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ABSTRACT
Recently, the performance of monocular depth estimation (MDE)
has been significantly boosted with the integration of transformer
models. However, the transformermodels are usually computationally-
expensive, and their effectiveness in light-weight models are lim-
ited compared to convolutions. This limitation hinders their de-
ployment on resource-limited devices. In this paper, we propose a
cross-architecture knowledge distillation method for MDE, dubbed
DisDepth, to enhance efficient CNN models with the supervision
of state-of-the-art transformer models. Concretely, we first build
a simple framework of convolution-based MDE, which is then en-
hanced with a novel local-global convolution module to capture
both local and global information in the image. To effectively dis-
till valuable information from the transformer teacher and bridge
the gap between convolution and transformer features, we intro-
duce a method to acclimate the teacher with a ghost decoder. The
ghost decoder is a copy of the student’s decoder, and adapting the
teacher with the ghost decoder aligns the features to be student-
friendly while preserving their original performance. Furthermore,
we propose an attentive knowledge distillation loss that adaptively
identifies features valuable for depth estimation. This loss guides
the student to focus more on attentive regions, improving its per-
formance. Extensive experiments on KITTI and NYU Depth V2
datasets demonstrate the effectiveness of DisDepth. Our method
achieves significant improvements on various efficient backbones,
showcasing its potential for efficient monocular depth estimation.
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learning approaches.
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1 INTRODUCTION
Monocular depth estimation(MDE) [3, 9] has achieved remarkable
success by the adventure of automatic feature engineering in deep
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Figure 1: RMSE (lower is better) and FLOPs comparisons of
existing MDE models and our DisDepth models on KITTI
dataset. DisDepth variants (green squares) obtain competitive
performance with significant superiority on efficiency.

neural networks. With the advent of better global feature represen-
tation in vision transformers [41], recent state-of-the-artMDEmeth-
ods resort to complicated transformer-based backbones [1, 27, 28]
and decoder structures [1, 4], which are computational-expensive
and hard to be deployed on resource-constrained devices. For ex-
ample, PixelFormer [1] with Swin-L backbone has ∼704B FLOPs
and ∼271M parameters, which is too heavy for edge devices to
inference.

In this paper, we aim to obtain competitive performance while
maintaining an efficient inference of MDE model by exploring a
CNN-based framework without transformers. This is achieved by
proposing (1) an efficient CNN-based MDE framework and (2) a
novel cross-architecture knowledge distillation (KD) method that
adjusts and distills the transformer features into CNNs. Concretely,
as shown in Figure 2, we first construct a simple and efficient CNN-
based MDE framework that contains a CNN backbone, a simple
decoder with convolutions and upsamplings, and two heads for
predicting bin centers and bin probabilities [4]. Then, a local-global
convolution (LG-Conv) module is proposed to enhance the capa-
bility of global representations in CNNs. Our LG-Conv is inspired
by our analysis that the role of self-attention in transformers is to
aggregate and broadcast the information globally among tokens,
while this global information exchange can also be done with simple
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convolution and pooling operations. The resulting global branch in
LG-Conv is a supplement of the original local convolution, and can
be directly utilized on a pretrained backbone without retraining
on pretraining dataset. Our LG-Conv is efficient and friendly to
deployment, and experiments show that it effectively extracts the
global information and boosts the performance.

Besides, we propose a new KD method for cross-architecture
distillation from transformers to CNNs. Our basic motivation is
to leverage the state-of-the-art transformer-based MDE models to
improve our CNN models with KD. However, we empirically find
that due to capacity and architecture gaps, the student is difficult
to imitate teacher’s features, and result in poor distillation per-
formance, and even worse than the CNN teacher with significant
worse performance. To understand what restricts the distillation
performance, we conduct experiments and find that the devil of
cross-architecture KD is in the architecture-intrinsic information1.
Therefore, we intuitively decouple the information in teacher fea-
ture into two parts, namely intrinsic information and extrinsic
information. The intrinsic information is architecture-independent,
and small students with different architectures are arduous in learn-
ing this information. While the extrinsic information is crucial
for generating the task predictions, and is common and invariant
to different architectures; it can be easily adapted and distilled to
students.

