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Guarding Graph Neural Networks for
Unsupervised Graph Anomaly Detection

Yuanchen Bei, Sheng Zhou, Jinke Shi, Yao Ma, Haishuai Wang, and Jiajun Bu

Abstract—Unsupervised graph anomaly detection aims at iden-
tifying rare patterns that deviate from the majority in a graph
without the aid of labels, which is important for a variety of real-
world applications. Recent advances have utilized Graph Neural
Networks (GNNs) to learn effective node representations by ag-
gregating information from neighborhoods. This is motivated by
the hypothesis that nodes in the graph tend to exhibit consistent
behaviors with their neighborhoods. However, such consistency
can be disrupted by graph anomalies in multiple ways. Most
existing methods directly employ GNNs to learn representations,
disregarding the negative impact of graph anomalies on GNNs,
resulting in sub-optimal node representations and anomaly detec-
tion performance. While a few recent approaches have redesigned
GNNs for graph anomaly detection under semi-supervised label
guidance, how to address the adverse effects of graph anomalies on
GNNs in unsupervised scenarios and learn effective representations
for anomaly detection are still under-explored. To bridge this
gap, in this paper, we propose a simple yet effective framework
for Guarding Graph Neural Networks for Unsupervised Graph
Anomaly Detection (G3AD). Specifically, G3AD introduces two
auxiliary networks along with correlation constraints to guard
the GNNs from inconsistent information encoding. Furthermore,
G3AD introduces an adaptive caching module to guard the
GNNs from solely reconstructing the observed data that contains
anomalies. Extensive experiments demonstrate that our proposed
G3AD can outperform seventeen state-of-the-art methods on both
synthetic and real-world datasets.

Index Terms—graph anomaly detection, graph neural net-
works, unsupervised anomaly detection, graph learning.

I. INTRODUCTION

Graph anomaly detection aims to identify rare patterns or
behaviors that significantly deviate from the majority of a
graph [1]–[3]. It has attracted increasing attention from both
academia and industry due to its practical applications, such as
network intrusion detection [1], social spammer detection [4],
and financial fraud detection [5]. The scarcity of anomaly
labels in real-world applications, coupled with the challenge
of acquiring such labels, has led to a widespread study
of unsupervised graph anomaly detection [6]–[8]. Pioneer
works on graph anomaly detection have separately mined
the attributed anomalies and topological anomalies by feature
engineering and graph structure encoding, respectively [9],
[10]. Recent breakthroughs in Graph Neural Networks (GNNs)
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Fig. 1. Toy examples of GNN message passing on clear graphs and the graphs
under three types of anomaly impacts.

have empowered the unified modeling of attributes and topol-
ogy, leading to significant advancements in graph anomaly
detection [11]–[13].

The success of representative GNNs, as illustrated in Figure
1-(a), has heavily relied on aggregating information from
neighborhoods sharing similar patterns, e.g. label homophily
and feature consistency [14], [15]. Although successful, in
graphs with anomalies, we argue that this foundation can
be easily undermined by various graph anomalies in mul-
tiple ways [16]. Figure 1-(b-d) illustrates toy examples of
the three main types of graph anomaly impacts on GNNs.
(i) As illustrated in Figure 1-(b), the attributed-induced
anomalies where node features are corrupted, such as the
account takeover in social networks, will directly result in
aggregating incorrect information from neighborhoods. (ii) As
illustrated in Figure 1-(c), the topological-induced anomalies
that connect to incorrect neighborhoods, such as the fraudsters
in E-commerce systems, will result in aggregating information
from inconsistent neighborhoods. (iii) More seriously, as illus-
trated in Figure 1-(d), the mixed anomalies that simultaneous
occurrence of multiple anomaly types is a more common
situation and will have a significantly more detrimental impact
on GNNs. Existing unsupervised graph anomaly detection
methods have primarily focused on designing effective unsu-
pervised anomaly scoring functions within the representation
space learned directly from GNNs while overlooking the nega-
tive impact of anomalies on the inherent GNNs themselves [3],
[17], [18]. This is crucial for accurate anomaly detection,
which is indispensable to discriminative node representations.
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Fig. 2. Concept maps between (a) existing GNN-based unsupervised graph
anomaly detection paradigm and (b) our proposed GNN-guarded unsupervised
graph anomaly detection paradigm.

Under this limitation, the representation learning ability of
GNNs is hampered to adequately capture the normal patterns
in the graph, thereby leading to suboptimal representation
learning and anomaly detection performance. Hence, it is
crucial to alleviate the negative impact of anomalies and fully
release the power of GNNs for anomaly detection.

Although important, addressing the negative impacts of
graph anomalies on GNNs in unsupervised scenarios is non-
trivial. An intuitive solution might involve the development
of innovative GNNs that adapt to certain graph anomalies.
This has attracted increasing attention and the few very recent
works have achieved tremendous success in semi-supervised
scenarios [19], [20]. However, the lack of labels in unsu-
pervised anomaly detection poses a significant challenge in
guiding the redesign of GNNs, which is more commonly
encountered in practice. More importantly, while anomalies
do exist on the graph and exert certain effects on GNNs, they
account for only a small fraction of the total. The majority
of patterns remain normal and can be effectively captured
by GNNs. Therefore, a complete redesign or deprecation
of GNNs could risk compromising the identification of the
majority of normal patterns due to the influence of a minor
proportion of anomalies, especially in unsupervised contexts.
Therefore, how to reduce the impact of anomalies on GNNs
while enabling them to capture the majority of normal patterns
effectively and aid in unsupervised anomaly detection?

To answer the above under-explored research question, in
this paper, we propose a simple yet effective framework for
Guarding Graph Neural Network for Unsupervised Graph
Anomaly Detection (G3AD). Instead of directly encoding
the observed graph with anomalies, G3AD first introduces
two auxiliary encoders tailored with correlation constraints to
guard the GNNs against encoding inconsistent information.
Subsequently, to optimize GNNs in an unsupervised manner
and detect multiple types of unknown anomalies, G3AD
proposes a comprehensive learning objective that includes both
local attribute/topology reconstruction and global consistency
alignment, which also serves as anomaly scoring. Finally,
instead of directly reconstructing the observed graph with
anomalies, G3AD integrates an adaptive caching module to
guard the GNNs from misleading learning objectives. Fig-
ure 2 illustrates the comparison between the existing GNN-
based unsupervised graph anomaly detection paradigm and

the one under G3AD framework. Extensive experiments on
both synthetic and real-world graph anomaly detection datasets
demonstrate that G3AD outperforms seventeen state-of-the-
art unsupervised graph anomaly detection models. The main
contributions of this paper are summarized as follows:

• We emphasize the negative impact of unknown anomalies
on GNNs, which is crucial for graph anomaly detection
under unsupervised settings while overlooked by most
existing unsupervised works.

• We propose G3AD, a simple yet effective framework to
guard GNNs from encoding inconsistent information and
directly reconstructing the abnormal graph in unsuper-
vised graph anomaly detection.

• We conduct extensive experiments on seven widely-used
datasets including both synthetic and real-world scenar-
ios. Experimental results show that the proposed G3AD
outperforms seventeen state-of-the-art methods.

