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Abstract
While Function as a Service (FaaS) platforms can initialize

function sandboxes on worker nodes in 10-100s of millisec-

onds, the latency to schedule functions in real FaaS clusters

can be orders of magnitude higher. We find that the cur-

rent approach of building FaaS cluster managers on top of

legacy orchestration systems like Kubernetes leads to high

scheduling delay at high sandbox churn, which is typical

in FaaS clusters. While generic cluster managers use hier-

archical abstractions and multiple internal components to

manage and reconcile state with frequent persistent updates,

this becomes a bottleneck for FaaS, where cluster state fre-

quently changes as sandboxes are created on the critical

path of requests. Based on our root cause analysis of perfor-

mance issues in existing FaaS cluster managers, we propose

Dirigent, a clean-slate system architecture for FaaS orches-

tration with three key principles. First, Dirigent optimizes

internal cluster manager abstractions to simplify state man-

agement. Second, it eliminates persistent state updates on

the critical path of function invocations, leveraging the fact

that FaaS abstracts sandboxes from users to relax exact state

reconstruction guarantees. Finally, Dirigent runs monolithic

control and data planes to minimize internal communication

overheads and maximize throughput. We compare Dirigent

to state-of-the-art FaaS platforms and show that Dirigent

reduces 99th percentile per-function scheduling latency for

a production workload by 2.79× compared to AWS Lambda

and can spin up 2500 sandboxes per second at low latency,

which is 1250× more than with Knative.

1 Introduction
Serverless computing — in particular, Function as a Service

(FaaS) — is an appealing paradigm of cloud computing as it

raises the level of abstraction to the cloud and alleviates users

from the burden of explicitly managing server resources [66].

However, ease of use is not enough. A FaaS platform must

execute functions in securely isolated environments (i.e.,

sandboxes) with low latency and maximize function execu-

tion throughput per machine for cost-efficiency [34].

While initializing function sandboxes on worker nodes
takes 10-100s of milliseconds

1
with today’s FaaS worker

system software [34, 37, 43, 60, 74, 80, 81], we find that the

1
We assume that function container images are cached on worker nodes.
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Figure 1. End-to-end latency breakdown of cold invocation

bursts in Knative. Sandbox creation involves sequentially

creating two containers: user code container and its sidecar.

Sandbox init is the time it takes to pass health probes.

end-to-end latency to initialize function sandboxes is often

one or more orders of magnitude higher in operational FaaS

environments. This is because initialization involves more

than creating and starting a sandbox on a worker node. First,

the cluster manager receiving function invocations must

schedule the sandbox to be created on a particular worker

node. Then, after the sandbox is ready, the cluster manager

must plug it into the cluster so that it starts receiving traffic.

While scheduling a single sandbox at a time can be relatively

quick, we find that scheduling delay dominates when the

cluster manager concurrently schedules many sandboxes.

Figure 1 shows how the end-to-end function initialization

latency — and in particular the latency contribution of the

cluster manager — scales as we vary the number of concur-

rent sandbox creations in the Knative Serving
2
[19] FaaS

platform. The cluster manager adds 2 seconds of delay when

it concurrently schedules 100 sandboxes in a burst. In Fig-

ure 2, we perform a similar experiment on AWS Lambda [4].

While we cannot measure the cluster manager component

of latency for proprietary FaaS platforms, Figure 2 confirms

that the same symptoms are present: end-to-end latency in-

creases as we scale concurrent cold starts. This is problematic

because multi-tenant, production FaaS workloads [68] re-

quire over 300 sandbox creations per second on average, with

bursts as high as 8000 (see §2.1), as FaaS applications consist

of many short-lived, sporadically invoked functions [51, 79].

2
We refer to Knative Serving simply as Knative from now on.
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Figure 2. AWS Lambda end-to-end latency CDFs with differ-

ent cold start bursts of hello-world functions. We pre-cache

container images, based on insights from Brooker et al. [37].

.

So where does FaaS scheduling overhead come from and

what can we do about it? We identify software bloat due to

the current approach of building FaaS cluster managers on

top of legacy orchestration systems that were originally de-

signed to manage long-lived, stateful datacenter applications.

We take Knative [19] as a representative FaaS cluster man-

ager, used in open-source FaaS frameworks like vHive [76]

and a commercial FaaS offering from Google [8]. Like many

FaaS cluster managers [3, 13, 22, 28], Knative relies on Ku-

bernetes (K8s) [23] to deploy sandboxes on worker nodes,

monitor and manage cluster state, and recover from com-

ponent failures. Knative adds invocation-based autoscaling

on top of K8s, such that sandboxes can scale (potentially

down to zero) for each function based on its invocations.

Knative uses the K8s API to represent a sandbox as a Pod

with a Service Endpoint, belonging to a ReplicaSet, man-

aged as a Deployment. Under the hood, K8s runs a separate

controller to manage the state associated with each of these

abstractions. Each controller periodically executes a state

reconciliation loop [71], which involves watching for up-

dates and writing updates to a strongly consistent persistent

database. Hence, creating a single sandbox involves tens of

RPCs and sequential database updates in the cluster man-

ager. With high sandbox churn in FaaS clusters, long queuing

delays arise. Although serverless scheduling research has

focused on scheduling policies [33, 45, 52, 58, 65, 69], we find
that the mechanisms for propagating policy decisions from

the cluster manager to worker nodes are a bottleneck.

We propose Dirigent, a fundamentally new system archi-

tecture for cluster management, specialized for FaaS. Diri-

gent exposes the same user API as current FaaS platforms, i.e.,

users register and invoke functions. However, instead of or-

chestrating sandboxes under the hood with a legacy system

like K8s, Dirigent adopts a clean-slate design that removes

software bloat. Since Dirigent is designed to orchestrate

independent short-lived functions, for which the number

and location of sandboxes in the cluster are abstracted from

users, it does not need all features of generic cluster man-

agers that enable users to deploy stateful, interdependent

application sandboxes. The FaaS paradigm enables Dirigent

to simplify state management and relax exact state recov-

ery in favor of optimizing scheduling throughput. Autoscal-

ing and placing sandboxes at high throughput is critical for

short-lived, sporadically invoked functions, whereas generic

cluster managers do not optimize for this as sandbox cre-

ation is amortized and off the critical path for traditional,

long-lived applications. Dirigent still matches the fault toler-

ance guarantees of today’s FaaS platforms while reducing

recovery times.

We design Dirigent with three key principles. First, Diri-

gent simplifies cluster management abstractions to minimize

the volume and inter-dependence of cluster state compared

to systems with hierarchical abstractions (e.g., ReplicaSets,

Deployments). Second, Dirigent eliminates persistent state
updates on the critical path of function invocations. Although
this means that Dirigent may not always restore a cluster to

an identical state after a component fails, it is suitable for

FaaS as the cluster manager abstracts sandboxes from users

and continuously autoscales them. For fault tolerance, Diri-

gent replicates its control plane and data plane to maintain

an operational cluster. Finally, Dirigent redesigns the cluster

manager system architecture with a monolithic control plane
to minimize RPC overheads and a monolithic data plane to
reduce hops on the critical path of warm invocations.

