#Aut◦γ = 2e(γ)− g(γ) , (41)

where g(γ) equals the number of cycles of the black subgraph γblack of length greater than 2.

Coming back to the proof we consider in a first step the class of colored bivalent graphs with
edges colored alternately with colors red and blackold. Due to the additional coloring the
automorphism group of a connected colored bivalent graph acts simply transitively on its
set of vertices, in turn the automorphism group of a colored bivalent graph with cycles up
to length 2r and d1 cycles of length 2, d2 cycles of length 4 etc. is a finite group of order

#Aut
(

❛ ❛♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ d1 ❛ ❛ ❛ ❛♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ d2
· · ·

❛ ❛ ❛ ❛. . .♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ dr

︸ ︷︷ ︸
r pairs of vertices

)
= d1! 2

d1 d2! 4
d2 . . . dr! (2r)

dr ,

because we can permute all the cycles of length 2, all the cycles of length 4 etc. In consequence
the generating power series of the set of isomorphism classes of colored bivalent graphs reads:

exp

( ∑

r > 0

(−1)r

2r

❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛. . .♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

︸ ︷︷ ︸
r pairs of vertices

)
=

∑

[ γold ]

(−1)n(γold)

#Aut γold
[ γold ] .

By definition the closure operation in the expansion (40) of the generating power series of
the normalized moment polynomials Ψ◦

n is a sum over all fixed point free involutions σ of
the vertex set Vert γold of the colored bivalent graph argument γold connecting all orbit pairs
{ v, σ(v) } by an edge colored blacknew to obtain a tricolored trivalent graph ( γ, cext ).

The automorphism group Aut γold ∼= Aut γold of the colored bivalent graph γ on the
other hand acts on Vert γold and in turn on the set of fixed point free involutions σ of
Vert γold by conjugation. The orbits of this action correspond bijectively to the isomorphism
classes [ γ, cext ] of tricolored trivalent graphs with old subgraph isomorphic to γold, while the
stabilizer of a given fixed point free involution σ is essentially the automorphism group of the
corresponding tricolored trivalent graph ( γ, cext ). Counting the number of all fixed point
free involutions σ̃ of Vert γold resulting in a tricolored trivalent graph in the class [ γ, cext ]
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thus amounts to calculating the length of the orbit of the fixed point free involution σ, in this
way we obtain for the generating power series (40) of the normalized moment polynomials:

∑

n≥ 0

Ψ◦
n = closure


 ∑

[ γold ]

(−1)n(γold)

#Aut γold
[ γold ]


 =

∑

[ γ, cext ]

(−1)n(γ)

#Aut γold

#Aut γold
#Aut ( γ, cext )

[ γ ] .

The problem with this expansion of the generating power series of the polynomials Ψ◦
n is

that the resulting sum is not effective, it sums multiples of the isomorphism class [ γ ] of
the colored trivalent graph underlying the tricolored isomorphism class [ γ, cext ]. In order
to obtain an effective formula for the generating power series (40) we thus need to sum for
a given isomorphism class [ γ ] of a colored trivalent graph γ over all possible isomorphism
classes [ γ, cext ] of tricolored trivalent graphs extending γ.

A necessary and sufficient condition for the existence of some isomorphism class extension
[ γ, cext ] of a given colored trivalent graph γ is that all cycles of the black subgraph γblack are
cycles of even length; in this case the different isomorphism classes correspond to the orbits
of the automorphism group Aut γ of γ in the set of tricolorings cext. Instead of summing
over orbits of tricolorings it is more convenient to sum over tricolorings for γ weighted by
the inverse length of their respective orbits, in this way we arrive eventually at the formula:

∑

n≥ 0

Ψ◦
n =

∑

[ γ, cext ]

(−1)n(γ)

#Aut ( γ, cext )
[ γ ]

=
∑

[ γ ]∈Γ•

γblack even cycles

∑

cext tricoloring

(
#Aut γ

#Aut( γ, cext )

)−1
(−1)n(γ)

#Aut ( γ, cext )
[ γ ]

=
∑

[ γ ]∈Γ•

γblack even cycles

(−1)n(γ)
2e(γ)

#Aut γ
[ γ ] =

∑

[ γ ]∈Γ•

γblack even cycles

(−1)n(γ)
2g(γ)

#Aut γ
[ γ ] .