In the following sections, we will first review the previous
work related to our method in Section II. Second, we will give
some key preliminaries of our work in Section III. Then, the
detailed description of the proposed G3AD will be introduced
in Section IV. To further verify the effectiveness of G3AD,
we conduct various experiments in Section V. Finally, the
conclusion of this paper is posed in Section VI.

II. RELATED WORKS

A. Graph Neural Networks
Graph Neural Networks (GNNs) are a series of deep

learning models specifically designed for processing graph-
structured data [21], [22]. The core design of GNNs is to
learn node representations by aggregating and propagating
information from neighborhoods to the central nodes. This
information propagation (message passing) allows GNNs to
capture complex topology dependencies and contextual infor-
mation among nodes [23], [24].

Typically, in GNNs, each node has an initial feature repre-
sentation, and through multiple layers of message aggregation
and propagation operations, the node representations are grad-
ually updated and refined [21]–[23], [25]. Representatively,
GCN [21] adopts the graph convolution operator and stacks it
into multiple layers for neighbor message passing. GAT [25]
further introduces the attention mechanism to consider the
different importance of neighbor nodes and dynamically assign
different weights when aggregating neighbor features. Graph-
SAGE [22] extends and improves the graph convolution to
handle large-scale graph data, with the key idea of generating
node representations through sampling and aggregating neigh-
bor nodes.

Due to the fact that real-world data can be widely mod-
eled as graphs, GNNs have emerged as a significant branch
within the field of neural network research [24], [26]. They
possess the ability to perform learning on graph-structured
data, automatically extracting features and making predictions,
providing an effective solution for tasks on graph data. Based
on these advantages, GNNs have achieved significant suc-
cess in various application domains, such as social network
analysis [27], [28], recommendation systems [29], [30], and
bioinformatics [31], [32].
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B. Unsupervised Graph Anomaly Detection

Graph anomaly detection technologies have been widely
applied in real-world systems to ensure their robustness and
security, such as financial transaction networks [20], social
network applications [33], and E-commerce systems [34]. Due
to the sparsity of anomalies and the high cost of acquiring
anomalous labels, unsupervised anomaly detection has become
an important research direction in recent years.

Existing graph anomaly detection methods under unsuper-
vised manners can be largely divided into four main categories.
(i) Classical shallow models: SCAN [35] can be utilized for
anomaly detection based on structural similarity. MLPAE [36]
detects anomalies with nonlinear transformations. (ii) En-
hanced graph neural networks: GAAN [37] utilizes a gen-
erative adversarial framework to train the graph encoder with
real graph and anomalous fake graph samples. ALARM [38]
proposes a multi-view representation learning framework with
multiple graph encoders and a well-designed aggregator.
AAGNN [12] then enhances the graph neural network with an
abnormality-aware aggregator. (iii) Deep graph autoencoder
models: Dominant [39] first introduces a deep graph autoen-
coder model with a shared encoder to measure anomalies by
reconstruction error. SpecAE [40] utilizes a spectral graph
autoencoder and Gaussian Mixture Model to perform the
detection. AnomalyDAE [41] introduces asymmetrical cross-
modality interactions between autoencoders. ComGA [42]
further designs a community-aware tailored graph autoencoder
to make the representation between normal and anomalous
nodes more distinguishable. (iv) Graph contrastive learning
methods: CoLA [43] exploits the local information and intro-
duces a self-supervised graph contrastive learning method to
detect anomalies. Further, ANEMONE [44] utilizes the graph
contrastive learning method in multi-scale. SL-GAD [17] per-
forms anomaly detection from both generative and multi-view
contrastive perspectives. Sub-CR [18] then proposes a self-
supervised method based on multi-view contrastive learning
with graph diffusion and attribute reconstruction.

However, the above GNN-based models directly apply the
message passing without anomaly guarding, neglecting the
inconsistent neighborhood of attribute and topology, thus the
performance of GNNs is limited.

C. Neighborhood Consistency in Graphs

The nature that neighboring nodes in real-world graphs tend
to share consistent behaviors, such as labels or attributes [45],
has been the foundation of many GNNs. As introduced in
Section II-A, pioneer representative works of GNNs [21], [22],
[25] have utilized the neural message passing by aggregating
information from neighbors, which is a straightforward way of
applying the feature consistency. Later works have proved that
such message passing is equivalent to classic label propagation
where the labels are propagated along with the connection
between neighboring nodes [46], [47]. This can be viewed as
utilizing the neighborhood consistency in labels, which is also
widely called the homophily assumption in practice [15].

However, the homophily assumption may not always hold in
real-world graphs [48]. To tackle this challenge, recent works

TABLE I
KEY SYMBOLS AND DEFINITIONS IN THIS PAPER.

Notations Descriptions

G = (A,X) An attributed graph with anomalies.
A The graph adjacency matrix.
X The node attribute matrix.
V The set of nodes in G.
E The set of edges in G.
Ni The neighborhood set of node vi.

n = |V| The number of nodes in G.
d The dimension of node attributes in G.
k The number of graph anomalies in G.
Y The anomaly label set of nodes.
S The anomaly score vector indicating node abnormalities.

have been made on the heterophily GNN for representation
learning under graphs with low neighborhood consistency.
Representatively, MixHop [49] mixes powers of the adja-
cency matrix for graph convolution to ease the limitation.
H2GCN [50] designs a model with ego & neighbor separation,
higher-order neighbors, and intermediate representations com-
bination. LINKX [51] separately embeds the adjacency and
node features with simple MLP transformations rather than the
aggregation based on neighborhood consistency. GloGNN [52]
performs aggregation from the whole set of nodes with both
low-pass and high-pass filters.

Nevertheless, in unsupervised graph anomaly detection,
these heterophily GNNs mentioned above are not directly
appropriate, due to the unknown neighborhood inconsistency
in attribute and topology under the unsupervised setting and
the overlook of the anomaly-specific design.

III. PRELIMINARIES

In this section, we present some key notations and defini-
tions related to our target unsupervised graph anomaly detec-
tion task. Note that we focus on node-level graph anomaly
detection in this paper. For the convenience of readers, we list
the main symbols used in this paper in Table I.
Notations. Let G = (A,X) be a graph with the node set V =
{v1, v2, ..., vn} and the edge set E , where |V| = n. A ∈ Rn×n

denotes the graph adjacency matrix, for each element Ai,j ∈
A, Ai,j = 1 indicates that there is an edge between node vi
and node vj , and otherwise Ai,j = 0. X ∈ Rn×d denotes
the node attribute matrix, the i-th row vector xi = X[i, :
] ∈ Rd indicates the attribute vector of vi with d dimensional
representation. Ni is the neighborhood set of a central node
vi in the graph G.