We show that Dirigent supports 2500 cold starts per sec-

ond, 1250×more than Knative. For the Azure Functions trace,

Dirigent reduces per-function scheduling latency at the 99th

percentile by 403× compared to Knative and 2.79× compared

to AWS Lambda. We also show Dirigent can quickly recover

from control plane, data plane, and worker node failures. We

plan to open source Dirigent.

2 Background and Motivation
We outline the requirements for FaaS cluster management

(§2.1) and analyze the fundamental mismatch between these

requirements and K8s, which is used today as the foundation

in many FaaS platforms (§2.2). We also discuss alternative

cluster managers and why are not suitable for FaaS (§2.3).

2.1 FaaS Cluster Management Requirements
1) Low latency scheduling. Since serverless functions are
often short-lived (e.g., half of the functions in Azure trace

execute within a second [68]), the cluster manager must

schedule functions with low latency (ideally <10s of ms) on

the critical path. Scheduling in the context of FaaS requires

three aspects: autoscaling (i.e., creating and tearing down)

sandboxes per function based on invocations, placing sand-

boxes across workers to optimize performance and resource

efficiency, and load-balancing invocations across sandboxes.

2
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Figure 3. Rate of sandbox creation over time in a 30-minute

window (after 10-min warmup) of the 70K function Azure

trace [68], simulated on a 1000 worker-node cluster with

default Knative scheduling policies. Each sandbox processes

1 request at a time, the default for FaaS platforms [14, 32].

2) High throughput scheduling. Due to bursty and un-

predictable function invocations, as well as the high cost

of DRAM needed to keep sandboxes warm in the cluster,

the cluster manager must be able to create and tear down

function sandboxes at high throughput while maintaining

low scheduling latency. Figure 3 plots the number of sandbox

creations in the Azure trace over a 30-minute time window

when simulating the trace on a 1000-node cluster with the

default autoscaling, load-balancing, and placement policy in

Knative [20, 21, 27]. The cluster manager creates 300 sand-

boxes per second on average, with bursts of thousands of

sandboxes per second. Even if we configure the scaling policy

to have infinite keep-alive (i.e., never downscale functions

to zero sandboxes after an invocation), the sandbox creation

rate remains 229 sandboxes per second on average and 1551

per second at the 99th percentile — this is due to cold starts

for functions being invoked for the first time. This is in con-

trast to traditional cluster managers, which do not optimize

sandbox autoscaling throughput since sandboxes are often

pre-deployed off the critical path of requests and sandbox

creation is amortized for traditional, long-lived applications.

3) Fault tolerance. We distinguish between component-

level and request-level fault tolerance. The FaaS cluster man-

agermust provide component-level fault tolerance, i.e., ensure
the platform remains operational and able to serve new in-

vocations despite worker, data plane, or control plane node

failures. The platform should minimize the impact of com-

ponent failures on the end-to-end invocation latency.

Request-level fault tolerance concerns requests that are

in-flight in the cluster when a failure occurs. Though de-

sirable, existing FaaS platforms generally do not provide

request-level fault tolerance. For synchronous function invo-

cations — where the client blocks until receiving a response

— state-of-the-art FaaS platforms rely on users to re-invoke

a function [5, 14, 56] in case an invocation is lost (e.g., if a

worker node fails in the middle of execution). Some FaaS

Autoscaling
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Endpoint
Controller

ReplicaSet
Controller

API
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Activator Queue-
Proxy FunctionIngress

Gateway

DB

Data plane
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Figure 4. Knative system architecture, which builds on K8s.

This diagram is simplified, showing only key components

which all run as independent microservices. K8s components

are blue, while yellow components are added by Knative.

platforms, like AWS Lambda, also support asynchronous in-

vocations with a persistent queue that buffers invocations

and can retry invocations in case of timeouts to provide

at-least-once invocation guarantees. Since a function may

get invoked (and partially executed) more than once, FaaS

platforms advise users to write idempotent functions [35, 57].

Non-requirements. A FaaS cluster manager does not

expose the exact number and location of application sand-

boxes to end-users. It also does not need to support direct

communication between sandboxes [54]. This means that

in case a particular sandbox fails, it is not necessary to re-

store the cluster to an identical state. Redeploying function

sandboxes is acceptable and straightforward as FaaS func-

tions are independent and stateless, in contrast to generic

applications which may have complex workflow chains and

whose components spread across different sandboxes may

have complex inter-communication patterns.

2.2 The Kubernetes – FaaS Mismatch
We now discuss the mismatch between the FaaS cluster man-

ager requirements in §2.1 and K8s-based cluster managers,

which are commonly used in today’s FaaS platforms, in-

cluding Knative [19], OpenWhisk [3], OpenFaaS [28], Fis-

sion [13], Kubeless [22], and Google Cloud Run for An-

thos [8]. K8s-based cluster managers can ensure component-

level fault tolerance for FaaS (Requirement 3). However, we

find that cluster managers that build on generic K8s API

abstractions and inherit K8s microservice-based system ar-

chitecture are unfit for low-latency and high-throughput

FaaS workload scheduling (Requirements 1 and 2).

We take Knative [19] as a representative FaaS platform, as

it is open-source and widely used [7], both in research [76]

and commercially [8]. Figure 4 shows the Knative system

architecture and how it builds on K8s components and con-

cepts. The K8s API [24] provides concepts, such as Deploy-

ments, ReplicaSets, and Endpoints, which can be used to

3



monitor and control cluster state at different levels of ab-

straction. For example, a Pod (the minimal scheduling unit

in K8s) can be horizontally scaled as a ReplicaSet, a low-

level K8s object that ensures a specified number of replicas

are running at all times. K8s can manage ReplicaSets with a

higher-level object, a Deployment, which provides additional

features like rolling updates and rollbacks. K8s stores state

for all objects in the cluster in a strongly-consistent database.

K8s also implements multiple controllers that run reconcilia-

tion loops for objects like Deployments and ReplicaSets to

converge the actual system state to the desired state. To use

K8s as the underlying resource orchestrator for FaaS, Knative

extends K8s with an additional set of controllers to imple-

ment invocation-based autoscaling. The Knative autoscaling

controller supports scaling a function to zero sandboxes at

low load. In contrast, the default K8s Horizontal Pod Au-

toscaler cannot scale a function to zero, i.e., has no support

for cold starts but scales sandboxes based on generic metrics

like CPU and memory utilization [25]. Knative also adds a

component to buffer requests for cold starts (Activator) and
a per-Pod sidecar component (Queue-Proxy) to throttle the

number of concurrent requests each Pod can process.

