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Abstract

Here we define a new unification algorithm for terms interpreted in semantic domains denoted
by a subclass of regular types here called deterministic regular types. This reflects our intention
not to handle the semantic universe as a homogeneous collection of values, but instead, to
partition it in a way that is similar to data types in programming languages. We first define
the new unification algorithm which is based on constraint generation and constraint solving,
and then prove its main properties: termination, soundness, and completeness with respect to
the semantics. Finally, we discuss how to apply this algorithm to a dynamically typed version
of Prolog.
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1 Introduction

In mathematical logic, a term denotes a mathematical object. In logic programming this

notion is generalized to terms as a syntactic representations of structured data. A theory

of equality on the set of all terms formally defines which terms are considered equal. In the

most typical case of first order theories only syntactically identical terms are considered

equal. In this case functions are uninterpreted functions or, computationally, functions

build data terms, rather than operating on them.

When the domain of discourse contains elements of different kinds, it is useful to split

the set of all terms (Universe) accordingly. To this end, a type (sometimes also called sort)

is assigned to variables and constant symbols, and a declaration of the domain type and

range type to each function symbol. A typed term f(t1, ..., tn) may then be composed

from the subterms t1, ..., tn only if the i-th subterm’s type matches the declared i-th

domain type of f . Such a term is called well-typed and terms which are not well-typed

are called ill-typed.

http://arxiv.org/abs/2404.16406v1
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Previous approaches for types in logic programming use regular types as the type

language for logic programming Zobel (1987); Mishra (1984); Yardeni and Shapiro

(1991); Frühwirth et al. (1991); Dart and Zobel (1992); Codish and Lagoon (2000);

Schrijvers et al. (2008b;a); Gallagher and Henriksen (2004); Barbosa et al. (2022a);

Hermenegildo et al. (2023). A subset of regular types, which restricts individual type def-

initions to be deterministic, allows for decidable emptiness checking, subset checking, and

a intersection and unification operations as defined by Dart and Zobel Dart and Zobel

(1992). However, when trying to find a semantic partition corresponding to regular types

(even with the same restriction), type checking is not trivial.

Data type definitions in programming languages impose constraints to the type lan-

guage to allow decidable type checking. Usually data types are possibly recursive defi-

nitions where type constructors are unique. Here we propose a stricter subset of regular

types that we shall call deterministic regular types, which corresponds exactly to the

restriction mentioned above. In a deterministic regular type each type constructor (here

called type function symbol) is unique.

We will focus our attention on equality in a theory where the semantic universe is

partitioned in a way consistent with deterministic regular types, similarly to data types

in programming languages. More specifically, this paper is concerned with unification in

typed first order theories, where types are described by deterministic regular types.

With this motivation in mind we present a term unification algorithm which may now

return three different results: a most general unifier, failure or wrong. This last value

wrong is inspired by a similar notion used by Robin Milner to denote run-time type

errors in functional programs Milner (1978) and, in our framework, it corresponds to the

unification of terms that can never belong to the same semantic domains.

A function now, may map integers to integers, integers to lists, floats to lists of integers,

and, thus, the Herbrand universe is now divided in many different domains.

Example 1: Let cons be the list constructor with type cons :: ∀α.α× list(α) → list(α),

where list(α) = [ ] + [α | list(α)] (+ denotes disjoint type union). Suppose we have

terms t1 = cons(1, X) and t2 = cons(Y, 2). These terms unify using first-order (untyped)

unification, but they do not have a correct type, since the second argument of cons must

be a list. This ill-typing is captured by our new typed unification algorithm that, in this

case, outputs wrong.

RelatedWork This paper generalizes a typed unification algorithm previously defined

by the authors in Barbosa et al. (2022b) that was used in the dynamic typing of logic

programs. In Barbosa et al. (2022b) functions symbols f of arity n had co-domains which

were always sets of terms of the form f(t1, . . . , tn), where the arguments ti belong to the

corresponding domain of f . This basically induced a partition of the Herbrand domain

into sets of trees. Here we extend this notion enabling the use of semantic domains and

co-domains described by deterministic regular types.

The most obvious related work is many-sorted unification Walther (1988), though

many-sorted unification assumes an infinite hierarchy of sorts and we do not assume a

hierarchy of types. In particular there is a relation with many-sorted unification with

a forest-structured sort hierarchy Walther (1988), but even compared with this strong

restricted unification problem, our work gives easier and nicer results, mostly due to the
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use of an expressive universe partition based on deterministic regular types but with no

underlying hierarchy on the domains.

Here we study unification of terms interpreted in domains described by deterministic

regular types, and we allow a form of parametric polymorphism in the description of

term variables. Parametric polymorphic descriptions of sorted domains goes back to

Smolka generalized order-sorted logic Smolka (1988). In his system, subsort declarations

are propagated to complex type expressions, thus the main focus is on subtyping which

is not the scope of our work.

Contributions Our main contributions are: an extension to the semantics defined in

Barbosa et al. (2022b), where equality takes into account the domains of the two terms

in the left and the right hand side of an equation, being wrong when terms belong to

disjoint domains; a type system for terms and the equality predicate which we prove to

be sound with respect to the semantic typing relation; and a new unification algorithm,

which given an equation between two terms returns their most general unifier and their

principal type, if there is a solution, false if there is not a solution but terms can belong

to the same semantic domain and wrong otherwise.

This three stage framework (first a notion of semantic typing, then a type system

for terms and equations which is sound with respect to semantic typing and, finally, a

unification algorithm which is sound and complete with respect to the type systems)

enables to smoothly prove soundness and completeness of our unification algorithm, and

it is inspired by the type theory in Milner Milner (1978) where he also defined a notion

of semantic typing, then a type system which was sound with respect to semantic typing

and a type inference algorithm which was sound and complete with respect to the type

system.

2 Term Syntax and Semantics

We will, firstly, define the language of terms. For a more in detail presentation, we refer

the reader to Apt (1996); Lloyd (1984).

Given an infinite set of variables VAR and an infinite set of function symbols FUNC,

a term is:

1. a variable (X, Y, Xi, . . . );

2. a function symbol of arity 0 (k, a, b, 1, . . . ), which we call a constant;

3. a function symbol of arity n ≥ 1 (f, g, h, . . . ) applied to an n-tuple of terms.

We call terms that contain no variables ground terms, and terms that start with a

function symbol with arity n ≥ 1 complex terms.

Following the standard Herbrand interpretation of logic programs Apt (1996); Lloyd

(1984), we assume that every term represents a tree and that all these trees are part of

the universe of interpretation of the logic program.