For the last equality we have used equation (41) in the form #Aut γ = 2e(γ)−g(γ) #Aut γ.
Similarly to the Pfaffian polynomials discussed above the mere form of the result tells us that
the generating power series of the normalized moment polynomials Ψ◦

n is the exponential of
the sum on the right hand side taken over connected colored trivalent graphs only. �

Of course Lemma 5.5 describes the expansion of the generating power series of the nor-
malized moment polynomials Ψ◦

n in the power series completion of the algebra A• of colored
trivalent graphs. Simplifying the result using IHX–relations we find after some not too messy
calculations in the power series completion of A

•
the following expansion up to degree 3:

∑

n≥ 0

Ψ◦
n = exp

(
−

1

2 ❛

❛

♣♣
♣♣
♣♣
♣♣
♣♣

+
1

2 ❛ ❛

❛ ❛

♣♣
♣♣
♣♣
♣♣
♣♣

♣♣
♣♣
♣♣
♣♣
♣♣

−
1

4 ❛ ❛

❛ ❛

♣♣♣
♣♣♣
♣♣♣
♣♣♣
♣♣♣
♣♣

♣♣♣
♣♣♣
♣♣♣
♣♣♣
♣♣♣
♣♣

−
1

3 ❛

❛

❛ ❛

❛ ❛

✟❍

❍✟♣ ♣ ♣ ♣ ♣ ♣ ♣

♣ ♣ ♣ ♣ ♣ ♣ ♣
♣♣
♣♣
♣♣

−
1

2 ❛

❛

❛ ❛

❛ ❛

✟❍

❍✟
♣♣
♣♣
♣♣

♣♣
♣♣
♣♣
♣♣
♣♣
♣♣

♣♣
♣♣
♣♣

+
❛

❛

❛ ❛

❛ ❛

✟❍

❍✟♣ ♣ ♣ ♣ ♣ ♣ ♣

♣♣♣
♣♣♣
♣♣♣
♣♣♣

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ −
1

6 ❛

❛

❛ ❛

❛ ❛

✟❍

❍✟

♣♣
♣♣
♣♣
♣♣
♣♣
♣♣

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

−
1

6 ❛

❛

❛ ❛

❛ ❛

✟❍

❍✟

♣♣
♣♣
♣♣
♣♣
♣♣
♣♣

♣ ♣ ♣
♣ ♣ ♣
♣ ♣ ♣
♣ ♣ ♣

♣♣♣
♣♣♣

♣♣♣
♣♣♣

+ . . .
)
.
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6 Curvature Identities for Einstein Manifolds

The graphical calculus for stable curvature invariants is well suited to derive curvature iden-
tities generalizing the Hitchin–Thorpe inequality in dimension m = 4. In a sense the
Hitchin–Thorpe inequality deals with the expected value and the variance of sectional curva-
ture, its third moment is related to the cubic polynomial Θ3(R ) := gΛ2T ∗⊗Λ2T ∗( q(R)⋆R, R )
of central importance to this section. Using the expansions of the Pfaffian and normalized
moment polynomials we find an essentially unique linear relation between pf3, Ψ

◦
3 and Θ3,

whose integral over compact Einstein manifolds of dimension m ≥ 3 results in Theorem 6.4.
In contrast to the preceding, algebraic sections Riemannian manifolds are tacitly assumed
to be endowed with positive definite metrics g > 0 throughout this section.

It is relatively easy to identify the generators (27) of the reduced graph algebra A
•
up to

degree 2 using only the Ricci identity (26) and the argument leading to equation (31) together
with the IHX–congruence (25). In this way we find

[
❛

❛

♣♣
♣♣♣
♣♣
]
(R ) = −2κ as well as:

[
❛ ❛

❛ ❛

♣♣
♣♣
♣♣
♣♣

♣♣
♣♣
♣♣
♣♣
]
(R ) = 8 gSym2T ∗( Ric, Ric )

[
❛ ❛

❛ ❛

♣♣♣
♣♣♣
♣♣♣
♣♣♣
♣♣♣♣♣♣♣♣♣♣♣♣♣♣

]
(R ) = − 24 gΛ2T ∗⊗Λ2T ∗(R, R ) . (42)

Moreover the expansions of the total Pfaffian and the normalized moment polynomials given
in Lemma 5.1 and Lemma 5.5 respectively duely simplified up to degree 3 in Section 5 imply:

pf2 =
1

32 ❛

❛

♣♣
♣♣♣
♣♣ 2

−
1

8 ❛ ❛

❛ ❛

♣♣
♣♣
♣♣
♣♣

♣♣
♣♣
♣♣
♣♣

−
1

48 ❛ ❛

❛ ❛

♣♣♣
♣♣♣
♣♣♣
♣♣♣
♣♣♣♣♣♣♣♣♣♣♣♣♣♣

Ψ◦
2 =

1

8 ❛

❛

♣♣
♣♣♣
♣♣ 2

+
1

2 ❛ ❛

❛ ❛

♣♣
♣♣
♣♣
♣♣

♣♣
♣♣
♣♣
♣♣

−
1

4 ❛ ❛

❛ ❛

♣♣♣
♣♣♣
♣♣♣
♣♣♣
♣♣♣♣♣♣♣♣♣♣♣♣♣♣
.