To this end, we propose to acclimate the transformer teacher
with a ghost decoder, which is a copy of the student’s decoder, so
that we can obtain adapted teacher features that are more appro-
priate for distillation. Specifically, we inject a feature acclimation
module (FAM, a transformer block) into the teacher backbone after
each output layer, which is used to acclimate the teacher features.
The resulting adapted features are fed into the ghost decoder to
get the predictions, which are then passed to the task loss func-
tion. This error between prediction and ground-truth is used to
optimize the FAM, and other modules including original backbone
and ghost decoder are fixed. Through this adaptation, the intrin-
sic information in teacher features is repressed and task-relevant
extrinsic information is acclimated, as the student-trained decoder
prefers student-like features. Furthermore, instead of directly op-
timizing the distillation loss between adapted teacher feature and
student feature, we introduce a attentive KD loss, which learns
valuable regions in the teacher features, and then use the learned
region importances to guide the student to focus more on valuable
features.

In sum, our contribution is threefold.

(1) We propose a simple CNN framework for MDE, with a sup-
plementary local-global convolution module to enhance the
global representations. Our framework achieves competitive
performance and is more efficient than current state-of-the-
art transformer-based frameworks.

(2) We propose a novel cross-architecture knowledge distilla-
tion method, which effectively represses the architecture-
intrinsic information and adapts task-relevant information
in the transformer teacher features for better distillation to

1For a brief, we use a fixed and pretrained student decoder to adapt the teacher features,
and the teacher still obtains similar performance, while a significant gain on distillation
performance has been obtained.

CNN student. Additionally, an attentive KD loss is introduced
to learn and distill valuable regions in teacher features.

(3) Extensive experiments on KITTI and NYU Depth V2 datasets
demonstrate our effectiveness. As shown in Figure 1, our
DisDepth achieves significant efficiency and performance
superiorities on various model scales.

2 RELATEDWORK
2.1 Monocular Depth Estimation
Monocular depth estimation (MDE) is an active area of research
that aims to regress a dense depth map from a single RGB image.
The pioneer, [9], which initiated the trend with its coarse-to-fine
network and innovative scale-invariant log loss (SIlog) for optimisa-
tion. Building on this foundation, the field embraced architectural
advances such as residual networks [23], multi-scale fusion [24],
and transformers [4, 44]. On the other hand, some works are pro-
posed to improve the optimization techniques, including reverse
Huber loss [23], classification-based schemes [6], and ordinal regres-
sion [10]. The field has also seen a move towards ordinal regression
methods, which are similar to mask-based segmentation in their ap-
proach to depth discretisation. By associating each depth value with
a confidence mask, the culmination in depth prediction becomes a
weighted interplay of these discretised values.

2.2 Knowledge Distillation
Knowledge distillation (KD) [7, 14, 16, 18, 20, 43, 45, 46] is an idea
seeded in the realm of image recognition by [16], it serves as a con-
duit to transfer knowledge from a high-capacity teacher model to a
more compact student model. Its versatility has been affirmed with
its myriad applications across various computer vision tasks, includ-
ing domain adaptation [14], object detection [7], and learning from
noisy labels [26]. In the MDE context, [32] and [2] spearheaded
efforts to harness the power of distillation, setting the stage for
subsequent innovations. The application of distillation in depth
estimation for resource-constrained environments, particularly mo-
bile systems, is of great significance [42], [33], [43]. The challenge
is balancing depth estimation accuracy with computational effi-
ciency, crucial for real-time applications like autonomous driving.
This balance becomes even more pronounced in bespoke hardware
setups, like dual-pixel sensors [11]. While the journey has begun,
the landscape of knowledge distillation in MDE, especially under
constraints, remains a dynamic and evolving field.

3 OUR APPROACH
In this section, we present our method DisDepth. We begin by
discussing the design of our CNN-only MDE framework. We then
elaborate on our local-global convolution, which is designed to
enhance the global representations of the model. Additionally, we
introduce our cross-architecture knowledge distillation approach,
where we adapt the transformer teacher with a ghost decoder. Fi-
nally, we propose an attentive knowledge distillation loss that helps
identify valuable regions for the student model to focus on.
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Figure 2: Framework of our cross-architecture KD. We introduce (feature acclimation module) FAMs to adapt the outputs of
teacher encoder, followed by a (loss attention module) LAM to identify valuable regions in the features, and these modules
are optimized with a ghost decoder and task loss. The distillation is conducted on student features and the adapted teacher
features. The parameters of teacher encoder and ghost decoder are fixed.