Any division of the universe leads to a typed unification algorithm, but here, we assume

a particular partition of the universe into several domains. Note that this interpretation

just groups sets of trees in the universe into domains, and includes some other domains

that are not consisting of trees. Thus, here we divide the universe U into domains as

follows:
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U = Int∪Flt∪Str∪Atm∪List1 ∪ . . .∪Listn ∪A1 ∪ . . .∪Am ∪Bool∪F∪Wrong,

where Int is the set of trees that represent integers (examples include 1 and -10, but

also trees such as 1 + 4 and 2 * 5 - 1), Flt is the set of trees that represent floating-

point numbers (similarly to Int, we consider every tree that represents a floating-point

number, including trees whose root is an arithmetic operator), Str is the set of trees

representing strings, Atm is the set of trees consisting of a single node, the root, that

are not included in any other domain, Listi are sets of trees that represent lists, where

each domain contains the trees that represent lists of elements of some other domain

(i.e., we have a domain for lists of integers, lists of strings, lists of lists of integer, . . . ), Ai

are the domains of trees whose root is a function symbol and the nodes of each tree are

in the same domain as the corresponding nodes of every other tree (examples: f(Int),

g(Int, F loat), h(g(Atom), h(Int)), . . . ), Bool is the set with true and false, F is the set

of semantic functions, and Wrong is the set with a single value, wrong. We call base

domains to the domains Int, Flt, Str, and Atm.

One important note here is the value [], corresponding to the empty list. We assume

that this value belongs to every list domain, and that it is the only value that belongs to

more than one domain in this partition.

Then, the semantics of a term is a tree in some domain, or wrong. The semantics

depends on an interpretation I for the function symbols in the language, and a state

Σ which associates variables to semantic values. We assume that the value returned by

I is, for constants, a tree with just a root, and for function symbols of arity n ≥ 1 a

function in F, that outputs a tree and has as input some domains. We assume that,

for all function symbols f except the list constructor cons, the corresponding function

in I is a function f that has signature f : ∀α1, . . . , αn.α1 × · · · × αn → f(α1, . . . , αn),

such that if any of the arguments the function is applied to is wrong then it outputs

wrong, otherwise it outputs the tree with root f and children the trees it got has input.

For the list constructor cons the function associated in I is cons with signature cons

: ∀α.α× list(α) → list(α) defined as:

cons(v1, v2) =

{

cons(v1, v2) if v1 ∈ D ∧ v2 ∈ List(D)

wrong otherwise

The predefined interpretation I is the one where every constant has the expected value,

for instance the term 1 has as value the integer 1, and the term a has as value the atom

a. One additional useful definition is the function dom that returns what is the domain

of a value.

We define the semantics of a term, represented by [[ ]]I,Σ, in the following way:

• [[X ]]I,Σ = Σ(X)

• [[k]]I,Σ = I(k)

• [[f(t1, . . . , tn)]]I,Σ = I(f)([[t1]]I,Σ, . . . , [[tn]]I,Σ)

Note that, if a complex term contains the list constructor, the semantics of that term

can be wrong. This is where the division into domains comes into play, since if we

were considering an undivided Herbrand universe, then trivially all values are in the

same domain so the application of a function could never generate an error. This is not
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realistic in any typed programming language, but also true for untyped languages: note

that Prolog, the main logic programming language, already includes some division of the

universe into values, implicit by the use of type predicates such as integer, float or atom.

We assume one predicate, equality, hereby represented by =. The semantics of equality

is re-adjusted to take into account the value wrong. Equality is defined for terms in the

same domain. So let function eq with signature eq : ∀α.α × α → Bool be defined as

follows:

eq(v1, v2) =















true if v1 = v2 ∧ dom(v1) ∩ dom(v2) 6= ∅ ∧ dom(v1) 6=Wrong

false if v1 6= v2 ∧ dom(v1) ∩ dom(v2) 6= ∅ ∧ dom(v1) 6=Wrong

wrong otherwise

The semantics for the equality predicate is then as follows:

[[t1 = t2]]I,Σ = eq([[t1]I,Σ, [[t2]]I,Σ)

Note that there are two ways of returning wrong in an equality: either one of the terms

contains an error in itself (i.e., has the semantic value wrong), therefore it belongs to

the domain Wrong, or the semantics for the terms belongs to domains with an empty

intersection. The second case needs some explanation. We could define it as dom(v1) 6=

dom(v2), but for values that belong to several domains, such as [], the dom function

returns the union of all the domains, so equality is well defined when one finds a common

domain for both terms.

3 Type Language

Here we define a syntactic description of semantic domains. This syntactic description

corresponds to the well know concept of a type. The alphabet for the language of types

includes an infinite set of type variables TVar, a finite set of base types TBase, an

infinite set of type function symbols TFunc, an infinite set of type symbols TSym,

parenthesis, and the comma. There is a one-to-one correspondence between TFunc

and Func, which we assume is predefined. Then, we have the following grammar for types:

all type ::= cons type | func type

cons type ::= type | type term

func type ::= type1 × · · · × typen → type

type ::= tvar | tbase | tsymbol(type1, . . . , typen)

type term ::= tconstant | tfunction(cons type1, . . . , cons typen)

type def ::= tsymbol(tvar1, . . . , tvarn) −→ type term1 + . . .+ type termm

Where tvar ∈ TVar, tbase ∈ TBase, tconstant, tfunction ∈ TFunc, and tsymbol ∈

TSym. We call a type term that starts with a tfunction a complex type term. We call

ground to any type that does not contain a type variable.

Each type symbol is defined by a type definition. A well-formed type definition has all

tvar that occur as parameters on the left-hand side of the definition, occurring somewhere

on the right-hand side. The sum τ1 + . . . + τn is a union type, describing values that

have one of the type terms τ1, . . . , τn, called the summands. The ‘+’ is an idempotent,

commutative, and associative operation.
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A set of type definitions D is called deterministic if any type function symbol occurs

at most once in D. Note that in a deterministic set of type definitions no two type terms

on the right-hand side of a definition have the same principal functor. Deterministic type

definitions include tuple-distributive types Zobel (1987) and correspond to the widely

used algebraic data types in programming languages. From now on we assume that type

definitions are deterministic and well-formed.

A type scheme σ is either a type, a functional type or an expression of the form

∀α1, . . . , αn.τ , where τ is an all type and α1, . . . , αn are type variables which will be

called the generic variables of σ. Note that types form a subclass of type schemes. To

simplify presentation, we will often abbreviate type schemes to ∀~α.τ , where ~α denotes a

sequence of several type variables αi. Type schemes represent parametric polymorphic

types Damas and Milner (1982).