While the K8s API provides convenient abstractions and

the K8s architecture is modular and extensible, we find that

implementing a FaaS cluster manager on top of K8s has

high performance overhead. For example, Figure 5 shows

the cumulative distribution of Knative scheduling latency

when running a 500-function sample of the Azure produc-

tion trace [68] on a 93 worker-node cluster. Scheduling has

long tail latency. One third of functions experience an aver-

age scheduling latency greater than or equal to 100 seconds,

whereas many functions only execute for several millisec-

onds (see Figure 9 for per-function slowdown).

To understand the root cause of this latency overhead, we

analyze which function invocations experience high sched-

uling delays. We find it is functions invoked while the cluster

manager is orchestrating a large number of concurrent sand-

box creations. Figure 1 confirms Knative cluster manager

latency increases significantly when the cluster experiences

multiple concurrent cold starts. We validate our findings by

running cold start invocation microbenchmarks on Google

Cloud Run for Anthos [8], a commercial Knative offering. We

see similar latency patterns as we scale cold start invocations.

The fundamental bottleneck is the complex critical path of

sandbox creation in Knative, as the system relies on multiple

K8s-based controllers to reconcile desired and actual cluster

state. While computing the desired state (i.e., executing the

autoscaling and placement algorithms) is fast, reconciling

the cluster state is highly inefficient for several reasons. First,

by design, K8s components cannot exchange information

directly, even if they run in the same process. The K8s con-

trollers can only exchange information through synchronous

read-modify-write sequences to a centralized cluster state

database, etcd [11]. Hence, creating a new sandbox in the
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Figure 5. CDF of per-invocation scheduling latency and

per-function mean scheduling latency when executing 500-

function Azure trace [68, 75] on a 93-worker cluster.

cluster involves multiple RPCs between controllers and the

database front-end (the API server). These operations are

not commutative and hence impede scalability [39]. Second,

the volume of state exchanged in RPC calls is large as K8s

manages state with key-value pairs that average 17kB in

size in our experiments and are represented as deeply nested

trees. As a result, we find the API server spends significant

CPU cycles on data serialization. When invoking cold starts

at a steady rate, we find Knative can only support 2 cold

starts per second before scheduling latency saturates (see

Figure 7) due to the API server saturating CPU resources.

Finally, K8s serializes and persists cluster state updates with

strong consistency. While serializing and persisting updates

enable restoring the cluster state to an identical state as be-

fore a failure occurred, it limits sandbox creation throughput.

To avoid high scheduling tail latency, we could reduce con-

current cold starts per cluster by deploying functions across

independent sub-clusters. However, supporting the median

cold start rate in Azure trace shown in Figure 3 (152 sandbox

creations per second) would require spreading invocations

across ∼90 separate sub-clusters, each managed by a sepa-

rate Knative instance. Running separate cluster managers

requires extra resources, introduces an extra hop for all re-

quests, and reduces global visibility of the load across ma-

chines, which can degrade scheduling decision quality [64].

To test whether our findings generalize to other K8s-based

cluster managers besides Knative, we also experimented

with OpenWhisk [3]. We also tested bypassing high-level

K8s abstractions, such as Deployments and ReplicaSets, and

instead directly created and managed Pods with K8s. In both

cases, we still observe high cold start latency with concurrent

cold starts, confirming that even creating and tearing down

the minimal type of K8s objects (Pods) has high overhead at

the high churn rate required by FaaS applications.

We also observe that increasing concurrent sandbox cre-

ations significantly impacts AWS Lambda cold start latency

(Figure 2), however, we do not have access to the platform’s

cluster manager implementation to analyze the root cause.

4



Feature of K8s-based FaaS system design that con-
tributes to high scheduling latency

Insight for Dirigent design

Managing a large volume of state for many, hierarchical

abstractions in K8s (e.g., Deployments, ReplicaSets).

Simple internal cluster management abstractions.

Persisting and serializing each cluster state update on the

critical path of cold function invocations.

Persistence-free latency-critical operations, relaxing exact

cluster state reconstruction as it is abstracted from FaaS users.

Microservice-based control plane with RPC communication

between components.

Monolithic control plane.

Per-sandbox sidecars on workers for concurrency throttling. Monolithic data plane for request throttling.

Table 1. Dirigent’s design principles, based on insights from our performance issues analysis in K8s-based FaaS systems.

2.3 Related Work
Alternative cluster managers. Cluster manager design is

an active research area, with many alternatives to K8s [38,

67]. However, data center clustermanagers [29, 36, 40–42, 47–

49, 53, 62, 73, 77, 78] are typically designed to orchestrate

long-living applications. Sandbox creation is not on the crit-

ical paths of request, and can be amortized by their long

lifetimes. FaaS, in contrast, has much shorter container life-

times and higher churn. To orchestrate thousands of nodes,

systems such as Mesos and YARN [48, 77] embed all inter-

component communication into periodic heartbeats. How-

ever, long heartbeat periods lead to poor responsiveness,

which is unsuitable for FaaS workloads. Quincy [49] and Fir-

mament [47] focus on scheduling policy design and explore

the tradeoff of computational efficiency vs. decision quality,

but ignore how the cluster manager system architecture af-

fects decision propagation speed in the cluster. Sparrow [62]

improves scalability by decentralizing scheduling, however,

trading off global knowledge of the load on each worker

node can degrade decision quality [64].

Many prior works explore complementary, such as reduc-

ing interference between the co-located workloads [40–42].

Mercury [53] explores tradeoffs for collocating long-running

analytic jobs with latency-critical workload. Omega [67] ex-

plores tradeoffs between centralized and distributed sched-

uler designs. DCM [72] proposes a new cluster management

architecture. However, its goal is to simplify scheduling pol-

icy implementation and debugging for developers, by en-

abling declarative SQL queries to a relational cluster state

database. Sieve [71] addresses debugging challenges with

state reconciliation systems like K8s to improve reliability.

Cluster management for FaaS. The closest to our work

is a study characterizing the gap between FaaS research and

real-world systems, which also identifies high cold start la-

tency when scheduling many sandboxes [51]. We provide a

root-cause analysis and solution with Dirigent. Ilúvatar [44]

focuses on reducing warm start scheduling overheads orig-

inating on worker nodes, whereas we focus on alleviat-

ing bottlenecks in the cluster manager control plane. Most

work on FaaS orchestration has focused on autoscaling, load-

balancing, and placement policies to reduce the frequency

and overhead of cold starts, improve end-to-end performance,

and resource efficiency [33, 46, 52, 58, 62, 65, 68, 69]. How-

ever, these works build on top of existing FaaS cluster man-

ager system architectures, in which the state management

performance bottlenecks described in §2.2 remain.

AdaptingK8s. Someworks have adapted K8s for different

use cases. KOLE [83] adapts K8s for the edge environment

and manages to scale K8s to 1M nodes but at the expense of

abolishing dynamic Pod creation and scheduling, which is

not suitable for FaaS. K3s [17] is a lightweight K8s for IoT

and edge environments. Although the single-process version

of K8s is easy to deploy, we observed the system suffers from

many of the same performance issues as the baseline K8s.

