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ONE-BUBBLE NODAL BLOW-UP FOR ASYMPTOTICALLY

CRITICAL STATIONARY SCHRÖDINGER-TYPE EQUATIONS

BRUNO PREMOSELLI AND FRÉDÉRIC ROBERT

Abstract. We investigate in this work families (uε)ε>0 of sign-changing blowing-
up solutions of asymptotically critical stationary nonlinear Schrödinger equa-
tions of the following type:

∆guε + hεuε = |uε|
pε−2uε

in a closed manifold (M, g), where hε converges in C1(M). Assuming that
(uε)ε>0 blows-up as a single sign-changing bubble, we obtain necessary condi-
tions for blow-up that constrain the localisation of blow-up points and exhibit
a strong interaction between h, the geometry of (M,g) and the bubble itself.
These conditions are new and are a consequence of the sign-changing nature
of uε.

1. Introduction

1.1. Statement of the main results. Let (Mn, g), n ≥ 3 be a smooth, connected
and closed manifold, where closed means compact without boundary. We study in
this paper sign-changing solutions u ∈ C2(M) of the equation

(1.1) ∆gu+ hu = |u|p−2u in M

where ∆g = −divg(∇·) is the Laplace-Beltrami operator, h ∈ C1(M) and 2 <
p ≤ 2⋆ with 2⋆ = 2n

n−2 . When h ≡ n−2
4(n−1)Sg, where Sg is the scalar curvature

of (M, g), p = 2⋆ and u > 0, (1.1) is the celebrated Yamabe equation. We let
H1(M) be the completion of C∞(M) for u 7→ ‖u‖H1 := ‖u‖2 + ‖∇u‖2. It has
been known since the seminal work of Struwe [36] that families of solutions to (1.1)
that are uniformly bounded in H1(M) may develop concentration phenomena in
the form of “bubbles” (see also Druet-Hebey-Robert [12] for the case of a compact
Riemannian manifold). These “bubbles” correspond to a loss of compactness of the
solutions, and understanding the conditions in which they may appear and their
mutual interactions has been the subject of many works in the last decades.

Despite the abundance of contributions for positive solutions of (1.1), the literature
for sign-changing solutions is less developed. In the present work we take a step in
this direction and study sign-changing solutions of (1.1) that blow-up as a single
sign-changing bubble. In the sequel, we fix rg ∈ (0, ig(M)) where ig(M) > 0 is
the injectivity radius of (M, g). Throughout this paper χ ∈ C∞

c (Rn) will denote a
cutoff function such that χ(t) = 1 if |t| ≤ rg/2 and χ(t) = 0 if |t| ≥ rg. We say
that a family (Bε)ε>0 of functions in H1(M) is a family of bubbles if there exists
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a non-zero solution V to

(1.2) ∆ξV = |V |2
⋆−2V in R

n, V ∈ D1,2(Rn),

whereD1,2(Rn) is the completion of C∞
c (Rn) for the norm u 7→ ‖∇u‖2, and families

of points (xε)ε>0 in M and of positive real numbers (µε)ε>0 such that

Bε(x) − χ(dg(·, xε))µ
−n−2

2
ε V

(

exp−1
xε

(·)

µε

)

→ 0 in H1(M)

as ε → 0. Here expxε
is the exponential chart at xε and ξ is the Euclidean metric,

so that ∆ξ = −
∑n

i=1 ∂
2
i . We will say that such a family (Bε)ε>0 is centered at xε

and of radius µε and modeled on V , and V itself will sometimes be referred to as
the bubble. A more precise definition is given in Definition 3.1 and properties of
such families are investigated in Section 3 below. All the solutions considered in
this paper are allowed to change sign unless mentioned otherwise.

Our main results establish a necessary condition for the existence of blowing-up
solutions of (1.1) that blow-up with a single sign-changing bubble. We introduce
one last notation as follows: if B = (Bε)ε>0 is a family of bubbles centered at xε,
of radius µε and modeled on V , we define

Weylg ⊗B :=
4n

3(n− 2)2

(∫

Rn

|V |2
⋆

dx

)−1

×

Weylg(x0)iαjβ

∫

Rn

xαxβ∂2
ijV

(

n− 2

2
V + xl∂lV

)

dx

where x0 = limε→0 xε. We first state a result when n ≥ 5.

Theorem 1.1. Let (Mn, g), n ≥ 5 be a smooth, connected and closed manifold, let
h, (hε)0<ε≤1 ∈ C1(M) such that limε→0 hε = h in C1(M) and ∆g + h is coercive.
Let (pε)0<ε≤1 ∈ (2, 2⋆] be such that limε→0 pε = 2⋆. Let (uε)0<ε≤1 be a family of
solutions of

(1.3) ∆guε + hεuε = |uε|
pε−2uε in M.

We assume that (uε)0<ε≤1 satisfies

(1.4) uε = cBε + o(1) in H1(M)

for some c > 0, where B = (Bε)ε>0 is a bubble centered at (xε)ε ∈ M and with
radius (µε)ε ∈ (0,+∞) and modeled on V ∈ D1,2(Rn) as in Definition 3.1 below.

Then c = 1, limε→0 µ
2⋆−pε
ε = 1, the following limit exists:

Λ := lim
ε→0

2∗ − pε
µ2
ε

≥ 0,

and h satisfies:

(1.5) h(x0)−
n− 2

4(n− 1)
Sg(x0) =

(n− 2)2

4n

∫

Rn |V |2
⋆

dx
∫

Rn V 2dx

(

Λ−Weylg ⊗B
)

,

where we have let x0 := limε→0 xε.

The new term Weylg ⊗ B appearing in (1.5) is well-defined when n ≥ 5 and
we prove in Section 3 that it does not depend on the representative chosen for the
family (Bε)ε>0 appearing in (1.4) (see Proposition 3.1 below).

In dimensions 3 and 4 we prove the following analogue of Theorem 1.1:
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Theorem 1.2. Let (Mn, g), n = 3, 4 be a smooth, connected and closed manifold,
let h, (hε)0<ε≤1, (pε)0<ε≤1 ∈ (2, 2⋆] be as in the statement of Theorem 1.1. Let
(uε)0<ε≤1 be a family of solutions of (1.3) satisfying again (1.4) for some c > 0,
where B = (Bε)ε>0 is a bubble centered at (xε)ε ∈ M and with radius (µε)ε ∈
(0,+∞) and modeled on V ∈ D1,2(Rn) as in Definition 3.1 below.

Then c = 1, limε→0 µ
2⋆−pε
ε = 1, the following limits exist:

Λ := lim
ε→0















6− pε
µε

n = 3

4− pε

µ2
ε ln

1
µε

n = 4















≥ 0,

and h satisfies

(1.6)

(∫

R4 |V |2V dx
)2

ω3

∫

R4 |V |4 dx

(

h(x0)−
1

6
Sg(x0)

)

= Λ when n = 4

(1.7) −6

(∫

R3 |V |4V dx
)2

∫

R3 |V |6 dx
mh(x0) = Λ when n = 3,

where as before we have let x0 := limε→0 xε. In (1.6) ω3 is the area of the 3-sphere
and in (1.7) mh(x0) ∈ R is the mass of the Green’s function of ∆g + h at x0 ∈ M
(see Definition 3.3 below).

A few comments on Theorems 1.1 and 1.2 are in order. Assumption (1.4) implies
that (uε)ε>0 blows-up as a single, possibly sign-changing bubble. In other words,
(1.4) is a Struwe decomposition with a single bubbling profile. No assumption is
made on the energy of V (except that it is finite) and V is not assumed to be non-
degenerate in the sense of Duyckaerts-Kenig-Merle [13]. Assumption (1.4) should
be regarded, insofar as sign-changing solutions are considered, as the analogue
of the classical notion of isolated and simple blow-up point for positive solutions
introduced in Schoen [35].

Theorems 1.1 and 1.2 are not new for positive solutions. It has been known since
Obata [26] and Struwe [36] that when (uε)ε>0 is a family of positive solutions of
(1.3) the bubble V is positive and radial and given by (2.2) below. In this case, and
when n ≥ 5, the additional term Weylg ⊗B in (1.5) vanishes by the symmetries of
Weylg (see Proposition 3.3 below), and condition (1.5) becomes

h(x0)−
n− 2

4(n− 1)
Sg(x0) = C(n)Λ ≥ 0, with Λ := lim

ε→0

2⋆ − pε
µ2
ε

for some dimensional constant C(n) > 0. When n = 3, 4, (1.6) and (1.7) show that

h(x0)−
1

6
Sg(x0) = C(4)Λ when n = 4 and mh(x0) = −C(3)Λ when n = 3,

where Λ is as in the statement of the Theorem. When pε = 2⋆ for all ε, and for
positive finite-energy solutions, these conditions have been known since the work
of Li-Zhu [20] and Druet [10, 11].

If (uε)ε>0 is a blowing-up family of sign-changing solutions of (1.3) with a single
bubbling profile as in (1.4), however, the bubble V is sign-changing in general and
(1.5), (1.6) and (1.7) display new phenomena. When n ≥ 5 the additional term
Weylg⊗B cannot be expected to vanish a priori. We construct indeed in Section 3
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examples of manifolds (M, g) and of solutions V of (1.2) such that Weylg ⊗B 6= 0
(see Proposition 3.4 below). The term Weylg ⊗B is thus a striking new feature of
sign-changing blow-up that does not appear for positive solutions. When n ≥ 5,
condition (1.5) is entirely new and highlights a strong interaction between h, the
geometry of (M, g) and the limiting bubble V itself. When n = 3, 4, (1.6) and (1.7)

involve
∫

Rn |V |2
∗−2V dx. But if V is a sign-changing solution of (1.2) for n ≥ 3, the

latter integral may vanish if V decays strongly at infinity (see (2.9) below). When
this is the case conditions (1.6) and (1.7) indicate that, in dimensions 3 and 4, the
interaction between Bε and the geometry of (M, g) takes place at a higher-order
than it did for positive solutions.

1.2. Consequences of Theorem 1.1 on the blow-up picture of (1.3). Theo-
rems 1.1 and 1.2 shed new light on the stability of the set of sign-changing solutions
of (1.3). We say that equation (1.1), with p = 2∗, is stable if for every family
(hε)ε>0 converging to h, every energy-bounded family of solutions (uε)ε>0 of (1.3)
converges in C2(M), up to a subsequence. Druet [10] proved that, for positive
solutions, stability holds provided h 6= n−2

4(n−1)Sg everywhere in M (with a caveat

in dimensions 3 and 6, see [10]). This result was generalised to the case of sign-
changing solutions, when n ≥ 7 and when (M, g) is locally conformally flat, in
Premoselli-Vétois [31]. When (M, g) is not locally conformally flat, and at least
when n ≥ 5, however, (1.5) shows that necessary conditions for a one bubble blow-
up involve h, the geometry of (M, g) and the possible limiting bubble V itself. The
set of sign-changing solutions of (1.2) is still poorly understood and no classifica-
tion result is known, but examples of large-energy sequences of solutions have been
constructed by Del Pino-Musso-Pacard-Pistoia [7], Ding [9], Medina-Musso [22],
Medina-Musso-Wei [23]. The wealth of solutions of (1.2) is the main obstacle to
understanding the term Weylg⊗B in (1.5). It seems therefore highly unlikely, even
in the single-bubble case, that stability for sign-changing solutions of (1.3) can be
enforced solely by a global assumption on h, as was the case for positive solutions.

Theorems 1.1 and 1.2, however, allow us to rule out limiting bubbles V that may
appear in the blow-up in some cases. We start with an example in dimensions 3
and 4. If V is a solution of (1.2) it satisfies

V (x) =
λ(V )

|x|n−2
+O

(

|x|1−n
)

as |x| → +∞,

where (n − 2)ωn−1λ(V ) =
∫

Rn |V |2
⋆−2V dx (see (2.4) and (2.9) below). Bubbles

decaying at infinity as |x|2−n satisfy λ(V ) > 0: this is the case for the positive bub-
bles given by (2.2) and for the bubbles of [7]. An immediate corollary of Theorem
1.2 is as follows:

Corollary 1.3. Let (Mn, g), n = 3, 4, be a smooth, closed, connected Riemannian
manifold and h, (hε)0<ε≤1 ∈ C1(M) be such that limε→0 hε = h in C1(M) and
∆g + h is coercive. Let (pε)0<ε≤1 ∈ (2, 2⋆] be such that limε→0 pε = 2⋆. Let
(uε)0<ε≤1 be a family of solutions of (1.3) satisfying (1.4), where Bε is a family of
bubbles centered at xε, of radius µε and modeled on V . Assume that

• the mass of ∆g + h is positive at every point of M if n = 3
• h < 1

6Sg everywhere in M if n = 4.

