
ar
X

iv
:2

40
4.

16
42

0v
1 

 [
m

at
h.

R
A

] 
 2

5 
A

pr
 2

02
4

Hecke symmetries associated with

twisted polynomial algebras in 3 indeterminates

Nikita Shishmarov and Serge Skryabin

Abstract. We consider Hecke symmetries on a 3-dimensional vector space
with the associated R-symmetric algebra isomorphic to the polynomial al-
gebra k[x1, x2, x3] twisted by an automorphism. The main result states that
any such a Hecke symmetry is itself a twist of a Hecke symmetry with the
associated R-symmetric algebra isomorphic to k[x1, x2, x3]. This allows us
to describe equivalence classes of such Hecke symmetries.

Introduction

With each Hecke symmetry R on a vector space V one associates the R-symmetric
algebra S(V,R) which is viewed as a noncommutative analog of the ordinary sym-
metric algebra S(V ) [5]. In a preceding article [13] the second author gave a de-
scription of all Hecke symmetries on a 3-dimensional vector space V such that
S(V,R) = S(V ). The new paper extends that work by dealing with the cases where
S(V,R) is isomorphic to the algebra S(V ) twisted by an automorphism. The main
result stated in Theorem 1.1 says that any such a Hecke symmetry is itself a twist
of some Hecke symmetry with the respective R-symmetric algebra equal to S(V ),
and thus all such Hecke symmetries can be easily determined.
The question we pursue is opposite in a sense to the common direction in the

study of Nichols algebras where one attempts to understand the structure of al-
gebras associated with some classes of braidings (see a survey by Andruskiewitsch
[1]). For the Hecke symmetries corresponding to quantum analogs of GL3 we know
already that the respective algebras S(V,R) are Artin-Schelter regular of global di-
mension 3, and for each algebra in this class we want to find all braidings of Hecke
type which yield the chosen algebra.
From the viewpoint of the classification of quantum GL3 groups splitting up the

set of all relevant Hecke symmetries according to the algebra S(V,R) appears quite
natural as this algebra is a primary invariant of a Hecke symmetry. This association
of Hecke symmetries with algebras is not immediately retrievable from a paper of
Ewen and Ogievetsky [4] where the classification is done up to twisting, and so some
information gets lost. The approach discussed in [4] involves solving large systems of
algebraic equations which would be difficult to analyze by hand, taking into account
quite a large number of cases considered separately.
Our proof of Theorem 1.1 is accomplished in a fully invariant manner for an ar-

bitrary twisting operator ζ ∈ GL(V ). Generalizing what has been done in [13] we
associate with a Hecke symmetry R a collection of linear forms ℓxy ∈ V ∗ indexed
by pairs of vectors x, y ∈ V , and then reformulate conditions imposed on R in
terms of certain identities in the exterior algebra of the dual space V ∗. However,
the equations are now more complicated than those in [13], and we have to struggle
to exclude the possibility of some other solutions. We apply geometric arguments
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to analyze identities satisfied by several polynomial maps arising in this context.
The whole proof occupies sections 2 and 3 of the paper.
Explicit determination of Hecke symmetries with the prescribed R-symmetric al-

gebra S(V,R) does depend on the twisting operator ζ. However, once it has been
established that they are all twists, it requires only basic methods of linear algebra
to select in the set of known Hecke symmetries with associated algebra S(V ) those
which commute with the linear operator ζ ⊗ ζ. We discuss parametrization of such
Hecke symmetries in section 4 of the paper.
Among all Artin-Schelter regular graded algebras of global dimension 3 the twisted

polynomial algebras are characterized by the property that the scheme parametriz-
ing their point modules is the whole projective plane P2 (see [2]). Thus the present
paper gives a description of all Hecke symmetries associated with algebras of this
type. Unfortunately, the remaining Artin-Schelter regular algebras for which the
point scheme is a cubic divisor in P2 defy unified treatment, and one has to resort
to the case-by-case analysis, as outlined in [4]. For some cases details have been
supplied in [11], [12].
All our considerations are limited to the case dimV = 3. The quantum Yang-

Baxter equation is notoriously hard to solve in higher dimensions. One of natural
questions is whether the conclusion of Theorem 1.1 remains true when dimV > 3.
The twisted Hecke symmetries in our paper are related to some easily constructed

2-cocycles on the FRT bialgebras. Finding all 2-cocycles on the coordinate algebra
of the group GLn amounts to the determination of all quantum analogs of GLn.
In its full generality this problem is intractable. In our modest contribution to the
problem twisting is obtained by a simple conjugation in the group GL(V ⊗V ), and
we do not need to ever invoke the FRT bialgebras.

