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Abstract
The Epidemic-Type Aftershock Sequences (ETAS) model and its variants effectively capture the
space-time clustering of seismicity, setting the standard for earthquake forecasting. Accurate
unbiased ETAS calibration is thus crucial. But we identify three sources of bias, (i) boundary
effects, (ii) finite-size effects, and (iii) censorship, which are often overlooked or misinterpreted,
causing errors in seismic analysis and predictions. By employing an ETAS model variant with
variable spatial background rates, we propose a method to correct for these biases, focusing on
the branching ratio n, a key indicator of earthquake triggering potential. Our approach quantifies
the variation in the apparent branching ratio (napp) with increased cut-off magnitude (Mco) above
the optimal cut-off (Mcobest). The napp(Mco) function yields insights superior to traditional point
estimates. We validate our method using synthetic earthquake catalogs, accurately recovering the
true branching ratio (ntrue) after correcting biases with napp(Mco). Additionally, our method
introduces a refined estimation of the minimum triggering magnitude (m0), a crucial parameter in
the ETAS model. Applying our framework to the earthquake catalogs of California, New
Zealand, and the China Seismic Experimental Site (CSES) in Sichuan and Yunnan provinces, we
find that seismicity hovers away from the critical point, nc = 1, remaining distinctly subcritical,
however with values tending to be larger than recent reports that do not consider the above biases.
It is interesting that, m0 is found around 4 for California, 3 for New Zealand and 2 for CSES,
suggesting that many small triggered earthquakes may not be fertile. Understanding seismicity's
critical state significantly enhances our comprehension of seismic patterns, aftershock
predictability, and informs earthquake risk mitigation and management strategies.

Plain Language Summary
The Epidemic-Type Aftershock Sequences (ETAS) model, a useful tool for earthquake
forecasting, captures seismicity clustering effectively. However, biases from boundary effects,
finite-size effects, and censorship often distort its accuracy. We develop a method employing an
ETAS model allowing variable spatial background rates to correct these biases, especially
focusing on the branching ratio n, indicative of earthquake triggering potential. This method,
validated with synthetic catalogs, precisely adjusts the apparent branching ratio napp based on
increased cut-off magnitudeMco to the true branching ratio ntrue, revealing more insightful
estimates. It also refines the estimation of the minimum triggering magnitude m0, crucial for
ETAS models. Application to catalogs from California, New Zealand, and China Seismic
Experimental Site (CSES) confirms that seismicity is subcritical, with m0 estimates indicating
many small earthquakes are not potent triggers. This insight into seismicity's critical state
advances our understanding of earthquake patterns, aftershock predictability, and guides risk
mitigation strategies.

1 Introduction
Seismicity and fault rupturing in the Earth's crust can be likened to epidemic processes,

as exemplified by the Epidemic-Type Aftershock Sequences (ETAS) model (Kagan & Knopoff,
1981; 1987; Kagan 1991; Ogata, 1988; 1998; Musmeci & Vere-Jones, 1992; Ogata & Zhuang,
2006), wherein background earthquakes (“immigrants”), assumed to be driven by the forces of
plate tectonics, have the potential to trigger cohorts of earthquakes, referred to as first-generation
“daughters.” These first-generation events, possessing fertility, can in turn act as “mothers,”
triggering second-generation “daughters” and creating a cascading effect (Hawkes & Oakes,
1974; Helmstetter & Sornette, 2002; Felzer et al., 2002; 2003; Zhuang et al., 2002; 2005).



In this dynamic process, a crucial parameter known as the branching ratio n plays a
pivotal role in reflecting the state of the crustal system. This parameter signifies both the mean
number of fertile first-generation “daughters” triggered per “mother” and the fraction of all
triggered events relative to the total number of earthquakes. The transition point occurs at n = nc
= 1, demarcating the subcritical regime (n < 1), where the sequence of events is stationary, from
the supercritical regime (n > 1), where the number of earthquakes increases exponentially over
time with a finite probability (Helmstetter & Sornette, 2002). Consequently, the branching ratio n
serves as an indicator of the proportion of observed earthquakes triggered by preceding events
when the magnitude distribution can be separated from the other components (Zhuang et al.
2013). The extent to which n falls below the critical point nc has significant implications on our
understanding of seismicity patterns, on the forecastability of aftershocks and for earthquake
hazard mitigation and risk management. More profoundly, since the introduction (Bak et al.,
1987) and application of the concept of self-organized criticality to seismicity (Bak & Tang,
1989; Sornette & Sornette, 1989), a flurry of studies have proposed that earthquake processes
might operate at or near a critical point (Fisher et al., 1997; Zöller et al., 2001; Keilis-Borok &
Soloviev, 2003; Main et al., 2006; Shcherbakov et al., 2006; Wanliss et al., 2017; de Arcangelis
et al., 2016), in the sense of critical phenomena in Statistical Physics. In contrast, research by Wu
(1998) and subsequent findings in statistical seismology suggest that seismicity might be a self-
organized process that does not reach a critical state, with evidence showing deviations from the
critical point at nc = 1 (Chu et al., 2011; Nandan et al., 2021b; 2022). On the other hand, Huang
et al. (1998) introduced a generalized sandpile model on a hierarchical system of faults,
suggesting the possible coexistence between self-organised criticality and genuine criticality of
individual large earthquakes. Whether or not they are close to such criticality is frequently seen
as having profound implications for our understanding of the physics behind earthquakes. Hence,
obtaining an unbiased estimation of the branching ratio n of seismicity holds significant
importance.

A few previous authors have acknowledged the existence of several sources of biases in
the estimation of n, which are non-stationarity and non-uniformity of the background rate when
not properly accounted for properly, spatial and temporal boundary effects, finite-size effects and
censorship. In the present study, our primary objective is to quantify the biases in the calibration
of the branching ratio using the ETAS model. We develop a method to correct the apparent
branching ratio napp obtained from calibrations, in order to derive a good approximation of the
true branching ratio ntrue, via a procedure validated through synthetic tests. Our methodology
leverages the optimal estimation of the cut-off magnitude (Mcobest) for a given catalog. We focus
on how napp shifts when the used cut-off magnitudeMco is artificially increased above Mcobest,
enabling us to methodically investigate the impacts of boundary effects, finite-size effects of
seismicity sample and censorship. Applying this framework to earthquake catalogs from
California, New Zealand, and the China Seismic Experimental Site (CSES), we re-examine the
question of whether seismicity operates near a critical point (nc = 1). This reassessment carries
significant implications for our understanding of seismic patterns, improving aftershock
predictability, and shaping strategies for earthquake risk mitigation and hazard management.

The organization of the manuscript starts with Section 2, which presents the ETAS model,
defines the different estimation methods of its branching ratio n and explains the meaning of
subcriticality, criticality and supercriticality. Section 2 also describes the different effects that
can bias the estimation of n and reviews existing methods for correcting these biases. Section 3
presents synthetic tests demonstrating the biases and present our proposed correction method,



which is illustrated and tested on synthetic catalogues. Section 4 describes the empirical
catalogues used in this study. Section 5 examines in detail the application of our correction
method to the empirical data of California, New Zealand and the China Seismic Experimental
Site (CSES) in Sichuan and Yunnan provinces. Section 6 discusses the results and concludes.