Then
∫

Rn |V |2
∗−2V dx = 0. In particular, V (x) = O(|x|1−n) as |x| → +∞ and V

is neither positive nor one of the bubbles of [7].
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In dimensions n ≥ 5 (1.5) does not provide any information on the decay of V
at infinity, but we can still rule out the existence of symmetric bubbles in some
cases. We recall that Ding [9] constructed a family of solutions of (1.2), possessing
O(p)×O(n− p) symmetry for 2 ≤ p ≤ n− 1. We show that Ding solutions cannot
appear as bubbles in a single-bubble blow-up on symmetric manifolds:

Corollary 1.4. Let (Mn, g) = (Sp × Sq, gp × gq), where gp and gq are the round
metrics on Sp and Sq, p, q ≥ 2 and n = p + q ≥ 5. Let h, (hε)0<ε≤1 ∈ C1(M) be
such that limε→0 hε = h in C1(M) and ∆g+h is coercive. Let (pε)0<ε≤1 ∈ (2, 2⋆] be
such that limε→0 pε = 2⋆. Let (uε)0<ε≤1 be a family of solutions of (1.3) satisfying
(1.4), where Bε is a family of bubbles centered at xε, of radius µε, modeled on V .
Assume that h ≤ n−2

4(n−1)Sg everywhere. Then

Weylg ⊗B ≥ 0.

As a consequence, V cannot be a Ding solution.

Proof. Since h ≤ n−2
4(n−1)Sg everywhere, (1.5) shows that Weylg ⊗ B ≥ 0. But as

shown in Corollary 3.5 below, Weylg ⊗B < 0 if V is a Ding solution. �

Corollaries 1.3 (when n = 3) and 1.4 both apply to one-bubble sign-changing
blow-up for the sign-changing Yamabe equation:

∆gu+
n− 2

4(n− 1)
Sgu = |u|2

∗−2u.

Solutions of this equation naturally appear as minimisers for the second conformal
eigenvalue (see Ammann-Humbert [1]), and their stability properties shed new light
on the set of possible minimisers (see Premoselli-Vétois [30]). Other stability results
for sign-changing solutions are in Premoselli-Vétois [29, 31]. Examples of sign-
changing families of solutions of (1.3) have been constructed in Bonheure-Casteras-
Premoselli [5], Micheletti-Pistoia-Vétois [25], Pistoia-Vétois [27] and Robert-Vétois
[33,34]. Deng-Musso-Wei [8] have considered an innovative construction of a family
of sign-changing solutions (uε)ε>0 to the (1.3) with hε ≡ h and pε := 2⋆ − ε that
blows-up like a single bubble as in (1.4). We discuss similar constructions in Section
6.

The structure of the paper is as follows. In Section 2 we introduce a few properties
of sign-changing solutions of (1.2) and highlight the main differences with respect
to the positive case. Section 3 contains the formal definition and properties of the
families of bubbles that we investigate here. We also investigate the term Weylg⊗B
there and construct examples of manifolds and bubbles where Weylg ⊗ B 6= 0.
Section 4 is the core of the analysis of this paper and we prove there that relation
(1.4) can be improved into optimal pointwise bounds on uε. This is the content of
Proposition 4.1 and is the main ingredient in the proof of Theorems 1.1 and 1.2.
Finally, Theorems 1.1 and 1.2 are proven in Section 5.

Acknowledgements: the authors would like to thank P.-D. Thizy and J. Vétois
for many fruitful discussions in the early version of this work.

2. Finite-energy nodal solutions of the Yamabe equation in Rn

We let Σ be the set of non-zero finite-energy solutions of (1.2):

(2.1) Σ =
{

V ∈ D1,2(Rn)\{0}, ∆ξV = |V |2
⋆−2V

}

.
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Regularity theory for critical equations (see eg Trudinger [37]) together with stan-

dard elliptic theory, shows that there exists αn > 0 such that V ∈ C3,αn

loc (Rn) for
all V ∈ Σ. If V ∈ Σ is positive it is equal by Obata [26], up to translations and
rescalings, to

(2.2) B+
0 (x) =

(

1 +
|x|2

n(n− 2)

)−n−2
2

, x ∈ R
n.

By Caffarelli-Gidas-Spruck [6] this result remains true for all positive solutions of
(1.2), without the assumption that they belong to D1,2(Rn). Note also that, up to
dilation, B+

0 is the only non-zero radial solution of (1.2) which belongs to D1,2(Rn)
by a simple application of Pohozaev’s identity.

If V ∈ D1,2(Rn) we define its Kelvin transform as

(2.3) V ∗(x) =
1

|x|n−2
V

(

x

|x|2

)

for a.e. x ∈ R
n\{0}.

It is well-known (see for instance Duyckaerts-Kenig-Merle [13, Proposition 3.1])

that V 7→ V ∗ defines an isometry of D1,2(Rn) and of L2⋆(Rn) and that

∆ξV
∗(x) =

1

|x|n+2
∆ξV

(

x

|x|2

)

in Rn\{0}, provided V is of class C2. As a consequence we have V ∗ ∈ Σ whenever
V ∈ Σ (see again [13]) and the regularity theory for (1.2) shows that V ∗ ∈ C3(Rn)
when V ∈ Σ. The following result provides a precise description of the behavior at
infinity of the elements in Σ:

Lemma 2.1. Let V ∈ Σ. There exist λ(V ) ∈ R and α(V ) ∈ Rn such that the
following asymptotic expansion holds as |x| → +∞ and can be differentiated:

(2.4) V (x) =
λ(V )

|x|n−2
+

〈α(V ), x〉

|x|n
+O

(

1

|x|n

)

.

When we say that expansion (2.4) can be differentiated we mean that the fol-
lowing holds as |x| → +∞: for any 1 ≤ i ≤ n,

(2.5)

∂iV (x) = −(n− 2)λ(V )
xi

|x|n
+

α(V )i|x|
2 − n〈α(V ), x〉xi

|x|n+2

+O

(

1

|x|n+1

)

.

Proof. Let V ∗ be, as before, the Kelvin transform of V . It is of class C3 in Rn and
we can consider its Taylor expansion at 0: there exist λ(V ) ∈ R and α(V ) ∈ Rn

such that, as y → 0, and for 1 ≤ i ≤ n,

(2.6)
V ∗(y) = λ(V ) + 〈α(V ), y〉+O(|y|2)

∂iV
∗(y) = α(V )i +O(|y|)

hold. Since for any x 6= 0 we have V (x) = 1
|x|n−2V

∗
(

x
|x|2

)

, (2.4) follows from (2.6).

To prove (2.5) we write that by the chain rule, for x 6= 0,

(2.7) ∂iV (x) = −(n−2)
xi

|x|n
V ∗

(

x

|x|2

)

+

n
∑

j=1

1

|x|n−2

(

δij
|x|2

− 2
xixj

|x|4

)

∂jV
∗

(

x

|x|2

)
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holds, and we conclude using again (2.6). �

As a consequence of (2.4) and (2.5), there exists C = C(n, V ) such that

(2.8) |V (x)|+ (1 + |x|)|∇V (x)|+ (1 + |x|)2|∇2V (x)| ≤ C(1 + |x|)2−n

for all x ∈ Rn. This can also be shown by the conformal invariance of (1.2), see
e.g. Premoselli [28, Lemma 2.2]. As shown in Premoselli [28, Lemma 2.1], we have

(2.9) λ(V ) =
1

(n− 2)ωn−1

∫

Rn

|V |2
⋆−2V dx for all V ∈ Σ.

If B+
0 is as in (2.2) we have λ(B+

0 ) = (n(n−2))
n−2
2 . The solutions constructed in [7]

also satisfy λ(V ) 6= 0. As proven in Lemma 2.1, λ(V ) = V ∗(0). As a consequence,
examples where λ(V ) = 0 are easily obtained by Kelvin-transforming sign-changing
solutions of Σ at a point where they vanish.

Remark 2.2. An accurate inspection of the proof of Lemma 2.1 shows that we can
state a slightly more precise result. Let V ∈ Σ.

• Assume that n = 3, 4. Then there exists k ∈ N and a non-zero homogeneous
polynomial P of degree k such that

V (x) =
P (x)

|x|n−2+2k
+O

(

1

|x|n−1+k

)

as |x| → +∞.

• Assume that n = 5. Then there exists k ∈ {0, . . . , 4} and a homogeneous
polynomial P of degree k such that

V (x) =
P (x)

|x|3+2k
+



















O

(

1

|x|4+k

)

if k ≤ 3

O

(

1

|x|7+
1
3

)

if k = 4

as |x| → +∞.

• Assume finally that n ≥ 6. Let 0 < α < 1 if n = 6 and 0 < α ≤ 4
n−2 if

n ≥ 7. Then there exists k ∈ {0, . . . , 3} and a homogeneous polynomial P
of degree k such that V satisfies

V (x) =
P (x)

|x|n−2+2k
+O

(

1

|x|n−2+k+α

)

as |x| → +∞.

All these expansions can be differentiated. In dimensions n = 3, 4, P is the first
non-zero homogeneous polynomial in the Taylor expansion of V ∗ at 0, which always
exists by classical finite continuation results (see e.g. Aronszajn [2]) since V ∈
D1,2(Rn)\{0}. In dimensions n ≥ 5, P may vanish. Examples of solutions in any
dimension n ≥ 3 for which the degree of P is larger or equal than 2 are still unknown
and the question of their existence was raised in Duyckaerts-Kenig-Merle[13].

3. Riemannian preliminaries

3.1. Sign-changing families of bubbles in M . We define the notion of Rie-
mannian bubble that we will consider in this work:

Definition 3.1. Let (xε)ε>0 ∈ M and (µε)ε>0 ∈ R>0 be families of points in M
and positive real numbers, with µε → 0 as ε → 0. We let x0 := limε→0 xε. Let
V ∈ Σ be fixed and let B = (Bε)ε>0 be a family of functions in H1(M). We say
that B is a family of bubbles centered at xε with radius µε and modeled on V if
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there exists a family of charts (ϕε)ε≥0 such that ϕε : Bg(x0, rg) → Rn is normal at
xε for all ε > 0, limε→0 ϕε = ϕ0 in Ck for all k and such that

(3.1) Bε − χ(dg(·, xε))µ
−n−2

2
ε V

(

ϕε(·)− ϕε(xε)

µε

)

→ 0 in H1(M)

as ε → 0.

Here Σ is as in (2.1). As the following simple result shows, Definition 3.1 is
independent of the choice of the local chart up to an isometry. In the sequel, we
let O(n) be the group of isometries of the Euclidean space Rn:

Proposition 3.1. Let (xε)ε>0 ∈ M and (µε)ε>0 ∈ R>0 be families of points in M
and positive real numbers, with µε → 0 as ε → 0, and let B = (Bε)ε and B̄ = (B̄ε)ε
be families of bubbles centered at xε with radius µε and respectively modeled on
V, V̄ ∈ Σ as in Definition (3.1). Then

Bε − B̄ε → 0 in H1(M) as ε → 0 ⇐⇒ V̄ = V ◦O

for some orthogonal mapping O ∈ O(n).

Families of bubbles (Bε)ε>0 and (B̄ε)ε>0 centered at xε with radius µε and
satisfying Bε − B̄ε → 0 in H1(M) as ε → 0 will be called equivalent families.