4 Semantics

Each type is associated with a domain. A base type tbase is associated with a base

domain, and each instance of a type of the form tsymbol(type1, . . . , typen) is associated

with a domain. In our language we include a single type symbol list that is associated

with the domains for lists. We assume that the definition for the type symbol list is:

list(α) −→ [ ]+cons(α, list(α)). We could include further type symbols that were defined

by inductive definitions, such as lists, and the rest of this paper could be easily extended

to include different inductively defined types, but we keep list as the only one in this

paper for the sake of simplicity. We assume that every type term on the right-hand side

of a type definition is a type constant or a complex type term, and the definitions are

deterministic (each type constant and type function symbol occurs only once).

A valuation ψ gives a ground type for each type variable. Formally, the semantics of

a type is a domain. Given a valuation ψ, we define the semantics of a type as follows:

T[[α]]ψ = T[[ψ(α)]]ψ
T[[int]]ψ = Int

T[[float]]ψ = Flt

T[[string]]ψ = Str

T[[atom]]ψ = Atm

T[[list(α)]]ψ = T[[list(ψ(α))]]ψ
T[[list(int)]]ψ = List(Int), same for any other ground instance of list(α)

The semantics of a type term is as follows, also given a valuation ψ:

T[[k]]ψ = {k}

T[[f(τ1, . . . , τn)]]ψ = {f(v1, . . . , vn) | vi ∈ T[[τi]]ψ}

The semantics of a union type, given a valuation ψ, is:

T[[τ1 + . . .+ τn]]ψ = T[[τ1]]ψ ∪ . . . ∪T[[τn]]ψ

The semantics of a func type, given a valuation ψ, is:

T[[τ1 × . . . × τn → τ ]]ψ = {f | f ∈ F ∧ ∀v1 ∈ T[[τ1]]ψ, . . . , vn ∈ T[[τn]]ψ.f(v1, . . . , vn) ∈

T[[τ ]]ψ}
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And, finally, the semantics of a type scheme is:

T[[∀~α.τ ]]ψ =
⋂

∀~σ T[[τ [~α 7→ ~σ]]]ψ , where ~σ is a sequence of types of the same size as ~α.

Note that the semantics of a (ground) type term may be a domain, as in the case of

f(int, f loat), or the subset of a domain, as in the case of cons(int, [ ]), or even a subset

of several domains, as in the case of [ ]. This includes a subset of the domain Wrong, as

in the case of cons(int, int). All instances of complex type terms whose tfunction is not

the list constructor are associated with a domain for trees.

Also note that we assume a function, given by I, for the interpretation of function

symbols, thus functions have type signatures: the type of a function symbol f of ar-

ity n is interpreted as function which builds a tree of root f , with the type scheme

∀α1, . . . , αn.α1 × · · · × αn → f(α1, . . . , αn). The semantics for this type scheme is the

intersection of the semantics for all instances of the functional type, which is a subset of

F consisting of all functions that have such type. So it consists of all the functions that

can have any tuple of n elements as input and output a tree whose root is f and the

children nodes are the input elements.

4.1 Semantic Typing

We now define what it means for a term to semantically have a type, denoted by t : τ . If

the term and the type are both ground, given an interpretation I, we just check whether

the semantics of the term belongs to the domain corresponding to the semantics of the

type. So, for ground terms and types:

t : τ =⇒ ∀Σ.∀ψ.[[t]]I,Σ ∈ T[[τ ]]ψ

However, both terms and types can be non-ground in general and, without extra in-

formation, we cannot know what is the correct type for a variable. To deal with variables

we introduce the concept of a context Γ, where we have typings of the form X : τ for

variables. Now, given a context associating variables with types, we are able to define

the semantic typing relation, denoted by , defined as:

Γ I t : τ =⇒ ∀Σ.∀ψ.(∀(X : τ ′) ∈ Γ.[[X ]]I,Σ ∈ T[[τ ′]]ψ =⇒ [[t]]I,Σ ∈ T[[τ ]]ψ)

Contexts allow us to type non-ground terms, assuming that the types for each variable

are the ones given in the context. So the same term may have different types depending

on the context, if it is non-ground (since ground terms always have the same type, due

to the nonexistence of variables in the term that depend on the context). We call the

generic context to the context that contains Xi : αi, for all variables, i.e., all variables

have the most general type they can have, a type variable, and each type variable is

associated with a particular term variable.

Example 2: Let Γ = {X : α, Y : list(α)} and ∆ = {cons : ∀α.α × list(α) → list(α)}.

Γ,∆ |=I cons(X,Y) : list(α)

Suppose we have a state Σ and a valuation ψ such that [[X]]I,Σ ∈ T[[α]]ψ and [[Y]]I,Σ ∈

T[[list(α)]]ψ, then [[cons(X,Y)]]I,Σ ∈ T[[list(α)]]ψ. Since [[X]]I,Σ = Σ(X) ∈ T[[ψ(α)]]ψ and
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[[Y]]I,Σ = Σ(Y ) ∈ T[[ψ(list(α))]]ψ , by the semantics of cons, we have cons(Σ(X),Σ(Y )),

which is not wrong from the domains of the respective values, and because the output

is in the correct domain.

However, note that for Γ′ = {X : α, Y : β}, the same would not be true, since for

Σ = [X 7→ 1, Y 7→ 2] and ψ = [α 7→ int, β 7→ int], the left-hand side of the implication is

true, but cons(1, 2)(= wrong) /∈ T[[list(Int)]]ψ.

5 Syntactic Typing

This section introduces syntactic typing by the definition of a type system for terms and

the equality predicate. A context Γ and a set of type assumptions for constants and

function symbols ∆ are needed to derive a type assignment and one writes Γ,∆ ⊢ t : τ

(pronounce this as Γ and ∆ yield t in τ). Assumptions in ∆ are of the form k : ∀~α.τ ,

for constants, and f : ∀~α.τ1 × · · · × τn → τ , for function symbols, where the generic

variables ~α of these type schemes are exactly the type variables that occur in τ and

τ1 × · · · × τn → τ , respectively.

A statement t : τ is derivable from contexts Γ and ∆, notation Γ,∆ ⊢ t : τ , if Γ,∆ ⊢ t : τ

can be produced by the following rules.

VAR
(X : τ ) ∈ Γ

Γ,∆ ⊢ X : τ
CST

(k : ∀~α.τ ) ∈ ∆

Γ,∆ ⊢ k : τ [~α 7→ ~σ]

CPL

(f : ∀~α.τ1 × · · · × τn → τ ) ∈ ∆
Γ,∆ ⊢ t1 : τ1[~α 7→ ~σ] . . . Γ,∆ ⊢ tn : τn[~α 7→ ~σ]

Γ,∆ ⊢ f(t1, . . . , tn) : τ [~α 7→ ~σ]
EQU

Γ,∆ ⊢ t1 : τ Γ,∆ ⊢ t2 : τ

Γ,∆ ⊢ t1 = t2 : bool

Fig. 1. Type System

The type system definition pays particular attention to the mode of the typing judg-

ment. In particular, the type contexts and term are interpreted as inputs to the typing

judgment, while the term’s type is viewed as an output.