2 The ETAS model, calibration and biases

2.1 The ETAS model

The ETAS model is an instantiation adapted to seismicity of the self-excited Hawkes
stochastic point process, which is non-Markovian when the temporal memory kernel is non-
exponential (Hawkes & Oakes, 1974; Kagan & Knopoff, 1981; 1987; Ogata, 1988; 1998). It
enjoys two equivalent interpretations:

1) A simple ensemble branching model (Hawkes & Oakes, 1974; Kagan 1991; Sornette
& Werner, 2005b). In this conceptualization, a given sequence of events is mapped on many
trees, each tree corresponding to a specification of what are the background events and what are
the “mothers” and triggered “daughters.” Each tree starts with a “immigrants” (or background
earthquake) and all the branches that emanate from this “immigrants” correspond to the
aftershocks and then aftershocks of aftershocks and so on. Each tree representation is endowed
with a probability representing the likelihood of this specific association between earthquakes,
given the observed sequence. The tree probabilities derive from the expression of the intensity of
the ETAS model given by Formula (1) below (Zhuang et al., 2002). In this representation, the
ETAS model comprises statistically independent Poisson seismicity clusters (each cluster being a
tree), while there is dependence within every cluster (tree branches corresponding to all
generations). Consequently, the branching ratio n is an average, encompassing not only
magnitudes but also across an ensemble of realizations of the stationary point process (for n ≤ 1)
sustained by the presence of background events.

2) A coupled earthquake interaction model (Helmstetter & Sornette, 2002). In this
conceptualization, each non-background event is collectively triggered by all preceding events,
with each event contributing a weight determined by the fertility law (or productivity law) F(m)
that decays in space and time governed by the space kernel S(x, y, m) and time kernel T(t). The
product of F(m), S(x, y, m), and T(t) forms the triggering function. Consequently, at any given
spatiotemporal point (x, y, t), the ETAS model is defined by the seismicity rate (or intensity) λ,
which encapsulates the dependence on the historical seismicity Ht recorded until time t, as:

(1)

The seismicity rate, at time t and position (x, y), is thus the sum of contributions from both the
background intensity function, μ(x, y), and a sum over all preceding earthquakes, in which each
past earthquake contributes additivity with a multiplicative separable spatio-temporal kernel and
with an amplitude given by its fertility F(m). In this formulation, the branching ratio n can be
interpreted as the contribution of a past earthquake to a future earthquake, averaged over an
ensemble of realizations and over all magnitudes. This perspective is the only one possible for
nonlinear generalisations of the Hawkes model whose triggering functions depend nonlinearly on
previous events (Ouillon & Sornette, 2005; Sornette & Ouillon, 2005; Kanazawa & Sornette,
2021; 2023).



The rigorous mathematical demonstration of the equivalence of these two representations
was first presented in Hawkes & Oakes (1974). Sornette & Werner (2005b) provided an intuitive
understanding of the underlying mechanism for this equivalence, based on the formulation of the
seismicity rate of the ETAS model as a linear sum over past earthquakes combined with the
exponential form of the hazard rate of point process.

Formula (1) for the seismicity rate is complemented by the Gutenberg-Richter
distribution given by

(2)

where b is typically close to one. In this formula, mmax is the largest magnitude of earthquakes
capable of triggering other earthquakes and thus the Gutenberg-Richter distribution is truncated
at mmax. The lower magnitude threshold m* is the minimum magnitude of an earthquake that can
be triggered by prior events. It is important to stress that the ETAS model also requires an
additional characteristic magnitude m0, which is the smallest magnitude of earthquakes capable
of triggering other earthquakes. In other words, the fertility of an earthquake is zero if its
magnitude is smaller than m0. It plays the role of an “ultra-violet” cut-off ensuring the
convergence and stationarity of the model (Sornette & Werner, 2005a). The fertility law defining
the number of direct aftershocks (“daughters”) of a “mother” event of magnitude m is thus given
by:

(3)

where K and α are constants. Most previous publications have assumed explicitly or implicitly
that m* = m0 but nothing prevents in principle that m* < m0, i.e., many earthquakes are triggered so
small that they are not fertile and they do not contribute to future seismicity.

The other terms in the sum in the r.h.s. of Formula (1) read

(4)

which are respectively the Omori-Utsu law T(t - ti) defined with the constants c, ω, and τ, and the
spatial Green function with constants d, γ, and ρ, which describe the temporal and spatial
dependencies within the model. Tnorm and Snorm represent normalization constants for the time and
space kernels, ensuring they are proper probability density functions (PDFs).

In this study, the spatial variability of background rates µ(x, y) is treated as a non-
parametric function. Its estimation is through a weighted kernel function used in (Nandan et al.,
2021b; 2022),

(5)

which is a sum over all earthquakes weighted by their probabilities IPi to be background events
(Zhuang et al., 2002). The normalization by the duration T of the primary catalog ensures that
µ(x, y) represents the seismicity rate per unit time, while the factor π-1QD2Q ensures
normalization per unit area at location (x, y). The choice of the power-law kernel is motivated by
prior research indicating its superior performance compared to previously more commonly used
Gaussian kernels (e.g., Helmstetter et al., 2007; Nandan et al., 2021a). The estimation of the



model, including model parameters {Q, D, K, α, c, ω, τ, d, γ, ρ} and nonparametric spatial
variability of the background rate, µ(x, y), is accomplished through the extended expectation-
maximization (EM) algorithm (Veen & Schoenberg, 2008). We refer to Nandan et al. (2021b;
2022) for details.

This ETAS model has been implemented on earthquake catalogs, including those
recorded globally, in California and in New Zealand (Nandan et al., 2021b; 2022). Nandan et al.
(2021b; 2022) have conducted comparative assessments against other ETAS model variants
through pseudo-prospective forecasting experiments to assess its superior performance in
earthquake forecasting, which further advances the ETAS model as a benchmark for evaluating
alternative earthquake forecasting models (Ogata, 2017; Nandan et al., 2021a; Kamer et al.,
2021).

2.2 Definition and estimation methods of the branching ratio n
Three methods suggested in prior literature can be used to estimate n.
(1) The formulaic approach. The branching ratio is, by definition, the average number of

fertile “daughter” per “mother.” Given the fertility law presented by Formula (3), the branching
ratio is the average of F(m) over all possible values of m ≥ m0, weighted by the Gutenberg-
Richter (GR) law given by Formula (2). As noted above, preceding publications commonly
assume that m* is equal to m0, i.e., all earthquake are fertile. With m* = m0, the formula for the
branching ratio reads (Sornette & Werner, 2005b)

(6)

The determination of the branching ratio n thus necessitates knowledge of the parameters b, m0,
mmax, K, and a = α/ln(10). In practical scenarios involving catalogs with a total of N earthquakes
with magnitudes {m1, m2, ..., mN}, Seif et al. (2017) suggested substituting the P(m) in Formula
(2) with the empirical frequency-magnitude distribution, leading to the following estimator

(7)

where H[.] is the Heaviside function. Consequently, this approach simplifies the estimation of
the branching ratio n to rely solely on the parameters N, m0, K, and a.

(2) The counting approach. Helmstetter & Sornette (2003), Zhuang et al. (2013) and Seif
et al. (2017) demonstrated that the branching ratio n is equivalently represented as the ratio of
triggered events to the total number of earthquakes in the ETAS model when n < 1. This
relationship is expressed by the formula

(8)

where Ntri and Nbkg denote the number of triggered and background events of magnitude larger
than or equal to m0, respectively. The calculation of n requires knowledge of either Ntri or Nbkg

alone, along with the condition of knowing the total number of earthquakes N of magnitude
larger than or equal to m0 (N = Ntri + Nbkg). Additionally, Seif et al. (2017) proposed a method for



estimating the branching ratio n by considering the proportion of aftershocks that are second or
higher generations. This approach is represented as

(9)

where is the number of aftershocks of magnitude larger than or equal to m0 that are of
generation larger than or equal to 2. In other words, is the number of aftershocks that
are themselves triggered by previous aftershocks.

(3) The mean-variance-based estimation approach. Hardiman & Bouchaud (2014)
introduced a parameter-independent method for approximating the branching ratio n. This
technique relies exclusively on the mean ( ) and variance (σ2) of the event count within a
suitably large time window, as indicated by their sample estimates:

(10)

(11)

where N(i) represents the event count in the ith time window out of a total ofW. The branching
ratio can be approximated as (Hardiman & Bouchaud, 2014)

(12)

This method has been tested using simulated data and empirical financial market data. It is found
to be fragile in the presence of a non-constant and/or non-uniform distribution of background
events.