Definition 1. Graph Neural Networks: In form, for an L-layer
GNN, the calculation process of each layer can be expressed
as the aggregation and updating operators. In the aggregation
phase, each central node aggregates the message from its
neighbor nodes:

m
(l+1)
i = Aggregator({h(l)

j |j ∈ Ni}), (1)

where the function Aggregator(·) is the message aggregation
operator to aggregate information from nodes’ neighborhoods,
h
(l)
j is the representation of node vj in the l-th GNN layer,
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with two auxiliary encoders with correlation constraints; (ii) Guarding GNNs against reconstructing abnormal graph with adaptive information caching. Under
the two guards, we comprehensively consider both local reconstruction and global alignment to comprehensively detect different types of anomalies.

and m
(l+1)
i is the aggregated message for node vi in the (l+

1)-th GNN layer. After obtaining the aggregated message, in
the updating phase, each central node adopts the aggregated
information to update and transform its own representations:

h
(l+1)
i = Updater(h(l)

i ,m
(l+1)
i ), (2)

where the function Updater(·) is the node representation
updating operator and h

(l+1)
i is the updated representation

of node vi.

Definition 2. Graph Anomalies: Given an abnormal at-
tributed graph G = (A,X) containing n node instances, and
k of them are graph anomalies (k ≪ n), whose attributes,
connections or behaviors are different from most other normal
nodes. On a graph with anomalies, each node vi is associated
with an anomaly label yi ∈ Y , where Y denotes the anomaly
label set and each element yi ∈ {0, 1} denotes whether node
vi is an anomaly. Note that the anomaly label set Y is invisible
in the unsupervised setting.

Definition 3. Unsupervised Graph Anomaly Detection: Given
an abnormal attributed graph G = (A,X) containing n node
instances, and k of them are anomalies (k ≪ n), whose
attributes, connections or behaviors are different from most
other normal nodes. The target of unsupervised graph anomaly
detection is to learn a model F(·) : Rn×n × Rn×d → Rn in
an unsupervised manner that outputs anomaly score vector
S ∈ Rn to measure the degree of abnormality of nodes.
Specifically, the i-th element si in the score vector S indicates
the abnormality of node vi, where a larger score means a
higher abnormality.

IV. METHODOLOGY

In this section, we present the details of the Guarding Graph
Neural Network for Unsupervised Graph Anomaly Detection
(G3AD). The overall framework of G3AD is illustrated in
Figure 3. Generally, G3AD framework follows a representative

GNN-based anomaly detection scheme where the GNNs learn
the representations, and the representations are optimized with
unsupervised objectives and measured for anomaly detection.
Besides, G3AD introduces two novel guarding strategies to
the paradigm, namely guarding against encoding inconsistent
information and guarding against reconstructing abnormal
graphs, so that the GNNs can produce effective representa-
tions and boost the anomaly detection ability. With carefully
designed guarding strategies and equipped anomaly detection
tasks, G3AD can outperform current GNN-based models. In
the rest of this section, we will introduce the details of these
guarding strategies and how G3AD serves unsupervised graph
anomaly detection.

A. Guarding GNNs against Encoding Inconsistent Information

Motivation. As discussed in previous works, GNNs are
designed for capturing consistent information from neighbor-
hoods [16]. However, in graphs with anomalies, the anomaly-
induced inconsistent patterns in unsupervised graph anomaly
detection have been largely overwhelmed and will negatively
disrupt the GNN performance. Therefore, G3AD first intro-
duces two auxiliary encoders with correlation constraints to
design an encoding guarding strategy for GNNs. Specifically,
the auxiliary encoders are expected to encode the inconsis-
tent information from the attribute and topology perspectives,
and the GNNs are guarded against encoding the inconsistent
information under the correlation constraints among the rep-
resentation learned by the three encoders.

1) GNN Encoder: The GNN encoder is utilized for en-
coding the part of the information that satisfies the consistent
homophily assumption, which is shared by both attribute and
topology. To focus on the model architecture, we adopt a
two-layer Graph Attention Network (GAT) [25] as the GNN
encoder fgnn(·) for simplicity. It is worth noting that any other
GNNs can be directly applied here. Given the input attributes
xi and xj of node vi and its neighbor vj , a GAT layer learns
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the input attributes with the attention mechanism. The attention
coefficient is computed as:

ei,j = att(xi,xj) = LeakyReLU(aT · [Wencxi||Wencxj ]),
(3)

where att(·) is a single-layer feedforward neural network,
parameterized by weight vector a ∈ R2d′

and Wenc ∈ Rd′×d

with the transformed dimension d′, || denotes the concatenate
operation. The attention coefficient αi,j is normalized as:

αi,j = softmax(ei,j) =
exp(ei,j)∑

k∈Ni
exp(ei,k)

, (4)

where Ni denotes the neighbor set of node vi. Then, the final
output feature hi ∈ Rd′

of node vi can be obtained as:

hi =
∑
j∈Ni

αi,jWencxj . (5)

For convenience, we use H(c) ∈ Rn×d′
denote the output

representation of consistency encoder fgnn(·).
2) Auxiliary Encoders with Correlation Constraints: In

our G3AD, the attribute-auxiliary encoder and the topology-
auxiliary encoder are further utilized for encoding the part of
information dependent on each information source (attribute
and topology) as well as the potential specific type of anoma-
lies under the attribute/topology inconsistent situation.

Existing methods directly utilize GNNs to model the at-
tribute and topology simultaneously. However, in the part
where the consistency is destroyed by anomalies, message
passing in GNNs will introduce negative noise information,
even helping the anomalies to camouflage when passing nor-
mal messages to them [19]. Therefore, we use two indepen-
dent MLPs rather than GNN encoders to better model the
inconsistent attribute/topology patterns and guard the GNN
encoder learning.

Specifically, the two independent MLPs fa(·) and ft(·) are
applied to encode the original attribute matrix X and the
adjacency matrix A, respectively:

H(a) = fa(X), H(t) = ft(A), (6)

where fa(·), ft(·) are two MLPs with learnable parameters
Wa and Wt respectively, and H(a),H(t) ∈ Rn×d′

are the
corresponding output matrices.

To ensure better guarding of the GNN encoder against
those inconsistent patterns, it is desired that the representa-
tions encoded from the GNN and the auxiliary encoders are
more independent of each other. Therefore, we impose the
correlation constraint on the embedding space of the encoded
representation to ensure all aspects of information H(a), H(t),
and H(c) are well-disentangled encoding.

Specifically, the correlation constraint between each pair
of encoded representation aspects is designed as the absolute
correlation coefficient measurement. Minimizing the constraint
ensures the two paired vectors to become more indepen-
dent [53]. Take the constraint between H(a) and H(t) as an
example, the formal expression is as follows:

aCor(H(a),H(t)) = abs

(
Cov(H(a),H(t))√

V ar(H(a)) · V ar(H(t))

)
,

(7)

where Cov(·) is the covariance between two matrices, and
V ar(·) is a matrix’s own variance, and abs(·) is the absolute
value function. aCor(H(a),H(c)) and aCor(H(t),H(c)) can
be calculated in the same way. The overall regularization Lcc

of all correlation constraints can be presented as:

Lcc =aCor(H(a),H(c)) + aCor(H(t),H(c))

+ aCor(H(a),H(t)),
(8)

where the calculated Lcc is utilized as a correlation regular-
ization loss during the model training stage.