We must guarantee that ∆ is in agreement with I. For this, we have the following

relation: SigI  ∆, which is defined as ∀(k : τ) ∈ ∆.dom(I(k)) = τ ∧∀(f : τ1× . . .×τn →

τ).I(f) : τ1× . . .×τn → τ . We purposefully overload the symbol  since this corresponds

to a semantic validation of a syntactic typing.

Example 3: Let Γ = {X : int, Y : list(int)}, ∆ = {1 : int, nil : ∀γ.list(γ), cons :

∀β.β × list(β) → list(β)}, and Λ = (cons : ∀β.β × list(β) → list(β)) ∈ ∆. Then the

following type derivation holds using the type rules:

(X : int) ∈ Γ

Γ,∆ ⊢ X : int

([ ] : ∀γ.list(γ)) ∈ ∆

Γ,∆ ⊢ [ ] : list(int)(2) Λ

Γ,∆ ⊢ cons(X, [ ]) : list(int)(1)

(1 : int) ∈ ∆

Γ,∆ ⊢ 1 : int

(Y : list(int)) ∈ Γ

Γ,∆ ⊢ Y : list(int) Λ

Γ,∆ ⊢ cons(1, Y ) : list(int)(2)

Γ,∆ ⊢ cons(X, [ ]) = cons(1, Y ) : bool
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Note that in (1) we used list(β)[β 7→ int] and in (2) we used list(γ)[γ 7→ int]. Also note

that if X : α instead of X : int was in Γ, we could not have a derivation.

We now prove that the rules for syntactic typing are sound, that is, if the set ∆ is in

agreement with I, then any type derivation is semantically correct.

Theorem 1 - Soundness of Syntactic Typing: If Γ,∆ ⊢ t : τ and SigI |= ∆, then

Γ I t : τ .

Proof

We will prove this by induction on the derivation.

• If the term t is a variable X , then the derivation consists of a single application of axiom

V AR. Clearly, it is also true that Γ I X : τ , where (X : τ) ∈ Γ, since any Σ that gives

values to X and ψ that gives values to τ , such that [[X ]]I,Σ ∈ T[[τ ]]ψ will do so in the

context and in the term itself simultaneously, so Γ I X : τ .

• If the term t is a constant k, then the derivation consists of a single application of axiom

CST . Since SigI |= ∆, dom(I(k)) = ∀~α.τ , where (k : ∀~α.τ) ∈ ∆, then k ∈ T[[∀~α.τ ]]ψ, for

any ψ. But since T[[∀~α.τ ]]ψ =
⋂

∀~σT[[τ [~α 7→ ~σ]]]ψ, then k ∈ T[[τ [~α 7→ ~σ]]]ψ. So for any Σ,

the right-hand side of the implication is always true, so Γ I k : τ [~α 7→ ~σ].

• If the term t is a complex term f(t1, . . . , tn), then we can assume, by induction hypothesis,

that Γ,∆  ti : τi[~α 7→ ~σ], for all i = 1, . . . , n. Since SigI |= ∆, I(f) : ∀~α.τ1×· · ·×τn → τ ,

then f ∈ T[[∀~α.τ1 × . . . × τn → τ ]]ψ, for all ψ, so f ∈ T[[(τ1 × . . . × τn → τ)[~α 7→ ~σ]]]ψ.

Therefore, we know that, if vi ∈ T[[τi[~α 7→ ~σ]]]ψ then f(v1, . . . , vn) ∈ T[[τ [~α 7→ ~σ]]]ψ.

For any Σ and ψ such that ∀(X : τ ′) ∈ Γ.[[X ]]I,Σ ∈ T[[τ ′]]ψ, we know by the induction

hypothesis [[ti]]I,Σ ∈ T[[τi[~α 7→ ~σ]]]ψ . Therefore, for the same Σ and ψ, we know that

[[f(t1, . . . , tn)]]I,Σ ∈ T[[τ [~α 7→ ~σ]]]ψ, so Γ I f(t1, . . . , tn) : τ [~α 7→ ~σ].

• If we have an equality of two terms t1 = t2, we can assume, by induction hypothesis,

that Γ I t1 : τ and Γ I t2 : τ . Therefore we know that for any Σ and ψ such that

∀(X : τ ′) ∈ Γ.[[X ]]I,Σ ∈ T[[τ ′]]ψ, we have [[t1]]I,Σ ∈ T[[τ ]]ψ and [[t2]]I,Σ ∈ T[[τ ]]ψ. So for

these Σ and ψ, we have [[t1 = t2]]Σ ∈ [[bool]]ψ. Therefore, Γ I t1 = t2 : bool.

The fact that we have a context that gives the type for each variable raises some

interesting questions: is there a preferred context for each term? And, given a term t

is there a typing representing all possible typings of t? An answer to these questions is

related with the notion of principal typing Jim (1996), which we define here appropriate

to our system:

Definition 1: A principal typing is a pair (Γ, τ), such that Γ,∆ ⊢ t : τ and for every other

pair (Γ′, τ ′) such that Γ′,∆ ⊢ t : τ ′, there is a type substitution µ such that µ(Γ) = Γ′

and µ(τ) = τ ′.

Note that it is not always the case that the context in a principal typing is a generic

context.
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Example 4: Let t =[X | Y]. A principal typing for t is ({X : α, Y : list(α)}, list(α)).

Note that any renaming of type variable α defines another principal typing, because

principal typings are unique up to renaming of type variables. Also note that the type

for Y cannot be a type variable, this, in this example, the context is not generic.

6 Constraints

While this type system specification has great appeal, the question arises as to whether it

can be effectively type checked. Indeed it can by an easy recursive implementation of the

type rules. We desire even more flexibility than the language provides as it is. To do so,

we generalize the problem beyond purely elided type annotations. To check implicit types

during unification, we must deduce types that are not present in equality equations. To

represent this problem in a broader context, we introduce the notion of type constraint

which we add to the usual term unification problem.

There are two kinds of constraints. Equality constraints between terms t1 = t2, and

equality between types τ1
.
= τ2. We are here using the same symbol for equality con-

straints and the equality predicate. We argue that the uses are clear from the context.

We say that a set of equality constraints is in normal form if all constraints are of the

form Xi = ti, for some term ti, and there is no other occurrence of any Xi that is on the

left-hand side of a constraint anywhere else in the set.