Proof. Let ϕε, ϕ̄ε : Bg(x0, rg) → Rn be normal coordinate charts for g at xε asso-
ciated to B and B̄ as in definition 3.1. If x ∈ Rn we have

(3.2) ϕε ◦ ϕ̄
−1
ε (ϕ̄ε(xε) + x) = ϕε(xε) +Oεx+ O(|x|2) as x → 0,

where we have let Oε = Dϕε(xε)◦
(

Dϕ̄ε(xε)
)−1

. Since ϕε and ϕ̄ε are normal charts
at xε, Oε ∈ O(n). Straightforward computations using (2.8) and (3.2) show that
(3.3)

χ(dg(·, xε))

[

µ
−n−2

2
ε V

(

ϕε(·)− ϕε(xε)

µε

)

− µ
−n−2

2
ε V

(

Oε (ϕ̄ε(·)− ϕ̄ε(xε))

µε

)

]

→ 0

in H1(M) as ε → 0. Since Bε − B̄ε → 0 in H1(M) by assumption we obtain

χ(dg(·, xε))

[

µ
−n−2

2
ε V

(

Oε (ϕ̄ε(·)− ϕ̄ε(xε))

µε

)

−µ
−n−2

2
ε V̄

(

ϕ̄ε(·)− ϕ̄ε(xε)

µε

)

−

]

→ 0

in H1(M) as ε → 0. A simple scaling argument then shows that V ◦O = V̄ where
O := limε→0 Oε. �

Equations (3.2) and (3.3) show that, up to composing V with an euclidean
isometry, we can always assume that ϕε is an exponential chart at xε in Definition
3.1. Choose, for any p ∈ Bg(x0, rg), an identification of TpM with R

n. This defines
an exponential map at p, that we will denote by expp : Rn → M in all of this paper.
Mimicking the arguments in (3.2) and (3.3) we similarly have, for V ∈ Σ,

χ(dg(·, xε))

[

µ
−n−2

2
ε V

(

ϕε(·)− ϕε(xε)

µε

)

− µ
−n−2

2
ε

(

V ◦O
)

(

exp−1
xε

(·)

µε

)

]

→ 0

for some O ∈ O(n). We have thus shown that B = (Bε)ε>0 is a family of bubbles
centered at xε with radius µε and modeled on V ∈ Σ if and only if

(3.4) Bε − χ(dg(·, xε))µ
− n−2

2
ε

(

V ◦O
)

(

exp−1
xε

(·)

µε

)

→ 0 in H1(M)
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as ε → 0, for some O ∈ O(n). Any two exponential charts at xε are related by an
isometry of Rn. A consequence of (3.4) is that Definition 3.1 is independent of the
choice of the exponential chart at xε up to composing V with an isometry. The
classical example of a family of bubbles is the so-called family of standard bubbles:

(3.5)

Bε(x) := χ(dg(x, xε))B
+
ε (x), where

B+
ε (x) :=





µε

µ2
ε +

dg(x,xε)2

n(n−2)





n−2
2

= µ
−n−2

2
ε B+

0

(

exp−1
xε

(x)

µε

)

,

where B+
0 is given by (2.2). This example is peculiar: since B+

0 is radially symmet-
rical (as a consequence of positivity), any exponential chart at xε yields the same
family of bubbles, and the function B+

ε thus obtained is well-defined on the whole
of M . Naively composing with an exponential chart does not, however, allow to
globally pull-back a sign-changing element V ∈ Σ in M without losing regularity
at the cut-locus, hence the need for Definition 3.1.

The following proposition is straightforward:

Proposition 3.2. Let (Bε)ε>0 be a family of bubble as in Definition 3.1. Then

• There exists C > 0 such that ‖Bε‖H1 ≤ C for all ε > 0
• limε→0 ‖Bε‖L2 = 0
• Bε ⇀ 0 weakly in H1(M) as ε → 0
• limε→0 ‖∇Bε‖

2
2 =

∫

Rn |∇V |2 dx.

3.2. The product Weylg ⊗ B. We now investigate the properties of the term
Weylg ⊗B appearing in the Statement of Theorem 1.1.

Definition 3.2. Assume that n ≥ 5. Let B = (Bε)ε>0 be a family of bubbles
centered at xε with radius µε and modeled on V ∈ Σ as in Definition 3.1. We
define

(3.6)

Weylg ⊗B :=
4n

3(n− 2)2

(∫

Rn

|V |2
⋆

dx

)−1

×

Weylg(x0)iαjβ

∫

Rn

xαxβ∂2
ijV

(

n− 2

2
V + xl∂lV

)

dx

where x0 = limε→0 xε and where the coordinates of the Weyl tensor are taken with
respect to the chart expx0

.

It is intended in (3.6) that repeated indices are summed over. That the second
integral in (3.6) is finite follows from (2.8) since n ≥ 5. Note that the termWeylg⊗B
depends on x0 since the family B = (Bε)ε > 0 does. We recall the symmetries of
the Weyl tensor of g at any point x ∈ M :

Weylg(x)ijkℓ = −Weylg(x)jikℓ = −Weylg(x)ijℓk = Weylg(x)kℓij

Weylg(x)ijiℓ = 0 and Weylg(x)ijkℓ +Weylg(x)jkiℓ +Weylg(x)kijℓ = 0
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for any i, j, k, ℓ ∈ {1, . . . , n}, where repeated indices are summed over. As a con-
sequence of these symmetries, simple integration by parts (see for instance Hebey-
Vaugon [17] or Lemma 3.2 in Mesmar-Robert [24]) show that

(3.7)
Weylg ⊗B =

4n

3(n− 2)2

(∫

Rn

|V |2
⋆

dx

)−1

×

Weylg(x0)iαjβ

∫

Rn

xαxβ∂iV ∂jV dx.

Again the integral on the right is finite when n ≥ 5 by (2.8). A consequence of
(3.7) and of the tensorial nature of Weylg(x0) is that Weylg ⊗B does not change if
V is replaced by V ◦O for some O ∈ O(n), provided the coordinates of Weylg(x0)

are now computed in the chart O ◦ exp−1
x0

. Hence Weylg ⊗ B does not depend on
the choice of the exponential chart at x0 and only depends on the equivalence class
of families of bubbles at x0 in the sense of Proposition 3.1.

We describe two simple cases where Weylg ⊗B vanishes globally:

Proposition 3.3. Assume that n ≥ 5 and let B be a family of bubbles centered at
(xε)ε ∈ M , with radius (µε)ε ∈ R>0 and modeled on V ∈ Σ, and x0 = limε→0 xε.
Then Weylg ⊗B = 0 in the following (non-exhaustive) situations:

• Weylg(x0) = 0

• V is radial (and hence V = B+
0 given by (2.2)).

Proof. By (3.6) the first point is trivial. If V = B+
0 is radial, the second point

follows from the radiality of B+
0 , from the equivalent expression (3.7) and from the

total antisymmetry of the Weyl tensor. �

The next two results shows that Weylg ⊗ B cannot be expected to vanish in
general:

Proposition 3.4. Let (Sp, gp) and (Sq, gq) be the unit spheres of dimensions p, q ≥
2 endowed with their round metrics. Assume that n = p + q ≥ 5 and that V ∈
D1,2(Rn)\{0} solves (1.2) and is invariant under the action of O(p)×O(q) but not
under the action of O(n). Let M = Sp × Sq endowed with the metric g = gp ⊗ gq.
Let B = (Bε)ε>0 be a family of bubbles in (M, g) modeled on V as in Definition
3.1, centered at (xε)ε>0 ∈ M and with radius (µε)ε>0 ∈ R>0 and x0 = limε→0 xε.
Then Weylg ⊗B < 0.

Proof. We let M := Sp × Sq where p, q ≥ 2 and p+ q = n ≥ 5 and g := gp ⊗ gq be
the product metric of the round metrics gp and gq respectively on Sp and Sq. We
follow the geometric notations of Besse [4] and Hebey [15]. The Riemann tensors
for each metric are

Rmgp =
1

2
gp ⊙ gp and Rmgq =

1

2
gq ⊙ gq,

where ⊙ is the Kulkarni-Nomizu product, given in coordinates by (T ⊙ S)ijkl =
TikSjl − TilSjk + TjlSik − TjkSil. Standard results on product manifolds give that,
after the necessary projections, Rmg = 1

2gp⊙gp+
1
2gq⊙gq, Ricg = (p−1)gp+(q−1)gq

and Sg = p(p− 1) + q(q − 1). The Weyl tensor of g is defined as

Weylg = Rmg −
1

n− 2
Ricg ⊙ g +

Sg

2(n− 1)(n− 2)
g ⊙ g.
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If x0 = (xp
0, x

q
0) ∈ Sp × Sq we compute the coordinates of Weylg(x0) in the chart

obtained from the exponential chart on Sp at xp
0 and the exponential chart on Sq

at xq
0: this yields a normal chart on S

p × S
q. The Latin letters i, j, k... refer to

coordinates in Sp, the Greek letter α, β, ... refer to Sq. The previous observations
show that, at any point around x0 we have

(

Weylg
)

ijkl
= C1(gikgjl − gilgjk)

(

Weylg
)

αβγδ
= C2(gαγgβδ − gαδgβγ)

(

Weylg
)

iαjβ
= −C3gijgαβ

(

Weylg
)

ijαβ
= 0,

with C1 = 2q(q−1)
(n−1)(n−2) , C2 = 2p(p−1)

(n−1)(n−2) and C3 = 2(p−1)(q−1)
(n−1)(n−2) . The mixed terms

(

Weylg
)

ijkα
and

(

Weylg
)

iαβγ
are null, and the other terms are obtained via the

symmetries of the Weyl tensor. We denote the coordinates in R
n by (X,Y ), where

X ∈ Rp and Y ∈ Rq. Let V ∈ Σ be O(p) × O(q) invariant and let Cn,V =
4n

3(n−2)2

(∫

Rn |V |2
⋆

dx
)−1

. Using (3.7) and the explicit expression of Weylg(x0) we

have

C−1
n,V Weylg ⊗B = C1

∫

Rn

[

|X |2|∇1V |2 − (X,∇1V )2
]

dXdY

+ C2

∫

Rn

[

|Y |2|∇2V |2 − (Y,∇2V )2
]

dXdY

− C3

∫

Rn

[

|X |2|∇2V |2 + |Y |2|∇1V |2 − 2(X,∇1V )(Y,∇2V )
]

dX dY

where ∇1V and ∇2V denote respectively the gradient of V with respect to X ∈ R
p

and Y ∈ Rq. The O(p)×O(q) invariance of V implies that V (X,Y ) = V (|X |, |Y |),
and as a consequence we have ∇1V (X,Y ) = ∂1V (X,Y ) X

|X| and ∇2V (X,Y ) =

∂2V (X,Y ) Y
|Y | where ∂1V and ∂2V are the partial derivatives of (r1, r2) 7→ V (r1, r2).

We obtain in the end

C−1
n,V Weylg ⊗B = −C3

∫

Rn

[

|X |2(∂2V )2 + |Y |2(∂1V )2 − 2|X ||Y |∂1V ∂2V
]

dX dY

= −C3

∫

Rn

(

|X |∂2V − |Y |∂1V
)2

dX dY ≤ 0.

If Weylg ⊗B = 0, then r2∂1V − r1∂2V for all r1 = |X | > 0 and r2 = |Y | > 0. This

shows that V = V (r), for r2 = r21 + r22 when r1, r2 > 0, and this equality extends
continuously to Rn\{0}. We then get that V is radially symmetrical, contradicting
our assumption. Therefore Weylg ⊗B < 0. �

Corollary 3.5. There are manifolds (M, g) of dimension n ≥ 5 and families of
bubbles B = (Bε)ε>0 as in Definition 3.1 such that Weylg ⊗B < 0.

Proof. We choose p, q ≥ 2 such that n := p + q ≥ 5. As before we denote by
gn the round metric in Sn. It follows from the result of Ding [9] that for all

L > 0, there exists Ṽ ∈ C2(Sn) that solves ∆gn Ṽ + n(n−2)
4 Ṽ = |Ṽ |2

∗−2Ṽ , satisfies
∫

Sn
|Ṽ |2

∗

dvgn ≥ L and is O(p) × O(q + 1)-invariant, that is Ṽ (x, y) = Ṽ (|x|, |y|)

for (x, y) ∈ R
p × R

q+1 = R
n+1. Let πN : Sn\{N} → R

n be the stereographic
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projection from the North pole. Let, for x ∈ Rn,

V (x) :=

(

2

1 + |x|2

)
n−2
2

Ṽ
(

π−1
N (x)

)

.