B. Guarding GNNs against Reconstructing Abnormal Graph

Motivation. Graph anomalies have various types, including
attribute anomalies, topology anomalies, and mixed anomalies.
In unsupervised graph anomaly detection, we are unable to
know either anomaly labels or anomaly types. Thus, G3AD
aims to comprehensively detect different anomaly types in the
following ways:

• Local attribute reconstruction: the attribute reconstruc-
tion errors distinguishing sparse attribute anomalies from
the predominant normal nodes.

• Local topology reconstruction: the topology reconstruc-
tion errors distinguishing sparse topology anomalies from
the primary normal nodes.

• Global consistency alignment: the alignment distance
between node representations encoded by the GNN
and the global graph consistency vector can further be
equipped for mixed anomalies distinguishing.

Among these objectives, the graph reconstruction scheme has
been proven to be essential for both representation optimiza-
tion and anomaly detection under the unsupervised setting [8],
[39], [41]. However, reconstruction targets are needed to make
GNN-encoded representations to fit the observed graph data
with anomalies. The unknown anomalies in the abnormal
graph may provide a misleading objective for both tasks. Thus,
G3AD further introduces the adaptive caching to guard the
GNNs against reconstructing abnormal graphs by cooperat-
ing with the auxiliary encoders that partake the inconsistent
anomaly patterns.

1) Adaptive Caching: From the consistent alignment per-
spective, since the consistent information encoded by the
GNN encoder has already been guarded, it should be di-
rectly used for measuring the global consistency under a
mixture of attribute and topology information. Yet from the
attribute/topology reconstruction perspective, due to the graph
to be reconstructed containing anomalies, it is necessary for
further guarding the GNN-encoded representations against
directly reconstructing and preserving the abnormal graph.

Therefore, we design an Adaptive Caching (AC) module
to concurrently leverage the GNN-encoded representations for
normal part reconstruction and auxiliary-encoded representa-
tions for inconsistent part reconstruction, avoiding the force of
GNNs to fit inconsistent anomaly patterns. It automatically se-
lects appropriate information for the reconstruction of normal
and abnormal parts from GNN representation and auxiliary
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representation under unsupervised conditions, through learn-
able parameters. The general AC module can be formulated
as follows:

imp = Tanh(τ(H(1)||H(2))), (9)

AC(H(1),H(2)) = imp[:n] ·H(1) + imp[n:] ·H(2), (10)

where τ(·) is an MLP for information fusion, imp ∈ R2n

is the weight vector of each dimension of the input features,
H(1) and H(2) denote two information sources, such as H(a),
H(t), and H(c).

The AC module is utilized to generate two types of repre-
sentations for attribute and topology reconstruction:

ZA = AC(H(a),H(c)), ZT = AC(H(t),H(c)), (11)

where ZA and ZT are the cached attribute representation
and cached topology representation. Compared with vanilla
GNN-based representation, the caching of GNN-encoded and
attribute/topology-specific information automatically selects
helpful information and better alleviates anomalies’ impact on
the GNN-encoded representations.

2) Anomaly Detection Tasks: Given the GNN encoded
representation, cached attribute representation, and cached
topology representation, we aim to make full use of them
for anomaly scoring in an unsupervised setting. Therefore, as
the above definition of the three types of anomaly detection
objections, the detection tasks can be unfolded as follows.

Local attribute reconstruction: The reconstruction-based
operator has been widely observed to be effective for unsu-
pervised anomaly detection [7], [8], [39]. Therefore, given
the cached attribute representation ZA, we utilize the node’s
attribute reconstruction ability for attribute anomaly mining,
benefiting from the reconstruction target tending to fit the
patterns of the predominant nodes while the patterns of
anomalies are rare [39]. We use a two-layer Graph Convolution
Network (GCN) [21] as the attribute reconstruction function
ga(·) as follows:

R(l+1) = LeakyReLU(ÃR(l)W (l)
re ), (12)

where Ã = D̂− 1
2A∗D̂− 1

2 ∈ Rn×n is the normalized adja-
cency matrix, D̂ ∈ Rn×n is the degree matrix of A∗ = A+I

where I is the identity matrix. R(l), W (l)
re is the input features,

trainable parameters in l-th layer, respectively.
For the cached attribute representation ZA, ga(·) recon-

structs the attribute matrix X̂ ∈ Rn×d with corresponding
distance-based reconstruction loss Lattr, which can be com-
puted as:

X̂ = ga(ZA,A), (13)

Lattr = ||X − X̂||22, (14)

where || · ||22 is the Euclidean distance.
Local topology reconstruction: Similar to the perspective

of local attribute reconstruction, for the given cached topology
representation ZT , the topology reconstruction capability is
also a factor for anomaly detection due to topology anomalies’

rare and inconsistent local topological patterns. The recon-
struction function gt(·) reconstructs the adjacency matrix from
ZT with the reconstruction loss Ltopo as follows:

Â = gt(ZT ) = ZT ·Z
′

T , (15)

Ltopo = ||A− Â||22, (16)

where gt(·) is designed as an inner product between ZT and
its self-transposition Z

′

T to make the reconstruction efficient.
Global consistency alignment: Given the GNN encoded

representation H(c) to detect mixed anomalies, a naive way
for evaluating both attribute and topology is to measure the
distance between node embeddings and their corresponding
subgraph. However, the anomalies may occur as neighbors of
normal nodes under the neighborhood inconsistency, aligning
the node with a noisy subgraph may be suboptimal. Thus,
we turn to measure each node embedding with the graph
summary vector for global consistency measurement to reduce
the negative impact of neighborhood on the summary vectors.

Specifically, to conduct the alignment, we first read out the
consistent GNN-encoded representations of nodes into a graph
summary representation:

Eg = Readout(H(c)), (17)

where Readout(·) can be a kind of pooling operation (such
as min, max, mean, and weighted pooling [43]), here we use
the mean pooling as default for simplicity, Eg is the readout
representation of the graph.

Then we conduct the global consistency alignment task be-
tween each node’s GNN-encoded representation zc,i ∈ H(c)

and the graph summary vector Eg as follows:

Lcons = log(

√√√√ n∑
i=1

||zc,i −Eg||22 + e), (18)

where zc,i is the consistent representation of node vi, e is a
constant to limit the lower bound of the loss for better balance
Lcons’s numerical relationship with other loss terms.

C. Anomaly Scoring
With the three different anomaly detection tasks, we utilize

the above three anomaly detection tasks for the final anomaly
scoring. The normal nodes in the graph are expected to show
low discrepancies, while anomalies exhibit high discrepant
values due to their inconsistency, irregularity, and diversity.
Therefore, here we compute the anomaly score si of each
node vi in multi-perspectives according to:

si = λ1 · ||xi − x̂i||22︸ ︷︷ ︸
Local Attribute Reconstruction

+ (1− λ1) · ||ai − âi||22︸ ︷︷ ︸
Local Topology Reconstruction

+ λ2 · log(
√

||zc,i −Eg||22 + e)︸ ︷︷ ︸
Global Consistency Alignment

,
(19)

where λ1 is a hyperparameter to balance the attribute and
topology reconstruction, and λ2 also is a hyperparameter
that measures the effect of the global consistency alignment.
Nodes with larger scores are more likely to be considered
as anomalies, thus we can compute the ranking of anomalies
according to the nodes’ scores calculated as Eq.(19).
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Algorithm 1 The Overall Procedure of G3AD
Input: An Abnormal graph G = (A,X); Training epochs T ;

Balance parameters λ1 and λ2.
Output: An anomaly score list for the nodes.