3.1 Frustratingly Simple CNN Framework
To improve the performance of MDE, recent state-of-the-art ap-
proaches have often relied on complex and heavy decoder struc-
tures. For instance, AdaBins [4] proposes a mViT module with
multiple transformer layers to enhance the decoded feature pyra-
mid. DepthFormer [27] introduces an HAHI module that combines
deformable cross-attention and self-attention to bridge the encoder
and decoder. PixelFormer [1] utilizes a UNet structure with ad-
vanced feature fusion modules, including window cross-attention.
However, these sophisticated decoder designs come at the cost of
reduced efficiency and deployment challenges. The heavy compu-
tational requirements and complexity make it difficult to deploy
these models in real-world scenarios.

In our research, we have discovered that by using a powerful
backbone encoder, a simple CNN-based decoder can still achieve
competitive performance in MDE. This finding has led us to develop
a surprisingly simple CNN framework. For instance, in Table 5, our
framework achieves an RMSE of 2.058 on the KITTI dataset when
using the Swin-Large backbone. In comparison, the PixelFormer
model, which employs an advanced decoder, achieves an RMSE
of 2.081. This observation suggests that we can effectively replace
complex and advanced decoder approaches with a simpler CNN-
based decoder, allowing us to focus primarily on improving the
encoder. This insight opens up new possibilities for developing
efficient and effective MDE models that strike a balance between
performance and simplicity.

Implementation details. Our framework is illustrated in Fig-
ure 2 (see the bottom-half student model). With an input image, it
first encodes its features using an encoder (backbone), then passes
the features of the last four stages to get the feature pyramid. A
simple convolutional and upsampling decoder [3] is employed to
fuse and extract features from the feature pyramid. The decoder

combines information from different scales to generate a final fea-
ture map. Following the approach introduced in AdaBins [4], the
feature map is passed through two heads. One head predicts the
bin centers, while the other head predicts the bin probabilities. The
predicted bin centers and probabilities are further processed to
obtain the final predicted depth map.

3.2 Enhanced CNNs with Local-Global
Convolutions

Compared to CNNs, transformers [41] are acknowledged to have
better global representation capability due to the global self-attention.
Some recent methods [27] have successfully shown that transform-
ers can significantly boost the MDE performance due to better
representation power and relationship modeling. However, the
computation of self-attention requires has a large peak memory
footprint and has not been widely optimized and supported by edge
computation frameworks, which have achieved remarkable success
by deploying CNNs into real-life productions (see supplementary
material for details).

To enhance the CNNs with global dependency, we propose a
convolution-based module named local-global convolution (LG-
Conv), which works as a supplement of the original local convo-
lution layers. Different from recent approaches in bringing long-
term dependency into CNNs, which focus on mixing transformers
and convolutions into one block or design complicated computa-
tion scheme that cannot be efficiently deployed, our LG-Conv is
composed with only convolutions and poolings, and has the fol-
lowing superiorities. (1) Our LG-Conv does not require retraining
the backbone. (2) Our LG-Conv is efficient. (3) Our LG-Conv is
deployment-friendly.

Implementation details. As shown in Figure 3, which a pre-
trained CNN backbone composed of multiple convolution layers,
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Figure 3: Illustration of our proposed local-global convolution (LG-Conv).

we expand each 3×3 convolutions with an additional global branch
in LG-Conv. The global branch takes the same input feature as the
original local convolution. The feature is first transformed using
a Conv-ReLU structure. Then, the hidden feature is obtained by
concatenating the local feature with the global feature, which is
obtained through average pooling. We utilize the hidden feature
to predict multi-head attentions over the spatial dimension, which
are then used to aggregate the pixel features into one feature. Addi-
tionally, we introduce a broadcast branch to predict probabilities
that determine whether the aggregated global information should
be applied to each pixel. To ensure that the pretrained semantic
information is not disturbed by directly supplementing the global
branch’s feature to the original feature, we propose initializing the
scale parameters𝜸 in the last batch normalization layer with a small
value (e.g., 0.001). This initialization ensures that the global branch
has minimal impact on the original features during the initial stages
of training, allowing the backbone to evolve smoothly.