Then V ∈ C2(Rn)∩D1,2(Rn) solves ∆ξV = |V |2
⋆−2V in Rn, satisfies

∫

Rn |V |2
∗

dx ≥
L and using the coordinate expression of the stereographic projection it is easily seen
that it is O(p)×O(q)-invariant, that is V (x′, x′′) = V (|x′|, |x′′|) for (x′, x′′) ∈ Rp ×
Rq = Rn. Up to taking L large enough, we get that V is not O(n)-invariant since by
Obata [26] finite-energy radial solutions of (1.2) are translations and rescalings of
B+

0 given by (2.2) and all have fixed minimal Dirichlet energy. Let nowM := Sp×Sq

and g := gp ⊗ gq be the product metric of the round metrics on Sp and Sq. Let
B = (Bε)ε>0 be any family of bubbles in (M, g) modeled on V as in Definition 3.1,
centered at (xε)ε ∈ M and with radius (µε)ε ∈ R>0 and x0 = limε→0 xε, where
x0 ∈ M is any point. For L large enough Proposition 3.4 applies and shows that
Weylg ⊗B < 0. �

3.3. The mass of the Green’s function in 3D. We conclude this section by
recalling the definition of the mass when n = 3, following Li-Zhu [20]:

Definition 3.3. Let (M, g) be a smooth, closed, connected 3−dimensional Rie-
mannian manifold. Let h ∈ C1(M) be such that ∆g + h is coercive. Let Gh be
the Green’s function for ∆g + h. Then for all x0 ∈ M , there exists mh(x0) ∈ R,
denoted as the mass, such that

Gh(x, x0) =
1

4πdg(x, x0)
+mh(x0) + o(1) as x → x0.

When n = 3, ∆g + h is coercive and x0 ∈ M , It follows from the construction of
the Green’s function (see Aubin [3], Robert [32]) that there exists βx0 ∈ C0(M) ∩
Hp

2 (M) for all p < 3 such that

(3.8) Gh(x, x0) =
χ(x)

4πdg(x, x0)
+ βx0(x) for all x ∈ M\{x0},

where χ ∈ C∞(M) is a cutoff function with χ(x) = 1 in Bg(x0,
rg
2 ) and χ(x) =

0 in M\Bg(x0, rg). We have (∆g + h)βx0 = −(∆g + h)((4π)−1χdg(·, x0)
−1) =

O(dg(·, x0)
−1) and standard elliptic theory then shows that

(3.9)

|βx0(x)| ≤ C , |∇βx0(x)| ≤ C
(

1 + | ln dg(x0, x)|
)

for all x ∈ Bg

(

x0,
rg
2

)

\{0}.

It now follows from Definition 3.3 that

mh(x0) := βx0(x0).

4. A priori pointwise estimates for families of bubbles

4.1. Statement of the results. In this section we will assume, as in the introduc-
tion, that (uε)0<ε≤1 is a family of possibly sign-changing solutions of (1.3) satisfying
(1.4):

uε = cBε + o(1) in H1(M),

for some c > 0, where Bε is a family of bubbles as in Definition 3.1, centered at xε

with radius µε. Here (xε)0<ε≤1 and (µε)0<ε≤1 are families of points in M and of
positive numbers with µε → 0 as ε → 0. We let V ∈ Σ, where Σ is as in (2.1), be
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the function that appears in (3.4). Under this assumption (uε)0<ε≤1 blows-up with
only one possibly sign-changing bubble and a zero weak limit. Throughout this
paper we will adopt the following conventions: for nonnegative families (aε)0<ε≤1

and (bε)0<ε≤1 of functions in M (or real numbers), we will write aε . bε, or
equivalently aε = O(bε), when there exists a positive constant C such that

aε(x) ≤ Cbε(x) for all 0 < ε ≤ 1 and any x ∈ M.

Since ∆g + hε is coercive we let, for any 0 < ε ≤ 1, Ghε
be the positive Green’s

function of ∆g +hε (see Robert [32]). Since hε → h in C1(M) as ε → 0 and ∆g +h
is coercive there exists C > 0 such that

(4.1)
∣

∣

∣dg(x, y)
n−2Ghε

(x, y)−
1

(n− 2)ωn−1

∣

∣

∣ ≤ Cdg(x, y)

holds true for any (x, y) ∈ M ×M\D(M) and for any 0 < ε ≤ 1, where D(M) =
{(x, x), x ∈ M} and where ωn−1 is the area of the standard sphere Sn−1. Define,
for x ∈ M ,

Fε(xε, x) = (n− 2)ωn−1dg(xε, x)
n−2Ghε

(xε, x).

We define, for any x ∈ M and any 0 < ε ≤ 1:

(4.2)
Bµε,xε(x) = χ (dg(xε, x))Fε(xε, x)µ

− n−2
2

ε V

(

1

µε

exp−1
xε

(x)

)

+ (1− χ (dg(xε, x))) (n− 2)ωn−1λ(V )µ
n−2
2

ε Ghε
(xε, x),

where λ(V ) is as in (2.9) and for χ ∈ C∞
c (R) with χ ≡ 1 in [0,

ig(M)
4 ] and χ ≡ 0

in [
ig(M)

2 ,+∞), and where ig(M) is the injectivity radius of (M, g). By (4.1) and
properties of the Green’s function (see [32]) we have

Fε(xε, x) = 1 +O
(

dg(xε, x)
)

and |∇xFε(xε, x)| = O(1) for x ∈ M.

It is therefore easily seen with (3.4) that

Bµε,xε = Bε + o(1) in H1(M),

so that (Bµε,xε)0<ε≤1 is a family of bubbles which is equivalent to (Bε)0<ε≤1 in the
sense of Proposition 3.1. The original assumption (1.4) implies that uε still satisfies

(4.3) uε = cBµε,xε + o(1) in H1(M)

for some c > 0. We will thus, in the subsequent analysis, work with the family
(Bµε,xε)0<ε≤1. If (yε)ε is a family of points in M satisfying µε << dg(xε, yε) ≤
ig(M)

4 we also have, by (2.4), (4.1) and (4.2),

(4.4)

Bµε,xε(yε) = Fε(xε, yε)µ
−n−2

2
ε V

(

1

µε

exp−1
xε

(yε)

)

= (n− 2)ωn−1µ
n−2
2

ε Ghε
(xε, yε)

(

λ(V ) +O

(

µε

dg(xε, yε)

))

.

The function Bµε,xε thus interpolates the (rescaled) pull-back of V in M to its
first-order expansion at infinity.

In this section we prove that (4.3) still holds true globally pointwise in M , up
to an error term that is of the order of the positive standard bubble B+

ε given by
(3.5). The main result of this section is the following:
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Proposition 4.1. Let (Mn, g), n ≥ 3 be a smooth, connected and closed manifold,
let (hε)0<ε≤1 be a family of C1 functions in M converging in C1(M) towards h and
let (pε)0<ε≤1 be a family of real numbers satisfying 2 < pε ≤ 2⋆ for all 0 < ε ≤ 1
and such that limε→0 pε = 2⋆. Assume that ∆g + h is coercive. Let (uε)0<ε≤1 be a
family of solutions of (1.3) satisfying (1.4) for some c > 0.

Then c = 1 in (1.4) and there exists a family (σε)0<ε≤1 of positive real numbers
with limε→0 σε = 0 such that,

(4.5)

∣

∣

∣

∣

∣

∣

∣

∣

uε −Bµε,xε

B+
ε

∣

∣

∣

∣

∣

∣

∣

∣

L∞(M)

≤ σε

for any 0 < ε ≤ 1, where Bµε,xε is as in (4.2) and B+
ε is as in (3.5).

The function V ∈ Σ that appears in the definition of Bµε,xε is the one that
defines the family (Bε)0<ε≤1 and is given by (3.4). In particular, for any x ∈ M
and any 0 < ε ≤ 1 Proposition 4.1 shows that

∣

∣uε(x)−Bµε,xε(x)
∣

∣ ≤ σεB
+
ε (x).

As a consequence, if (yε)0<ε≤1 is any family of points in M we have

uε(yε) = Bµε,xε(yε) + o
(

B+
ε (yε)

)

as ε → 0.

Proposition 4.1 is sharp if λ(V ) 6= 0 which, by (2.4), corresponds to a bubble
that decays to infinity in Rn as |x|2−n. This is the case for the positive bubble B+

0

given by (2.2) and for the sign-changing solutions of (1.2) constructed in DelPino-
Musso-Pacard-Pistoia [7]. Proposition 4.1 for positive solutions has been known
since the work of Li-Zhu [20] and Druet [10] and Druet-Hebey-Robert [12]] (see
also [16]). In this section we prove Proposition 4.1 by following the approach in
Ghoussoub-Mazumdar-Robert [14], that draws inspiration from the techniques in
[12,16]. Since we consider sign-changing solutions and bubbles we have to adapt the
existing techniques that have been developed for positive solutions. In the exactly
critical case pε ≡ 2⋆, Proposition 4.1 has already been proven in Premoselli [28] in
the more general case where multiple sign-changing bubbles may appear.

4.2. Proof of Proposition 4.1. As a preliminary observation we claim that

(4.6) c = lim
ε→0

µ
− (n−2)2

8 (2⋆−pε)
ε ∈ [1,+∞).

We set Ũε(x) := µ
n−2
2

ε uε(expxε
(µεx)) for x ∈ B(0,

ig(M)
2µε

). It follows from (1.4) and

(3.4) that Ũε → cV in H1
loc(R

n). With a change of variable, equation (1.3) writes

∆gεŨε + µ2
εhε(expxε

(µεx))Ũε = µ
n−2
2 (2⋆−pε)

ε |Ũε|
2⋆−2Ũε in B

(

0,
ig(M)

2µε

)

,

where we have let gε(x) = exp∗xε
g(µεx). Passing to the limit ε → 0 yields

∆ξ(cV ) =
(

lim
ε→0

µ
n−2
2 (2⋆−pε)

ε

)

c2
⋆−1|V |2

⋆−2V weakly in R
n.

Since µε → 0 as ε → 0 and pε ≤ 2∗ we have µ2∗−pε
ε ≤ 1 for ε small enough. Since

V ∈ D1,2(Rn)\{0} it cannot be harmonic, which shows that limε→0 µ
n−2
2 (2⋆−pε)

ε ∈
(0, 1]. Finally, V solves (1.2), which proves the claim.
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As already remarked, we can assume that (4.3) holds. This implies that the family
(uε)0<ε≤1 blows-up, that is

lim
ε→0

‖uε‖L∞(M) = +∞

By (4.6) it is also easily seen that

(4.7) µ
n−2
2 − 2

pε−2
ε → c as ε → 0.

Decomposition (4.3) with (4.2) shows in particular that uε → 0 in H1(M\Bg(xε, δ))
as ε → 0, for any δ > 0 fixed. The regularity theory of Trudinger [37], together
with standard elliptic theory, then shows that

(4.8) uε → 0 in C2
loc(M\{x0})

as ε → 0, where we have let x0 = limε→0 xε. We prove Proposition 4.1 in several
steps.

Step 1: Let, for any x ∈ B(0,
ig(M)
2µε

),

Uε(x) = µ
2

pε−2
ε uε

(

expxε
(µεx)

)

.

We claim that

(4.9) Uε → V in C2
loc(R

n)

as ε → 0.

Proof of (4.9). Let, for x ∈ B(0,
ig(M)
2µε

), gε(x) = exp∗xε
g(µεx). By (1.3) Uε satisfies

(4.10) ∆gεUε + µ2
εh̃εUε = |Uε|

pε−2Uε in B

(

0,
ig(M)

2µε

)

,

where we have let h̃ε(x) = hε

(

expxε
(µεx)

)

. Equation (4.3) together with (4.7)
shows that, for any compact set K ⊂⊂ R

n, we have
∫

K

|Uε − V |pεdvgε = µ
2pε

pε−2−n
ε

∫

expxε
(µεK)

∣

∣

∣uε − µ
n−2
2 − 2

pε−2
ε Bµε,xε

∣

∣

∣

pε

dvg

= µ
2pε

pε−2−n
ε

∫

expxε
(µεK)

∣

∣

∣uε − (c+ o(1))Bµε,xε

∣

∣

∣

pε

dvg

.

∫

expxε
(µεK)

∣

∣

∣
uε − (c+ o(1))Bµε,xε

∣

∣

∣

pε

dvg

= o(1)

as ε → 0, where the second line follows from (4.7) and in the third line we used that

µ
2pε

pε−2−n
ε . 1 since 2pε

pε−2 − n ≥ 0. The local regularity theory of Trudinger [37] and

standard elliptic theory using (4.10) then show that the convergence of Uε towards
V takes place in C2

loc(R
n), which concludes the proof of (4.9). �

By (4.3), (4.9) and Sobolev’s inequality, we get

(4.11) lim
R→+∞

lim sup
ε→0

‖uε‖L2⋆(M\Bg(xε,Rµε)) = 0.