Specializing to dimension m = 4 we observe that the actual second moment polynomial
equals Ψ2 = 1

180
Ψ◦

2 or equivalently 15Ψ2 = 1
12
Ψ◦

2, compare Lemma 5.4, moreover we can
decompose the Ricci tensor into its trace free and scalar part Ric = Ric◦ + κ

4
g to find:

[
pf2 − 15Ψ2

]
(R ) =

[ 1

48 ❛

❛

♣♣
♣♣♣
♣♣ 2

−
1

6 ❛ ❛

❛ ❛

♣♣
♣♣
♣♣
♣♣

♣♣
♣♣
♣♣
♣♣
]
(R ) = −

4

3
gSym2T ∗( Ric◦,Ric◦ ) −

κ2

12
.

Integrating this identity over a compact 4–dimensional Riemannian manifold M we obtain

( 2π )2 χ(M) +
4

3
||Ric◦||

2
Sym2T ∗

=

∫

M

κ2

48
| volg | + 15

∫

M

(
Ψ2(R) −

κ2

144

)
| volg | (43)

due to the formulation (38) of the Theorem of Chern–Gauß–Bonnet. For a compact Rie-
mannian manifold M the right hand side is strictly positive unless M is flat, because the
functions κ

12
and Ψ2(R) − ( κ

12
)2 ≥ 0 are the pointwise expected value and the pointwise

variance respectively of the sectional curvature considered as a random variable. The re-
sulting inequality 4 π2 χ(M) + 4

3
||Ric◦ ||Sym2T ∗ ≥ 0 is a weak version of the Hitchin–Thorpe

inequality for oriented manifolds [7], in particular every 4–dimensional Einstein manifold
has strictly positive Euler characteristic unless it is flat [1]. In passing we recall that the
signature is not a stable curvature invariant in the sense of this article.

In order to generalize the Hitchin–Thorpe inequality to Einstein manifolds of higher dimen-
sions we will make use of the standard curvature term q(R) defined in [9], albeit with a
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slightly different normalization. The letter q in our notation does not stand for quadratic,
in contrast to the notation Q(R) used in equation (46), but refers instead to the so–called
quantization map from the symmetric to the universal enveloping algebra of a Lie algebra:

q : Sym≤•g
∼=

−→ U
≤•g, Xr 7−→ Xr .

Specializing to the orthogonal Lie algebra so( T, g ) of a euclidean vector space T we can
convert every algebraic curvature tensor R over T via q linearly into various endomorphisms:

Definition 6.1 (Standard Curvature Term)
For the orthogonal Lie algebra so( T, g ) of skew symmetric endomorphisms of a euclidean
vector space T the quantization map q : Sym≤•so( T, g ) −→ U ≤•so( T, g ) can be applied to
every algebraic curvature tensor R ∈ Curv−T over T considered in analogy to equation (6)

R =
1

2

m∑

µ, ν=1

( dE♯
µ ∧ dE♯

ν ) ⊗ REµ, Eν

!
=

1

4

m∑

µ, ν=1

( dE♯
µ ∧ dE♯

ν ) · REµ, Eν

as an element of the symmetric square Sym2so( T, g ). Its image q(R ) ∈ U ≤2so( T, g )
becomes in turn an endomorphism in every representation ⋆ of the Lie algebra so( T, g ):

q(R ) ⋆ :=
1

4

m∑

µ, ν=1

( dE♯
µ ∧ dE

♯
ν ) ⋆ REµ, Eν ⋆ .

In this definition of the standard curvature term the scalar factor 1
4
is the proper choice, in

difference to the rather unmotivated scalar factor 1
2
used in [9]. For this reason the standard

curvature term equals half the Ricci endomorphism, the symmetric endomorphism of T
corresponding to the Ricci tensor, in the defining representation of the Lie algebra so( T, g ):

q(R) ⋆ X =
1

2

m∑

µ, ν=1

g( dE♯
µ, REµ, EνX ) dE♯

ν =
1

2

m∑

ν=1

Ric(Eν , X) dE♯
ν =:

1

2
RicX .

On the bivector representations Λ2T and Sym2T the standard curvature term q(R) acts
essentially as the so called curvature operator and its symmetric counterpart:

Ralt : Λ2T −→ Λ2T , X ∧ Y 7−→ − RX, Y

R
sym : Sym2T −→ Sym2T, X · Y 7−→ +SecX,Y .