A set of equality constraints in normal form can be interpreted as a substitution. We

can interpret every constraint of the form Xi = ti as a substitution of the form [Xi 7→ ti].

A set of type equality constraints is in normal form if all constraints are of the form

αi
.
= τi, for some type τi, and there is no other occurrence of any αi on the left-hand

side of a constraint anywhere else in the set.

A set of type equality constraints in normal form can be interpreted as a type substi-

tution. We can interpret every constraint of the form αi
.
= τi as a type substitution of

the form [αi 7→ τi].

Definition 2: A substitution θ (or type substitution µ) is called a unifier for terms t1
and t2 (or types τ1 and τ2), iff θ(t1) ≡ θ(t2) (or µ(τ1) ≡ µ(τ2)). Terms t1 and t2 (or types

τ1 and τ2) are unifiable iff there exists a unifier for them.

Our constraints are supposed to represent equality, either of terms or types. However,

in the semantics, we need states and valuations to interpret non-ground terms and types,

respectively. We need a way to interpret the constraints semantically, so we define the

following.

Definition 3: Let c be a constraint, Σ a state, and ψ a valuation. We say that Σ and ψ

model c, and represent it by Σ, ψ |= c if:

• c is an equality constraint of the form t1 = t2, then Σ(t1) ≡ Σ(t2);

• c is a type equality constraint of the form τ1
.
= τ2, then ψ(τ1) ≡ ψ(τ2);

We can know extend this definition to a set of constraints.
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Definition 4: Let C be a set of equality constraints and S be a set of type equality

constraints. We say that a state Σ and a valuation ψ model the pair (C, S), and represent

it by Σ, ψ |= C, S iff Σ and ψ model all constraints in both sets.

We now provide an auxiliary definition that relates substitutions and states and use

this definition to extend our notion of constraint modelling.

Definition 5: We say that a state Σ follows a substitution θ and represent it by Σ ∼ θ iff

for any term t, [[t]]I,Σ = v and [[µ(t)]]I,Σ = v. Similarly, a valuation ψ follows a substitution

for types µ (ψ ∼ µ) iff for any type τ , T[[τ ]]ψ = T[[µ(τ)]]ψ.

Definition 6: Let C be a set of equality constraints and S be a set of type equality

constraints. We say that a substitution θ and a type substitution µ model the pair

(C, S), and represent it by θ, µ |= C, S, iff for every state Σ and valuation ψ we have that

Σ ∼ θ ∧ ψ ∼ µ =⇒ Σ, ψ |= C, S.

7 Typed Unification Algorithm

The typed unification algorithm performs unification on both the terms given as input

and the types for those terms. The intuition is that if the types do not unify, then there

is a type error. We will prove this condition in the next section. We follow the approach

of Wand (1987): generate constraints for typability and solve them.

7.1 Constraint Generation

Guided by the definition of our type system we now define a constraint typing judgment,

which indicates what constraints must hold for a particular type term-and-context pair to

be typable. Let Γ be a generic context. We use the following rules to generate constraints

for the unification of two terms t1 and t2. The generated constraints will be the pair

(C, T ) in Γ ⊢ t1 = t2 : bool | C | T . In the rules in Figure 2, ~β represents a sequence of

fresh type variables of the same size of ~α in the corresponding case.

GVAR
(X : α) ∈ Γ

Γ,∆ ⊢ X : α | ∅ | ∅
GCST

(k : ∀~α.τ ) ∈ ∆

Γ,∆ ⊢ k : τ [~α 7→ ~β] | ∅ | ∅

GCPL

(f : ∀~α.τ1 × · · · × τn → τ ) ∈ ∆
Γ,∆ ⊢ t1 : τ1′ | ∅ | T1 . . . Γ,∆ ⊢ tn : τn′ | ∅ | Tn

Γ,∆ ⊢ f(t1, . . . , tn) : τ [~α 7→ ~β] | ∅ | T1 ∪ · · · ∪ Tn ∪ {τ ′1
.
= τ1[~α 7→ ~β], . . . , τ ′n

.
= τn[~α 7→ ~β]}

GEQU
Γ,∆ ⊢ t1 : τ1 | C1 | T1 Γ,∆ ⊢ t2 : τ2 | C2 | T2

Γ,∆ ⊢ t1 = t2 : bool | {t1 = t2} | T1 ∪ T2 ∪ {τ1
.
= τ2}

Fig. 2. Constraint Typing Judgment
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Example 5: Let Γ be a generic context (we will denote the type variable associated with

each variable X by αX), ∆ = {1 : int, [ ] : ∀α.list(α), cons : ∀β.β × list(β) → list(β)},

C = {cons(X, [ ]) = cons(1, Y )}, and Λ = (cons : ∀β.β × list(β) → list(β)) ∈ ∆. The

following constraint type judgements hold:

(X : αX) ∈ Γ

Γ,∆ ⊢ X : αX | ∅ | ∅

([ ] : ∀α.list(α)) ∈ ∆

Γ,∆ ⊢ [ ] : list(γ) | ∅ | ∅ Λ

Γ,∆ ⊢ cons(X, [ ]) : list(ν) | ∅ | {αX = ν, list(γ) = list(ν)}(= T1)

(1 : int) ∈ ∆

Γ,∆ ⊢ 1 : int | ∅ | ∅

(Y : αY ) ∈ Γ

Γ,∆ ⊢ Y : αY | ∅ | ∅ Λ

Γ,∆ ⊢ cons(1, Y ) : list(η) | ∅ | {int = η, αY = list(η)}(= T2)

Γ,∆ ⊢ cons(1, Y ) : list(η) | ∅ | T1 Γ,∆ ⊢ cons(X, [ ]) : list(ν) | ∅ | T2

Γ,∆ ⊢ cons(X, [ ]) = cons(1, Y ) : bool | C | T1 ∪ T2 ∪ {list(ν) = list(η)}

We will now prove that constraint generation is sound, i.e., if we generate constraints

(both equality and type equality constraints), any model for them applied to Γ and the

type τ is derivable in the syntactic typing system.

Theorem 2 - Soundness of the Constraint Generation: If Γ,∆ ⊢ t : τ | C | T and

µ |= T , then µ(Γ),∆ ⊢ t : µ(τ) is derivable in the type system.

Proof

We will prove this theorem by induction on the derivation.

• If t is a variable X , then we have Γ,∆ ⊢ X : α | ∅ | ∅. Any type substitution µ is such

that µ |= ∅. And, for any µ, since µ(α) will be the same in Γ and in the consequent

of the rule, µ(Γ),∆ ⊢ X : µ(α) is derivable in the syntactic typing system by a single

application of rule VAR.