Step 2: Let 0 < δ < ig(M) be fixed. We claim that

(4.12) lim
R→+∞

lim sup
ε→0

max
Bg(xε,δ)\Bg(xε,Rµε)

dg(xε, x)
2

pε−2 |uε(x)| = 0.
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Proof. To prove (4.12) we will prove more generally that

(4.13) lim sup
ε→0

max
x∈M

(µε + dg(xε, x))
2

pε−2
∣

∣uε − cBµε,xε
∣

∣(x) = 0.

It is easily seen using (4.2) that (4.12) follows from (4.13). To prove (4.13) we
proceed by contradiction and assume that, up to passing to a subsequence (εk)k≥0

with limk→+∞ εk = 0, there exists η0 > 0 and a sequence (yk)k≥0 of points of M
such that

(4.14)
(µεk + dg(xεk , yk))

2
pεk

−2
∣

∣uεk − cBµεk
,xεk

∣

∣(yk)

= max
x∈M

(µεk + dg(xεk , x))
2

pεk
−2
∣

∣uεk − cBµεk
,xεk

∣

∣(x) ≥ η0.

By (4.7) and (4.9) we get that

(4.15)
dg(xεk , yk)

µεk

→ +∞

as k → +∞. By (4.2) and since 2
pεk

−2 − n−2
2 ≥ 0 we thus have

(4.16)

(µεk + dg(xεk , yk))
2

pεk
−2
∣

∣Bµεk
,xεk

∣

∣(yk)

.

(

µεk

µε + dg(xεk , yk)

)
n−2
2

(µε + dg(xεk , yk))
2

pεk
−2−

n−2
2

= o(1)

as k → +∞. Using (4.2) and (4.8), (4.14) also shows that dg(xεk , yk) → 0, and

hence, with (4.16), that |uεk(yk)| → +∞ as k → +∞. We let νk = |uεk(yk)|
−

pεk
−2

2 ,

so that νk → 0, and for x ∈ B(0,
ig(M)
2νk

) we let

wk(x) = ν
2

pεk
−2

k uεk

(

expyk
(νkx)

)

.

By (1.3) wk satisfies

(4.17) ∆gkwk + ν2k h̃kwk = |wk|
pεk

−2wk in B

(

0,
ig(M)

2νk

)

,

where we have let h̃k(x) = hεk

(

expyk
(νkx)

)

and gk = exp∗yk
g(νkx). Independently,

by (4.14), (4.15) and (4.16) we see that

(4.18) dg(xεk , yk) & νk.

With the latter, (4.14) shows that there exists r0 > 0 small enough such that

‖wk‖L∞(B(0,2r0)) ≤ 2

for any k large enough. With (4.17) and standard elliptic theory, and since |wk(0)| =

1, wk converges in C2(B(0, r0)) as k → +∞, up to a subsequence, to a non-zero
solution w0 of

∆ξw0 = |w0|
2⋆−2w0 in B(0, r0),

that thus satisfies

(4.19)

∫

B(0,r0)

|w0|
2⋆dx > 0.
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Independently, (4.15) and (4.18) show that, up to assuming that r0 is small enough,
we have

(4.20)
1

µεk

dg (xεk , Bg(yk, r0νk)) → +∞

as k → +∞. We let qk = n
2 pεk − n. As is easily seen, it satisfies qk ≤ 2⋆ (since

pεk ≤ 2⋆), qk → 2⋆ as k → +∞ and

2qk
pεk − 2

= n.

We then have, by the C2 convergence of wk towards w0 and by Hölder’s inequality,
∫

B(0,r0)

|w0|
2⋆dx = lim sup

k→+∞

∫

B(0,r0)

|wk|
qkdvgk

= lim sup
k→+∞

∫

Bg(yk,r0νk)

|uεk |
qkdvg

. lim sup
k→+∞

(

∫

Bg(yk,r0νk)

|uεk |
2⋆dvg

)

qk
2⋆

= 0,

where the last equality follows from (4.11) and (4.20). This is a contradiction with
(4.19). Hence (4.14) cannot occur, which proves (4.13). �

For 0 < δ < ig(M) we let

(4.21) ηε(δ) = ‖uε‖L∞(M\Bg(xε,δ)).

By (4.8), ηε(δ) → 0 as ε → 0 for any 0 < δ < ig(M) fixed.

Step 3: We claim that for any 0 < α < 1
2 there exists 0 < δα < ig(M) and

Cα > 0 such that, for any x ∈ M\Bg(xε, µε) and any 0 < ε ≤ 1

(4.22) |uε(x)| ≤ Cα

(

µ
2

pε−2 (1−2α)
ε dg(xε, x)

− 4(1−α)
pε−2 + ηε(δα)dg(xε, x)

− 4α
pε−2

)

holds.

Proof of (4.22). Let 0 < α < 1
2 . For x ∈ M\Bg(xε, µε) we let

Φα
ε (x) = µ

2
pε−2 (1−2α)
ε Ghε

(xε, x)
4(1−α)

(n−2)(pε−2) + ηε(δ)Ghε
(xε, x)

4α
(n−2)(pε−2) ,

where Ghε
is the Green’s function of ∆g + hε. It follows from properties of the

Green’s function that there exists δ′α > 0 such that

dg(x, xε)
2

(

|∇xGhε
(xε, x)|

2

Ghε
(xε, x)2

− hε(x)

)

≥
(n− 2)2

4
for dg(x, xε) < δ′α.

Let δα ∈ (0, δ′α) be such that

2‖h‖L∞(M)δ
2
α < (n− 2)2α(1− α)

and let 0 < δ ≤ δα be fixed. We claim that there exists C > 0 such that, for any
0 < ε ≤ 1,

(4.23)

∣

∣

∣

∣

∣

∣

∣

∣

uε

Φα
ε

∣

∣

∣

∣

∣

∣

∣

∣

L∞(M\Bg(xε,µε))

≤ C
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holds. By (4.1) it is easily seen that (4.22) follows from (4.23). We thus prove
(4.23). We let, for any 0 < ε ≤ 1, yε ∈ M\Bg(xε, µε) be such that

∣

∣

∣

∣

uε(yε)

Φα
ε (yε)

∣

∣

∣

∣

= max
x∈M\Bg(xε,µε)

∣

∣

∣

∣

uε(x)

Φα
ε (x)

∣

∣

∣

∣

.

We proceed by contradiction and assume that, up to passing to a subsequence
(εk)k≥0 with limk→+∞ εk = 0, and up to replacing uεk by −uεk (which still solves
(1.3)), we have

(4.24)
uεk(yεk)

Φα
εk
(yεk)

→ +∞

as k → +∞. We first assume that, up to a subsequence,

(4.25) µεk = o(dg(yεk , xεk)) and dg(xεk , yεk) ≤ δα

as k → +∞. By definition of yεk we have

(4.26)
∆guεk(yεk)

uεk(yεk)
≥

∆gΦ
α
εk
(yεk)

Φα
εk
(yεk)

.

On the one side, straightforward computations show that

dg(xεk , yεk)
2∆gΦ

α
εk
(yεk)

Φα
εk
(yεk)

≥
(n− 2)2

2
α(1 − α) > 0 for dg(x, xε) < δα

as k → +∞. On the other side, (1.3) and (4.25) show that

dg(xεk , yεk)
2∆guεk(yεk)

uεk(yεk)
≤ dg(xεk , yεk)

2|uεk(yεk)|
pεk

−2 + 2‖h‖L∞(M)δ
2
α

as k → +∞. With (4.12), (4.26) and the choice of δα this yields a contradiction for
k large enough, and shows that (4.25) cannot happen. Thus we either have, up to

a subsequence,
dg(xεk

,yεk
)

µεk

→ D ∈ [1,+∞) or dg(xεk , yεk) ≥ δα as k → +∞. Using

(4.9) in the first case and (4.21) in the second case we obtain a contradiction with
(4.24). This proves (4.23) and thus (4.22). �

Step 4: We claim that

(4.27)
∣

∣uε(x)
∣

∣ . B+
ε (x) for any x ∈ M.

where B+
ε is defined in (3.5).

Proof of (4.27). We first prove a weaker statement. Let 0 < δ < ig(M) be fixed.
We claim that there exists Cδ > 0 such that, for any 0 < ε ≤ 1 and x ∈ M ,

(4.28)
∣

∣uε(x)
∣

∣ ≤ Cδ

(

B+
ε (x) + ηε(δ)

)

holds, where B+
ε is as in (3.5). Let (yε)0<ε≤1 be any family of points in M . First, if

dg(yε, xε) ≥ δ, (4.28) follows from (4.21). We can thus assume that yε ∈ Bg(xε, δ)
for all 0 < ε ≤ 1. A representation formula for uε at yε gives, with (1.3),

(4.29)

uε(yε) =

∫

Bg(xε,µε)

Ghε
(yε, y)|uε(y)|

pε−2uε(y)dy

+

∫

M\Bg(xε,µε)

Ghε
(yε, y)|uε(y)|

pε−2uε(y)dy.
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Straightforward computations with (4.7), (4.9) and (4.1) show that

(4.30)

∣

∣

∣

∣

∣

∫

Bg(xε,µε)

Ghε
(yε, y)|uε(y)|

pε−2uε(y)dy

∣

∣

∣

∣

∣

. B+
ε (yε)

(see e.g. [16, Proposition 6.1]). Straightforward computations using (4.7), (4.22)
and (4.1) show that

(4.31)

∣

∣

∣

∣

∣

∫

M\Bg(xε,µε)

Ghε
(yε, y)|uε(y)|

pε−2uε(y)dy

∣

∣

∣

∣

∣

. B+
ε (yε) + ηε(δ)

pε−1.

Plugging (4.30) and (4.31) in (4.29) and since ηε(δ) → 0 as ε → 0 proves (4.28).
We now claim that, for any 0 < δ < ig(M) fixed,

(4.32) ηε(δ) . µ
n−2
2

ε

holds for ε small enough. With (3.5), (4.28) and (4.32) this will conclude the proof
of (4.27). We prove (4.32) by contradiction: we fix 0 < δ < ig(M) and, up to
passing to a subsequence (εk)k≥0 with limk→+∞ εk = 0 we assume that

(4.33)
ηεk(δ)

µ
n−2
2

εk

→ +∞

as k → +∞. We let, for k ≥ 0 and for any x ∈ M ,

ûk(x) =
uεk(x)

ηεk(δ)
,

and let yk ∈ M\Bg(xεk , δ) be such that |ûk(yk)| = 1. By (3.5), (4.28) and (4.33)
the family (ûk)k≥0 is uniformly bounded in compact subsets of M\{x0}, where
x0 = limε→0 xε. By (1.3), standard elliptic theory and since ηεk(δ) → 0 as k →
+∞, ûk thus converges in C2

loc(M\{x0}), up to a subsequence, to some function
û0 ∈ C2(M\{x0}) that satisfies ∆gû0+hû0 = 0 in M\{x0} and |û0(y0)| = 1, where
y0 = limk→+∞ yk ∈ M\Bg(x0, δ). Passing (4.28) to the limit pointwise shows in
addition that we have

|û0(x)| ≤ Cδ for all x ∈ M\{x0}.

Classical arguments thus show that the singularity of û0 at x0 is removable and
that û0 satisfies ∆gû0 + hû0 = 0 in M in a strong sense. This implies û0 ≡ 0 since
∆g + h is coercive, which is a contradiction with |û0(y0)| = 1. Thus (4.32) holds
true and (4.27) is proven. �

A consequence of (4.27), (1.3) and standard elliptic theory is the following esti-
mate on the first and second derivatives of uε: for 0 ≤ k ≤ 2,

(4.34) |∇kuε(x)| .
µ

n−2
2

ε

(µε + dg(xε, x))
n−2+k

for all x ∈ M and 0 < ε ≤ 1.

Estimate (4.34) follows from a scaling argument and from standard elliptic theory.

Step 5: we now claim that

(4.35) 2⋆ − pε =



















O(µε) if n = 3

O

(

µ2
ε ln

1

µε

)

if n = 4

O(µ2
ε) if n ≥ 5

.
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as ε → 0. In particular limε→0 µ
2⋆−pε
ε = 1.

Proof of (4.35). Let 0 < δ < ig(M) be fixed and let

Ωε = Bg(xε, δ).