2.3 Subcriticality, criticality, or supercriticality of seismicity

In statistical seismology, the branching ratio n is primarily studied using the formulaic
and counting approaches. Seif et al. (2017) calibrated the ETAS model with a spatially varying
background rate, yielding a branching ratio close to or slightly larger than 1 in Southern
California and Italy by using Formula (6). By also allowing for spatial variation but no time
dependence of the background seismicity rate, and estimating it within spatial Voronoi partitions,
Nandan et al. (2017) estimated the ETAS parameters for California based on earthquakes that
occurred from 1981 to 2015. Through the formulaic determination of the branching ratio, the
spatial distributions of K, a, and b lead to significant spatial heterogeneity in branching ratios
across California, with values ranging from 0 to 1.2. Nandan et al. (2017) identified regions of
California with n > 1 while other regions are characterized by n < 1, suggested to be associated
with respectively negative and positive thermal anomalies. Chu et al. (2011), utilizing an ETAS
model with a constant background rate and the formulaic approach, calculated a branching ratio
below 1 for global regions with varied tectonic backgrounds. In more recent studies, Nandan et
al. (2021b; 2022) developed an ETAS model with an improved parametric representation of the
spatial variation of the background seismicity rate. Using the formulaic approach, they computed
the branching ratio for global, California, and New Zealand, finding subcritical seismicity, i.e., n
< 1. In contrast, they show that assuming a uniform background leads to estimated n close to or



equal to 1 in the three regions, which would lead to conclude that seismicity is operating at a
critical point. In fact, they stress that this last conclusion is erroneous. Because the spatial
heterogeneity of the background seismicity is not accounted for adequately when forcing a
uniform background on the ETAS calibration, the calibration of the ETAS model is driven to
estimated n values close to 1, which is the domain of parameters for which the ETAS model
produces the strongest spatial and temporal clustering. In other words, criticality is only apparent
and is spuriously inferred in the ETAS model calibration as being the statistical bias needed for
the mis-specified ETAS model to account for the pre-existing clustering of the underlying
background seismicity.

It is useful to summarize the insights obtained from another field (financial time series) in
which the effect of non-constancy of the background rate also distorts significantly the
estimation of the branching ratio, thus showing that the effect is common to both the spatial and
temporal domains. Wheatley et al. (2019) and Wehrli et al. (2021) documented the same effect in
the time domain, i.e., when imposing a constant background in the ETAS calibration (in the field
of finance as well as in mathematics, the model is called the Hawkes model) of a sequence of
events with non-constant background. This question arises in the determination of whether
financial markets operate or not in a critical state. The controversy started with the report of
Filimonov & Sornette (2012) that the branching ratio (now only using sequences of events in the
time domain) of financial time series is clearly less than 1, disqualifying criticality. Shortly after,
Hardiman et al. (2013) countered with their finding that n is very close to 1, confirming
criticality. Among others, the main difference between the two works is the length of the
calibrated time series: Filimonov & Sornette (2012) used time series of 10 to 30 minutes
durations (with typical waiting times between events of the order of seconds) in order to
minimize biases from non-stationarity. In contrast, Hardiman et al. (2013) used much longer time
series of up to several months, with the rationale of being better able to reveal a potential critical
behavior expressing itself at large temporal scales. Both works calibrated the temporal ETAS
model with a constant background. This is where the works of Wheatley et al. (2019) and Wehrli
et al. (2021) illuminated the debate. Because financial time series are highly non-constant in time,
with high volatility at the opening and at the closing of each day of trading, and with low
volatility at lunch time, calibrating such time series extending over several days with an ETAS
model constrained to have a constant background pushes spuriously the branching ratio to the
critical value 1, so as to model the unaccounted for strong non-stationarity. By using a
sophisticated parameterization of the non-constant background with the expectation-
maximization (EM) method applied to long time series of several months as in Hardiman et al.
(2013), Wheatley et al. (2019) and Wehrli et al. (2021) ruled out in favor of the conclusion of
Filimonov & Sornette (2012). It is now understood that, by using short time series, the estimation
of the later authors was not susceptible to the bias induced by non-stationarity.

2.4 Effects biasing the branching ratio n
It is important to note that the three existing methods for estimating the branching ratio

have different pros and cons. In comparison with the other two methods, the mean-variance-
based estimation approach significantly simplifies the estimation of the branching ratio. However,
Wheatley et al. (2019) and Wehrli et al. (2021) demonstrated that this method gives strongly
misleading estimations of the branching ratio when the true background rate is non-constant,
similarly to the bias identified by Nandan et al. (2021b) when the background rate is spatially
non-uniform, as discussed above. Additionally, the counting approach and the mean-variance-



based estimation approach are only suitable for n < 1. While the formulaic approach is
theoretically applicable in any case, its reliability is highly contingent on accurately estimating
parameters b, K, and a, along with reasonable assumptions for m0 and mmax. In contrast, the
counting approach relies on accurate estimates of Ntri or Nbkg. The differences in the branching
ratio estimations based on these methods are elaborated in Section 5.1.

In addition to the biases induced by non-stationarity and non-uniformity of the
background rate, the three aforementioned estimation methods generally neglect or incorrectly
address three crucial factors.

1) The boundary effect arises from the use of earthquake catalogs with limited duration
and spatial extent. This can lead to a shift in estimation of n, as discussed in works by Wang et al.
(2010) and Seif et al. (2017), and is exemplified in another context in the line-percolating system
depicted in Figure 4 of Vanneste et al. (1991);

2) The finite-size effect stems from the inherently limited statistical size of the seismicity
sample. This limitation can result in both large variance and bias in the estimation of n, as shown
in studies by Sornette & Utkin (2009) and Seif et al. (2017), and is also illustrated in the line-
percolating system shown in Figure 3 of Vanneste et al. (1991); and

3) Censorship refers to the missing events that are not taken into account to calibrate the
ETAS model due to being too small to be measured but which do trigger earthquakes. Recall that,
in the ETAS model, all earthquakes of magnitude larger than a minimum magnitude m0 can
trigger "daughters" and thus impact the whole seismicity. This m0 has no reason to be equal to
the catalog cut-off magnitudeMco above which the catalog is deemed to be complete (Sornette &
Werner, 2005b; Saichev & Sornette, 2006;Seif et al., 2017) and is analyzed. Indeed, in the ETAS
model, m0 is supposed to be a physical property of earthquake interactions. In contrast, Mco

strongly depends on and is usually larger than the magnitude completeness Mc, which is
constrained by instruments, i.e., by the number and coverage of seismic stations and their
sensitivity (e.g., Li et al., 2023). As larger investments in more numerous stations are made and
better technology is developed, Mc is continuously pushed to smaller values, see e.g. Feng et al.
(2022) and Li et al. (2023). Then, it is likely that m0 is smaller thanMco, which leads to the
censorship bias.

Recall that the assumption of a finite value for m0 is crucial for ensuring that seismicity
remains bounded in the ETAS model and in most of its variants (Sornette & Werner, 2005a).
When m0 is finite and when the Gutenberg-Richter and fertility laws are expressed consistently
together with m0 being their lowest magnitude of validity, then the branching ratio n is
independent of m0. On the other hand, if the lowest magnitude at which both Gutenberg-Richter
and fertility laws apply goes to minus infinity, the branching ratio diverges (is no more defined).
Indeed, if m0 (and m*) is pushed towards more and more negative values (smaller and smaller
corresponding energies), the number of very small earthquakes grows without bound and the
ETAS is no more well-defined in the standard regime where the base-10 fertility exponent a =
α/ln(10) is smaller than the Gutenberg-Richter b-value.