• If t is a constant k, then we have Γ,∆ ⊢ k : τ [~α 7→ ~β] | ∅ | ∅, where (k : ∀~α.τ) ∈ ∆. Any

type substitution µ is such that µ |= ∅. Then, for any such µ we can have the derivation

in the syntactic system using a single application of rule CST, using µ(τ [~α 7→ ~β]) =

τ [~α 7→ ~µ(β)].

• If t is a complex term f(t1, . . . , tn), then we have Γ,∆ ⊢ f(t1, . . . , tn) : τ [~α 7→ ~β] | ∅ | T1∪

. . . ∪ Tn ∪ {τ ′1
.
= τ1[~α 7→ ~β], . . . , τ ′n

.
= τn[~α 7→ ~β]}, given Γ,∆ ⊢ ti : τi′ | ∅ | Ti, for

i = 1, . . . , n. We also know that µ |= T1 ∪ · · · ∪ Tn ∪ {τ ′1
.
= τ1[~α 7→ ~β], . . . , τ ′n

.
=

τn[~α 7→ ~β]}, and any such µ is such that µ |= Ti and µ |= τ ′i
.
= τi[~α 7→ ~β], for each

i = 1, . . . , n. By the induction hypothesis, we have µ(Γ),∆ ⊢ ti : µ(τ ′i). But we know

that µ(τ ′i) = µ(τi[~α 7→ ~β]), since µ |= τ ′i
.
= τi[~α 7→ ~β], for all i = 1, . . . , n. So we also

have µ(Γ),∆  ti : µ(τi[~α 7→ ~β]). Therefore, by a single application of the CPL rule, we

get µ(Γ),∆  f(t1, . . . , tn) : µ(τ [~α 7→ ~β]).

• If t is an equality t1 = t2, then we have Γ,∆ ⊢ t1 = t2 : bool | {t1 = t2} | T1 ∪ T2 ∪ {τ1
.
=

τ2}, given Γ,∆ ⊢ t1 : τ1′ | ∅ | T1 and Γ,∆ ⊢ t2 : τ2′ | ∅ | T2. We also know that
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µ |= T1 ∪ T2 ∪ {τ1
.
= τ2}, and any such µ is such that µ |= T1, µ |= T2, and µ |= τ1

.
= τ2.

By the induction hypothesis, we have µ(Γ),∆ ⊢ t1 : µ(τ1) and µ(Γ),∆ ⊢ t2 : µ(τ2), but

since µ |= τ1
.
= τ2, we know that µ(τ1) ≡ µ(τ2). So by a single application of rule EQU,

we get µ(Γ),∆ ⊢ t1 = t2 : µ(bool), and µ(bool) = bool.

7.2 Constraint Solving

In this section we present a procedure that generalizes unification Robinson (1965) to

account for type constraints and produces solutions, where possible. Since each rule

simplifies the constraints, together they induce a straightforward decision procedure for

type and term constraints.

Suppose we want to unify two terms t1 and t2. Let us have Γ ⊢ t1 = t2 : bool | C | T

derived in the constraint generation step. Then we apply the following rewriting rules to

the tuple (C, T ), until none applies. The rules for the rewriting system are meant to be

applied in order, i.e., if rule n and n + k can both be applied, we apply n. They are as

follows:

1. (C, {f(τ1, . . . , τn)
.
= f(τ ′1, . . . , τ ′n)}∪Rest) → (C, {τ1

.
= τ ′1, . . . , τn

.
= τ ′n}∪Rest)

2. (C, {τ
.
= τ} ∪Rest) → (C,Rest)

3. (C, {f(τ1, . . . , τn)
.
= g(τ ′1, . . . , τ ′m)} ∪Rest) → wrong, if f 6= g or n 6= m

4. (C, {τ
.
= α} ∪Rest) → (C, {α

.
= τ} ∪Rest), τ is not a type variable

5. (C, {α
.
= τ} ∪Rest) → (C, {α

.
= τ} ∪Rest[α 7→ τ ]), if α does not occur in τ

6. (C, {α
.
= τ} ∪Rest) → wrong, if α occurs in τ

7. ({f(t1, . . . , tn) = f(s1, . . . , sn)} ∪Rest, T ) → ({t1 = s1, . . . , tn = sn} ∪Rest, T )

8. ({t
.
= t} ∪Rest, T ) → (Rest, T )

9. ({f(t1, . . . , tn) = g(s1, . . . , sm)} ∪Rest, T ) → false, if f 6= g or n 6= m

10. ({t
.
= X} ∪Rest, T ) → ({X

.
= t} ∪Rest, T ), t is not a variable

11. ({X
.
= t} ∪Rest, T ) → ({X

.
= t} ∪Rest[X 7→ t], T ), if X does not occur in t

12. ({X
.
= t} ∪Rest, T ) → false, if X occurs in t.

Example 6: Let C = {cons(X, [ ]) = cons(1, Y )} and T = {αX = ν, list(γ) =

list(ν), int = η, αY = list(η), list(ν) = list(η)}. Step-by-step the algorithm rewrite the

pair (C, T ) as follows:

(C, T ) → (C, {αX = ν, γ = ν, int = η, αY = list(η), list(ν) = list(η)}) →

(C, {αX = ν, γ = ν, int = η, αY = list(η), ν = η}) →

(C, {αX = ν, γ = ν, η = int, αY = list(η), ν = η}) →

(C, {αX = ν, γ = ν, η = int, αY = list(int), ν = int}) →

(C, {αX = ν, γ = int, η = int, αY = list(int), ν = int}(= T ′)) →

({X = 1, [ ] = Y }, T ′) → ({X = 1, Y = [ ]}, T ′)

Note that, in the final pair, no more rules apply and we can interpret this pair as a pair

of substitutions for terms and for types, respectively.
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7.3 Properties of the Regular Typed Unification Algorithm

There are several important properties of our algorithm. Firstly, it always terminates.

Secondly, it is correct, meaning that the result is the same as we would have gotten in the

equality theory defined for = semantically. One big obstacle for this second property is

that terms may not be ground when we want to unify them, and semantically we always

need a state to evaluate variables. We will be conservative and assume that if there is a

possible state for which the terms have values in the same semantic domain, then there

is no type error (yet). Similarly, if there is a state for which the terms have the same

semantic value, then the result is not false (yet).

Here we show that, for any input, the unification algorithm always terminates.

Theorem 3 - Termination: Let (C, T ) be the pair of sets of constraints generated for

terms t1 and t2. The rewrite system always terminates, returning a pair of unifiers, false,

or wrong.

Proof

We divide the algorithm in two parts. The first consists of the rules 1 to 6, and the

second of the rules 7 to 12. Each of these parts are the Martelli-Montanari algorithm

Martelli and Montanari (1982) for its corresponding kind of constraints, type equality

and equality, respectively. Therefore they terminate.