3.3 Acclimating Teacher with A Ghost Decoder
Among existing methods, the transformer-based models outper-
form CNN-based models by a large margin. Therefore, to enhance
our efficient model, an intuitive idea is to use the state-of-the-art
transformer models as the teacher to distill our model (student).
However, we empirically find that directly imitating the features
of transformer teacher does not gains significant improvements
as expected. For instance, as summarized in Table 3, we train our
EfficientNet-B0 student with EfficientNet-B5 and Swin-L teachers,
and show that, although the Swin-L has an obvious superiority
in performance (2.06 RMSE vs. 2.60 RMSE), its distillation perfor-
mance (2.95 RMSE) is largely behind the EfficientNet-B5 teacher
(2.78 RMSE), which has a similar architecture to the student.

To better understand the distinction between CNN features and
transformer features, we conduct experiments and make an in-
teresting observation. By using a fixed student-trained decoder
to replace the original decoder in the pretrained teacher model,
and optimizing the teacher with task loss, we find that the new
teacher model achieves similar performance compared to the origi-
nal teacher. This trial successfully acclimate the teacher features
to be similar to the student’s features, while still preserving the
task-relevant information necessary for good performance.

Algorithm 1 Cross-architecture KD with DisDepth
Require: Student model S, pretrained teacher model T , train dataset D𝑡𝑟 , and

number of iterations 𝐼 .
1: Integrate FAMs into teacher model
2: for iteration 𝑖 in 1, ..., 𝐼 do
3: Get a batch of input 𝑿 and target 𝒀̂ from D𝑡𝑟

4: Copy the weights of student decoder to ghost decoder
5: Compute the outputs 𝑭 (𝑡 ) of teacher encoder with 𝑿
6: 𝑭 (𝑡 ) ← LAM(FAM(𝑭 (𝑡 ) ) )
7: Get predictions 𝒀 (𝑡 ) with ghost decoder
8: Compute features 𝑭 (𝑠 ) and predictions 𝒀 (𝑠 ) of student
9: Optimize student with Ltask (𝒀 (𝑠 ) , 𝒀̂ ) and Lkd (𝑭 (𝑠 ) , 𝑭 (𝑡 ) )
10: Optimize FAMs and LAMs with Ltask (𝒀 (𝑡 ) , 𝒀̂ )
11: end for
12: return Trained student model S∗

Based on this observation, we propose a hypothesis that the
teacher features can be decoupled into two types of information:
architecture intrinsic information and extrinsic information. The
architecture intrinsic information is architecture-independent, and
the student model finds it challenging to mimic this information due
to its smaller capacity and architectural differences. On the other
hand, the extrinsic information is task-relevant, and it is common
and consistent across different architectures. These features can be
easily adapted and imitated by the student model.

Consequently, to achieve effective and student-friendly cross-
architecture distillation, we propose acclimating the transformer
teacher model with the student’s decoder and distilling knowledge
from the acclimated features. This process is illustrated in Figure 2.
To facilitate this acclimation, we introduce a ghost decoder, which
is a continuous copy of the student’s decoder throughout the entire
training period. The original teacher features are adjusted using
additional trainable feature acclimation modules (FAMs), the ghost
decoder, and task loss, which is a transformer block in the teacher
model. Subsequently, we perform distillation between the accli-
mated features of the teacher model and the features of the student
model. The iterative procedure of our DisDepth is summarized in
Algorithm 1. Note that the FAMs are trained simultaneously with
the student model, at the early of training, the student decoder
is not converged and the acclimated features are with low per-
formance, so we add a warmup that starts distillation after a few
epochs trained.
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Figure 4: Architecture of loss attention module (LAM).

3.4 Attentive Knowledge Distillation
We now have successfully built our method of acclimating teacher
features. In feature distillation, how to select valuable features from
the dense feature map for effective distillation is also a crucial prob-
lem [13, 19]. Considering that the teacher features are acclimated
with the task loss, we can naturally get the importance of features
by injecting a attention module between acclimated teacher feature
and decoder. The attention module is also optimized with task loss.
If a region is important to the performance, its attention weights
should be large; in contrast, if a feature is useless to the prediction,
we just multiply a zero weight to remove it. Therefore, our proposed
loss attention module (LAM), is designed with a cross-attention
layer. As illustrated in Figure 4, LAM uses the average of input
feature as the query to capture the importance of each pixel, then
the output feature is weighted by the importance scores. Besides,
the scores, which represents the importances of each pixel, is also
returned to compute the distillation loss.