Faasd [12] targets single-node resource-constrained edge

setups, while we target FaaS cloud clusters.

3 Dirigent Design Approach
To address the scheduling overheads in state-of-the-art FaaS

platforms, we proposeDirigent, a new clustermanager catered

for FaaS. Dirigent maintains the same serverless end-user

API as today’s FaaS platforms (i.e., users register and invoke

functions) such that applications designed for AWS Lambda

or Knative can seamlessly run on Dirigent. Under the hood,

to meet the performance and fault tolerance requirements of

FaaS applications (discussed in §2.1), Dirigent orchestrates

function sandboxes with a clean-slate cluster manager design

as opposed to building on top of a legacy cluster manager

like K8s, which we saw in §2.2 is the bottleneck for FaaS.

Dirigent’s design is based on principles that address the

performance issues we identified in K8s-based FaaS cluster

managers (Table 1). We discuss each principle below.

Simple internal abstractions. In contrast to Knative,

which uses a plethora of K8s objects (Deployments, ReplicaS-

ets, Endpoints, Revisions, Routes, etc.) for FaaS orchestration,

Dirigent’s control plane orchestrates only four fundamen-

tal object types shown in Table 2. The Function abstraction

represents a function that a user registers with a particular

name, container image URL, and port to expose. Dirigent

5



saves this information as a recipe to create sandboxes for the

function. Dirigent also keeps track of per-function schedul-

ing configurations (e.g., autoscaling knobs, resource quotas,

placement constraints) and monitors per-function schedul-

ing metrics, such as the number of inflight requests for the

function. The Sandbox abstraction (analogous to Pod in K8s)

represents information about the sandbox state on a worker

node, such as the sandbox name, IP address, dedicated port,

and the name of the worker node it resides on. The control

plane also keeps track of DataPlane andWorkerNode objects,
which store the IP addresses and ports so the control plane

can reach them (e.g., to trigger sandbox creation on worker

nodes and notify data planes of the new sandboxes available

in the cluster for request load-balancing).

Minimizing the number of internal abstractions minimizes

the amount of state that Dirigent needs tomaintain, improves

resource efficiency, and avoids double bookkeeping and its

associated consistency overheads. Moreover, it reduces the

number of state updates needed whenever the autoscaling al-

gorithm triggers a sandbox creation or teardown. In Knative,

a sandbox creation triggers updates to multiple hierarchical

objects (e.g., Deployment, ReplicaSet, Endpoint, Routes) via

their associated state reconciliation controllers. On the other

hand, Dirigent simply updates a single Sandbox object and

forwards data planes an updated list of sandboxes.

In addition to managing fewer objects, Dirigent also mini-

mizes the state stored per object. For example, by tailoring

Dirigent’s state management for the FaaS use case, we store

the sandbox state in 16 bytes, compared to a K8s Pod resource

definition, which we find can be as big as 17 KB. We find

Knative uses K8s abstractions to store large function-related

metadata in YAML format as raw Unicode text. This data

includes annotations and labels, environment variables, sand-

box state transition timestamps, and control messages. The

schema features many long keys, which amplify serialization

overheads. In Dirigent, we adopt a minimalist metadata and

storage schema and store state in a serialized binary format.

Persistence-free latency-critical operations. To mini-

mize function scheduling latency, Dirigent avoids persisting

cluster state on the critical path of function invocations. The

last column in Table 2 shows the subset of the state that the

Dirigent control plane persists and which state is stored in-

memory only. The Sandbox abstraction state and Function

scheduling metrics are not persisted, as these are updated

on the critical path of sandbox creation (i.e., cold starts). In

contrast, in platforms like Knative, K8s mandates that every

change to the cluster state (e.g., adding a Pod to a Deploy-

ment) is persisted in a centralized, strongly database. While

this enables K8s to restore the cluster to an identical state

as before a component failure, it is not necessary in the con-

text of FaaS as the number and location of sandboxes for a

function are abstracted from end-users and from other sand-

boxes. If worker nodes fail, the invocation-based autoscaling

Abstraction Associated State Persisted

Function

Name ✓
Image URL ✓
Port to expose ✓
Scheduling configuration ✓
Scheduling metrics

Sandbox

Name

IP address

Port on worker node

Worker node ID

DataPlane

IP address ✓
Port ✓

WorkerNode

Name ✓
IP address ✓
Port ✓

Table 2. Dirigent’s cluster management abstractions and the

associated state maintained by the control plane for each.

algorithm will restore affected sandboxes to the appropri-

ate level and sandboxes can be placed on different workers

with different IP addresses. If the control plane fails and a

standby replica takes over, it will construct in-memory state

of sandboxes in the cluster by requesting information from

worker nodes (WorkerNode IP addresses and port numbers

are persisted). While relaxing state reconstruction may not

be suitable for a generic cluster manager, Dirigent still sat-

isfies the component-level fault tolerance requirements of

FaaS platforms. We discuss Dirigent’s fault tolerance for a

variety of component failure scenarios in §4.2. Meanwhile,

removing state persistence from the critical path of func-

tion invocations allows Dirigent to maximize scheduling

throughput, as we will show in §5.2.

Monolithic control and data planes. Dirigent central-
izes the functionality for creating and managing sandboxes

into a monolithic control plane and the functionality for

routing, throttling, and buffering function invocations into

a monolithic data plane. Dirigent’s monolithic architecture

contrasts to systems like Knative and OpenWhisk, which in-

herit the microservice architecture of K8s in which multiple

components run as separate services that communicate via

RPCs. Dirigent’s monolithic control and data planes allow

simpler deployment andmanagement, fewer leader elections,

and faster recovery time on crashes. In Dirigent’s control

plane, modules such as the state manager, health monitor,

autoscaler, and placer exchange information through fast

in-memory channels and atomic primitives. The monolithic

data plane allows Dirigent to minimize infrastructure tax on

warm starts, compared to Knative’s approach of deploying

separate Queue-Proxy sidecars per function sandbox for re-

quest buffering and throttling. Abolishing sidecars leads to
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Figure 6. System diagram of Dirigent cluster manager.

faster sandbox startup time, better monitoring over invoca-

tions from data planes, less resource usage, and a shorter in-

vocation critical path. We still separate the control and data

planes, such that we can scale data planes independently

based on the warm invocation load while maintaining stable

control plane performance for cold starts.

4 Dirigent Implementation
4.1 System Overview
System architecture. Figure 6 shows Dirigent’s system

architecture. The control plane is responsible for monitor-

ing cluster components, autoscaling, placing sandboxes on

worker nodes, and persisting cluster state. The data plane
load balances incoming invocations to worker nodes, buffers

invocations waiting for a sandbox, and limits the number of

requests a sandbox processes in parallel (concurrency throt-

tling). Each data plane maintains a per-function endpoint

list for load-balancing. The front-end load balancer (LB in

Figure 6) spreads incoming invocations across data plane

replicas by hashing the function ID. This ensures that all invo-

cations of a particular function end up on the same data plane

and allows centralized tracking of the number of in-flight

requests for each function. Worker nodes are responsible

for executing function invocations and creating/destroying

sandboxes when instructed by the control plane.