1: for epoch ∈ 1, 2, ...T do
2: Obtain the attribute-specific, topology-specific, and con-

sistency representation H(a) = fa(X), H(t) = ft(A),
H(c) = fgnn(X,A), respectively.

3: Calculate the correlation constraint loss Lcc between
any two of the three encoded representations (H(a),
H(t), H(h)) via Eq.(8).

4: Obtain the cached attribute representation ZA =
AC(H(a),H(c));

5: Reconstruct the attribute matrix X̂ = ga(ZA,A), and
calculate the reconstruction loss Lattr via Eq.(14);

6: Obtain the cached structure representation ZT =
AC(H(t),H(h));

7: Reconstruct the adjacency matrix Â = gt(ZT ), and
calculate the reconstruction loss Ltopo via Eq.(16);

8: Conduct the global consistency alignment with consis-
tency representation H(h), and calculate the reconstruc-
tion loss Lcons via Eq.(18);

9: Minimize the joint training loss L = λ1 · Lattr + (1−
λ1) · Ltopo + λ2 · Lcons + Lcc;

10: Update model’s learnable parameters by using stochas-
tic gradient descent;

11: end for
12: Compute anomaly scores of nodes in the attributed net-

work G based on Eq.(19).

D. Joint Training Objective Function
To jointly train the different aspects of anomaly scoring loss

with the correlation constraint for GNN guarding, the joint
training objective function of G3AD:

L = λ1 · Lattr + (1− λ1) · Ltopo + λ2 · Lcons + Lcc, (20)

where the hyperparameters λ1 and λ2 here are the same as
mentioned in Eq.(19). In this way, G3AD is trained using
the gradient descent algorithm on the designed joint training
objective function.

Conclusively, the pseudocode of the overall procedure work-
flow of G3AD is described as the given Algorithm 1. In
each training epoch, G3AD first encodes three aspects of
representations by the guarded GNN encoder along with the
auxiliary encoders. Further, we adopt the correlation constraint
to minimize correlations between the three representations.
Before conducting the anomaly detection tasks, the adaptive
caching module is equipped for GNN representation guarding.
Then, anomaly detection tasks are conducted for anomaly
scoring and joint objective loss obtaining. A backpropagation
is then executed with a gradient descent algorithm to optimize
the parameters of G3AD. Finally, the anomaly scores are
returned for each node to evaluate their abnormality.

E. Complexity Analysis
In this subsection, we conduct the complexity analy-

sis of G3AD. First, the time complexity of encoding is

max(O(fa(·), ft(·), fgnn(·))). The complexity of fa(·) and
ft(·) is O(|V|dF ), and the complexity of fgnn(·) is O((|V|+
|E|)dF ), where F is the summation of all feature maps across
different layers. Therefore, the complexity of the encoding
guarding part is O((|V| + |E|)dF ). Then, the complexity of
the AC(·) module is O(|V|dF ), and the global consistency
alignment can be processed simultaneously with O(|V|dF ).
Finally, the time complexity of the reconstruction modules
is max(O(ga(·), gt(·))), where O(ga(·)) is O(|E|dF ) and
O(gt(·)) is O(|V|2). To sum up, the overall time complexity
of G3AD is O((|V|+ |E|)dF +max(|E|dF, |V|2)).

V. EXPERIMENTS

In this section, we conduct comprehensive experiments to
demonstrate the effectiveness of G3AD. Specifically, we aim
to answer the following research questions:

• RQ1: How does G3AD perform compared with state-of-
the-art models?

• RQ2: How much do the architecture and components of
G3AD contribute?

• RQ3: How well does G3AD disentangled encode the
information in each encoder? And how does G3AD
perform on different types of anomalies?

• RQ4: How do key hyper-parameters impact G3AD’s
anomaly detection performance?

A. Experimental Settings

1) Datasets: We adopt seven graph anomaly detection
datasets on both synthetic and real-world scenarios that have
been widely used in previous research [19], [43], including
five synthetic datasets: Cora, Citeseer, Pubmed [54], ACM,
and Flickr [55], and two real-world datasets: Weibo [56], and
Reddit [57]. The statistics are shown in Table II. The details
of the datasets are introduced as follows.

• Cora 1 [54] is a classical citation network consisting
of 2,708 scientific publications (contains 150 injected
anomalies) along with 5,429 links between them. The text
contents of each publication are treated as their attributes.

• Citeseer 1 [54] is also a citation network consisting
of 3,327 scientific publications (contains 150 injected
anomalies) with 4,732 links. The node attribute in this
dataset is defined the same as the Cora dataset.

• Pubmed1 [54] is another citation network consisting
of 19,717 scientific publications (contains 600 injected
anomalies) with 44,338 links. The node attributes in this
dataset are also defined as the Cora dataset.

• ACM2 [58] is another attributed citation network from the
academic field, of which each paper is regarded as a node
and the links are the citation relations among papers. It
consists of 16,484 nodes (containing 600 injected anoma-
lies) with 71,980 links between them. The attributes of
each paper are generated from the paper abstract.

• Flickr3 [55] is a social network dataset acquired from the
image hosting and sharing website Flickr. In this dataset,

1https://linqs.soe.ucsc.edu/datac
2http://www.arnetminer.org/open-academic-graph
3http://socialcomputing.asu.edu/pages/datasets

https://linqs.soe.ucsc.edu/datac
http://www.arnetminer.org/open-academic-graph
http://socialcomputing.asu.edu/pages/datasets
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7,575 nodes denote the users (contains 450 injected
anomalies), 239,738 edges represent the following rela-
tionships between users, and node attributes of users are
defined by their specified tags that reflect their interests
on the website.

• Weibo 4 [56] is a user-posts-hashtag graph dataset from
the Tencent-Weibo platform, which collects information
from 8,405 platform users (contains 868 suspicious users)
with 61,964 hashtags. The user-user graph provided by
the author is used, which connects users who used the
same hashtag.

• Reddit 5 [57] is a user-subreddit graph extracted from
a social media platform, Reddit, which consists of one
month of user posts on subreddits. The 1,000 most active
subreddits and the 10,000 most active users (containing
366 banned users) are extracted as subreddit nodes and
user nodes, respectively. We convert it to a user-user
graph with 20,744,044 connections based on the co-
interacted subreddit for our experiments.

For the five synthetic datasets, we adopted synthetic anoma-
lies to validate models [39], [43]. Following the widely used
anomaly injection approach in previous advances [17], [18],
[43], [44], we inject a combined set of both topological and
attributed anomalies for each experimental synthetic dataset
with the following manner.