We write a Pohozaev identity for uε on Ωε: let X be any smooth vector field in M .
Integrating (1.3) by parts against 〈X,∇uε〉 classically shows that

(4.36)

∫

Ωε

hεuε〈X,∇uε〉dvg +

∫

Ωε

(

∇X −
1

2
divgXg

)

(∇uε,∇uε)dvg

+

∫

∂Ωε

(

1

2
〈X, ν〉|∇uε|

2
g − 〈X,∇uε〉∂νuε −

1

pε
〈X, ν〉|uε|

pε

)

dσg

= −
1

pε

∫

Ωε

divgX |uε|
pεdvg

(see e.g. [16, Proposition 6.2]). Let now Xε be the smooth vector field whose
coordinates in the exponential chart at xε are (Xε(x))

i = xi. For x ∈ Ωε and any

1 ≤ i, j ≤ n we have ∇iX
j
ε (x) = δji +O(dg(xε, x)

2). As a consequence,
∫

Ωε

(

∇X −
1

2
divgXg

)

(∇uε,∇uε)dvg =

∫

Ωε

(

1−
n

2
+O(dg(xε, ·)

2)
)

|∇uε|
2
gdvg

and

−
1

pε

∫

Ωε

divgX |uε|
pεdvg =

∫

Ωε

(

−
n

pε
+O(dg(xε, ·)

2

)

|uε|
pεdvg.

Integrating (1.3) by parts shows independently that
∫

Ωε

|∇uε|
2
gdvg =

∫

Ωε

|uε|
pεdvg −

∫

Ωε

hεu
2
εdvg +

∫

∂Ωε

uε∂νuεdσg,

so that (4.36) becomes

n

(

1

2⋆
−

1

pε

)∫

Ωε

|uε|
pεdvg

=

∫

Ωε

(

n− 2

2
u2
ε + hεuε〈X,∇uε〉

)

dvg

+O

(∫

Ωε

dg(xε, ·)
2|∇uε|

2
gdvg +

∫

Ωε

dg(xε, ·)
2|uε|

pεdvg

)

+

∫

∂Ωε

(

1

2
〈X, ν〉|∇uε|

2
g − 〈X,∇uε〉∂νuε −

n− 2

2
uε∂νuε

−
1

pε
〈X, ν〉|uε|

pε

)

dσg.

Straightforward computations using (4.27) and (4.34) show that
∫

Ωε

dg(xε, ·)
2|∇uε|

2
gdvg +

∫

Ωε

dg(xε, ·)
2|uε|

pεdvg

+

∫

Ωε

∣

∣hεuε〈X,∇uε〉
∣

∣dvg +

∫

Ωε

|hε|u
2
εdvg =



















O(µε) if n = 3

O(µ2
ε ln

1

µε

) if n = 4

O(µ2
ε) if n ≥ 5

.
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By (4.27) and (4.34) we have

∫

∂Ωε

(

1

2
〈X, ν〉|∇uε|

2
g − 〈X,∇uε〉∂νuε −

n− 2

2
uε∂νuε −

1

pε
〈X, ν〉|uε|

pε

)

dσg = O(µn−2
ε ).

Plugging the latter computations in (4.36) thus shows that

(4.37) n

(

1

2⋆
−

1

pε

)∫

Ωε

|uε|
pεdvg =



















O(µε) if n = 3

O(µ2
ε ln

1

µε

) if n = 4

O(µ2
ε) if n ≥ 5

.

Finally, using (4.7) and (4.9), Fatou’s lemma shows that

∫

Ωε

|uε|
pεdvg ≥ c0

for some positive c0 > 0 independent of ε. Going back to (4.37) thus proves
(4.35). �

Step 6: End of the proof of Proposition 4.1. We are now in position to con-
clude the proof of Proposition 4.1. The equality c = 1 follows from (4.6) and (4.35)
and we thus only need to prove (4.5). We proceed by contradiction and assume
that (4.5) is false: up to passing to a subsequence (εk)k≥0 with limk→+∞ εk = 0,
there exists a sequence (yk)k≥0 of points of M such that

(4.38) |uεk(yk)−Bµεk
,xεk (yk)| ≥ η0B

+
εk
(yk)

for some η0 > 0, where Bµε,xε and B+
ε are as in (4.2) and (3.5). Since by (4.35) we

have c = 1, (4.9) shows with (4.38) that

(4.39)
dg(xεk , yεk)

µεk

→ +∞

as k → +∞. We write a representation formula for uεk in M : if Ghεk
again denotes

the Green’s function for ∆g + hεk , we have with (1.3):

(4.40) uεk(yk) =

∫

M

Ghεk
(yk, y)|uεk(y)|

pεk
−2uεk(y)dvg(y).

Let R > 1 be fixed and let x ∈ B(0, R). By (4.1) and (4.39) we have

(n− 2)ωn−1dg(xεk , yk)
n−2Ghεk

(

expxεk
(µεkx), yk)

)

→ 1 if dg(xεk , yk) → 0

uniformly in B(0, R) as k → +∞. Since hεk → h in C1(M) we also have

Ghεk

(

yk, expxεk
(µεkx)

)

= Gh(xεk , yk) + o(1) if dg(xεk , yk) 6→ 0
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as k → +∞. Since yk satisfies (4.39), and by (4.1), the dominated convergence
theorem gives with the definition (4.4)

(4.41)

∫

Bg(xεk
,Rµεk

)

Ghεk
(yk, ·)|uεk |

pεk
−2uεkdvg

= (1 + o(1))Ghεk
(xεk , yk)µ

n−2
2

εk

∫

B(0,R)

|V |2
⋆−2V dx

= (1 + o(1))Ghεk
(xεk , yk)(n− 2)ωn−1µ

n−2
2

εk

(

λ(V ) +O(R−2)
)

= Bµεk
,xεk (yk) + o(Bεk(yk)) +O(R−2Bεk(yk))

where λ(V ) is as in (2.4), where the third line follows from (2.8) and (2.9) and the
last one from (4.2) and (4.39). Independently, straightforward computations show
with (4.27) that

∣

∣

∣

∫

M\Bg(xεk
,Rµεk

)

Ghεk
(yk, ·)|uεk |

pεk
−2uεkdvg

∣

∣

∣ . R−2B+
εk
(yk) + o

(

B+
εk
(yk)

)

holds. Plugging the latter and (4.41) in (4.40) shows that, for any fixed R > 0 and
for any k large enough we have

uεk(yk) = Bµεk
,xεk (yk) + o

(

B+
εk
(yk)

)

+O
(

R−2B+
εk
(yk)

)

.

By choosing R large enough and passing to a subsequence we get a contradiction
with (4.38). This concludes the proof of Proposition 4.1. �

We conclude this section by showing an improvement of (4.34) when k = 1 that
will be needed in the next section. Let (hε)0<ε≤1, (pε)0<ε≤1 be as in the statement
of Proposition 4.1 and let (uε)0<ε≤1 be a family of solutions of (1.3) satisfying (1.4)
for some c > 0. In particular Proposition 4.1 applies to (uε)0<ε≤1 and (4.5) holds.
We claim that there exists a family of positive real numbers (σε)0<ε≤1, with σε → 0
as ε → 0, and a positive constant C such that for any x ∈ M and any 0 < ε ≤ 1
we have

(4.42)
∣

∣

∣∇uε(x) −∇Bµε,xε(x)
∣

∣

∣ ≤ σε

µ
n−2
2

ε

(µε + dg(xε, x))n−1
+ Cµ

n−2
2

ε

where Bµε,xε is as in (4.2).

Proof of (4.42). Let 0 < 2δ < ig(M) be fixed. We define wε(x) = uε

(

expxε
(x)
)

for x ∈ B(0, 2δ). We first prove that there exists a family (σε)0<ε≤1, with σε → 0
as ε → 0, and a constant C > 0 such that for any x ∈ B(0, 2δ) and any 0 < ε ≤ 1
we have

(4.43)
∣

∣

∣
∂iwε(x) − µ

−n
2

ε (∂iV )
( x

µε

)∣

∣

∣
≤ σε

µ
n−2
2

ε

(µε + |x|)n−1
+ Cµ

n−2
2

ε .

Let x ∈ B(0, 2δ). The representation formula (4.40) can be differentiated with
respect to x: this gives, for 1 ≤ i ≤ n,

∂iwε(x) =

∫

M

∂iGhε

(

expxε
(x), y

)

|uε(y)|
pε−2uε(y)dvg(y),

where we have let ∂iGhε
(expxε

(x), y) = ∂
∂xi

(

Ghε

(

expxε
(·), y

))

(x). Standard results

on the Green’s functions (see e.g. [32]) show that there exists C > 0 such that for
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all ε small enough and all x, y ∈ B(0, 2δ),

(4.44)

∣

∣

∣

∣

∣

∂iGhε

(

expxε
(x), expxε

(y)
)

+
1

ωn−1

(x− y)i
|x − y|n

∣

∣

∣

∣

∣

≤ C|x−y|2−n+C|x|·|x−y|1−n

holds. Let now, for x ∈ Rn, Ṽε(x) = µ
−n−2

2
ε V

(

x
µε

)

. Let (zε)0<ε≤1 be any family of

points in B(0, 2δ). Straightforward computations using (4.35) and (4.5) show that

∂iwε(zε) = −

∫

B(0,2δ)

1

ωn−1

(zε − y)i
|zε − y|n

|Ṽε|
pε−2Ṽεdy + o

(

µ
n−2
2

ε

(µε + |zε|)n−1

)

+O(µ
n−2

2
ε )

= −

∫

B(0,2δ)

1

ωn−1

(zε − y)i
|zε − y|n

|Ṽε|
2∗−2Ṽεdy + o

(

µ
n−2
2

ε

(µε + |zε|)n−1

)

+O(µ
n−2
2

ε )

+

∫

B(0,2δ)

1

ωn−1

(zε − y)i
|zε − y|n

(

|Ṽε|
2∗−2 − |Ṽε|

pε−2
)

Ṽεdy.

Let us estimate the last term. Using the control (4.6) , we get that
∣

∣

∣

∣

∣

∫

B(0,2δ)

1

ωn−1

(zε − y)i
|zε − y|n

(

|Ṽε|
2∗−2 − |Ṽε|

pε−2
)

Ṽεdy

∣

∣

∣

∣

∣

≤

∫

B(0,2δ)

|zε − y|1−n
∣

∣

∣|Ṽε|
2∗−pε − 1

∣

∣

∣ · |Ṽε|
pε−1dy

≤

∫

B(0,2δ)∩{|Ṽε|<µ
n−2
2

ε }

|zε − y|1−n
∣

∣

∣|Ṽε|
2∗−pε − 1

∣

∣

∣ · |Ṽε|
pε−1dy

+

∫

B(0,2δ)∩{|Ṽε|≥µ
n−2
2

ε }

|zε − y|1−n
∣

∣

∣|Ṽε|
2∗−pε − 1

∣

∣

∣ · |Ṽε|
pε−1dy

≤ Cµ
n−2
2 (pε−1)

ε +

∫

B(0,2δ)∩{|Ṽε|≥µ
n−2
2

ε }

|zε − y|1−n
∣

∣

∣|Ṽε|
2∗−pε − 1

∣

∣

∣ · |Ṽε|
pε−1dy

The control (2.8) and (4.6) yield

{|Ṽε| ≥ µ
n−2
2

ε } ⇒
∣

∣

∣|Ṽε|
2∗−pε − 1

∣

∣

∣ = o(1)

as ε → 0, so that we get

∂iwε(zε) = −

∫

Rn

1

ωn−1

(zε − y)i
|zε − y|n

|Ṽε|
2∗−2Ṽεdy + o

(

µ
n−2
2

ε

(µε + |zε|)n−1

)

+O(µ
n−2

2
ε )

= ∂iṼε(zε) + o

(

µ
n−2
2

ε

(µε + |zε|)n−1

)

+ O(µ
n−2
2

ε ),

where the last equality follows from a representation formula for (1.2) in Rn, since
V ∈ Σ. This proves (4.43). Estimate (4.42) now follows from (4.1), (4.43), (4.44)
and the explicit expression of Bµε,xε in (4.2). �

Remark 4.2. We assumed for simplicity here that ∆g +h is coercive. If ∆g +h had
a kernel and, more generally, if (uε)0<ε≤1 was a finite-energy family of solutions
of (1.3) (without the one-bubble assumption (1.4)), an analogue of Proposition 4.1
would still hold. We refer for instance to Premoselli [28] where a generalisation
of Proposition 4.1 was proven when pε = 2⋆ for all 0 < ε ≤ 1, in the general
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multi-bubble case and when ∆g + h is allowed to have a kernel. The proof of [28]
allows to deal with any multi-bubble configuration and would still adapt to the
asymptotically critical setting pε ≤ 2⋆, pε → 2⋆ as a careful inspection of the proof
shows. In the one-bubble case (1.4) that we consider here, the proof of Proposition
4.1 that we gave in this section is shorter and more direct.