Dirigent API. Table 3 shows Dirigent’s end-user API (see
Client caller rows), which corresponds to the APIs of FaaS

platforms like AWS Lambda and Knative. The other rows

in the table show the internal calls supported between the

Dirigent control plane, data plane, and worker nodes.

Life of an invocation. A function invocation arrives

in Dirigent through the front-end load balancer (LB) and

reverse proxy. If there is a sandbox to handle the invocation

(i.e., a warm start), the data plane picks a sandbox that will
execute the invocation (load-balancing), ensures the sandbox

has an available processing slot (concurrency throttling), and

proxies the request to the worker node. If no sandboxes are

available to process a request on its arrival (i.e., cold start), the
invocation waits in a data plane’s request queue until at least

one sandbox becomes available. In the meantime, the data

plane periodically sends autoscaling metrics to the control

plane. The autoscaler determines the number of sandboxes

needed to serve the traffic. The placer chooses a node that

will spin up new sandboxes, and orders worker nodes to

Caller Operation Callee

Client (De)-Register function CP
Invoke function DP

Data plane

(DP)

(De)-Register data plane CP

List registered functions CP

Send scaling metric CP

Send heartbeat CP

Control plane

(CP)

Add/remove function DP

Add/remove LB endpoint DP

Create/Kill sandbox WN

List sandboxes WN

Vote for leader election CP

Worker node

(WN)

(De)-Register worker CP

Send heartbeat CP

Table 3. Dirigent API. Bold operations are exposed to users.

Others are internal calls between Dirigent components.

create them. Once a sandbox is created, the worker daemon

issues health probes to ensure the sandbox is booted and

ready to handle the traffic. Once the sandbox passes a health

probe, the worker daemon notifies the control plane, which

then broadcasts endpoint updates data plane(s). The data

plane dequeues the request and handles it as a warm start.

Requests leave the system in the reverse direction and pass

through the same data plane to reach the client.

Synchronous vs. asynchronous invocations. Dirigent
supports both operationmodes. Users specify themode in the

request header and submit the request as described above.

Asynchronous calls pass through an additional queue be-

tween the front-end load balancer and the reverse proxy

which submits requests and monitors invocation status and

can be configured to re-invoke functions on timeouts. In this

paper, we focus on synchronous calls as asynchronous ones

are not supported by all FaaS platforms (e.g., Knative).

4.2 Fault Tolerance
A key design principle in Dirigent (§3) is minimizing state

persistence, particularly on the critical path of invocations.

We discuss how Dirigent matches the fault tolerance guaran-

tees of today’s FaaS platforms while persisting less state than

K8s-based FaaS platforms. While K8s persists each state up-

date to enable exact recovery in case of failure, specializing

the cluster manager design for FaaS enables relaxing exact

state reconstruction. For example, if a serverless cluster fails,

the sandboxes can be created on different worker nodes, as

the IP addresses are not exposed to end-users. The cluster

does not even need to recover the same number of sand-

boxes as the demand may have changed in the meantime.

We now discuss how Dirigent handles component-level and

request-level fault tolerance.
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4.2.1 Component-level fault tolerance. These failures
occur because Dirigent’s component(s) or nodes running

them crash. For high availability (HA), Dirigent runsmultiple

control planes and data planes. Only one control plane is the

leader that serves requests, whereas others are on standby.

Dirigent optimizes its components’ startup time (see §5.4)

and implements a restart policy on component failure. We

now discuss how Dirigent handles component crashes.

Control plane.While the control plane is down no new

sandboxes can be spawned, whereas warm functions remain

unaffected, provided the data plane remains alive. The con-

trol plane recovers by fetching allDataPlane andWorkerNode
abstractions from the persistent storage and uses this infor-

mation to reestablish connections with these components.

The control plane then retrieves all Function abstractions

from the database and forwards relevant metadata to data

planes for load-balancing. At this point, the cluster can start

receiving new invocations, despite the scale of all functions

being zero. As there are scenarios where the control plane

was the only component that crashed, worker daemons can

supply the control plane with a list of sandboxes they run.

The control plane merges this information asynchronously,

as it arrives, with its internal list and notifies data planes

of changes. This feature allows sandbox reuse, while at the

same time reducing performance degradation. Dirigent does

not downscale these recovered sandboxes for one autoscal-

ing time window (60 s by default) as the autoscaling metrics,

which were lost on failure, take time to repopulate.

Data plane. On recovery, the data plane re-establishes

connection with the control plane and pulls the list of regis-

tered functions and relevant metadata for load-balancing.

Worker node/daemon. The worker node is considered
healthy and schedulable as long as the control plane receives

periodic heartbeats from it. Otherwise, the control plane

notifies data planes not to forward new requests to the af-

fected worker and reruns autoscaling to spin up sandboxes

on other nodes. The worker node continuously monitors

sandbox processes and notifies the control plane of crashes.

4.2.2 Request-level fault tolerance. Cluster manager

component failures may lead to invocation failures. For ex-

ample, if a worker node fails, all invocations executing on

that node will also fail. If a data plane fails, all inflight re-

quests in that data plane will be terminated, as connections

to clients are lost. Dirigent provides no request-level fault

tolerance guarantees for synchronous invocations, which is

also the case with the Knative, OpenWhisk [30], and com-

mercial FaaS platforms such as AWS Lambda and Azure

Functions [5, 6, 14]. We discuss future research opportuni-

ties for improving FaaS request-level fault tolerance in §6.

4.3 Implementation Details and Limitations
We implement Dirigent in approximately 11.3K lines of Go

code. Communication between system components shown

in Figure 6 happens via gRPC calls that are invokable at

any time, rather than through periodic heartbeats like in

Mesos and YARN. Dirigent uses RAFT [61] for control plane

leader election and relies on systemd to monitor Dirigent

component health and restart a failed process. Dirigent uses

Redis [31] to persist system state, which we replicate and

collocate with control planes. When a control plane leader

changes, the Redis master also changes.

Concurrency. System components use readers-writer

locks for all critical sections with a transactional state up-

date. On hot-paths, we use lock-free data structures where

possible. The communication between different control plane

modules such as placer and autoscaler uses Go channels.

Worker node software stack.We implement Dirigent

with two different sandbox runtimes: containerd [10] and

Firecracker [34, 37] with and without microVM snapshots.

Integrating additional sandbox runtimes only involves ex-

tending a three-call interface. Each worker node maintains

a local container image and snapshot cache to reduce image

pulling. Because of Linux network stack performance issues

on parallel network interface creations [59, 74], each worker

node maintains a pool of pre-created recyclable network

configurations along with pre-configured iptables rules to

allow quick network allocation to a newly created sandbox.