• Injection of topological anomalies. To obtain topolog-
ical anomalies, the topological structure of networks is
perturbed by generating small cliques composed of nodes
that were originally not related. The insight is that in
a small clique, a small group of nodes are significantly
more interconnected with each other than the average,
which can be considered a typical situation of topological
anomalies in real-world graphs. Specifically, to create
cliques, we begin by defining the clique size p and
the number of cliques q. When generating a clique, we
randomly select p nodes from the set of nodes V and
connect them fully. This implies that all the selected p
nodes are considered topological anomalies. To generate
q cliques, we repeat this process q times. This results
in a total of p × q topological anomalies. Following the
previous works, the value of p is fixed as 15 and the value
of q is set to 5, 5, 20, 20, 15 for Cora, Citeseer, Pubmed,
ACM, and Flickr, respectively.

• Injection of attributed anomalies. We inject attributed
anomalies by disturbing the attribute of nodes. To gener-
ate an attributed anomaly, a node vi is randomly selected
as the target, and then another k nodes (vc1, ..., v

c
k) are

sampled as a candidate set Vc. Next, we compute the
Euclidean distance between the attribute vector xc of each
vc ∈ Vc and the attribute vector xi of vi. We then select
the node vcj ∈ Vc that has the largest Euclidean distance
to vi and change xi to xc

j . Following the previous works,
the value of k is set to 50.

2) Compared Baselines: We compare our proposed G3AD
with seventeen representative state-of-the-art models, which

4https://github.com/zhao-tong/Graph-Anomaly-Loss
5http://files.pushshift.io/reddit

TABLE II
STATISTICS OF THE EXPERIMENTAL DATASETS.

Dataset # nodes # edges # attributes # anomalies

Cora 2,708 5,429 1,433 150
Citeseer 3,327 4,732 3,703 150

ACM 16,484 71,980 8,337 600
Pubmed 19,717 44,338 500 600
Flickr 7,575 239,738 12,407 450

Weibo 8,405 407,963 400 868
Reddit 10,000 20,744,044 64 366

can be categorized into five main categories.
Shallow detection methods:

• SCAN [35] is a classic clustering method that can be
applied for anomaly detection, which clusters vertices
based on structural similarity to detect anomalies.

• MLPAE [36] utilizes autoencoders onto both anomalous
and benign data with shallow nonlinear dimensionality
reduction on the node attribute.

Enhanced graph neural networks:
• GAAN [37] is a generative adversarial framework with a

graph encoder to obtain real graph nodes’ representation
and fake graph nodes’ representation and a discriminator
to recognize whether two connected nodes are from the
real or fake graph.

• ALARM [38] is a multi-view representation learning
framework with multiple graph encoders and a well-
designed aggregator between them.

• AAGNN [12] is an abnormality-aware graph neural net-
work, which utilizes subtractive aggregation to represent
each node as the deviation from its neighbors.

Graph autoencoder-based models:
• GCNAE [59] is a classic variational graph autoencoder

with the graph convolutional network as its backbone and
utilizes the reconstruction loss for unsupervised anomaly
detection.

• Dominant [39] is a deep graph autoencoder-based
method with a shared encoder. It detects the anomalies
by computing the weighted sum of reconstruction error
terms of each node.

• AnomalyDAE [41] is a dual graph autoencoder method
based on the graph attention network, and the cross-
modality interactions between network structure and node
attribute are asymmetrically introduced on the node at-
tribute reconstruction side.

• ComGA [42] is a community-aware attributed graph
anomaly detection framework with a designed tailored
deep graph convolutional network.

Graph contrastive learning methods:
• CoLA [43] is a graph contrastive learning method. It

detects anomalies by evaluating the agreement between
each node and its neighboring subgraph sampled by the
random walk-based algorithm.

• ANEMONE [44] is a multi-scale graph contrastive learn-
ing method, which captures the anomaly pattern by

https://github.com/zhao-tong/Graph-Anomaly-Loss
http://files.pushshift.io/reddit
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TABLE III
OVERALL UNSUPERVISED ANOMALY DETECTION COMPARISON RESULTS (MEAN ± STANDARD DEVIATION IN PERCENTAGE OVER five TRIAL RUNS). THE

BEST AND SECOND-BEST RESULTS IN EACH COLUMN ARE HIGHLIGHTED IN BOLD FONT AND UNDERLINED.

Method
Synthetic Dataset Real-world Dataset

Cora Citeseer ACM Pubmed Flickr Weibo Reddit

SCAN 0.6614±0.0140 0.6764±0.0063 0.5427±0.0000 0.7317±0.0023 0.6457±0.0042 0.7011±0.0000 0.4978±0.0000
MLPAE 0.7560±0.0101 0.7404±0.0131 0.7478±0.0001 0.7472±0.0062 0.7461±0.0042 0.8364±0.0108 0.5294±0.0073

GAAN 0.7917±0.0118 0.8066±0.0036 0.7273±0.0001 0.7839±0.0039 0.7463±0.0043 0.9249±0.0001 0.5683±0.0001
ALARM 0.8271±0.0223 0.8325±0.0121 0.6956±0.0003 0.8281±0.0038 0.6086±0.0034 0.9465±0.0197 0.5426±0.0387
AAGNN 0.7356±0.0089 0.7290±0.0256 0.7204±0.0019 0.6729±0.0111 0.7454±0.0033 0.8141±0.0143 0.5442±0.0299

GCNAE 0.8010±0.0154 0.7437±0.0224 0.7361±0.0002 0.8064±0.0078 0.7433±0.0059 0.8117±0.0020 0.5059±0.0058
Dominant 0.8773±0.0134 0.8523±0.0051 0.7598±0.0054 0.8511±0.0028 0.6134±0.0035 0.8677±0.0139 0.5778±0.0005

AnomalyDAE 0.8594±0.0068 0.8092±0.0059 0.7479±0.0001 0.7884±0.0049 0.7418±0.0051 0.8881±0.0165 0.4315±0.0001
ComGA 0.7381±0.0162 0.7004±0.0150 0.7394±0.0021 0.7161±0.0065 0.6658±0.0033 0.9248±0.0006 0.4317±0.0001

CoLA 0.9040±0.0042 0.8406±0.0185 0.8198±0.0030 0.9614±0.0030 0.5903±0.0015 0.4842±0.0238 0.5453±0.0139
ANEMONE 0.9044±0.0095 0.8656±0.0206 0.8672±0.0102 0.7776±0.0046 0.5660±0.0332 0.3607±0.0120 0.4991±0.0360

SL-GAD 0.8159±0.0238 0.7287±0.0201 0.8498±0.0042 0.8864±0.0055 0.7307±0.0135 0.4298±0.0073 0.5479±0.0064
Sub-CR 0.8968±0.0118 0.9060±0.0095 0.7679±0.0007 0.9485±0.0025 0.7423±0.0038 0.6404±0.0070 0.5327±0.0156

MixHop 0.7796±0.0107 0.7401±0.0122 0.6770±0.0008 0.7791±0.0066 0.7447±0.0060 0.8612±0.0018 0.5400±0.0175
H2GCN 0.7827±0.0104 0.7361±0.0169 0.6779±0.0001 0.7668±0.0068 0.7463±0.0042 0.8546±0.0020 0.5476±0.0113
LINKX 0.7601±0.0098 0.7416±0.0117 0.6764±0.0005 0.7496±0.0055 0.7466±0.0042 0.8018±0.0094 0.5576±0.0162

GloGNN 0.7563±0.0083 0.7419±0.0124 0.6123±0.0199 0.7469±0.0051 0.7430±0.0013 0.9253±0.0001 0.5436±0.0364

G3AD (ours) 0.9689±0.0014 0.9705±0.0050 0.8960±0.0008 0.9393±0.0019 0.7691±0.0075 0.9514±0.0135 0.6207±0.0022

(a) Cora (b) Citeseer (c) Weibo (d) Reddit

Fig. 4. ROC curves comparison on two synthetic datasets and the real-world datasets between G3AD and the top-5 performed baselines on each dataset. The
diagonal dashed line is the “random line”, which indicates the performance under random guessing.

learning the agreements between node instances at the
patch and context levels concurrently.