For a formal proof for the termination of the Martelli-Montanari algorithm, we defer

the reader to Martelli and Montanari (1982).

Moreover, if the Martelli-Montanari terminates, the output is either a most general

unifier, or the algorithm fails. In the first part, failure is represented by wrong, and in the

second part, it is represented by false. So our algorithm either terminates and outputs

wrong, false, or both parts succeed and the algorithm outputs a pair of most general

unifiers.

We now know that the algorithm terminates, and what the outputs might be. We

will additionally prove that the result is semantically valid. We start by proving a few

auxiliary lemmas.

Lemma 1 - Rewriting Consistency: Let (C, T ) → (C′, T ′) be a step in the typed

unification algorithm, such that the output is not false nor wrong. Then, if for all

equality constraints (t1 = t2) ∈ C′ the substitution θ is a unifier of t1 and t2, then θ is

also a unifier of each equality constraint in C. Same applies to T ′ and T , with a type

substitution µ.

Proof

We will prove this by case analysis.

1. C′ and C are equal so, trivially, any substitution θ that unifies each equality constraint

in C also unifies each equality constraint in C′. Now suppose that µ is a type substitution

such that µ(τi) = µ(τi′), for i = 1, . . . , n, then, also µ(f(τ1, . . . , τn)) = µ(f(τ ′1, . . . , τ ′n)).
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All other type equality constraints in T are also in T ′, so any unifier of T ′ is a unifier of

T .

2. C′ and C are equal so, trivially, any substitution θ that unifies each equality constraint

in C also unifies each equality constraint in C′. All type equality constraints in T ′ are

also in T , so all unifiers of T ′ are unifiers of that subset of T . Moreover, T has one more

type equality constraint τ
.
= τ , but any substitution, in particular any unifier of T ′ is

also a unifier of τ with itself.

3. This case does not apply, since the output is wrong.

4. C′ and C are equal so, trivially, any substitution θ that unifies each equality constraint

in C also unifies each equality constraint in C′. Any unifier of T ′ is also a unifier of T ,

since swapping the terms on a type equality constraints does not change the fact that a

substitution is a unifier.

5. C′ and C are equal so, trivially, any substitution θ that unifies each equality constraint

in C also unifies each equality constraint in C′. Suppose µ is a unifier of T ′, then µ(α) =

µ(τ). Therefore, since T ′ = T [α 7→ τ ] for all constraints except α = τ , then µ(T ′) =

µ(T [α 7→ τ ]) = (µ ◦ [α 7→ τ ])(T ) but since µ(α) = µ(τ), then (µ ◦ [α 7→ τ ])(T ) = µ(T ).

So µ is also a unifier of T .

6. This case does not apply, since the output is wrong.

The proof for the rest of the cases is similar to the proof for the cases 1 to 6, except

we replace type equality constraints with equality constraints, type substitution with

substitution, and wrong with false.

Lemma 2 - Self-satisfiability: Suppose C is a set of equality constraints in normal

form. Then, C can be interpreted as a substitution θ, and θ is a unifier of all constraints

in C. Same can be said for a set of type equality constraints in normal form T .

Proof

If C is in normal form, then C = {X1 = t1, . . . , Xn = tn}, where XI is a variable and

none of Xi occurs in any ti. So, when we interpret C as a substitution θ, we will have

θ = [X1 7→ t1, . . . , Xn 7→ tn]. When we apply θ to each constraint in C, we will get

θ(C) = {θ(X1) = θ(t1), . . . , θ(Xn) = θ(tn)}, but since none of the variables Xi occur in

any ti, then θ(ti) = ti. Moreover, θ(Xi) = ti. So we get θ(C) = {t1 = t1, . . . tn = tn}.

Therefore, θ is a unifier of all constraints in C. The proof for type equality constraints is

similar to this one, replacing substitutions with type substitutions and terms with type

terms.

We are now ready to prove the following theorem that proves the algorithm outputs a

semantically correct value.

Theorem 4 - Soundness of the Typed Unification Algorithm: Let t1 and t2
be the input to the typed unification algorithm, and Γ ⊢ t1 = t2 | C | T . Suppose

(C, T ) →∗ R.

1. If R = (θ, µ), a pair of substitutions for terms and types respectively, then θ, µ |=

C, T .



16

2. If R = false, then there is no substitution θ such that θ |= C, but there is a type

substitution µ such that µ |= T .

3. If R = wrong, then there is no type substitution µ such that µ |= T .

Proof

The proof for (1) follows from Lemmas 1 and 2. We get that θ and µ are unifiers of C

and T , respectively.

The proof for (2) follows from the fact that the Martelli-Montanari algorithm is com-

plete, i.e., if there was a unifier for the equality constraint set C, then it would have been

obtained. Therefore there is no unifier for C, so there is no θ such that θ |= C. However,

since we got to the second part of the algorithm, then we were able to find a unifier for

the type equality constraints. This means that there is at least one unifier for T , so there

is a µ such that µ |= T .

The proof for (3) follows form the fact that the Martelli-Montanari algorithm is com-

plete, i.e., if there was a unifier for the type equality constraint set T , then it would have

been obtained. Therefore there is no unifier for T , so there is no µ such that µ |= T .

Additionally, we want to prove that we always get the principal typing for a term using

the constraint generation and solving.

Theorem 5 - Completeness of the Typed Unification Algorithm: Let t be term,

or a unification of two terms, Γ be a generic context, and ∆ be type declarations for

constants and function symbols. If Γ,∆ ⊢ t : τ | C | T and (C, T ) →∗ (θ, µ). Then

(µ(Γ), µ(τ)) is a principal typing of t.

Proof

We will prove by structural induction on t.

• If t is a variable X , then (X : α) ∈ Γ. We know that Γ,∆ ⊢ X : α | ∅ | ∅ by a single

application of GVAR. (∅, ∅) → ([ ], [ ]), where [ ] are each the identity substitution for

variables and type variables, respectively. Therefore [ ](α) = α, and any type τ derived

in the type system such that (X : τ) ∈ Γ′, then τ is an instance of α.

• If t is a constant k, then (k : ∀~α.τ) ∈ ∆. We know that Γ,∆ ⊢ k : τ [~α 7→ ~σ], for any ~σ. We

get by a single application of rule GCST that Γ,∆ ⊢ k : τ [~α 7→ ~β] | ∅ | ∅. (∅, ∅) → ([ ], [ ]),

where [ ] are each the identity substitution for variables and type variables, respectively.

Therefore [ ](τ [~α 7→ ~β]) = τ [~α 7→ ~β], and we known that any ~σ is an instance of ~β.