In fact we find say for the adjoint or alternating bivector representation so( T, g ) ∼= Λ2T

q( R ) ⋆ (X ∧ Y )

= Der 1
2
Ric(X ∧ Y ) +

1

2

m∑

µ, ν=1

(
g(dE♯

µ, X)dE♯
ν ∧ REµ, EνY + REµ, EνX ∧ g(dE♯

µ, Y )dE
♯
ν

)

= Der 1
2
Ric(X ∧ Y ) +

1

2

m∑

ν=1

dE♯
ν ∧

(
RX,EνY − RY, EνX

)

=
1

2
DerRic(X ∧ Y ) − R

alt(X ∧ Y ) ,
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where Der 1
2
Ric denotes the derivation extension of the Ricci endomorphism of T to an en-

domorphism of Λ2T via Der 1
2
Ric(X ∧ Y ) := 1

2
RicX ∧ Y + 1

2
X ∧ RicY . Replacing the

first Bianchi identity RX,EνY − RY,EνX = RX,YEν used in this argument by the variant
RX,EνY +RY,EνX = −1

2
Sec(X, Y ;Eν , · )

♯ of the definition of the sectional curvature tensor
Sec := Φ+R we find analogously q(R ) ⋆ = 1

2
DerRic − 1

2
Rsym on the symmetric bivector

representation Sym2T . Let us now study the action of q(R ) on R ∈ Curv−T itself:

Lemma 6.2 (Standard Curvature Term Polynomial)
Consider an algebraic curvature tensor R ∈ Curv−T on a euclidean vector space T with
scalar product g. The scalar product of q(R) ⋆ R with R equals the stable cubic polynomial:

Θ3(R ) := gΛ2T ∗ ⊗Λ2T ∗( q(R ) ⋆ R, R ) =
1

12

[
1

6 ❛

❛

❛ ❛

❛ ❛

✟❍

❍✟

♣♣
♣♣
♣♣
♣♣
♣♣
♣♣

♣ ♣ ♣
♣ ♣ ♣
♣ ♣ ♣
♣ ♣ ♣

♣♣♣
♣♣♣

♣♣♣
♣♣♣

−
2

3 ❛

❛

❛ ❛

❛ ❛

✟❍

❍✟

♣♣
♣♣
♣♣
♣♣
♣♣
♣♣

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

+
1

2 ❛

❛

❛ ❛

❛ ❛

✟❍

❍✟♣ ♣ ♣ ♣ ♣ ♣ ♣

♣♣♣
♣♣♣
♣♣♣
♣♣♣

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

]
( R ) .

Proof: Without discussing the details of the construction of such an algebra we consider
an extended version of the algebra A• of colored trivalent graphs similar to the extended
graph algebra A

•
ext discussed at the end of Section 3, in which a pair of vertices may be

connected by a single or a double red edge with the associated additional Feynman rule:

❛

❛

✟✟

❍❍

❍❍

✟✟

♣♣
♣♣
♣♣
♣♣
♣

♣♣
♣♣
♣♣
♣♣
♣

X Y

V U

=̂
(
q(R) ⋆ Sec

)
( X, Y ; U, V ) . (44)

In order to expand elements of such an extended graph algebra into elements of the algebra
A• of colored trivalent graphs we expand the additional quartic interaction into the sum

(
q(R) ⋆ Sec

)
(X, Y ; U, V )

=

m∑

µ, ν, α, β=1

Sec(Eµ, Eν ;Eα, Eβ) g
(
q(R) ⋆ (X ⊗ Y ⊗ U ⊗ V ), dE♯

µ ⊗ dE♯
ν ⊗ dE♯

α ⊗ dE♯
β

)

over an arbitrary pair of dual bases {Eµ } and { dEµ }. Representations of Lie algebras extend
in general as derivations to the tensor algebra

⊗
T associated to T , hence the quadratic

element q(R) ∈ U ≤2so( T, g ) can be seen as a second order differential operator in the
sense that its action on

⊗
T is determined by its action on the tensor square

⊗2 T with

g( q(R) ⋆ (X ⊗ Y ), U ⊗ V )

= g( Der 1
2
Ric(X ⊗ Y ), U ⊗ V ) +

m∑

µ, ν=1

g( dEµ(X) dE♯
ν ⊗ REµ, EνY, U ⊗ V )

= g( Der 1
2
Ric(X ⊗ Y ), U ⊗ V ) −

1

6
Sec(X, Y ; U, V ) +

1

6
Sec(X, V ; Y, U )

for all X, Y, U, V ∈ T using R = Φ−Sec. In consequence the full expansion of a double
red edge (44) into ordinary colored trivalent graphs results in a sum of 16 terms grouped
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into two sums of 4 and 12 terms respectively. In the first of these two sums we replace the
double by a single red edge and in addition each of the four adjacent black flags in turn by

 −
1

4 ❛

❛

♣♣
♣♣
♣♣
♣♣

in order to implement Der 1
2
Ric via equation (26). In the second sum we replace similarly the

double by a single red edge and moreover each of the six pairs of adjacent flags in turn by:

 −
1

6 ❛

❛

♣♣
♣♣
♣♣
♣♣

+
1

6
❛ ❛♣ ♣ ♣ ♣ .