The boundary effect and censorship both contribute to the omission of earthquakes that
should be considered in a correct calibration of ETAS model. Due to the boundary effect,
earthquakes outside the spatio-temporal domain of investigation (the so-called primary catalog)
are not considered, while they can be potential “mothers” and “daughters” of earthquakes in the
primary catalog. Censorship refers to the fact that all earthquakes of magnitudes between m0 and



Mco are also missing in the calibration of the ETAS model. But they are also potential “mothers”
and “daughters” of the detected earthquakes with m ≥ Mco. These effects disrupt the
determination of possible triggering relationships between earthquakes, introducing biases and
increasing variance (e.g., finite-size effect) in parameter estimation, particularly in branching
ratio estimation (Sornette & Werner, 2005b; Saichev & Sornette, 2006; Sornette & Utkin, 2009;
Seif et al., 2017).

In the presence of these effects, the branching ratios that have been estimated in the
literature can be considered to be all biased, giving apparent branching ratios napp that are likely
different, and perhaps very different, from the true unknown branching ratio ntrue (Figure 1). This
may lead to potentially strongly misleading inferences on the nature of crustal seismicity. The
boundary effects is a primary reason for obtaining estimated apparent branching ratios napp less
than 1, when using the counting and mean-variance-based estimation methods. In the comparison
between ntrue and napp estimated using the mean-variance-based estimation approach, Hardiman
& Bouchaud (2014) demonstrated in their Figure 1, using simulated data, that as ntrue approaches
1, napp starts to deviate significantly from ntrue. This result is primarily influenced by the
boundary effect in the time domain, as their simulation had no spatial component and they were
modeling data over a time length of 100,000 seconds. The impact of censorship is also
substantial. Chu et al. (2011) and Nandan et al. (2021b) obtained a branching ratio far below 1
for the global catalog, primarily because they both selected Mco = 5, leading to results likely to be
significantly influenced by censorship (Sornette & Werner, 2005b; Saichev & Sornette, 2006;
Seif et al., 2017), as we are going to demonstrate quantitatively below.

2.5 Existing methods to correct the apparent branching ratio napp
A few previous authors have acknowledged the impact of the boundary effect, the finite-

size effect and censorship and have proposed correction procedures for branching ratio
estimation. Sornette & Werner (2005b) hypothesized that earthquakes affected by censorship,
due to the absence of their "mother" earthquakes, would be classified as background events.
Assuming a known m0 and a complete catalog above Mco, they introduced a censorship
correction relating napp from the counting approach to ntrue, formulated as follows:

(13)

This formula is such that napp = ntrue for m0 = Mco. Seif et al. (2017) also recognized biases in
branching ratio estimation due to censorship and boundary effects. They proposed a formula to
derive ntrue from napp obtained from the formulaic and counting approaches in the presence of the
boundary effect in the time domain, which reads:

(14)

Here δTBE, derived analytically, represents a boundary effect correction factor in the time domain.
This factor is dependent on the Omori parameters of the ETAS model and the temporal duration
of the catalog. However, their analysis did not explore boundary effect in the spatial domain and
failed to differentiate the distinct effects of boundary and finite-size of seismicity sample on napp.
Notably, finite-size effects primarily impact the standard deviation of estimations. While Seif et
al. (2017) recognized the impact of censorship on branching ratio estimation, they did not



propose any correction method for this issue. Moreover, their simulation experiments, exploring
napp’s variation withMco in simulated catalogs, assumed branching ratios as high as n = 6 for Mco

= 2.5 and n = 25 for Mco = 2, contradicting realistic physical constraints that prevent excessively
high values to avoid explosive outcomes. Recall that a stationary ETAS process requires n ≤ 1.

While the corrections proposed by Sornette & Werner (2005b) and Seif et al. (2017)
seem sensible, they fail to recognize the impact of a fundamental property of the ETAS model on
its calibration: clustering in space and time. Specifically, Werner (2008) pointed out in his
Chapter 4 that calibrating the ETAS for seismicity with Mco > m0 gives smaller changes of K
(and thus of n) than predicted by Sornette & Werner (2005b). Indeed, the calibration of ETAS
models is in fact controlled by the existence of spatio-temporal clustering, rather independently
of the specific genealogy of which earthquake triggers what earthquake. In other words,
triggered earthquakes that lose their "mothers" due to their unobservability (via boundary effects
and/or censorship) may not be systematically categorized as background but may be correctly
seen as part of a triggered cluster. This is due to the presence of other earthquakes in the same
family tree within the cluster. To stress this fundamental property again, the genealogy within an
earthquake sequence generated by the ETAS model is intrinsically stochastic since the mapping
of the ETAS model to branching processes holds in the sense of an ensemble of trees where each
possible filiation occurs with probabilities determined from the triggering kernels of the ETAS
model. This makes the specific attribution of “motherhood” mostly irrelevant for the problem of
parameter estimation. The key concept is that ETAS models account for clustering and only
clustering.

3. Synthetic tests of the bias in branching ratio n
We now present simulations of synthetic catalogs to identify and quantify the three types

of biases affecting the branching ratio n: boundary effects in time and space, finite-size effects,
and censorship. Employing the ETAS model defined in Section 2.1, we generate synthetic
catalogs for the study regions (Table S1). In the present study, the spatial and temporal extent
used for synthesizing the earthquake catalogs is identical to that of the primary catalog (Figures
S1-S3 and Table S1). We simulate synthetic catalogs for the study regions, selecting parameters
based on insights gained from subsequent calibrations performed on real catalogs. To simulate a
variety of scenarios, we vary the parameters K and α of the fertility law within the ranges of
0.2085–0.9931 and 0.0084–0.4601, respectively, allowing us to model earthquake catalogs under
different ntrue. Utilizing the calibrated Q, D, and IP atMcobest and using Formula (4) for the
background rate, we generate the probability density function PDFµ(x, y) for background
earthquakes. The number of background earthquakes is determined using the Gutenberg-Richter
relationship fitted above Mcobest to calculate the total expected number of earthquakes with
magnitude greater than or equal to m0, and then using the intended ntrue to calculate the expected
number of background earthquakes within that total. With this number as the parameter for a
Poisson distribution, 100 random background earthquake counts are generated, resulting in 100
sets of background earthquake catalogs for each ntrue. These synthesized background earthquakes,
along with the observed earthquake catalogs, trigger cascading earthquakes according to the laws
of the ETAS model.



Figure 1. Schematic diagram illustrating the biases that transform the true branching ratio (ntrue)
into the apparent branching ratio (napp). This diagram abstracts from common features observed
in simulation experiments. In these experiments, ntrue (orange solid line) is downwardly biased to
n'app (orange dashed line) due to the boundary effect in time and/or space, with its standard
deviation (orange dashed thin line) influenced by the finite-size effect. napp (dark green
dashed/solid line) is further biased downward from n'app due to censorship related to the cut-off
magnitude (Mco), which is empirically and conservatively set slightly above the completeness
magnitude (Mc), with its standard deviation (dark green dashed/solid thin line) also affected by
the finite-size effect. Recall that the smallest magnitudes of earthquakes that can be triggered and
can trigger other earthquakes are represented by m* and m0, as defined in Formulas (2) and (3)
respectively. In order to simplify model calibration, it is the standard practice to assume that m*

is equal to m0.

All synthetic catalogs exhibit systematic branching ratio bias processes, which are
summarised in Figure 1. Broadly, the biases affecting the branching ratio can be divided into
three categories: (1) spatial and temporal boundary effects from catalog selection lead to a
downward bias from the theoretical true branching ratio ntrue to the prime apparent branching
ratio n'app; (2) the existence of a cut-off magnitude Mco for calibrating models introduces a further
downward bias from n'app to napp(Mco); (3) finite-size effects due to finite earthquake sample sizes
result in statistical fluctuations of the estimated n'app and napp whose standard deviations are all
the larger, the smaller the earthquake datasets.