Attentive distillation loss. Given the same image as input, we
have the output features 𝑭 (𝑡 )

𝑙
∈ R𝐶×𝐻×𝑊 and 𝑭 (𝑠 )

𝑙
∈ R𝐶×𝐻×𝑊 of

the teacher and student backbones, where𝐶 , 𝐻 ,𝑊 denote the num-
bers of channels, feature height, feature width, respectively, and
𝑙 = 1, ..., 𝐿 is the index of last 𝐿 = 4 stages of backbone. Our atten-
tive KD first generates the spatial attentions 𝑨𝑙 using the teacher
features, then these attentions representing the importance of each
pixel to the depth predictions, are multiplied onto the teacher and
student features to guide the student focus on imitating the impor-
tant regions of teacher features. The attentive KD loss is formulated
as

Lkd :=
𝐿∑︁
𝑙=1
| |𝑨𝑙 (𝑭

(𝑠 )
𝑙
− 𝑭 (𝑡 )

𝑙
) | |22 . (1)

Task loss. Following previous works [1], we use a scaled version
of the Scale-Invariant loss (SILog) [9] as our task loss. With the
ground-truth depth 𝑑∗

𝑖
and the predicted depth 𝑑𝑖 at each pixel

index of 𝑛 pixels, we first calculate the logarithmic distance 𝑔𝑖 =

log(𝑑𝑖 ) − log(𝑑∗𝑖 ), then the SILog is computed as

LSILog = 𝛼

√√√
1
𝑛

𝑛∑︁
𝑖=1

𝑔2
𝑖
− 𝛽

𝑛2

(
𝑛∑︁
𝑖=1

𝑔𝑖

)2
, (2)

we set 𝛼 = 10 and 𝜆 = 0.85 in all our experiments.
Overall loss. As a result, our overall loss is the summation of

task loss LSILog, teacher’s task loss L (𝑡 )SILog, and attentive KD loss
Lkd, i.e.,

L = LSILog + L (𝑡 )SILog + 𝜆Lkd, (3)

where 𝜆 is the factor for balancing loss terms.

4 EXPERIMENTS
Datasets. Following previous works, we use two popular bench-
mark datasets KITTI [12] and NYU Depth V2 [37] to validate our
efficacy on outdoor and indoor depth estimations, respectively.

Models. The evaluate our method sufficiently, we conduct exper-
iments with various backbone variants, including EfficientNet [39],
GhostNet [15], ResNet [40], and Swin Transformer [29].

Evaluation Metrics.We use standard metrics following previ-
ous studies [4], such as average relative error (Abs Rel), root mean
squared error (RMSE), and average log error (log10). In addition,
we use threshold accuracy (𝛿𝑖 ) at thresholds 𝛿= 1.25, 1.252, 1.253
to compare our method to state-of-the-art methods used in earlier
works. For KITTI evaluation, we additionally use square relative
error (Sq Rel).

Training strategies. The DisDepth is implemented in Pytorch
[30].We use Adam optimizer [22] with 𝛽1 = 0.9, 𝛽2 = 0.999, with
a batch size of 8 and weight decay of 10−2. After a warmup of 7
epochs, distillation begins.We use 25 epoch for both KITTI and
NYU-V2 dataset with an initial learning rate of 4 × 10−5, which is
decreased linearly to 4× 10−6 across the training iterations. We use
a similar test protocol as in [4, 44]. We set KD weight 𝜆 = 0.05 in
all experiments.

Compared methods. We compare our DisDepth with recent
state-of-the-artmethods, includingNeWCRFs [44], BTS [24], P3Depth
[31], AdaBins [4], DepthFormer [28], BinsFormer [25], PixelFormer [1],
and LightDepth [21].