Implementing this expansion in the special case relevant to Lemma 6.2 we find without effort:

1

4 ❛

❛

❛

❛

♣♣
♣♣
♣♣
♣♣
♣♣

♣♣
♣♣
♣♣
♣♣
♣♣

♣♣
♣♣
♣♣
♣♣
♣♣

 −
1

4
·
4

4 ❛ ❛

❛ ❛❛ ❛

♣♣♣
♣♣
♣♣♣
♣

♣♣♣
♣♣
♣♣♣
♣

♣ ♣ ♣ ♣ ♣

−
1

6
·
2

4 ❛ ❛

❛ ❛❛ ❛

♣♣♣
♣♣
♣♣♣
♣

♣♣♣
♣♣
♣♣♣
♣♣ ♣ ♣ ♣

+
1

6
·
2

4 ❛ ❛

❛ ❛
❛

❛
✟✟ ❍❍PP ✏✏
♣♣♣
♣♣
♣♣♣
♣

♣♣♣
♣♣
♣♣♣
♣♣♣

♣♣
♣

−
1

6
·
4

4 ❛ ❛

❛ ❛

❛ ❛

♣♣
♣♣
♣♣
♣♣
♣♣
♣

♣♣
♣♣
♣♣
♣♣
♣♣
♣

♣ ♣ ♣ ♣ +
1

6
·
4

4 ❛ ❛

❛ ❛

❛

❛

♣♣
♣♣
♣♣
♣♣
♣♣
♣

♣♣
♣♣
♣♣
♣♣
♣♣
♣

♣♣
♣♣ .

Interpreting the left hand side and simplifying the right hand side using the congruences

❛ ❛

❛ ❛❛ ❛

♣♣
♣♣♣
♣♣♣
♣

♣♣
♣♣♣
♣♣♣
♣

♣ ♣ ♣ ♣ ♣

≡ − 2
❛

❛

❛ ❛

❛ ❛

✟❍

❍✟♣ ♣ ♣ ♣ ♣ ♣ ♣

♣♣♣
♣♣♣
♣♣♣
♣♣♣

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣
❛

❛

❛ ❛

❛ ❛

✟✟✟✟

❍❍❍❍♣ ♣ ♣ ♣
♣ ♣

♣ ♣ ♣ ♣ ♣ ♣
♣♣
♣♣
♣♣

≡ − 2
❛ ❛

❛ ❛
❛

❛
✟✟ ❍❍PP ✏✏
♣♣
♣♣♣
♣♣♣
♣

♣♣
♣♣♣
♣♣♣
♣♣♣

♣♣
♣

≡ 4
❛

❛

❛ ❛

❛ ❛

✟❍

❍✟

♣♣
♣♣
♣♣
♣♣
♣♣
♣♣

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

modulo the ideal of IHX–relations we eventually obtain the formula:

gSym2T ∗⊗Sym2T ∗( q(R ) ⋆ Sec, Sec )

=

[
1

4 ❛

❛

❛

❛

♣♣
♣♣
♣♣
♣♣
♣♣

♣♣
♣♣
♣♣
♣♣
♣♣

♣♣
♣♣
♣♣
♣♣
♣♣

]
( R ) =

[
1

6 ❛

❛

❛ ❛

❛ ❛

✟❍

❍✟

♣♣
♣♣
♣♣
♣♣
♣♣
♣♣

♣ ♣ ♣
♣ ♣ ♣
♣ ♣ ♣
♣ ♣ ♣

♣♣♣
♣♣♣

♣♣♣
♣♣♣

−
2

3 ❛

❛

❛ ❛

❛ ❛

✟❍

❍✟

♣♣
♣♣
♣♣
♣♣
♣♣
♣♣

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

+
1

2 ❛

❛

❛ ❛

❛ ❛

✟❍

❍✟♣ ♣ ♣ ♣ ♣ ♣ ♣

♣♣♣
♣♣♣
♣♣♣
♣♣♣

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

]
( R ) .