The properties of the biases described in Figure 1 allow us to propose a correction
method that begins with napp(Mco), progresses to n'app, and finally yields a refined estimate for
ntrue. This correction method exploits the information contained in the function napp(Mco), which
is much richer than the point estimate of napp atMcobest. Our correction method starts by
constructing the function napp(Mco) that quantifies the impact of censorship. Through observation
and testing of simulated data, we propose to fit napp(Mco) by the model

napp(Mco) = p110p2Mco + n'app + x1σ1[N(m ≥ Mco)] (15)



where p1 < 0 and p2 > 0 are two scalar parameters and the intermediate corrected branching ratio
n'app (> napp(Mco)) is obtained as a calibrated parameter, together with p1 and p2. Accounting for
the finite-size effects, σ1[N(m ≥ Mco) is the standard deviation of napp(Mco) associated with the
finite number of earthquakes of magnitudes larger thanMco. x1 is a random variable with zero
mean and unit variance, expressing that napp(Mco) contains a stochastic component. For a given
function napp(Mco) that depends on the geometry of the auxiliary spatial domains, on the auxiliary
temporal bands and on the other seismological parameters specific to the studied catalogue, our
procedure consists in fitting Formula (15) to the function napp(Mco) obtained by calibrating the
ETAS model and thus obtain the partially corrected n'app. The model quantifies how napp moves
away from n'app as Mco is increased. Inverting this relationship provides an estimate correction of
napp(Mco) into n'app.

The last step consists in identifying the relationship between ntrue and n'app. Our simulation
experiments indicate that this relationship is approximately linear when n'app < 1, which leads to
our second proposed correction

ntrue = q1n'app + q2 + x2σ2[N(m ≥ m0)] (16)

where q1 and q2 are two positive scalar parameters. Accounting for the finite-size effects, σ2[N(m
≥ m0)] is the standard deviation of n'app associated with the finite number of earthquakes of
magnitudes larger than m0. x2 is a random variable with zero mean and unit variance, expressing
that ntrue contains a stochastic component. Our method thus establishes the relationship between
napp and ntrue. We will apply this bias correction framework to three observed catalogs. Upon
obtaining ntrue from the estimated napp, as a consistency check, we generate again synthetic
catalogs with this ntrue estimate and reapply the bias correction framework to these catalogs to
validate that our correction from napp(Mco) for the real catalog to ntrue is accurate, as elaborated in
Section 5.4.

4 Dataset
The earthquake catalogs utilized in the present study encompass three distinct regions:

California, New Zealand, and the China Seismic Experimental Site (CSES) in Sichuan and
Yunnan provinces (Wu & Li, 2021a; 2021b; Wu, 2022). The dataset spans from January 1, 1970
to October 27, 2023, for California, January 1, 1970 to December 12, 2023, for New Zealand,
and January 1, 1970 to August 23, 2023, for CSES. For each region, earthquakes with depths
down to 100 km and with M ≥ 0 are included, as shown in Figures S1 to S3. Figures S1 to S3
also present the statistical characteristics of these earthquake catalogs. The completeness
magnitude (Mc) is calculated using a one-year moving window with a two-year step. The method
for quantifying power-law behavior of the complementary cumulative frequency-magnitude
distribution, as proposed by Clauset et al. (2009), is employed for this calculation. Additionally,
the variation of the b-value with Mco is explored, determined through the maximum likelihood
method proposed by Aki (1965). The ± 1σ standard deviation of the b-value is obtained through
bootstrapping (Efron, 1979). Based on the results, the primary catalog supplied to the ETAS
model starts in 1985 for California, in 1990 for New Zealand, and in 2000 for the CSES, each
with an auxiliary time band of 15, 20, and 30 years, respectively (Table S1; Figures S1 to S3).
The primary area for each region is outlined, accompanied by an auxiliary band extending
approximately 100 km outward (Table S1; Figures S1 to S3).



5. Results

5.1 Estimation of the apparent branching ratio napp(Mco)

Figure 2 shows how napp varies as a function of Mco using different estimation methods. It
also tests the consistency of various n-estimation methods under four distinct scenarios (ordered
from top to bottom):

-Scenario 1 involves the primary catalog with an auxiliary spatio-temporal band;

-Scenario 2 pairs the primary catalog with an auxiliary spatial band only;

-Scenario 3 uses the primary catalog with an auxiliary temporal band only; and

-Scenario 4 combines the primary catalog with the catalog from the auxiliary region,
incorporating an auxiliary temporal band.

The examined estimation methods include the formulaic approach utilizing Formulas (6) and (7),
the counting approach based on Formula (8), and the mean-variance-based estimation approach
in Formula (12).

Figure 2 reveals that the mean-variance-based estimation approach, as per Formula (12),
yields the largest estimates for n, approaching nc = 1. However, these estimations of the
branching ratio should not be trusted when dealing with spatially non-uniform background rates
in real world catalogs, as noted by Wheatley et al. (2019) and Wehrli et al. (2021). Conversely,
the formulaic approach Formula (7) results in the smallest n estimates. Both methods exhibit
significant deviations from the estimates produced by the formulaic approach Formula (6) and
the counting approach Formula (8). The latter two methods give estimates of comparable
magnitudes and display trends in the variation of napp with Mco that are similar to those observed
in the synthetic experiments illustrated in Figure 1. The estimates from the counting approach,
governed by Formula (8), exhibit a more stable curve with clearer trends compared with that of
the formulaic approach Formula (6), primarily due to the reliance of the latter on the need for
accurately estimated parameters b, K, and a, along with reasonable assumptions for m0 and mmax.
The accuracy of the counting approach hinges on precise estimates of Ntri or Nbkg.

It is useful to compare with the results of Nandan et al. (2021b), who estimated the
branching ratios for California and New Zealand to be 0.79 and 0.61, respectively, using
Formula (6). They used the primary catalog for both regions covering the period from 1981 to
2020 (approximately 40 years), with Mco set at 3.0 and 4.0 for each region, respectively. Their
set-up corresponds to the Scenario 3 shown as the third row of panels in Figure 2. Scenario 3
only takes into account an auxiliary temporal band in the calibration of the ETAS model. The
spatial extent of the primary catalog for California in the present study is exactly the same as that
of Nandan et al. (2021b), and the time range is also similar (Table S1). Therefore, the branching
ratio (n = 0.79) estimated using Formula (6) in Scenario 3 of Figure 2 in the present study, with
Mco = 3.5, is basically consistent with the results of Nandan et al. (2021b). However, Figure 2
also shows that using different auxiliary catalogs can lead to significant differences. For example,
considering only an auxiliary spatial band results in an estimated branching ratio of about 0.6;
Scenario 1, which is considered a priori to be the most complete and involves an auxiliary spatio-
temporal band, yields an estimated branching ratio of about 0.7. For New Zealand, there are
significant differences between the spatio-temporal range of the primary catalog used in the
present study and that of Nandan et al. (2021b). As a result, the branching ratio estimated using



Formula (6) in Scenario 3 of Figure 2 for Mco = 4.0 is about 0.79, whereas the estimate by
Nandan et al. (2021b) is 0.61. In the following, we will revisit seismicity criticality in the light
casted by our understanding of the three biases and how their corrections will impact the results.

Figure 2. Estimation of the apparent branching ratio napp using multiple methods, shown as a
function of the cut-off magnitudeMco for California, New Zealand, and CSES (arranged from
left to right). The panels, ordered from top to bottom, represent: (1) The primary catalog with an
auxiliary spatio-temporal band; (2) The primary catalog with an auxiliary spatial band only; (3)
The primary catalog with an auxiliary temporal band only; (4) The primary catalog combined
with the catalog from the auxiliary region, with an auxiliary temporal band.