4.1 Results on KITTI
On the Eigen split of the KITTI dataset, we compare several state-
of-the-art depth estimation methods with our proposed family of
DisDepth models, as shown in Table 1. We can see that, the meth-
ods with transformer backbones have a large FLOPs, parameters,
and latency, while our models enjoy significant efficiency and per-
formance superiority compared to existing methods. For example,
our DisDepth obtains 2.546 RMSE with only 35.7B, surpassing the
42.8B FLOPs LightDepth by a large margin of 0.377. With ResNet-50
backbone, DisDepth-R50 obtains similar performance compared
to state-of-the-art approaches PixelFormer, while saving ∼ 30%
FLOPs.

4.2 Results on NYU Depth v2
We summarize the results on NYU Depth v2 dataset in Table 2.
Similar to the results on KITTI, our models achieve competitive
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Table 1: Performance comparisons on Eigen split od KITTI dataset. All the FLOPs and latencies are measured on a NVIDIA
3090 GPU with 1120 × 352 input image size.LightDepth have no PyTorch implementation for speedtest.

Method Backbone FLOPs
(B)

Params
(M)

Latency
(ms) Abs Rel↓ Sq Rel↓ RMSE↓ log10↓ 𝛿1↑ 𝛿2↑ 𝛿3↑

DepthFormer Swin-T 1256.6 273.7 112.1 0.052 0.158 2.143 0.079 0.975 0.997 0.999
BinsFormer Swin-L 972.7 254.6 73.0 0.079 0.151 2.092 0.079 0.974 0.997 0.999
P3Depth ResNet101 738.6 94.3 38.9 0.071 0.270 2.842 0.103 0.953 0.993 0.999
NeWCRFs Swin-L 722.7 360.7 52.6 0.052 0.155 2.129 0.079 0.974 0.997 0.999
PixelFormer Swin-L 703.7 270.9 46.2 0.051 0.149 2.081 0.077 0.976 0.997 0.999
AdaBins MViT 481.6 78.3 36.0 0.058 0.190 2.360 0.088 0.964 0.995 0.999
BTS ResNext101 474.6 112.8 28.6 0.059 0.241 2.756 0.096 0.956 0.993 0.998
LightDepth DenseNet196 42.8 42.6 – 0.070 0.294 2.923 – – – –

DisDepth-Swin-L Swin-L (teacher) 800.0 237.0 47.1 0.050 0.144 2.058 0.076 0.976 0.997 0.999
DisDepth-B5 EfficientNet-B5 122.5 61.9 22.0 0.058 0.190 2.321 0.088 0.964 0.995 0.999
DisDepth-B3 EfficientNet-B3 61.1 23.1 12.2 0.060 0.201 2.366 0.096 0.957 0.995 0.999
DisDepth-B0 EfficientNet-B0 35.7 8.0 6.7 0.065 0.231 2.545 0.101 0.949 0.993 0.999
DisDepth-R50 ResNet-50 499.7 98.6 17.4 0.054 0.171 2.168 0.081 0.972 0.997 0.999
DisDepth-R18 ResNet-18 72.2 18.0 5.0 0.056 0.184 2.298 0.086 0.967 0.996 0.999

Table 2: Performance comparisons on NYU-Depth-v2 dataset. All the FLOPs and latencies are measured on a NVIDIA 3090 GPU
with 640 × 480 input image size.

Method Backbone FLOPs
(B)

Params
(M)

Latency
(ms) Abs Rel↓ RMSE↓ log10↓ 𝛿1↑ 𝛿2↑ 𝛿3↑

DepthFormer Swin-T 976.7 273.7 81.5 0.096 0.339 0.041 0.921 0.989 0.998
BinsFormer Swin-L 756.6 254.6 56.3 0.094 0.330 0.041 0.925 0.989 0.997
P3Depth ResNet101 575.5 94.5 29.7 0.104 0.356 0.043 0.898 0.981 0.996
NeWCRFs Swin-L 561.2 270.4 40.6 0.095 0.316 0.041 0.922 0.992 0.998
PixelFormer Swin-L 546.2 280.3 35.0 0.090 0.322 0.039 0.929 0.991 0.998
AdaBins MViT 375.2 78.3 24.0 0.103 0.364 0.044 0.903 0.984 0.997
BTS ResNext101 369.8 112.8 22.8 0.111 0.399 0.049 0.880 0.977 0.994

DisDepth-Swin-L Swin-L (teacher) 621.3 237.0 35.5 0.090 0.338 0.041 0.920 0.991 0.998
DisDepth-B5 Efficientnet-B5 95.5 61.9 17.0 0.103 0.369 0.044 0.901 0.985 0.997
DisDepth-B0 Efficientnet-B0 27.8 8.0 5.3 0.125 0.398 0.048 0.872 0.977 0.995

performance with obvious reductions on FLOPs, parameters, and la-
tency. For example, our DisDepth-B0 achieves similar performance
with only 7.5% of FLOPs compared to BTS.