In light of the isometry equation (31) this result is equivalent to the stipulated formula for the
stable cubic polynomial gΛ2T ∗⊗Λ2T ∗( q(R)⋆R, R ), after all the mutually inverse isomorphisms
Φ+ and Φ− of Section 2 are equivariant under the action of the orthogonal group and thus
commute q(R) ⋆ Φ−Sec = Φ−( q(R) ⋆ Sec ) with the standard curvature term. �

The stable cubic curvature invariant Θ3 of Lemma 6.2 arises naturally in the study of the
curvature tensor R ∈ Γ(Curv−TM ) of Riemannian manifolds M with parallel Ricci curva-
ture Ric ∈ Γ( Sym2T ∗M ), a class of Riemannian manifolds slightly larger than the class of
Einstein manifolds of dimension m ≥ 3 [2]. In order to relate Θ3 to the Ricci curvature we

compose the symmetrized second covariant derivative ∇
[2]
X, Y := 1

2
(∇2

X, Y + ∇2
Y,X) with the

Nomizu–Kulkarni product × of equation (12) to obtain a second order differential operator:

Cross : Γ( Sym2T ∗M )
∇[2]

−→ Γ( Sym2T ∗M ⊗ Sym2T ∗M )
×

−→ Γ(Curv−TM ) .

This cross operator is a fundamental differential operator in Riemannian geometry, because it
is in essence the linearization of the second order non–linear differential operator, which sends
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a Riemannian metric g ∈ Γ( Sym2
regT

∗M ) to its curvature tensor R ∈ Γ(Curv−TM ), more
precisely the curvature tensor varies under an arbitrary variation of the metric according to

δR =
1

2
Cross δg +

1

4
Der[ δg ]R , (45)

where [ δg ] denotes the symmetric endomorphism field defined by g([ δg ]X, Y ) := δg(X, Y ).

Lemma 6.3 (Laplacian of Curvature Tensor [9])
The curvature tensor R ∈ Γ(Curv−TM ) of every Riemannian manifold M satisfies:

∇∗∇R + q(R ) ⋆ R = Cross Ric .

In particular the L2–norm of the covariant derivative ∇R ∈ Γ( T ∗M ⊗ Curv−TM ) of the
curvature tensor of a compact Riemannian manifold M with parallel Ricci tensor equals:

|| ∇R ||2T ∗⊗Λ2T ∗⊗Λ2T ∗ = −

∫

M

gΛ2T ∗⊗Λ2T ∗( q(R ) ⋆ R, R ) | volg | .

Proof: Using the second Bianchi identity six times and keeping all the symmetries of
algebraic curvature tensors self evident we obtain for every local basis E1, . . . , Em:

(∇∗∇R )( X, Y ; U, V )

= −
1

2

m∑

µ=1

(
+ (∇2

Eµ, dE
♯
µ
R )(X, Y ; U, V ) + (∇2

Eµ, dE
♯
µ
R )(U, V ; X, Y )

)

= +
1

2

m∑

µ=1

(
+ (∇2

Eµ,XR )( Y, dE♯
µ; U, V ) − (∇2

Eµ, YR )(X, dE♯
µ; U, V )

+ (∇2
Eµ, UR )( V, dE♯

µ; X, Y ) − (∇2
Eµ, VR )(U, dE♯

µ; X, Y )
)

= +
1

2

m∑

µ=1

(
+ (REµ,XR )( Y, dE♯

µ; U, V ) + (∇2
X,Eµ

R )(U, V ; Y, dE♯
µ )

− (REµ, YR )(X, dE♯
µ; U, V ) − (∇2

Y,Eµ
R )(U, V ; X, dE♯

µ )

+ (REµ, UR )( V, dE♯
µ, X, Y ) + (∇2

U,Eµ
R )(X, Y ; V, dE♯

µ )

− (REµ, VR )(U, dE♯
µ, X, Y ) + (∇2

V,Eµ
R )(X, Y ; U, dE♯

µ )
)

= +
1

2

m∑

µ=1

(
+ (∇2

X,UR )( V, Eµ; dE
♯
µ, Y ) − (∇2

X,VR )(U, Eµ; dE
♯
µ, Y )

− (∇2
Y,UR )( V, Eµ; dE

♯
µ, X ) + (∇2

Y,VR )(U, Eµ; dE
♯
µ, X )

+ (∇2
U,XR )( Y, Eµ; dE

♯
µ, V ) − (∇2

U, YR )(X, Eµ; dE
♯
µ, V )

− (∇2
V,XR )( Y, Eµ; dE

♯
µ, U ) + (∇2

V, YR )(X, Eµ; dE
♯
µ, U )

)

−
1

2

m∑

µ=1

(
+ (REµ,XR )( dE♯

µ, Y ; U, V ) + (REµ, YR )(X, dE♯
µ; U, V )