Scheduling policies. Dirigent implements and uses Kna-

tive’s default scheduling policies across all three scheduling

dimensions (autoscaling, load balancing, and placement). The

autoscaling algorithm scales the number of sandboxes per

function based on the number of in-flight requests for each

function [20]. The load-balancing algorithm forwards invo-

cations to least-loaded sandboxes [21]. The placement policy

favors nodes with the least utilized resources, while aiming

to balance resource utilization across CPU and memory [27].

Dirigent also supports Hermod [52] and CH-RLU [46] sched-

uling policies, though they are unused in evaluation in §5

to ensure a fair comparison to Knative. Implementing new

scheduling policies andmetrics in Dirigent reduces to extend-

ing the relevant Golang interfaces in the control plane (for

autoscaling and placement policies) and in the data plane (for

load-balancing policies), recompilation, and redeployment.

Knative also requires recompilation, repackaging, and rede-

ployment of its autoscaling, load-balancing, or placement

service containers to add new policies and metrics.

Operations and monitoring. Dirigent components ex-

pose global and per-function metrics (e.g., the number of

inflight requests, queue depth, and number of successful in-

vocations) via HTTP, similar to Knative. Dirigent is equipped

with logging infrastructure that reports important events

in the cluster, eases debugging, and can be used to break

down end-to-end function latency. Dirigent’s logging and

monitoring infrastructure provides a foundation for building

fine-grain resource accounting and billing services.

Limitations.Dirigent does not currently support function
versioning and partial traffic steering to different function
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versions, which is supported in Knative. This can be imple-

mented in Dirigent by extending function and sandbox ab-

stractions with a version number and by adding a versioning-

aware load balancing policy in the data plane. Cluster man-

ager features like QoS support and remote log fetching are

not yet integrated into Dirigent but can be added. We empha-

size that Dirigent is an alternative to FaaS cluster managers.

It is not intended as a replacement for a general-purpose

cluster manager as it does not support naming/discovery ser-

vices for coordination between sandboxes or provide strict

guarantees for state reconstruction upon failures as K8s.

5 Evaluation
We evaluate Dirigent to answer the following key questions:

• What is the throughput of Dirigent’s control plane, i.e.,

what is the system’s peak sandbox creation rate?

• What is the Dirigent’s data plane throughput, i.e., how

many warm requests can Dirigent serve per second?

• How does Dirigent improve end-to-end function la-

tency and cluster resource utilization for FaaS produc-

tion workload compared to state-of-the-art systems?

• How effectively does Dirigent handle control plane,

data plane, and worker node failure scenarios?

5.1 Experimental Methodology
Baselines. We compare Dirigent to two open-source K8s-

based FaaS platforms: Knative [19] and OpenWhisk [3]. We

briefly experimented with OpenFaaS [28] as another K8s-

based baseline, but we found that the community version

is not competitive as it only supports up to 15 functions

and lacks critical features like scale-to-zero and concurrency

throttling. We compare Dirigent’s end-to-end performance

to a state-of-the-art commercial platform, AWS Lambda [4].

Hardware setup.We run Dirigent and the open-source

baseline systems on a 100-node xl170 Cloudlab cluster [9].

Each node is an Intel Xeon E5-2640 v4 @ 2.4 GHz CPU with

10 physical cores, 64GB of DRAM, and an Intel DC S3520

SSD. All nodes run Ubuntu 20.04. Nodes are connected in

groups of 40 machines with 25 Gbps links to Mellanox 2410

leaf switches and groups connect to a Mellanox 2700 spine

switch with 100 Gbps links. For AWS Lambda experiments,

we register functions in the us-east-1 region and invoke

functions from T3 EC2 instances in the same region.

Software setup. We run Knative v1.13.1 [19] with Is-

tio v1.20.2 [16] and OpenWhisk v1.0.1 [3]. Both baselines

run on top of Kubernetes v1.29.1 [23]. We use containerd

v1.6.18 [10] as the sandbox manager. Dirigent also supports

snapshot-enabled Firecracker v1.7.0 [34] sandboxes. Fire-

cracker microVMs run Linux kernel v4.14. For the persistent

data store, Dirigent uses Redis v7.2.0 [31] in append-only

mode with fsync enabled at each query. We use HAProxy

v2.4.24 [15] with keepalived v2.2.8 [18] as a highly-available

front-end load balancer. We configure sandboxes to handle
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Figure 7. Cold start performance.

only one request at a time, similar to commercial cloud of-

ferings [14, 32]. We employ the same scheduling policies in

Knative and Dirigent (§4.3), and prefetch container images

and VM snapshots on each worker node. In AWS Lambda ex-

periments, we do container image prefetching by employing

the zero unique chunk technique from [37].

In all baselines, we run the Dirigent control plane and data

plane components in high-availability (HA) mode. For each

component, there are three replicas, each of which runs on

a dedicated node. We co-locate the front-end load balancer

with the data planes and run the InVitro [75] load generator

on a separate machine in the cluster.

5.2 Microbenchmarks
We first analyze cluster manager latency, peak throughput,

and scalability by invoking hello-world functions. We run

cold start microbenchmarks to stress test the cluster manager

control plane. We run warm start microbenchmarks to stress

test the cluster manager data plane.

5.2.1 Cold Start Performance.
Peak sandbox creation throughput. Figure 7 shows the
p50 and p99 end-to-end latency as we sweep the number of

cold start invocations per second in the 93 worker-node clus-

ter. Dirigent sandbox creation throughput with containerd

saturates at 1750 cold starts per second. The bottleneck is not

the Dirigent control plane, but rather kernel lock contention

for sandbox creation, network interface configuration, and

iptables rule updates on containerd worker nodes. To sat-

urate the Dirigent control plane, we optimize the worker

node software stack by running functions in Firecracker mi-

croVMs booted from snapshots. Dirigent with Firecracker

microVMs achieves a peak throughput of 2500 cold starts per

second. At this load, the Dirigent control plane CPU utiliza-

tion is still only 55% and the bottleneck lies in acquiring locks

for updates to shared data structures used for autoscaling.

In contrast, cold start latency with Knative and OpenWhisk

saturates at significantly lower load (below 2 cold starts per

second!), due to high CPU utilization on the K8s API Server

which is processing many RPCs from controller components

and serializing large volumes of data for state updates to
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the etcd database. Note that compared to the experiment

in Figure 1, where we invoked bursts of specific size and

reported the median latency for invocations in that burst,

here we invoke functions at a steady rate. Overall, Dirigent

enables 1250× higher sandbox creation throughput than the

K8s-based cluster managers. This is critical as FaaS clus-

ters in production experience bursts in which thousands of

sandboxes must be created within a second (recall Figure 3).