4.3 Ablation Study
Comparisons of student distilled by teacher with or without
FA. In Table 3, we compare our method with the traditional KD
method without feature acclimation (FA). The results show that,
without feature acclimation, the cross-architecture distillation with
Swin-L teacher obtains poor performance compared to EfficientNet-
B5 teacher. While our FA can improve the distillation performance
of both teachers, and the Swin-L teacher obtains better results since
it is more advanced. This implies that the FA is crucial and effective
for cross-architecture distillation.

Effects of the proposed components. We validate the effects
of each of our proposed components in Table 4. (1) LG. The student
model with our local-global convolution achieves a 0.18 improve-
ment on RMSE. (2) KD. Compared to the independent training, the

Table 3: Comparisons of student distilled by teacher with or
without feature acclimation (FA) on the KITTI dataset.

Teacher Student Abs Rel↓ Sq Rel↓ RMSE↓

Eff-B5 - 0.0662 0.2337 2.6020
Eff-B5 Eff-B0 0.0772 0.2896 2.7807
Eff-B5 w/ FA Eff-B0 0.0717 0.2599 2.6559

Swin-L - 0.0503 0.1448 2.0585
Swin-L Eff-B0 0.0791 0.3320 2.9471
Swin-L w/ FA Eff-B0 0.0650 0.2329 2.5446

classical KD method further brings ∼ 0.20 decrease. (3) FAM. Our
feature acclimation significantly improves the performance by 0.27.
(4) LAM. Our complete method with loss attention module obtains
the optimal performance.

Performance of ghost teacher. To show how the teacher’s
performance is affected by the ghost decoder, we report the per-
formance of the original teacher and ghost teacher in Table 5. We
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Table 4: Ablation study of the proposed Disdepth on the
KITTI dataset. LG: Local-Global convolution; KD: knowledge
distillation; FAM: feature acclimation module; LAM: loss
attention module.

LG KD FAM LAM Abs Rel↓ Sq Rel↓ RMSE↓

0.0895 0.4271 3.3232
✓ 0.0791 0.3896 3.1454
✓ ✓ 0.0743 0.3320 2.9471
✓ ✓ ✓ 0.0721 0.2659 2.6786
✓ ✓ ✓ ✓ 0.0650 0.2329 2.5446

can see that, the ghost decoder only has a minor degradation of
the performance. This demonstrate our hypothesis that the task-
relevant extrinsic feature can be easily adapted and removing the
architecture intrinsic feature would not affect the performance.

Table 5: Performance of the teacher with ghost decoder and
Swin-L backbone on the KITTI dataset.

Method Abs Rel↓ Sq Rel↓ RMSE↓

Teacher 0.050 0.1440 2.0580
Teacher w/ ghost decoder 0.053 0.1562 2.1406

Warmup epochs. Table 6 examines the performance of different
warmup epochs. We obtain the optimal performance when the
number of warmup epochs is set to 7.

Table 6: Effect of warmup epochs on the KITTI dataset

Warmup Abs Rel↓ Sq Rel↓ RMSE↓

3 0.06876 0.2653 2.6917
5 0.06684 0.2394 2.6019
7 0.06501 0.2329 2.5446
9 0.06692 0.2339 2.5521
10 0.07077 0.2562 2.6204

Loss Weight. In Table 7, we conduct experiments to tune the
KD loss weight 𝜆. We can see that, the 𝜆 = 0.05 obtains the optimal
performance.

Table 7: Ablation of loss weight 𝜆 on KITTI dataset.