5.2 Censorship correction: From napp(Mco) to n'app
The censorship correction proposed in the present study relies on the information

provided by the dependence of the apparent estimated branching ratio (napp) as a function of
different cut-off magnitudes (Mco ≥ Mcobest) as depicted in Figure 2. We use Formula (15) that has
been motivated and validated on synthetic catalogues as explained in Section 3. Formula (15)
describes the variation of napp as a function ofMco, and has three adjustable parameters {p1, p2,
n'app}. For each earthquake catalogue, we calibrate the ETAS model for different value of Mco

and obtain the function napp(Mco) that is specific to the geometry of the auxiliary spatial domains,
to the temporal band and to the other seismological parameters specific to the studied catalogue.
We then fit Formula (15) via a standard nonlinear least-square fitting procedure to the function



napp(Mco) determined from the ETAS calibration to obtain the partially corrected branching ratio
n'app. In the fitting procedure of Formula (15), we give more weights to the value of Mco closest to
Mcobest as they correspond to catalogues with larger numbers of earthquakes. Typically, for each
Mco value, one could repeatedly recalibrate the ETAS model to obtain the estimated mean and
standard deviation of napp. However, during the recalibration process of the ETAS model, we
observed that the standard deviation of napp across recalibrations was consistently minor,
fluctuating with an order of magnitude of ±0.0001. Given such negligible variations quantified
by a small standard deviation and in the interest of conserving computational resources, we opted
not to estimate the standard deviation of napp in our study. Instead, we assumed the standard
deviation to be zero, that is, σ1[N(m ≥ Mco)] = 0.

Figure 3. Correction of censorship effects using model given by Formula (15) from which the
partial corrected branching ratio n'app is obtained from napp for California (left column), New
Zealand (middle column), and CSES (right column). The four rows of panels corresponds to the
same four scenarios as shown in Figure 2. The value ofMco at which the model's curve begins to
level off is identified as m0 as explained in Section 5.2. As in Figure 2, the red data points are
obtained with Formula (6) and the dark blue data points are obtained with Formula (8).

Figure 3 shows the fits of napp(Mco) by Formula (15) for the three regions of California,
New Zealand and CSES, for the four scenarios and for the two calculation methods given by
Formulas (6) and (8) for the branching ratio. Table 1 gives the fitted model parameter values for
napp(Mco) determined by Formula (6). Table 2 gives the fitted model parameter values for napp(Mco)



determined by Formula (8). Except for Scenario 2 in California and Scenarios 1 and 2 in CSES,
Formula (6) consistently yields larger branching ratio estimates than Formula (8) for all the other
scenarios (Figure 3; Tables 1 and 2). This is primarily because the branching ratios estimated
based on Formula (6) correct for the boundary effect to some extent during parameter estimation,
compared to those based on Formula (8). The branching ratios estimated by Formula (6) show
more pronounced variations with changes inMco, especially at larger Mco.

Table 1. Parameters of Formula (15) napp = p110p2Mco + n'app fitted to the function napp(Mco) determined
from the ETAS calibrations with Formula (6) of the three regions (columns) for the four scenarios (rows).

California New Zealand CSES

Scenario 1 m0 p1 p2 n'app m0 p1 p2 n'app m0 p1 p2 n'app
4.6 -3.12×10-9 1.31 0.69 3.2 -5.35×10-5 0.65 0.78 2.9 -2.43×10-4 0.52 0.59

Scenario 2 m0 p1 p2 n'app m0 p1 p2 n'app m0 p1 p2 n'app
2.5 -6.00×10-4 0.47 0.60 2.4 -8.72×10-4 0.44 0.71 2.5 -5.98×10-4 0.47 0.61

Scenario 3 m0 p1 p2 n'app m0 p1 p2 n'app m0 p1 p2 n'app
4.6 -1.34×10-9 1.35 0.80 3.2 -4.15×10-5 0.67 0.85 2.6 -2.46×10-4 0.56 0.82

Scenario 4 m0 p1 p2 n'app m0 p1 p2 n'app m0 p1 p2 n'app
4.6 -4.10×10-9 1.26 0.77 3.1 -6.56×10-5 0.64 0.84 2.9 -1.40×10-4 0.59 0.83

Table 2. Parameters of Formula (15) napp = p110p2Mco + n'app fitted to the function napp(Mco) determined
from the ETAS calibrations with Formula (8) of the three regions (columns) for the four scenarios (rows).

California New Zealand CSES

Scenario 1 m0 p1 p2 n'app m0 p1 p2 n'app m0 p1 p2 n'app
4.1 -5.08×10-7 0.95 0.66 3.4 -4.61×10-5 0.64 0.70 1.3 -4.84×10-3 0.33 0.74

Scenario 2 m0 p1 p2 n'app m0 p1 p2 n'app m0 p1 p2 n'app
2.3 -8.79×10-4 0.44 0.66 3.4 -4.46×10-5 0.64 0.69 1.5 -3.44×10-3 0.36 0.73

Scenario 3 m0 p1 p2 n'app m0 p1 p2 n'app m0 p1 p2 n'app
4.1 -8.15×10-7 0.90 0.68 3.3 -5.66×10-5 0.62 0.70 1.1 -5.23×10-3 0.33 0.79

Scenario 4 m0 p1 p2 n'app m0 p1 p2 n'app m0 p1 p2 n'app
3.8 -1.19×10-5 0.71 0.65 2.9 -1.84×10-4 0.55 0.71 1.0 -2.01×10-3 0.39 0.80

Examining Scenarios 1 and 3 for the three study regions, which involve the same primary
catalogs with varying auxiliary spatial bands, we observe that Formula (6) leads to
approximately a +0.1 to +0.2 bias in the n estimates. In contrast, when inspecting the scenarios
with different auxiliary temporal bands (Scenarios 1 and 2), the influence on Formula (6) is
smaller. For California and New Zealand, the impact is around -0.08, while for CSES, it is
approximately +0.02. Formula (8) shows minimal deviation (-0.01 to +0.05) in estimates across
different scenarios. The deviations in n'app fitted from napp(Mco) obtained using Formula (6) are
larger for the different scenarios in the three study regions compared to the results from Formula
(8), with n'app values ranging from 0.60 to 0.80 for California, 0.71 to 0.85 for New Zealand, and
0.59 to 0.83 for CSES. n'app values obtained from Formula (8) range from 0.66 to 0.68 for
California, 0.69 to 0.71 for New Zealand, and 0.73 to 0.80 for CSES. We hypothesize that this
stability may be due to a compensatory effect at the spatiotemporal boundaries, where the
number of triggered earthquakes classified as background earthquakes balances out with the
number of background earthquakes classified as triggered. Therefore, this estimation method,
which relies on the proportion of triggered earthquake counts, appears to be largely unaffected



by variations in the auxiliary spatio-temporal band. Moreover, considering the need to synthesize
a large number of simulated earthquake catalogs and calculate n'app for each catalogue in the next
step, the computation of n'app based on Formula (6) requires calibrating each set of simulated
catalogs using the ETAS model, demanding significant computational power and time. In
contrast, Formula (8) simply requires calculating the proportion of triggered earthquakes in the
simulated catalogs, which is much simpler. Therefore, the present study will proceed with
corrections using n'app from Formula (8) for further analysis.

The censorship correction model also provides information about m0, the smallest
magnitude of earthquakes capable of triggering other earthquakes defined in Formula (3). We
propose that the largest Mco below which the curve of napp starts to flatten as Mco decreases
corresponds to m0, as sketched in Figure 1. The reasoning is that including smaller earthquakes
in the ETAS calibration does not alter the branching ratio, indicating that we accurately account
for all triggering earthquakes above this characteristic magnitude. It is determined in the present
study as the minimum Mco at which the derivative of the censorship correction formula napp =
p110p2Mco + n'app is larger than the threshold -0.01. Figure 3 and Tables 1 and 2 present the
estimated m0 based on Formulas (6) and (8). Taking the average of the two m0 estimates gives m0

values of 4.4, 2.4, 4.4, 4.2 for the four scenarios in California; 3.3, 2.9, 3.3, 3.0 for the four
scenarios in New Zealand; and 2.1, 2.0, 1.9, 2.4 for the four scenarios in CSES, respectively.