Cold start latency breakdown. Figure 7 also shows that
Dirigent’s cold start latency is lower than K8s-based systems

even at low load (e.g., 1 cold start per second). We analyze the

breakdown of unloaded cold start latency in Knative and Diri-

gent. Knative is slow at booting new sandboxes (∼400 ms)

since in addition to the user container, it creates a queue-

proxy sidecar container on the worker node for each user

function container. The sidecar buffers requests to the user

container. These two containers are created sequentially and

need to pass the readiness probe checks, which we find takes

∼500 ms after both containers are created. In contrast, Diri-

gent buffers requests in per-function queues in data plane

nodes and therefore does not need to boot queue-proxy side-

cars on worker nodes in the critical path. This significantly

reduces sandbox creation and readiness wait latency. Diri-

gent also has lower control plane latency due to minimal

state updates on the critical path of sandbox creation. Diri-

gent with Firecracker snapshot microVMs further reduces

unloaded cold start latency as it reduces sandbox creation

and network configuration latency on worker nodes.

Dirigent optimization breakdown:To understandwhich
aspects of Dirigent’s design contribute most to performance

benefits, we repeat the cold start throughput sweep exper-

iment with a modified version of Dirigent that persists all

state in Table 2, including sandbox state. Persisting sandbox

state in the control plane introduces a write to persistent

storage on the critical path for cold starts, which decreases

Dirigent’s peak cold start throughput to 1000 cold starts per

second, and p99 latency surges at 500 cold starts per second.

This confirms that avoiding persistent state updates on the

critical path of cold start requests is a performance-critical

design decision. In §5.4 we will show that the design decision

does not sacrifice fault-tolerance, as Dirigent can still recon-

struct sandbox state efficiently from worker nodes in case

of control plane failures. We also confirm that simply fusing

K8s components (which avoids RPCs between controllers) is

not sufficient to eliminate performance issues in K8s-based

cluster managers. We deploy Knative on top of K3s [17],

which is a monolithic implementation of K8s within a single

process. We observe only marginally higher peak cold start

throughput than Knative, indicating that the state manage-

ment and state persistence design decisions in Dirigent are

much more performance-critical than its monolithic control

plane. Dirigent’s monolithic control plane is still useful as it

simplifies the system design and deployment.
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Figure 8. Warm start performance.

5.2.2 Warm Start Performance. To stress-test the clus-

ter manager data plane, we now consider only warm starts,

i.e., invocations for which a sandbox is already available

in the cluster and the control plane is not on the critical

path. Figure 8 shows the p50 and p99 end-to-end latency

as we sweep warm start throughput. Dirigent can sustain

4000 warm invocations per second with a median latency

of 1.4 ms and a p99 latency of 2.5 ms. The components that

contribute to the warm start latency are the front-end load

balancer, Dirigent’s HTTP proxy service and request throt-

tler on data plane nodes, and iptables address translation on

worker nodes. At the peak warm start throughput, Dirigent

data plane nodes become a bottleneck as threads contend

for locks to update data structures storing load balancing

metadata. In contrast, Knative achieves a peak throughput of

only 1200 warm starts per second with a median latency of

7 ms, as the activator and queue-proxy components in Kna-

tive add some additional latency. OpenWhisk’s high latency

originates from its architecture, i.e., Apache Kafka [2] and

CouchDB [1] being on each invocation’s critical path [44].

5.2.3 Scalability to More Worker Nodes. We explore

how cluster manager performance scales to more worker

nodes. Knative documentation recommends clusters with

up to 5K nodes [26]. To evaluate Dirigent’s scalability, we

sweep cold start throughput as we increase the number of

worker nodes. Since we do not have a sufficiently large clus-

ter, we use our 100-node cluster and run multiple worker

daemons per physical machine. Each worker daemon sends

heartbeats to the control plane and sleeps for 40 ms upon re-

ceiving a sandbox creation request, which corresponds to the

median Firecracker microVM creation time from snapshots.

We find Dirigent latency and peak throughput match the

one in Figure 7 when cold starts are distributed across up to

2500 worker nodes. With more worker nodes, peak cold start

throughput starts to degrade (e.g., with 5000 workers, we

observe peak throughput of 2000 cold starts per second) due

to lock contention for updates to shared data structures that

monitor the health of sandboxes in response to heartbeats.

5.2.4 Function Registration Performance. To be in-

voked, a function must first be registered with the cluster

manager. Although done once per function, fast registration
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Figure 9. Per-function slowdown CDF for Azure 500 trace.

enables users to quickly deploy applications with hundreds

of functions. In AWS Lambda, we observe registering 500

functions can take hours. Knative does this work in roughly

18 minutes, whereas in Dirigent, it takes 1 second. In Knative,

it takes ∼770 ms to register a single function in an empty

cluster, but this latency grows the more functions there are in

the system. This is because Knative ascribes multiple abstrac-

tions to each function on registration (e.g., routes, revisions,

services) and synchronizes ingress controllers. In contrast,

registering a function in Dirigent takes 2 ms on average, as

it only involves persisting function specification into the

database and propagating metadata to data planes.

5.3 End-to-End Performance on Azure Trace
We now measure end-to-end performance on a FaaS produc-

tion workload trace from Microsoft Azure [68] that contains

70K functions invoked over two weeks. We use InVitro [75]

to obtain a representative trace sample that can run on our

100-node cluster. We extract a 30-minute time window start-

ing in the middle of the trace (8th hour of day 6) and sample

500 functions trace with 168K invocations. We also test Diri-

gent with a larger trace containing 4K functions and 3.33M

invocations. Functions execute the SQRTSD x86 instruction

for a number of loop iterations based on the function execu-

tion time distribution in the trace. We run experiments for

30 minutes and discard the first 10 minutes as a warm-up.

We measure scheduling latency and per-function slow-

down. Slowdown is the end-to-end latency of the invocation

in the FaaS cluster divided by the function’s execution time

on a dedicated worker node with no cluster scheduling over-

head. Since the execution times of different functions in the

trace can vary by orders of magnitude, we group by function

and report the geometric mean slowdown per function. We

also evaluate resource efficiency by measuring cluster CPU

and memory usage. Since OpenWhisk performance is worse

than Knative for both cold and warm starts in §5.2, we do

not include it here, but we compare to AWS Lambda.

Function latency analysis. Figure 9 shows Dirigent sig-
nificantly reduces per-function slowdown compared to state-

of-the-art systems. While the median function slowdown is

1.87 in AWS Lambda and 13.2 in Knative, it is only 1.38 with
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Figure 10. Scheduling latency for Azure 500 function trace.

Dirigent. Dirigent especially reduces scheduling overheads

at the tail, i.e., reduces p99 function slowdown by 6.89× com-

pared to AWS Lambda and by over three orders of magnitude

compared to Knative. While slowdown quantifies the impact

the cluster manager has on end-to-end latency (which also

depends on the function’s execution time), Figure 10 shows

the raw scheduling latency CDFs for the same experiment,

both per-invocation and per-function average scheduling

latency. Note the log scale. Dirigent reduces the median and

p99 per-function scheduling delay by 3.07× and 2.79× com-

pared to AWS Lambda, respectively. Dirigent reduces the p99

per-function scheduling delay by 403× compared to Knative.