• SL-GAD [17] is a state-of-the-art anomaly detection
model with generative and multi-view contrastive per-
spectives, which captures the anomalies from both the
attribute and the structure space.

• Sub-CR [18] is a self-supervised learning method that
employs the graph diffusion-based multi-view contrastive
learning along with attribute reconstruction.

Heterophily graph neural networks:

• MixHop [49] is a graph convolutional network with
the mixed aggregation of multi-hop neighbors during
a single message passing operation. We construct the
unsupervised auto-encoder architecture for it and the rest
heterophily models to fit the unsupervised graph anomaly
detection scenario.

• H2GCN [50] is a heterophily GNN by the separate

encoding of ego & neighbor embeddings with higher-
order neighbors and intermediate representations.

• LINKX [51] is an MLP-based model for heterophily
graph modeling, which separately embeds the adjacency
and node features with simple MLP operations.

• GloGNN [52] is a method that considers both the ho-
mophily and heterophily properties on the graph with the
combination of both low-pass and high-pass filters over
the whole node set.

3) Evaluation Metrics and Hyper-parameter Settings: We
evaluate the models with ROC-AUC (Area under the ROC
Curve), the widely-adopted metric in previous works [20],
[39], [44], to evaluate the anomaly detection performance. A
higher AUC value indicates better detection performance. Note
that we run all the experiments five times with different random
seeds and report the average results with standard deviation to
prevent extreme cases.
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4) Hyper-parameter Settings: In the experiments on differ-
ent datasets, the embedding size is fixed to 64 and the embed-
ding parameters are initialized with the Xavier method [60].
The loss function is optimized with Adam optimizer [61].
The learning rate of G3AD is searched from {5 × 10−2, 1 ×
10−2, 5 × 10−3, 1 × 10−3}, and the regularization term is
searched from {1 × 10−4, 5 × 10−5, 1 × 10−5}. For fair
comparisons, all experiments are conducted on the CentOS
system equipped with NVIDIA RTX-3090 GPUs.

B. Anomaly Detection Performance (RQ1)
We first compare the main performance results between

G3AD and the baseline models. The performance comparison
results are reported in Table III. Furthermore, we demonstrate
the comparison of the ROC curves between G3AD with the
top-5 performed baselines on each dataset in Figure 4. From
these results, we have the following observations:

• G3AD can achieve significant performance im-
provements over state-of-the-art methods. Specifically,
G3AD achieves the best performance on 4 out of 5
synthetic datasets and all real-world datasets among all
baselines. The superior performance verifies the guarding
schemes with correlation constraints and the adaptive
caching under the local and global anomaly detection
tasks is able to help improve the anomaly distinguisha-
bility over the abnormal graph.

• Directly using the consistency GNNs or heterophily
GNNs has sub-optimal detection performance. We
can find from the results that the performance of en-
hanced consistency-based GNNs (the second category)
and heterophily-based GNNs (the fifth category) both
have a certain gap with G3AD. Thus, it further verifies
that, under such a disrupted phenomenon induced by
unknown anomalies, G3AD provides an effective way
to guard the consistent homophily and utilize discrepant
heterophily patterns.

• There are differences in the performance of baseline
between synthetic and real-world datasets. It can be
found from the table that the graph contrastive learning-
based methods are the best-performed baselines on syn-
thetic datasets in general while enhanced graph neural
networks and graph autoencoders achieve better results
on real-world datasets. One possible reason is that the
contrastive objective function of these models is related
onefold, which is insufficient for directly applying to the
irregular real-world datasets then enhanced graph neural
networks and graph autoencoders.

• Anomaly detection on real-world datasets is signif-
icantly harder than on synthetic datasets. The per-
formance gap in real-world datasets between the models
is large compared to synthetic datasets, especially the
graph contrastive learning methods. This shows that the
widely used anomaly injection scheme may lack diversity
and be inadequate to simulate irregular patterns in the
real world, [62] also has the same observation. Thus, we
suggest that the model effectiveness examination should
be conducted on both synthetic and real-world datasets
for a more objective evaluation.

TABLE IV
COMPONENT ABLATION STUDY RESULTS ON G3AD.

Variant Flickr Weibo Reddit

G3AD (ours) 0.7691±0.0075 0.9514±0.0135 0.6207±0.0022

G3AD-w/o AR 0.5727±0.0047 0.7935±0.0887 0.6199±0.0007
G3AD-w/o TR 0.7466±0.0041 0.9258±0.0009 0.5136±0.0105
G3AD-w/o CA 0.7686±0.0074 0.9460±0.0108 0.6104±0.0186

Pubmed Flickr Weibo Reddit
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Fig. 5. Architecture ablation study results on G3AD.

C. Ablation Study (RQ2)

In this subsection, we aim to conduct the fine-grained
ablation study to analyze the contribution of components and
architecture of our G3AD.

1) Component Study: To verify the effectiveness of the
components, we conduct the ablation study on three variants:
G3AD-w/o AR, G3AD-w/o TR, and G3AD-w/o CA, which
removes the local attribute reconstruction, local topology re-
construction, and global consistency alignment, respectively.

From the results in Table IV, we can observe that G3AD
notably outperforms all its three ablation variants in general.
Specifically, first, the removal of attribute and topology re-
construction has a greater impact, which shows that modeling
of graph properties is important for anomaly discrimination.
Therefore, well-representing attributes and topology under
anomaly discrepancy are significant for anomaly detection.
Second, the effect of different modules varies from different
datasets, which is related to the diversity of anomaly defi-
nitions. Thus, the comprehensive consideration of topology-
specific, attribute-specific, and consistent patterns is beneficial
to the model.

2) Architecture Study: To study the effectiveness of
G3AD’s architecture, we further study the guarding archi-
tecture of G3AD with its two architecture variants: G3AD-
shared removes the auxiliary encoders and shares all input
information with a single GNN, which ignores the guarding
of anomalies for the GNN. G3AD-separated replaces the three
encoders with two parallel encoders without any information
sharing, which is the simplest way without considering the
consistent attribute-topology correlation that remained in the
major normal nodes.

The results are shown in Figure 5. From the results, we have
the following observations: First, compared to G3AD-shared
variant, G3AD gains significant improvements which proves
the necessity of auxiliary guarding under abnormal graphs.
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Fig. 6. Visualization of the distribution of three aspects of embeddings after
the G3AD encoding guarding.