5. Proof of Theorems 1.1 and 1.2

Throughout this section we let (Mn, g), n ≥ 3 be a smooth, connected and
closed manifold, (hε)0<ε≤1 be a family of C1 functions in M converging in C1(M)
towards h and let (pε)0<ε≤1 be a family of real numbers satisfying 2 < pε ≤ 2⋆ for
all 0 < ε ≤ 1 and such that limε→0 pε = 2⋆. We assume that ∆g+h is coercive. We
assume again, as in Section 4, that (uε)0<ε≤1 is a family of possibly sign-changing
solutions of (1.3) satisfying (1.4):

uε = cBε + o(1) in H1(M),

for some c > 0, where Bε is a family of bubbles as in Definition 3.1 centered at
xε with radius µε and modeled on V ∈ Σ. In particular the analysis of Section 4
applies: Proposition 4.1, (4.34) and (4.42) show that there exists a family (σε)0<ε≤1

with σε → 0 as ε → 0 and a positive constant C such that, for any x ∈ M and any
ε > 0,

(5.1)

∣

∣uε(x)−Bµε,xε(x)
∣

∣ ≤ σεB
+
ε (x),

∣

∣

∣∇uε(x) −∇Bµε,xε(x)
∣

∣

∣ ≤ σε

µ
n−2
2

ε

(µε + dg(xε, x))n−1
+ Cµ

n−2
2

ε and

(µε + dg(xε, x))
k |∇kuε(x)| ≤ CB+

ε (x) for k = 1, 2

hold, where B+
ε and Bµε,xε are as in (3.5) and (4.2). Equation (4.35) also applies

and shows that 2⋆ − pε = O(µε). In this section we will prove Theorem 1.1 using
(5.1). We first recall the classical conformal normal coordinates result of Lee-Parker

[18]. It states the existence of a positive function Λ ∈ C∞(M×M) such that, letting

Λy(x) = Λ(y, x) for any y, x ∈ M and gy := Λ
4

n−2
y g we have

(5.2)

Λy(x) = 1 +O
(

dgy (y, x)
2
)

,

Ricgy (x) = O
(

dgy (y, x)
)

Sgy = O
(

dgy (y, x)
2
)

and
√

|gy|(x) = 1 +O
(

dgy (y, x)
)N

as dgy (y, x) → 0, for a fixed N large enough, where Ricgy denotes the Ricci tensor

of gy and where it is understood that
√

|gy| is computed with respect to the ex-

ponential map of gy at y. For ε > 0 we let gxε
= Λ

4
n−2
xε g and we let exp

gxε
xε be the

exponential chart of gxε
at xε. Let δ > 0 be such that 2δ < infξ∈M igξ(M). We

define gε and vε in B(0, 2δ) ⊂ Rn as follows:

(5.3)
gε =

(

exp
gxε
xε

)∗
gxε

and

vε(x) =
uε

Λxε

◦ exp
gxε
xε .
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First, (5.2) shows that, for any fixed x ∈ M , we have

(5.4) dgx(x, y) = dg(x, y) +O
(

dg(x, y)
3
)

as dg(x, y) → 0.

The latter with (2.8), (4.2) and (5.1) implies that

(5.5)

∣

∣

∣vε(x) − Ṽε(x)
∣

∣ ≤ σεB̃
+
ε (x) + Cµ

n−2
2

ε ,

∣

∣

∣∇vε(x)−∇Ṽε(x)
∣

∣

∣ ≤ σε

µ
n−2
2

ε

(µε + |x|)n−1
+ Cµ

n−2
2

ε and

(µε + dgε(xε, x))
k
|∇kvε(x)| ≤ CB̃+

ε (x) for k = 1, 2

for any x ∈ B(0, 2δ), where C > 0 is independent of ε and where we have let

B̃+
ε (x) =

µ
n−2
2

ε

(

µ2
ε +

|x|2

n(n−2)

)
n−2
2

and Ṽε(x) = µ
−n−2

2
ε V

(

x

µε

)

.

Moreover, it follows from (4.9) that

(5.6) lim
ε→0

v̂ε = V in C2
loc(R

n), where v̂ε(x) := µ
n−2
2

ε vε(µεx).

Using (1.3) and the conformal invariance property of the conformal Laplacian it is
easily seen that vε satisfies

(5.7) ∆ξvε +Aε(vε) + ĥεvε = Λpε−2⋆

ε |vε|
pε−2vε in B(0, 2δ),

where Λε := Λxε
◦ exp

gxε
xε , ξ denotes the Euclidean metric and where we have let

∆ξ = −
∑n

i=1 ∂
2
i ,

(5.8) ĥε(x) =

[

Λ2−2⋆

xε

(

hε −
n− 2

4(n− 1)
Sg

)

]

(

exp
gxε
xε (x)

)

and

(5.9) Aε(vε) = (∆gε −∆ξ) vε +
n− 2

4(n− 1)
Sgεvε.

Integrating (5.7) against 〈x,∇vε〉+
n−2
2 vε in B(0, δ) with respect to the Euclidean

metric yields the following Pohozaev identity (see Marques [21, Lemma 2.1]):

(5.10)

∫

∂B(0,δ)

(

n− 2

2
vε∂νvε −

δ

2
|∇vε|

2
ξ + δ(∂νvε)

2 +
1

pε
Λpε−2⋆

ε δ|vε|
pε

)

dσ

=
1

pε

∫

B(0,δ)

(pε − 2⋆)xk∂kΛεΛ
pε−1−2⋆

xε
|vε|

pεdx

+ n

(

1

pε
−

1

2⋆

)∫

B(0,δ)

Λpε−2⋆

ε |vε|
pεdx

+

∫

B(0,δ)

(

xk∂kvε +
n− 2

2
vε

)

Aε(vε)dx

+

∫

B(0,δ)

(

xk∂kvε +
n− 2

2
vε

)

ĥεvεdx.

In all the computations of this section it is intended that all the terms involving
pε − 2⋆ disappear in the case where pε = 2⋆ for any ε > 0. We now estimate all the
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integrals appearing in (5.10). First, straightforward computations using (5.2) and
(5.5) show that

(5.11)

1

pε

∫

B(0,δ)

(pε − 2⋆)xk∂kΛεΛ
pε−1−2⋆

ε |vε|
pεdx

+ n

(

1

pε
−

1

2⋆

)∫

B(0,δ)

Λpε−2⋆

ε |vε|
pεdx

=
(n− 2)2

4n
(2⋆ − pε)

∫

Rn

|V |2
⋆

dx+ o (|pε − 2⋆|)

and that

(5.12)

∫

∂B(0,δ)

(

n− 2

2
vε∂νvε −

δ

2
|∇vε|

2
ξ + δ(∂νvε)

2 +
1

pε
Λpε−2⋆

ε δ|vε|
pε

)

dσ

= O(µn−2
ε ) =

{

o(µ2
ε) if n ≥ 5

O(µ2
ε) if n = 4

as ε → 0. A simple integration by parts shows that

(5.13)

∫

B(0,δ)

(

xk∂kvε +
n− 2

2
vε

)

ĥεvεdx

=
1

2

∫

∂B(0,δ)

δĥεv
2
εdσ −

∫

B(0,δ)

(

ĥε +
1

2
xk∂kĥε

)

v2εdx,

so that with (5.5), we get that

(5.14)

∫

B(0,δ)

(

xk∂kvε +
n− 2

2
vε

)

ĥεvεdx

= −

∫

B(0,δ)

(

ĥε +
1

2
xk∂kĥε

)

v2εdx+

{

o(µ2
ε) if n ≥ 5

O(µ2
ε) if n = 4

= −

∫

B(0,δ)

ĥεv
2
εdx+

{

o(µ2
ε) if n ≥ 5

O(µ2
ε) if n = 4

Let now w ∈ C∞(B(0, 2δ)) be a smooth function. We have, for any ε > 0 and by
(5.2),

∆gεw −∆ξw = −
(

gijε − δij
)

∂2
ijw − ∂i(gε)

ij∂jw +O
(

|x|N−1|∇w|ξ
)

where repeated indices are summed over. By (5.2) we have Ricgε(xε) = 0. Cartan’s
expansion of gε and the symmetries of the Riemann tensor show that for any 1 ≤
j ≤ n

∂i(gε)
ij(x) = −

1

3
Ricgε(xε)pjx

p +O(|x|2) = O(|x|2).

By (5.2) again we also have Sg(xε) = 0, so that Rmgε(xε) = Weylgε(xε), where
Weylgε is the (4, 0) Weyl tensor of gε. Using again Cartan’s expansion of gε we find
that for any smooth function w in B(0, 2δ), we have

(5.15) ∆gεw −∆ξw =
1

3
Weylgε(xε)ipqjx

pxq∂2
ijw +O

(

|x|3|∇2w|
)

+O
(

|x|2|∇w|
)

.
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Applying the latter to vε and using (5.5) shows that

Aε(vε) =
1

3
Weylgε(xε)ipqjx

pxq∂2
ijvε +O

(

µ
n−2
2

ε

(µε + |x|)n−3

)

.

Integrating the latter against xk∂kvε +
n−2
2 vε thus gives, using again (5.5), that

(5.16)

∫

B(0,δ)

(

xk∂kvε +
n− 2

2
vε

)

Aε(vε)dx

=
1

3
Weylgε(xε)ipqj

∫

B(0,δ)

xpxq∂2
ijvε

(

xk∂kvε +
n− 2

2
vε

)

dx

+

{

o(µ2
ε) if n ≥ 5

O(µ2
ε) if n = 4

where again repeated indices are summed over. We now separate between the cases
n = 3, n = 4 and n ≥ 5 and prove Theorems 1.1 and 1.2.

5.1. The case n ≥ 5. With v̂ε and ĥε as in (5.6) and (5.8) a change of variables
gives

∫

B(0,δ)

ĥεdx = µ2
ε

∫

B(0,µ−1
ε δ)

ĥε(µεx)v̂
2
εdx.

It follows from (5.5) that |v̂ε(x)| ≤ C(1 + |x|)2−n ∈ L2(Rn) for n ≥ 5. Therefore,
using (5.6) and Lebesgue’s convergence theorem, we get that (5.14) yields

(5.17)

∫

B(0,δ)

(

xk∂kvε +
n− 2

2
vε

)

ĥεvεdx

= −

(

h(x0)−
n− 2

4(n− 1)
Sg(x0)

)∫

Rn

V 2dx · µ2
ε + o(µ2

ε)

as ε → 0, where x0 = limε→0 xε. This limit exists up to passing to a subsequence
as ε → 0, which will be implicit from now on. Note that the integral

∫

Rn V 2dx is
finite by (2.8) since n ≥ 5.

We now deal with (5.16), still for n ≥ 5. By construction gε converges towards
(

exp
gx0
x0

)∗
gx0 in C1(B(0, δ)) as ε → 0, so that Weylgε(xε)ipqj → Weylgx0

(x0)ipqj as

ε → 0, where the components of Weylgx0
are measured in the exponential chart of

gx0 at x0. Since gx0 is conformal to g and since Λx0(x0) = 1 we have gx0(x0) =
g(x0), and by the conformal invariance of the Weyl tensor we also have

Weylgx0
(x0)ipqj = Weylg(x0)ipqj ,

where the components of Weylg(x0) in the right-hand side are measured in the
exponential chart of g at x0. By (5.5) and the dominated convergence theorem we
therefore obtain, with (5.16), that

(5.18)

∫

B(0,δ)

(

xk∂kvε +
n− 2

2
vε

)

Aε(vε)dx

=
1

3
Weylg(x0)ipqj

∫

Rn

xpxq∂2
ijV

(

xk∂kV +
n− 2

2
V

)

dx · µ2
ε + o(µ2

ε)

= −
(n− 2)2

4n

(∫

Rn

|V |2
⋆

dx

)

Weylg ⊗B · µ2
ε + o(µ2

ε)
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as ε → 0, where we used the Definition 3.2 of Weylg⊗B. Using (4.35) and plugging
(5.11), (5.12), (5.14), (5.17), (5.18) in (5.10) proves (1.5) and concludes the proof
of Theorem 1.1.