+ (REµ, UR )(X, Y ; dE♯
µ, V ) + (REµ, VR )(X, Y ; U, dE♯

µ )
)
.
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Evidently the first sum on the right hand side is just CrossRic, note in particular that the
symmetrized iterated covariant derivatives ∇[2] appear naturally in this calculation. We leave
it to the reader to verify that the second sum on the right hand side equals −q(R) ⋆ R. �

Combining Lemma 6.3 with the interpretation (45) of the cross operator as the linearization
of the second order differential operator Γ( Sym2

regT
∗M ) −→ Γ(Curv−TM ), g 7−→ R, we

obtain the central formula of Hamilton’s theory [4] for the Ricci Flow δg := ± 2Ric:

δR = ±
(
Cross Ric +

1

2
DerRicR

)
= ±

(
∇∗∇R + q(R ) ⋆ R +

1

2
DerRicR

)
.

Comparing this formulation with the usual formulation of Hamilton’s theory [4] we find

q(R ) ⋆ R =
1

2
DerRicR + Q(R ) (46)

in terms of Hamilton’s quadratic curvature expression Q(R ) defined by:

Q(R )(X, Y ; U, V )

:= 2 gΛ2T (RX, Y , RU, V ) + 2
m∑

µ=1

(
g(REµ,XU, RdE♯

µ, Y
V ) − g(REµ,XV, RdE♯

µ, Y
U )

)
.

In order to illustrate the power of the graphical calculus developed in this article we want
to discuss an interesting identity of stable curvature invariants of Einstein manifolds related
to Lemma 6.3. Recall first of all that an algebraic curvature tensor of Einstein type is an
algebraic curvature tensor R ∈ Curv−T on a euclidean vector space T of dimension m ∈ N

whose associated Ricci tensor Ric = κ
m
g is a multiple of the metric g. On the subspace

Ein( T, g ) ⊆ Curv−T of curvature tensors of Einstein type the Ricci identity (26)

❛

❛

X

Y
♣♣
♣♣
♣♣
♣♣
♣

=̂ − 2
κ

m
g(X, Y ) =̂ − 2

κ

m

X

Y

becomes an algebraic simplification on the level of the reduced graph algebra A
•
reducing the

number of vertices at the expense of introducing κ as a new independent variable. Generators
of the reduced graph algebra A

•
with a pair of parallel red and black edges are thus redundant

when restricted to Ein( T, g ), for the first two of the generators (27) of degree 3 we find say

[

❛

❛

❛ ❛

❛ ❛

✟❍

❍✟♣ ♣ ♣ ♣ ♣ ♣ ♣

♣ ♣ ♣ ♣ ♣ ♣ ♣
♣♣
♣♣
♣♣

]
(R )

!
=

[

❛

❛

❛ ❛

❛ ❛

✟❍

❍✟
♣♣
♣♣
♣♣

♣♣
♣♣
♣♣
♣♣
♣♣
♣♣

♣♣
♣♣
♣♣

]
(R ) = − 2

κ

m

[

❛ ❛

❛ ❛

♣♣
♣♣
♣♣
♣♣
♣♣

♣♣
♣♣
♣♣
♣♣
♣♣
]
(R ) = − 8

κ3

m2
(47)

for every algebraic curvature tensor R ∈ Ein( T, g ) of Einstein type in light of equation (42)
in combination with gSym2T ∗( κ

m
g, κ

m
g) = κ2

2m
. Similarly the third generator reduces to:

[

❛

❛

❛ ❛

❛ ❛

✟❍

❍✟♣ ♣ ♣ ♣ ♣ ♣ ♣

♣♣♣
♣♣♣
♣♣♣
♣♣♣

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

]
(R ) = − 2

κ

m

[

❛ ❛

❛ ❛

♣♣♣
♣♣♣
♣♣♣
♣♣♣
♣♣♣
♣♣

♣♣♣
♣♣♣
♣♣♣
♣♣♣
♣♣♣
♣♣

]
(R ) = + 48

κ

m
gΛ2T ∗⊗Λ2T ∗(R, R ) . (48)
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Effectively we are thus left with 4 instead of the 8 generators (27) of degree up to 3, namely

❛

❛

♣♣
♣♣
♣♣
♣♣
♣♣

=̂ − 2 κ
❛ ❛

❛ ❛

♣♣♣
♣♣♣
♣♣♣
♣♣♣
♣♣♣
♣♣

♣♣♣
♣♣♣
♣♣♣
♣♣♣
♣♣♣
♣♣

=̂ − 24 gΛ2T ∗⊗Λ2T ∗(R, R )
❛

❛

❛ ❛

❛ ❛

✟❍

❍✟

♣♣
♣♣
♣♣
♣♣
♣♣
♣♣

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

❛

❛

❛ ❛

❛ ❛

✟❍

❍✟

♣♣
♣♣
♣♣
♣♣
♣♣
♣♣

♣ ♣ ♣
♣ ♣ ♣
♣ ♣ ♣
♣ ♣ ♣

♣♣♣
♣♣♣

♣♣♣
♣♣♣

,

when discussing stable curvature invariants of algebraic curvature tensors of Einstein type.
In consequence there exists up to scale a unique linear combination of the Pfaffian pf3, the
normalized moment polynomial Ψ◦