Second, the improvements over G3AD-separated demonstrate
that simply separating attribute and topology information will
miss the consistent patterns that remained in most normal
nodes and lead to suboptimal performance. Therefore, the
guarding architecture of G3AD is effective for unsupervised
anomaly detection.

D. Case Study (RQ3)

In this subsection, we aim to conduct case studies on G3AD
with synthetic datasets to analyze the correlation-constrained
GNN encoding guarding via embedding visualization and ana-
lyze the performance of G3AD on different types of anomalies.

1) Embedding Visualization: We first conduct the distribu-
tion visualization of attribute-specific, topology-specific, and
consistent GNN embeddings after the correlation constrained
guarding from attribute encoder fa(·), topology encoder ft(·),
and the GNN encoder fgnn(·) by reducing their dimension to
two with the T-SNE [63] method.

The visualization results are illustrated in Figure 6, which
shows that the three aspects of representations are well distin-
guished from each other in the embedding space. Therefore, it
illustrates that the three aspects of representations have been
well disentangled by G3AD to guard the GNN encoding.

2) Performance on Different Anomaly Types: To further
analyze different types of induced anomalies, we conduct
the case study of G3AD compared with the overall top-3
performed baselines on two synthetic datasets. We report the
detection performance on synthetic attributed anomalies, syn-
thetic structure anomalies, and synthetic mixed (both attribute
and structure perspectives) anomalies.

The split performance results are shown in Table V. From
the results, we find that the best baseline Sub-CR is obviously
biased towards detecting only attribute anomalies, and the
second-best performed model ANEMONE is biased towards
detecting only topology anomalies. Our G3AD can generally
achieve good performance on all types of anomalies due to
the explicit guarding of GNN representation learning, guarding
of directly abnormal graph reconstruction, and comprehensive
considering different kinds of anomaly characteristics.

E. Parameter Analysis (RQ4)

In this subsection, we aim to study the impact of different
hyper-parameters on G3AD with two synthetic datasets and

TABLE V
CASE STUDY OF G3AD ON ATTRIBUTE-INDUCED, TOPOLOGY-INDUCED,

AND MIXED ANOMALY DETECTION PERFORMANCE WITH TOP-3
PERFORMED BASELINES.

Anomaly Attribute Topology Mixed

C
or

a

CoLA 0.8156±0.0238 0.8846±0.0185 0.9040±0.0042
ANEMONE 0.8209±0.0203 0.9271±0.0187 0.9044±0.0095

Sub-CR 0.9806±0.0042 0.8240±0.0328 0.8968±0.0118

G3AD (ours) 0.9628±0.0026 0.9750±0.0013 0.9689±0.0014

C
ite

se
er

CoLA 0.7289±0.0201 0.8362±0.0291 0.8406±0.0185
ANEMONE 0.7523±0.0170 0.9294±0.0149 0.8656±0.0206

Sub-CR 0.9510±0.0099 0.8733±0.0358 0.9060±0.0095

G3AD (ours) 0.9693±0.0053 0.9716±0.0075 0.9705±0.0050

Fig. 7. Parameters study results with different combinations of λ1 and λ2.

two real-world datasets, including the balanced parameters λ1

and λ2, the readout function in Eq.(17), the learning rate, and
the embedding dimension.

1) Effectiveness of balanced parameters: We first investi-
gate the effect of the different combinations of key balanced
parameters λ1 (balances the effect between topology and at-
tribute reconstruction) and λ2 (tunes the impact of consistency
alignment) on G3AD. The parameter study results are shown
in Figure 7 on Cora, Citeseer, Weibo, and Reddit datasets.
From the results, we can observe that the performance of
G3AD varies with respect to balanced parameters λ1 and λ2.
More specifically, first, changes in parameter λ1 may bring
more volatility than parameter λ2. This is explainable since
the consistency is related to both attribute and topology, which
is more robust and stable [64]. Furthermore, with a fixed
λ2 value, a relatively large value of λ1 can make G3AD
perform better, which means that the impact of the attribute
reconstruction needs more attention and consideration.
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Fig. 8. Parameters study on G3AD with different learning rate.
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Fig. 9. Parameters study on G3AD with different embedding dimension.

TABLE VI
COMPARISON RESULTS ON DIFFERENT READOUT FUNCTIONS IN THE

GLOBAL CONSISTENCY ALIGNMENT.

Readout Flickr Weibo Reddit

Mean 0.7691±0.0075 0.9514±0.0135 0.6207±0.0022
Min 0.7679±0.0084 0.9227±0.0422 0.6212±0.0017
Max 0.7682±0.0085 0.9075±0.0947 0.6194±0.0011

Attention 0.7684±0.0084 0.8664±0.1089 0.6186±0.0023

2) Effectiveness of readout function: We further discuss the
readout function selection of consistency alignment in Eq.(17),
which includes mean, min, max, and attention (scoring by an
MLP) pooling as in Table VI. From the results, we can find
that the simple non-parameter operation with mean pooling
can achieve relatively good performance. The possible reason
is that due to the unbalanced number of normal and anomalies,
simple mean pooling can reflect the global consistency from
the representations of the majority of normal nodes.

3) Effectiveness of learning rate: Then, the study of the
effectiveness of the learning rate can be found in Figure 8.
From the results, we can find that the performance of G3AD
on synthetic datasets is less sensitive to changes in learning
rate. As long as the learning rate is not set as a too large
value, the model performance is similar under relatively small
learning rates. For real-world datasets, the appropriate learning
rate range will be smaller than that of synthetic datasets, but
a learning rate value of around 0.005 can generally achieve
relatively good anomaly detection performance.

4) Effectiveness of embedding dimension: Furthermore, we
have also analyzed the impact of different embedding di-
mensions on G3AD, as illustrated in Figure 9. It can be
seen from the study results that, except for the Cora dataset,
which can achieve optimal performance on a smaller 16-
dimensional space, the other three datasets can achieve optimal
performance on a 64-dimensional representation space in
general, which is no need for us to continue to increase the
representation dimension to achieve better performance.

VI. CONCLUSION

In this paper, we study the problem of negative anomaly
impact on GNNs in unsupervised graph anomaly detection,
which is largely neglected by previous works. To address this
issue, we propose G3AD, a simple but effective framework to
guard GNNs against anomaly impacts in unsupervised graph
anomaly detection. Specifically, G3AD introduces two guard-
ing strategies with comprehensive anomaly detection perspec-
tives. Firstly, G3AD guards the GNN encoder against encoding
inconsistent information to enhance the node representation
quality for anomaly distinguishing. Then, we comprehensively
include both local reconstruction and global alignment as the
objectives for better detecting multiple anomalies. During this
process, to guard the GNN-encoded representations against di-
rectly reconstructing the abnormal graph, G3AD further equips
the representations with adaptive caching. Finally, anomalies
are recognized by collaboratively adopting the three carefully
designed objective functions. Extensive experiments demon-
strate that G3AD outperforms the state-of-the-art baselines.
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