• If t is a complex term f(t1, . . . , tn), then (f : ∀~α.τ1×· · ·×τn → τ ′) ∈ ∆. By the induction

hypothesis, we know that if (∅, Ti) →∗ ([ ], µi), then (µi(Γ), µi(τ ′i)) is a principal typing

of ti. Now suppose (∅, T1 ∪ · · · ∪ Tn ∪ {τ ′1
.
= τ1[~α 7→ ~β], . . . , τ ′n

.
= τn[~α 7→ ~β]}) →∗

([ ], µ). We know that µ(τ ′i) = µ(τi[~α 7→ ~β]) for all i = 1, . . . , n. So we can derive

µ(Γ),∆ ⊢ ti : µ(τi[~αmapsto~β]), and by a single application of rule CPL, we get µ(Γ),∆ ⊢

f(t1, . . . , tn) : µ(τ [~α 7→ ~β]. Now we need to prove that this typing (µ(Γ), µ(τ [~α 7→ ~β])) is

the principal typing. Suppose we had another typing that was not an instance of this one

(µ′(Γ), µ′(τ [~α 7→ ~β])). Since µ is an MGU of T1 ∪ · · · ∪ Tn ∪ {τ ′1
.
= τ1[~α 7→ ~β], . . . , τ ′n

.
=

τn[~α 7→ ~β]}, then either for some i µ′ 2 Ti, or for some i µ′ 2 τ ′i
.
= τi[~α 7→ ~β]. If the former
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is true, then (µ′(Γ), µ(′(τ ′i))) is not an instance of the principal typing for ti and therefore

cannot be derived in the type system. If the latter is true, then µ′(τi[~α 7→ ~β]) 6= µ′(τ ′i)

and we cannot use the rule CPL in the type system. Therefore, (µ(Γ), µ(τ [~α 7→ ~β])) is

the principal typing for f(t1, . . . , tn).

• Suppose t is an equality t1 = t2. By the induction hypothesis, we know that if

(∅, Ti) →∗ ([ ], µi), then (µi(Γ), µi(τi)) is a principal typing of ti. Now suppose ({t1 =

t2}, T1 ∪ T2 ∪ {τ1
.
= τ2) →∗ (θ, µ). We know that µ(τi) is an instance of µi(τi), so we

can derive µ(Γ),∆ ⊢ ti : µ(τi) in the type system. By a single application of rule EQU,

we get µ(Γ),∆ ⊢ t1 = t2 : bool. So (µ(Γ), µ(bool)) is a typing. Suppose it was not the

principal typing. Suppose we had another typing that was not an instance of this one

(µ′(Γ), µ′(bool)). For all µ, µ(bool) = bool. Since µ is an MGU of T1 ∪ T2 ∪ {τ1
.
= τ2},

then if µ′ is not an instance either for some i µ′ 2 Ti or µ 2 τ1
.
= τ2. If the former is true,

then (µ′(Γ), µ′(τ1)) is not an instance of its principal typing, so it cannot be derived in

the type system. If the latter is true, the types for t1 and t2 are different and we cannot

apply rule EQU, so we could not have this derivation in the type system. Therefore,

(µ(Γ), µ(bool)) is the principal typing for t1 = t2.

8 Using Regular Typed Unification in Practice

Our regular typed unification provides some foundation for the use of regular types to

dynamically catch erroneous Prolog behaviors. Indeed, one of the original motivations for

this work was to understand how to extend the YAP Prolog system Costa et al. (2012)

with an effective dynamic typing. Here we will see that, due to efficiency matters, this

extension is not able to replace first order unification by regular typed unification in the

Prolog engine.

In Barbosa et al. (2022b) we proposed a typed SLD-resolution (TSLD) which used our

previous notion of typed unification. Our goal now is to effectively extend SLD resolution

with unification of terms typed by regular types.

A TSLD-tree branch may result in true, false, or wrong, depending on the same results

for the unifications in the branch. In Barbosa et al. (2022b), each TSLD-tree branch that

eventually outputs false, needed to continue execution on the same branch in order to

check if there was a type error in some other atom in the query. This lead to a drastic

increase in the runtime of programs.

Example 7: Consider the following (unrealistic) but possible program:

p(0).

and query: ?- p(1),...,p(3000),p(a). In Prolog SLD-resolution, the first atom in the

query fails to unify with the only clause in the program for predicate p, which immediately

fails. So there is a single SLD-step.

In the TSLD-resolution defined in Barbosa et al. (2022b), since the first 3000 queries

return false, we need to reach step 3001 in order to obtain the value wrong. Note that if

the query was ?- p(1),...,p(3000) we would only take a single step less, but get the

same result as SLD-resolution.
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Pragmatically, it is quite impractical to increase the runtime of programs like this in

these cases. This reduction on efficiency would make Prolog an unusable programming

language for real applications.

Thus, when adding regular typed unification to Prolog we have a compromise between

completeness and efficiency.

If the evaluation of a query is false we stop execution, and the same happens for

wrong. However, if the result is false and there are other atoms in the query, we cannot

assure that the value for that branch is indeed false, only that it is not true. Thus, in

our extension to Prolog we output no(?) in these cases. On the other hand, we output

no(false) if there are no other atoms in the query, and no(wrong) if the branch ends on

wrong.

Example 8: Consider the same program as above and the query ?- p(2),p(a). After

a single TSLD-step we get false, but there is another atom in the query, so Prolog now

outputs no(?).

If the query, however, is ?- p(a),p(2) we would output no(wrong).

One can ask what would be the point then, to sometimes detect type errors but other

times fail to detect them. Well, in many programs, for some queries, we are always able

to detect the type error.

Example 9: Consider the predicate that calculates the length of a list:

length([], 0).

length([_|T],N) :- length(T,N1), N is N + 1.

One typical bug in Prolog, is to swap the arguments of a predicate. Now note that, in

this case, if we have the erroneous query ?- length(3,[a,b,c]), both branches of the

TSLD-tree output wrong since there is a type error in the first argument (and also in

the second).

9 Conclusion and Future Work

In this paper we present a new unification algorithm for typed terms where types are a

subset of regular types which correspond exactly to the usual notion of abstract data

types. The work presented here inspires the following possible tasks: 1) Investigate

the extension of regular typed unification to other forms of unification. In particular,

investigate the extensions to higher-order unification and constraint solving in specific

constraint domains. 2) Develop a meta-theory of regular typed unification. In particular,

investigate conditions under which unification of terms typed by extensions of regular

types, such as closed types or dependent types, satisfies the most general and principal

types property and is decidable. 3) Investigate the complexity of regular typed unifica-

tion. Separately, also investigate the complexity of the set of programs that we are able

to type by restrictions of regular types.
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