3 and the cubic polynomial Θ3 defined in Lemma 6.2

pf3(R) =

[
−

1

432 ❛

❛

❛ ❛

❛ ❛

✟❍

❍✟

♣♣
♣♣
♣♣
♣♣
♣♣
♣♣

♣ ♣ ♣
♣ ♣ ♣
♣ ♣ ♣
♣ ♣ ♣

♣♣♣
♣♣♣

♣♣♣
♣♣♣

−
5

432 ❛

❛

❛ ❛

❛ ❛

✟❍

❍✟

♣♣
♣♣
♣♣
♣♣
♣♣
♣♣

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

]
(R ) + κ3

m2 − 12m+ 40

48m2
+ κ

m− 8

4m
|R |2

Ψ◦
3(R) =

[
−

1

6 ❛

❛

❛ ❛

❛ ❛

✟❍

❍✟

♣♣
♣♣
♣♣
♣♣
♣♣
♣♣

♣ ♣ ♣
♣ ♣ ♣
♣ ♣ ♣
♣ ♣ ♣

♣♣♣
♣♣♣

♣♣♣
♣♣♣

−
1

6 ❛

❛

❛ ❛

❛ ❛

✟❍

❍✟

♣♣
♣♣
♣♣
♣♣
♣♣
♣♣

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

]
(R ) + κ3

m2 + 12m+ 40

6m2
+ κ

6 (m+ 8)

m
|R |2

Θ3(R) =

[
+

1

72 ❛

❛

❛ ❛

❛ ❛

✟❍

❍✟

♣♣
♣♣
♣♣
♣♣
♣♣
♣♣

♣ ♣ ♣
♣ ♣ ♣
♣ ♣ ♣
♣ ♣ ♣

♣♣♣
♣♣♣

♣♣♣
♣♣♣

−
1

18 ❛

❛

❛ ❛

❛ ❛

✟❍

❍✟

♣♣
♣♣
♣♣
♣♣
♣♣
♣♣

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

]
(R ) + κ

2

m
|R |2

in which both additional cubic generators are eliminated, the resulting identity reads:

(
pf3 −

1

40
Ψ◦

3 −
2

15
Θ3

)
(R ) = κ3

m2 − 18m+ 40

60m2
+ κ

3m− 104

30m
gΛ2T ∗⊗Λ2T ∗(R, R ) .

According to Lemma 6.3 the cubic curvature invariant Θ3(R ) := −gΛ2T ∗⊗Λ2T ∗( q(R)⋆R, R )
integrates for a compact Einstein manifold M to the L2–norm || ∇R ||2T ∗⊗Λ2T ∗⊗Λ2T ∗

of the
covariant derivative of the curvature tensor, in this way we have proved:

Theorem 6.4 (Cubic Curvature Identity for Einstein Manifolds)
For every compact connected Einstein manifoldM of dimension m ≥ 3 with scalar curvature
κ ∈ R the following identity of integrated stable curvature invariants of degree 3 holds true:

∫

M

pf3(R ) | volg | −
1

40

∫

M

Ψ◦
3(R ) | volg | +

2

15
|| ∇R ||2T ∗⊗Λ2T ∗⊗Λ2T ∗

= κ3
m2 − 18m+ 40

60m2
Vol(M, g ) + κ

3m− 104

30m
||R ||2Λ2T ∗⊗Λ2T ∗

Specifically in dimension m = 5 this identity reduces via Ψ◦
3 = 10080Ψ3 to the identity

− 252

∫

M

Ψ3(R) | volg |+
2

15
|| ∇R ||2T ∗⊗Λ2T ∗⊗Λ2T ∗ = −

κ3

60
Vol(M, g )−

89 κ

150
||R ||2Λ2T ∗⊗Λ2T ∗ ,

because pf3(R ) = 0 due to Remark 5.2, whereas is becomes for m = 6 with Ψ◦
3 = 25200Ψ3:

( 2π )3 χ(M ) − 630

∫

M

Ψ3(R ) | volg | +
2

15
|| ∇R ||2T ∗⊗Λ2T ∗⊗Λ2T ∗

= −
2 κ3

135
Vol(M, g ) −

43 κ

90
||R ||2Λ2T ∗⊗Λ2T ∗ .
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