5.3 Boundary and finite-size effects correction: From n'app to ntrue
As discussed in the introduction, the boundary effect is related to the temporal and spatial

extent of the study region, while the finite size effect results from the finite size of the seismicity
sample. We propose to correct n'app in order to recover ntrue by synthesizing catalogs with the
same spatiotemporal range. Specifically, we synthesize earthquake catalogs using calibrated
ETAS model parameter sets {Q, D, c, ω, τ, d, γ, ρ} atMcobest (Table S2), combined with the
aforementioned estimation of m0. Since the triggering relationships among earthquakes in the
simulated catalogs are known, it is straightforward to calculate n'app by using Formula (8).

Figure 4 shows the dependence of n'app and its standard deviation as a function of ntrue
quantifying the impact of boundary effects in time and space, with standard deviation influenced
by the finite-size effects, for California, New Zealand, and CSES. The mean and standard
deviation of n'app are calculated from 100 simulated earthquake catalogs for each ntrue, for the
three study regions under different scenarios. In Section 3, we have established through
numerical simulations the relationship between ntrue and n'app given by Formula (16) for ntrue < 1.
The simulation experiments provide the standard deviation of n'app, denoted as σ2[N(m ≥ m0)].
According to error propagation theory, we use the following formula to estimate the standard
deviation of ntrue based on σ2[N(m ≥ m0)], that is,

(17)

It should be noted that σtrue is essentially an estimate derived from n'app specifically for correcting
boundary effects, not encompassing the entire correction process from napp. In fact, σtrue should
integrate both boundary effects and censorship correction uncertainties. However, since we do
not delve into the uncertainties of censorship correction, implicitly setting σ1[N(m ≥ Mco)] = 0,
σtrue is exclusively associated with uncertainties related to boundary effects.



Figure 4. Dependence of n'app and its standard deviation as a function of ntrue (in reverse axis)
showing the quantitative impact of boundary effects in time and space, with standard deviation
influenced by the finite-size effect, for California, New Zealand, and CSES. For each value of
ntrue, 100 sets of catalogs have been simulated, mirroring the time and space ranges of the
primary catalog in the three study regions. The mean and variance of n'app over these 100 sets of
simulated catalogs are calculated using the counting approach given by Formula (8). The
observed linear dependence suggests the correction model given by ntrue = q1 n'app + q2 which
allows us to extract ntrue from n'app.

The solid lines in Figure 4 are the best fits with Formula (16) to n'app(ntrue) for different
scenarios in each study region. Table 3 lists the values of the parameters of Formula (16) and the
corresponding final estimates of ntrue. Accounting for boundary effects and finite-size effects, the
initial estimated napp needs to be corrected upwards by approximately 0.04 to 0.06 to obtain ntrue.
The final ntrue estimates are 0.71 to 0.74 for California, 0.75 to 0.77 for New Zealand, and 0.79 to
0.84 for CSES. The seismicity within these regions is closer to criticality than inferred without
corrections, yet still maintains a certain distance from the critical value nc = 1.

Compared to the estimates by Nandan et al., (2021b) for the global (n = 0.45), California
(n = 0.79), and New Zealand (n = 0.61), our results feature a smaller standard deviation across
different scenarios and regions. The results of Nandan et al. (2021b) for the global catalog were
significantly influenced by censorship due to the setting of Mco = 5. Meanwhile, their estimates
for California and New Zealand did not account for boundary effects in time and space and for
the finite size effects, thus introducing some bias and uncertainty in their point estimates for
these two regions. Our current findings imply that about 70% to 85% of observed seismicity is



triggered by preceding earthquakes, with the remaining 15% to 30% being background
seismicity driven by the forces of plate tectonics.

Table 3. Parameters for the model ntrue = q1 n'app + q2, utilized to correct boundary effects in time and
space, where standard deviation is impacted by the finite-size effect. In this table, n'app is derived by
fitting the napp values estimated using Formula (5), as shown in Table 3.

California New Zealand CSES

Scenario 1 n'app q1 q2 ntrue ± σ n'app q1 q2 ntrue ± σ n'app q1 q2 ntrue ± σ
0.66 0.83 0.17 0.72 ± 0.0211 0.70 0.85 0.16 0.76 ± 0.0036 0.74 0.74 0.25 0.80 ± 0.0027

Scenario 2 n'app q1 q2 ntrue n'app q1 q2 ntrue n'app q1 q2 ntrue
0.66 0.83 0.18 0.72 ± 0.0023 0.69 0.85 0.16 0.75 ± 0.0025 0.73 0.74 0.25 0.79 ± 0.0025

Scenario 3 n'app q1 q2 ntrue n'app q1 q2 ntrue n'app q1 q2 ntrue
0.68 0.83 0.17 0.74 ± 0.0202 0.70 0.85 0.16 0.76 ± 0.0039 0.79 0.73 0.25 0.83 ± 0.0022

Scenario 4 n'app q1 q2 ntrue n'app q1 q2 ntrue n'app q1 q2 ntrue
0.65 0.81 0.18 0.71 ± 0.0166 0.71 0.85 0.17 0.77 ± 0.0023 0.80 0.73 0.25 0.84 ± 0.0031

6. Discussion and conclusions
We have proposed a new method to correct the three major identified biases by utilizing

the functional dependence of estimated ETAS parameters on the artificial increase of the cut-off
magnitudeMco. Our findings reveal that by accurately considering not just the spatial variation of
the background rate but also censorship, temporal and spatial boundary effects, and the finite-
size effects of the earthquake catalog, we obtain a branching ratio of seismicity that is closer to
criticality than inferred without corrections, yet still maintains a certain distance from it, with
values ranging from 0.70 to 0.85. It is interesting that, m0 estimated by our methods is found as
large as around 4 for California, 3 for New Zealand and 2 for CSES.

The minimum magnitude m0 for earthquake triggering capability, an intrinsic ingredient
of the ETAS model, and the branching ratio n demonstrate significant variability for different
tectonic regimes, with California displaying the largest m0, followed by New Zealand, and CSES
presenting the lowest. Conversely, the branching ratio n is observed to exhibit an inverse
relationship: it is largest in CSES, intermediate in New Zealand, and lowest in California.

Let us propose a tectonic interpretation of these results. The mechanism of horizontal
sliding along California's transform faults, typically associated with efficient energy dissipation,
tends to minimize aftershock occurrences (Kanamori & Brodsky, 2004; Stein & Wysession,
2009). Conversely, the vertical plate movements characterizing New Zealand's subduction zones
introduce activations of seismicity at intermediate depths, complicating rupture dynamics and
potentially amplifying aftershock activity due to the interaction of seismic waves with varied
geological structures (Lay & Wallace, 1995; Scholz, 2019). In CSES, the intense crustal stresses
arising from the collision between the Indian and Eurasian plates engender a complex network of
faults. This complexity, coupled with the shallow depth of seismicity, facilitates the activation of
numerous faults, thereby enhancing the region's aftershock triggering capability (China
Earthquake Administration, 2019). Moreover, fault roughness, by influencing co-seismic slip,
also modulates aftershock patterns, underscoring the intricate relationship between geological
structures and types of seismicity (e.g., Cochran et al., 2023; Goebel et al., 2023). Relating
tectonic dynamics and fault morphology to characteristic properties of seismicity such as n and
m0 offers novel insights into regional seismicity pattern, emphasizing the potential crucial role of



underlying geological conditions in modulating aftershock sequences. It is important to note that
the issue with m0 occurs in several ETAS models. However, this is not the case for other models
which, for example, incorporate two branches of the Gutenberg-Richter law, like those suggested
by Vere-Jones (2005), analyzed by Saichev & Sornette (2005), and more recently observed in
EM stochastic reconstructions by Nandan et al. (2022).