The functions that experience the highest slowdown in

Dirigent are those with the shortest execution time (i.e.,

below 10 ms) as these functions are the most sensitive to

scheduling overheads and sandbox creation delays. Mean-

while, the functions with the highest slowdown in Knative

and AWS Lambda experiments are predominantly functions

whose individual invocations are greatly spread out over

time but occur during times in the trace when the cluster ex-

periences the most cold starts. We find some functions in the

trace are repeatedly invoked in unison (due to timer-based

invocation triggers [68]) with long periods, resulting in large

cold start bursts in the cluster. These bursts lead to high

scheduling latency in AWS Lambda and Knative, whereas

Dirigent handles much higher cold start throughput. For the

Azure 500 function trace experiment, Knative’s median per-

invocation scheduling latency is 4.67 ms and 59.59 s at the

99th percentile. In contrast, Dirigent’s median scheduling

latency is 1.74 ms and 1.13 s at the 99th percentile. Dirigent

with Firecracker has a bit longer per-function slowdown

tail as some functions are never invoked during the warm-

up period, hence the first cold start is not from a microVM

snapshot.

Sandbox creation count. We also notice that Dirigent

creates fewer sandboxes throughout the experiment even

though it uses the same autoscaling algorithm and metrics

as Knative. During the experiment, Knative spawned 2930

sandboxes, whereas Dirigent created only 713 sandboxes for

the same workload trace. To understand this discrepancy, we

need to delve into the functioning of the Knative autoscaling
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algorithm. Knative’s autoscaler monitors the number of in-

flight requests, which encompasses both those actively being

processedwithin pods and those queued. The desired number

of pods is directly proportional to the inflight request count.

Intuitively, when a queue forms, the autoscaler initiates new

pod creations proportionally to the queue length. However,

due to a lengthy scale-up delay within Knative, the queue

continues to grow during the scale-up process, prompting

the creation of even more pods. In contrast, Dirigent exhibits

a more responsive behavior. When a queue starts to form,

the Knative autoscaling algorithm starts creating pods, and

Dirigent promptly scales the number of ready pods to the

desired state of the autoscaler, leading to a near-immediate

depletion of the queue. This swift response translates to

a significantly reduced number of pods being provisioned

overall.

Resource utilization. We observe that the Dirigent con-

trol plane node only uses 3% of CPU cycles on average,

whereas the Knative control plane CPU is consistently above

75% utilized as it struggles to handle cold start bursts. Hence,

Dirigent provides higher scheduling performance while also

consuming fewer CPU resources for the control plane than

Knative. Worker nodes memory in Knative and Dirigent is

utilized 4.62% and 3.1%, respectively.

Larger trace. While the sampled Azure trace with 500

functions is the biggest trace we can run with Knative be-

fore we start observing high invocation failure rates due to

timeouts, the trace does not saturate the same hardware clus-

ter orchestrated by Dirigent. Hence, we run a larger Azure

trace sample with 4000 functions and 3.33M invocations. We

compare Dirigent to AWS Lambda. With this trace, Dirigent

utilizes 70% of CPU resources on worker nodes and achieves

p50 and p99 slowdowns of 2.14 and 15.4, respectively. On

the other hand, AWS Lambda’s p50 and p99 slowdowns are

70 and 11631, respectively. Finally, Dirigent experiences a

negligible invocation failure rate, while in the AWS Lambda,

14% of invocations experience timeout.

5.4 Fault Tolerance
We now analyze the impact of component failures. We mea-

sure average function invocation slowdown over time for

the Azure 500-function workload, while triggering failures.

Control plane failure. Figure 11, shows how the slow-

down of function invocations varies over time before and

after we fail the control plane leader for Dirigent and Kna-

tive. A control plane failure impacts performance by adding

a queuing delay for cold starts. Cold starts must be buffered

in the data plane until the control plane becomes opera-

tional again and can schedule a sandbox creation or until

a previously busy sandbox for the function on a worker

node becomes available in the cluster. Dirigent achieves a

lower per-invocation slowdown for invocations issued at the

moment of failure and manages to stabilize the slowdown

quicker than Knative. The performance improvements of
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Figure 11. Control plane fault tolerance. The vertical red
line shows when the failure occurs.

Dirigent stem from the monolithic control plane architec-

ture which only requires a single leader election, taking up

to 10 ms. In contrast, Knative elects a leader for each control

plane microservice followed by a component registration

with the API Server, which can take several seconds.

Data plane failure.When a data plane fails, all inflight

requests also fail, as connections to clients are terminated.

We fail one data plane replica and monitor the invocation

failure rate. We observe it takes 2 seconds for the failure

rate to drop back down to zero after a data plane failure in

Dirigent, compared to 15 seconds in Knative. In Knative, it

takes more time for the front-end load balancer to detect a

data plane failed, after which it stops routing new requests

to the affected component. Since Knative’s data plane is not

a monolith as in Dirigent, the recovery time is dominated by

the Istio gateway, the slowest component to restart.

Worker daemon failure.When the worker daemon on a

node fails, the worker can no longer respond to any control

plane commands, including starting or tearing down sand-

boxes. This leads to a higher slowdown on cold invocations,

while warm invocations remain affected. We failed 47 out

of 93 worker daemons in the cluster while monitoring the

slowdown of functions invoked during worker downtime.

Dirigent achieves a peak per-invocation slowdown of 2.7,

which is 10× lower than Knative, as Dirigent can efficiently

create new sandboxes on non-affected nodes and because it

has shorter worker daemon recovery time.

Concurrent component failures. Dirigent remains op-

erational as long as one control plane replica is elected as

a leader and at least one data plane is operational. In case

of concurrent component failures, the recovery time will be

dominated by the slowest component to recover, as compo-

nents can recover in parallel.

6 Future Directions
By enabling orders of magnitude higher sandbox creation

throughput than existing platforms, Dirigent can provide

a foundation for future research in FaaS systems. We are

currently exploring how to schedule function workflows

in Dirigent by using data planes as workflow orchestra-

tors. We also aim to explore how to provide at-least-once

12



or exactly-once request-level guarantees and quantify their

cost at scale [50, 63, 70, 82]. We are adding support for more

sandbox runtimes [55] and scheduling policies. Another im-

portant question is how to manage container image caching

at scale [37].

7 Conclusion
Dirigent is a new customized cluster manager for server-

less. In contrast to the state-of-the-art approach of build-

ing FaaS cluster managers on top of legacy cluster man-

agers like Kubernetes, Dirigent presents a clean-slate sys-

tem architecture, simple abstractions, and lightweight per-

sistence for state management to eliminate the performance

bottlenecks of K8s-based cluster managers in high-churn

FaaS environments. We show that Dirigent can pin up 2500

sandboxes per second at low latency, which is 1250× more

than Knative. Dirigent achieves 6.89× lower 99th percentile

per-function slowdown and 403× lower 99th percentile per-

function scheduling latency compared to Knative on a pro-

duction Azure trace while maintaining 25× lower control

plane CPU utilization on average. Dirigent also improves re-

covery times from component failures compared to Knative.
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