5.2. The case n = 4. It follows from (2.4), (4.4), (5.2) and (5.5) that

(5.19)

lim
R→+∞

lim sup
ε→0

sup
x∈B(0,R−1)\B(0,Rµε)

∣

∣

∣

∣

|x|2vε(x)

µε

− λ(V )

∣

∣

∣

∣

and

lim
R→+∞

lim sup
ε→0

sup
x∈B(0,R−1)\B(0,Rµε)

∣

∣

∣

∣

|x|3∇vε(x)

µε

+ 2λ(V )
x

|x|

∣

∣

∣

∣

= 0.

For any fixed R > 0 we have, by (5.5) and (5.19),
∫

B(0,δ)

ĥεv
2
εdx = O(R4µ2

ε) +
(

ĥε(0) + εR
)

µ2
ε

∫

B(0,R−1)\B(0,Rµε)

λ(V )2

|x|4
dx

where εR → 0 as R → +∞. As a consequence,
∫

B(0,δ)

ĥεv
2
εdx =

(

λ(V )2ω3ĥε(0) + o(1)
)

µ2
ε ln

1

µε

as ε → 0. By (5.8) and going back to (5.14) we therefore have, when n = 4,

(5.20)

∫

B(0,δ)

(

xk∂kvε + vε
)

ĥεvεdx

= −λ(V )2ω3

(

h(x0)−
1

6
Sg(x0)

)

µ2
ε ln

1

µε

+ o
(

µ2
ε ln

1

µε

)

as ε → 0, where as before we have let x0 = limε→0 xε. We are left with the term
(5.16). Integrating by parts and using (5.5) shows that

(5.21)

∫

B(0,δ)

xpxq∂2
ijvε

(

xk∂kvε +
n− 2

2
vε

)

dx

=

∫

B(0,δ)

xpxq∂ivε∂jvε dx+O(µ2
ε).

Arguing as above we get by (5.5) and (5.19) that

Weylg(x0)ipqj

∫

B(0,δ)

xpxq∂ivε∂jvε dx

= O(R4µ2
ε) +Weylg(x0)ipqj

∫

B(0,R−1)\B(0,Rµε)

xpxq∂ivε∂jvεdx

= 4λ(V )2µ2
εWeylg(x0)ipqj

∫

B(0,R−1)\B(0,Rµε)

xpxq xi

|x|4
xj

|x|4
dx

+O(R4µ2
ε) +O

(

εRµ
2
ε ln

1

µε

)

= O(R4µ2
ε) +O

(

εRµ
2
ε ln

1

µε

)

where as before limR→+∞ εR = 0 and where the last term involving Weylg(x0)
vanishes by antisymmetry of Weylg(x0). Going back to (5.16) with (5.21) we have
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proven that

(5.22)

∫

B(0,δ)

(

xk∂kvε +
n− 2

2
vε

)

Aε(vε)dx = o
(

µ2
ε ln

1

µε

)

as ε → 0. Remark that by (2.9) we have 2ω3λ(V ) =
∫

R4 |V |2V dx. With this
observation, using (4.35) and plugging (5.11), (5.12), (5.14), (5.20) and (5.22) in
(5.10), we get (1.6), which proves Theorem 1.2 for n = 4.

5.3. The case n = 3. We are left with the case n = 3. Using (5.11) and (5.13) the
Pohozaev identity (5.10) writes as

(5.23)

∫

∂B(0,δ)

(

1

2
vε∂νvε −

δ

2
|∇vε|

2
ξ + δ(∂νvε)

2 +
1

pε
Λpε−6
xε

δ|vε|
pε

)

dσ

=
1

12
(6− pε)

∫

Rn

|V |6dx+ o (|pε − 6|)

+

∫

B(0,δ)

(

xk∂kvε +
1

2
vε
)

Ãε(x) dx

with

Ãε(x) := (∆gε −∆ξ) vε +
(1

8
Sgε + ĥε

)

vε,

where ĥε is given by (5.8) and where vε is defined in (5.3). First, by using (5.5)
together with (5.15), we see that

|Ãε(x)| .
µ

1
2
ε

µε + |x|
for x ∈ B(0, δ).

As a consequence, straightforward computations show that

(5.24)

∣

∣

∣

∣

∣

∫

B(0,δ)

(

xk∂kvε +
1

2
vε
)

Ãε(x) dx

∣

∣

∣

∣

∣

= O
(

δµε

)

as ε → 0. Independently, (5.5) shows that

(5.25)

∣

∣

∣

∣

∣

∫

∂B(0,δ)

1

pε
Λpε−6
xε

δ|vε|
pεdσ

∣

∣

∣

∣

∣

= o(µε)

as ε → 0. We now compute the remaining boundary term. It follows from (4.4),
(5.2), (5.5), (5.7) and standard elliptic theory that

(5.26) lim
ε→0

vε(x)

µ
1
2
ε

= λĜ(x) in C2
loc(B2δ(0)\{0}),

where we have let

(5.27) λ := 4πλ(V )

and

Ĝ(x) :=
Gh(x0, exp

gx0
x0 (x))

Λx0(exp
gx0
x0 (x))

for all x ∈ B2δ(0)\{0}.

Here we recall that λ(V ) is the first term in the expansion at infinity of V (see
(2.4)), Gh is the Green’s function for the operator ∆g + h in M , Λx0 is as in (5.2)
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and exp
gx0
x0 is the exponential map at x0 with respect to gx0 . It first follows from

(5.26) that

(5.28)

lim
ε→0

µ−1
ε

∫

∂B(0,δ)

(

1

2
vε∂νvε −

δ

2
|∇vε|

2
ξ + δ(∂νvε)

2

)

dσ

=λ2

∫

∂B(0,δ)

(

1

2
Ĝ∂νĜ−

δ

2
|∇Ĝ|2ξ + δ(∂νĜ)2

)

dσ.

By (5.2) and (5.4), and since Gh(x0, ·) satisfies the expansion (3.8), there exists a

continuous function β̂ : B(0, 2δ) → R such that

Ĝ(x) =
1

4π|x|
+ β̂(x) for all x ∈ B2δ(0)\{0}.

It follows from Definition 3.3 that β̂(0) = mh(x0) and (3.9) and (5.4) show that we
have

|β̂(x)| ≤ C ; |∇β̂(x)| ≤ C(1 + | ln |x||) for all x ∈ B2δ(0)\{0}.

Straightforward computations then show that

(5.29)

∫

∂B(0,δ)

(

1

2
Ĝ∂νĜ−

δ

2
|∇Ĝ|2ξ + δ(∂νĜ)2

)

dσ = −
1

2
mh(x0) + εδ,

where limδ→0 εδ = 0. Using (4.35), plugging (5.24), (5.25), (5.28) and (5.29) in
(5.23) and using (5.27) finally shows that

(5.30) lim
ε→0

6− pε
µε

=
−96π2λ(V )2mh(x0)

∫

R3 |V |6dx
.

This proves (1.7) and concludes the proof of Theorem 1.2. �

6. A non-blowup situation

In this last Section we show how Theorem 1.1 can be used to rule out the
existence of one-bubble blowing-up solutions of equations like:

(6.1) ∆guε + huε = |uε|
2⋆−2−εuε

at a given point, in some cases. In [8], Deng-Musso-Wei have proposed a creative
approach to construct families of sign-changing solutions (uε)ε>0 to the equation
(6.1) that blow-up like a single bubble as in (1.4). The bubble that the authors
choose in [8] is one of the symmetric bubbles constructed in [7]. In their arguments,
Deng-Musso-Wei have introduced the function

ϕℓ := h− cn

(

1 +
n− 4

3n
ℓ
)

Sg,

where ℓ is a parameter associated to the familie of bubbles in [7]. The function ϕℓ

plays a crucial role in the results of [8]. We show below how, under some conditions,
it is possible to use ϕℓ to rule out one-bubble blow-up.

We let (M, g) be a smooth, closed, connected Riemannian manifold of dimension
n ≥ 5 that is locally conformally flat and has constant scalar curvature equal to −1.
This is for instance satisfied if (M, g) is a closed hyperbolic manifold. We define

cn =
n− 2

4(n− 1)
and we let 1 < t < 1 +

n− 4

3n
.

Let ξ0 ∈ M be any point.
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Step 6.1: We claim that there exists h ∈ C∞(M) such that

(6.2)























h(ξ0) = −tcn

∇h(ξ0) = 0

∇2h(x0) is positive-definite

∆g + h is coercive in H1(M).

Under (6.2), ξ0 is in particular a local strict minimum point of h.

We prove the Claim. Let for instance χ ∈ C∞
c (Rn) be a cutoff function with

0 ≤ χ ≤ 1, χ(x) = 1 in B(0, 1) and χ(x) = 0 in R
n\B(0, 2). Let, for 0 < δ <

ig(M)
2

and x ∈ M ,

hδ(x) = 1− χ
(dg(ξ0, x)

δ

)

+ χ
(dg(ξ0, x)

δ

)(

− tcn + dg(ξ0, x)
2
)

.

We claim that hδ satisfies (6.2) for δ small enough (but fixed). Indeed, in Bg(ξ0, δ),
we have hδ(x) = −tcn + dg(ξ0, x)

2, and straightforward computations show that

‖hδ − 1‖
L

n
2 (M)

≤ Cδ2,

so that ∆g + hδ is coercive for δ small enough. This proves the claim.

Step 6.2: We now let h ∈ C∞(M) satisfy (6.2). For ℓ ≥ 1 and ξ ∈ M we define

ϕℓ(ξ) = h(ξ)− cn

(

1 +
n− 4

3n
ℓ
)

Sg(ξ) = h(ξ) + cn

(

1 +
n− 4

3n
ℓ
)

,

We claim that

(6.3)







∆g + h is coercive;
ϕℓ(ξ0) > 0 for all l ≥ 1;
ξ0 is a C1−stable critical point of ϕℓ uniformly in ℓ ≥ 1.







We prove the claim. We have that

ϕℓ(ξ0) = cn

(

1 +
n− 4

3n
ℓ− t

)

≥ cn

(

1 +
n− 4

3n
− t
)

> 0

for any ℓ ≥ 1. It is easily seen with (6.2) that, for any ℓ ≥ 1, ξ0 is a critical
point of ϕℓ satisfying ϕℓ(ξ0) > 0 and ϕℓ(ξ0) → +∞ as ℓ → +∞. Since ξ0 has
non-zero degree, it is a C1-stable critical point of h (following the terminology of
[19]). That is, there is r0 > 0 that satisfies the following: for any 0 < r ≤ r0 there

exists α > 0 such that any h̃ ∈ C1(Bg(ξ0, r)) satisfying ‖h̃ − h‖
C1(Bg(ξ0,r))

≤ α

has at least one critical point in Bg(ξ0, r). By definition of ϕℓ we observe that ξ0
then remains a C1-stable critical point of ϕℓ uniformly in ℓ ≥ 1: that is, for any
0 < r ≤ r0 and α as above, and for any ℓ ≥ 1, any function ϕ̃ ∈ C1(Bg(ξ0, r))
satisfying ‖ϕ̃− ϕℓ‖C1(Bg(ξ0,r))

≤ δ has at least one critical point in Bg(ξ0, r). This

proves (6.3).

Step 6.3: We claim that there is no family (uε)0<ε≤1 ∈ C2(M) of solutions of
(6.1) such that

(6.4) uε = Bε + o(1) in H1(M),

where B = (Bε)ε>0 is a bubble centered at (ξε)ε ∈ M , limε→0 ξε = ξ0 as in
Definition 3.1.
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We prove the claim by contradiction. Since (M, g) is locally conformally flat, then
the Weyl tensor vanishes. It then follows from Theorem 1.1 of the present paper
that if there is blow-up like in (6.4), then equation (1.5) in particular tells us that

(6.5) h(ξ0) + cn = h(ξ0)− cnSg(ξ0) ≥ 0.

But this is an obvious contradiction with (6.2) since h(ξ0) = −tcn and t > 1. This
proves the claim.
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