The non-critical but still rather large values of the branching ratio n prompt a reevaluation
of our understanding of the brittle fracture process within the Earth's crust. So far, reported
values of n found close to nc = 1 have aligned with the popular concept of self-organized
criticality, suggesting that the loaded fault network is in a permanent critical state. In contrast,
values significantly below nc = 1 indicate that fault networks primarily evolve far from a critical
point. Our estimates of n, derived from more appropriate assumptions and an improved research
methodology, fall between these two extremes, neither continuously critical nor far from it. In
fact, our results align with the current state of research on earthquake predictability, suggesting
that earthquakes are not entirely unpredictable as they would be if the seismogenic crust was in a
self-organized critical state (where any event is mechanistically indistinguishable from others,
making it impossible to effectively identify precursors before an event occurs) (Geller et al.,
1997). The degree of earthquake predictability may be in part associated with sporadic
emergence of singularities appearing through various mechanisms that could help signal the
approach of catastrophic events.

Finally, in addition to the factors discussed in this study, the fidelity of the model to
actual seismicity is equally important for accurately gauging criticality. For example, including
the depth component in the model formulation can greatly improve model fitting (Guo et al.,
2015a, 2018; Zhuang et al., 2019), which also yields a smaller branching ratio. Another factor is
the rupture geometry of large earthquakes (Hainzl et al., 2008; Guo et al., 2015b, 2019, 2021).
Ignoring the volume of the earthquake's rupture but regarding the focal zone as a point leads to a
larger value of K and a smaller value of α (Zhuang et al., 2019; Guo et al., 2021). Nevertheless,
even the estimation for these improved versions of the ETAS model also suffers from the
problems discussed in this study. We leave these issues for future research.
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Open Research

The California catalog is sourced from the Advanced National Seismic System (ANSS)

Comprehensive Earthquake Catalog (ComCat), accessible at

https://earthquake.usgs.gov/data/comcat/ (last accessed: December 18, 2023). For the catalog in

New Zealand, the data are obtained from the GeoNet Earthquake Catalog of New Zealand,

accessible at https://quakesearch.geonet.org.nz/ (last accessed: December 18, 2023). The data for

the China Seismic Experimental Site are acquired from the China Earthquake Networks Center

(CENC) through the internal link provided by the Earthquake Cataloging System at China

Earthquake Administration, available at http://10.5.160.18/console/index.action (last accessed:

December 18, 2023), with a Digital Object Identifier (DOI) of 10.11998/SeisDmc/SN.
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Introduction

In the present study, we identify and quantify three sources of bias: (i) boundary

effects, (ii) finite-size effects, and (iii) censorship, which cause errors in seismic

analysis and predictions. By employing a variant of the ETAS model with variable

spatial background rates, we propose a method to correct for these biases,

focusing on the branching ratio n, a key indicator of earthquake triggering potential.

We validate our method using synthetic earthquake catalogs, accurately recovering

the true branching ratio ntrue after correcting biases with napp. Additionally, our

method introduces a refined estimation of the minimum triggering magnitude m0, a

crucial parameter in the ETAS model. Applying our framework to the earthquake

catalogs of California, New Zealand, and the China Seismic Experimental Site

(CSES), we revisit seismicity's criticality to enhance our comprehension of seismic

patterns, aftershock predictability, and inform earthquake risk mitigation and

management strategies. The Supporting Information accompanying this study

provides an in-depth statistical characterization of seismicity in the three study

regions, along with the calibrated parameters of the Epidemic-Type Aftershock

Sequences (ETAS) model used to simulate synthetic catalogs.
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Figure S1. (a) Epicenter distribution of 1,994,000 recorded earthquakes from 1970

to 2023 in the primary California region (solid red line), complemented by an

approximate 100 km auxiliary space band (dashed red line). The thick gray line

delineates the coastline. (b) Time series depicting cumulative earthquake counts for

different cut-off magnitudes (Mco ≥ 1, ≥ 2, ≥ 3, ≥ 4, and ≥ 5). (c) Evolution of the

completeness magnitude (Mc) over time. (d) Monthly earthquake counts per 0.1

magnitude bin. (e) Complementary cumulative and density frequency-magnitude

distribution alongside the Gutenberg-Richter (GR) law fitted using earthquakes with

magnitudes larger than Mco

best
= 3.5. (f) Variation of the b-value with Mco, with the

thin dashed line indicating the ± 1σ standard deviation. The red lines in panels (b) to

(f) denote Mco

best
= 3.5 in California. The light red and light blue shaded regions in

panels (b) to (d) represent the primary period and the auxiliary time band,

respectively.
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Figure S2. (a) Epicenter distribution of 593,000 recorded earthquakes from 1970 to

2023 in the primary New Zealand region (solid red line), complemented by an

auxiliary space band (dashed red line). Panels (b) to (f) are the same as in Figure S1,

with the red lines denoting Mco

best
= 4 in New Zealand.
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Figure S3. (a) Epicenter distribution of 477,000 recorded earthquakes from 1970 to

2023 in the primary region of the China Seismic Experimental Site (CSES; solid red

line), complemented by an auxiliary space band (dashed red line). Panels (b) to (f)

are the same as in Figures S1 and S2, with the red lines denoting Mco

best
= 3 in the

Sichuan-Yunnan region, China.
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Table S1. Main characteristics of the primary catalog used in this study.

Area

[km
2
]

Source Mco

best
Primary period

Primary duration

[year]
Nevt

primary

California 961,240 ANSS 3.5 1985/01/01 - 2023/11/02 38.80 8,265

New Zealand 694,460 GeoNet 4.0 1990/01/01 - 2023/12/12 33.94 9,762

CSES 781,240 CENC 3.0 2000/01/01 - 2023/08/23 23.63 9,163

Mco

best
: the best or smallest magnitude of completeness above which earthquake data are considered complete; CSES:

the China Seismic Experimental Site. The areas extend beyond the political borders. For more details about the catalog

source, please refer to the Data and Resources section.

Table S2. ETAS model parameters calibrated form observed catalogs at Mcobest and utilized

for simulating seismicity in the study regions.

Scenario Nbkg Φ log10K α log10d 1+ρ γ log10c 1+ω log10τ log10D Q

California

1 2,517.73 -6.73 -0.41 1.03 -0.39 0.69 1.34 -2.70 1.04 3.84 1.20 0.64

2 2,894.03 -6.67 -0.50 1.11 -0.39 0.70 1.35 -2.69 1.04 3.20 1.20 0.68

3 2,423.85 -6.75 -0.39 1.11 -0.40 0.70 1.36 -2.71 1.03 3.88 1.20 0.62

4 2,772.60 -6.86 -0.39 1.05 -0.42 0.64 1.40 -2.69 1.03 3.90 1.20 0.54

New

Zealand

1 3324.34 -6.41 -0.51 1.42 1.18 0.97 0.69 -2.21 1.14 3.58 2.02 1.03

2 3430.56 -6.40 -0.56 1.45 1.18 0.97 0.69 -2.21 1.14 3.28 2.00 1.00

3 3258.05 -6.42 -0.48 1.44 1.18 0.98 0.68 -2.22 1.14 3.63 2.04 1.03

4 3530.52 -6.62 -0.47 1.40 1.23 0.92 0.63 -2.24 1.13 3.61 1.97 0.83

CSES

1 3012.10 -6.35 -0.54 0.95 1.20 2.48 0.54 -3.01 0.88 2.83 1.70 0.79

2 3049.79 -6.34 -0.57 1.00 1.20 2.49 0.54 -3.03 0.87 2.79 1.69 0.79

3 2588.77 -6.42 -0.38 0.91 1.19 2.31 0.53 -3.00 0.89 3.00 1.90 0.87

4 2966.04 -6.56 -0.37 0.90 1.19 2.03 0.49 -3.05 0.86 3.03 1.81 0.59

Note: Parameters c and τ are given in days; Φ is the background rate per km
2
per year on a logarithmic scale.
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