Loss Weight Abs Rel↓ Sq Rel↓ RMSE↓

0.01 0.07232 0.2641 2.6083
0.05 0.06501 0.2329 2.5446
0.1 0.06870 0.2537 2.5960

Efficiency comparisons of student with or without local-
global convolution. By incorporating Local-Global Convolutions
(LG-Conv) into CNNs, there is a small rise in FLOPs, parameters,
and latency, as shown in Table 8. Nevertheless, the benefit on per-
formance is obvious. This indicates that LG-Conv is an effective tool
for enhancing the capabilities of CNNswithout imposing significant
computational overloads.

Table 8: Efficiency comparisons of student with or without
Local-Global Convolutions on KITTI dataset.

Method FLOPs (B) Params (M) Latency (ms) RMSE↓

Eff-B0 30.4 5.9 5.2 3.3232
Eff-B0 w/ LG 35.7 8.0 6.7 3.1454

5 CONCLUSION
This work presents DisDepth, an advanced monocular depth esti-
mation (MDE) method that combines the robustness of transformer
models with the efficiency of CNN architectures. By incorporating
a specially designed local-global convolution module, DisDepth
effectively captures both fine-grained details and broader scene
context. The introduction of a ghost decoder mechanism stream-
lines the knowledge transfer process from transformers to CNNs,
ensuring digestible knowledge alignment. Additionally, the atten-
tive KD loss focuses on the most valuable features, resulting in more
accurate depth predictions. Experimental results on the KITTI and
NYU Depth V2 datasets demonstrate DisDepth’s superior perfor-
mance, achieving a harmonious balance between depth accuracy
and computational efficiency. DisDepth represents a significant
advancement in MDE and holds promise for various applications
in computer vision.
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A COMPARISONS OF DEPLOYING CNNS AND
TRANSFORMERS IN EDGE COMPUTATION

A.1 Challenges and Main Difficulties of
Deploying Transformers

Transformers, with their large number of parameters in architec-
tures such as Vision Transformers (ViT) [35] and BERT-like [8]
Transformers, present a challenge in edge deployments due to their
large model sizes. This size, combined with the inherent compu-
tational complexity, especially with the self-attention mechanism,
demands more power and resources. Such requirements can lead
to rapid battery drain, especially in real-time applications such as
speech recognition or translation, where latency can be significant
on devices with limited processing power. The sequence parallelism
inherent in the Transformer architecture aids in highly parallel
training. However, efficient deployment of these models is problem-
atic in practice because generative inference progresses one token
at a time, and the computation for each token sequentially depends
on previously generated tokens [34]. Moreover, while edge deploy-
ment frameworks aim to support a broad spectrum of deep learning
operations, compatibility issues emerge with specific operations
or implementations unique to Transformers. These architectures,
which process variable-length sequences, often lead to dynamic
computations [5]. Such computations might not align well with
frameworks or devices optimized for static operations.

Deploying Transformermodels on devices such asmobile phones,
IoT devices, robots, and especially the Edge TPU presents addi-
tional challenges due to their resource constraints. The Edge TPU,
in particular, has a limited amount of on-chip memory and compu-
tational resources, making it difficult to deploy large Transformer
models [36]. Another obstacle is themandatory conversion of Trans-
former models to the TensorFlow Lite (TFLite) format to make them
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compatible with the Edge TPU. This conversion, although crucial,
can be tedious and may require additional hardware resources. Fur-
thermore, the TFLite format itself, as the only format supported by
the Edge TPU, has its own set of operational limitations, adding
complexity to the deployment process.

A.2 Advantages of CNNs over Transformers
Convolutional neural networks (CNNs), including architectures
such as VGG[38] and ResNet[40], are characterised by their com-
putational simplicity, using operations such as convolutions and

pooling. In general, these models are smaller, with inventions such
as MobileNet [17] and EfficientNet [39] that have specifically been
optimised for edge devices. The long history of CNNs in this ar-
eas shows that tools including TensorRT, ONNX, and TensorFlow
Lite have been made available with extensive optimisation tech-
niques. Importantly, modern Graphical Processing Units (GPUs)
and Application-Specific Integrated Circuits (ASICs) (such as Ten-
sor Processing Units (TPUs) and Neural Processing Units (NPUs))
provide dedicated acceleration for convolution operations, thus
making CNNs particularly efficient for deployment in real-world
scenarios.
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