1. Twisting of graded algebras and Hecke symmetries

By the term “algebra” we understand a unital associative algebra over a field.
Given a Z-graded algebra A =

⊕
Ak and its automorphism σ preserving the grad-

ing, the twist of A by σ is the algebra Aσ which has the same elements as the
algebra A, but a different multiplication ·σ defined by the rule

a ·σ b = a σn(b) for a ∈ An, b ∈ A.

(see [3, section 8]).
If A is generated by its component V = A1, then every automorphism of A is

determined by its action on elements of degree 1. Let A ∼= T(V )/I where I =
⊕
Ik

is a graded ideal of the tensor algebra T(V ) =
⊕

k≥0 V
⊗k. An invertible linear map

τ : V → V extends to an automorphism of A if and only if τ⊗k(Ik) = Ik for all k.
Let us denote by Aτ the twist of A by the automorphism whose restriction to A1 is
τ . This algebra is also generated by the degree 1 component. In fact, Aτ

∼= T(V )/I ′

where I ′ is the graded ideal of T(V ) with homogeneous components

I ′k = (IdV ⊗ τ−1 ⊗ · · · ⊗ τ−(k−1))(Ik), k ≥ 2.

In particular, Aτ has quadratic defining relations whenever so does A, and in this
case the ideal I ′ is generated by

I ′2 = (IdV ⊗ τ−1)(I2) = (τ ⊗ IdV )(I2).
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Denote by S(V ) the symmetric algebra of a vector space V . It is the factor algebra
of T(V ) by the ideal generated by {x⊗ y− y⊗ x | x, y ∈ V }. Every invertible linear
operator τ : V → V extends to an automorphism of S(V ), and we can form the
respective twisted algebra S(V )τ .
There are more general twistings of graded algebras introduced by Zhang [14].

However, in the case of S(V ) every generalized twist in the sense of Zhang is isomor-
phic as a graded algebra to the twist of S(V ) by an automorphism (see [14, Prop.
5.13]). Twists by automorphisms can be realized as a very special case of cocycle
twists of comodule algebras discussed, e.g., in [8, 10.3.2] and [10]. With respect to
2-cocycles on Manin’s universally coacting Hopf algebra every Artin-Schelter reg-
ular graded algebra with the Hilbert series 1/(1 − t)n is a twist of the polynomial
algebra in n indeterminates (see [7, Th. 5.1.1]).
Let V be a finite-dimensional vector space over a field k. A Hecke symmetry with

parameter 0 6= q ∈ k on this vector space is a linear operator R : V ⊗ V → V ⊗ V
satisfying the braid equation

(R⊗ IdV )(IdV ⊗R)(R⊗ IdV ) = (IdV ⊗R)(R⊗ IdV )(IdV ⊗R) (1.1)

and the quadratic Hecke relation

(R − q · IdV ⊗V )(R + IdV⊗V ) = 0. (1.2)

This notion is due to Gurevich [5], while involutive symmetries corresponding to
the parameter value q = 1 were studied earlier by Lyubashenko [9].
The R-symmetric algebra S(V,R) associated with R is the factor algebra of T(V )

by the graded ideal generated by the subspace

Im (R − q · IdV⊗V ) ⊂ V ⊗2.

If ζ : V → V is an invertible linear operator such that ζ ⊗ ζ commutes with R,
then the linear operator

Rζ = (ζ ⊗ IdV ) ◦R ◦ (ζ−1 ⊗ IdV ) = (IdV ⊗ ζ−1) ◦R ◦ (IdV ⊗ ζ) (1.3)

is also a Hecke symmetry called the twist of R by ζ. It satisfies the Hecke relation
with the same parameter q, and the braid equation for Rζ follows from the equalities

(Rζ ⊗ IdV )(IdV ⊗Rζ)(Rζ ⊗ IdV )

= (ζ ⊗ IdV ⊗ ζ−1)(R ⊗ IdV )(IdV ⊗R)(R⊗ IdV )(ζ
−1 ⊗ IdV ⊗ ζ),

(IdV ⊗Rζ)(Rζ ⊗ IdV )(IdV ⊗Rζ)

= (ζ ⊗ IdV ⊗ ζ−1)(IdV ⊗R)(R⊗ IdV )(IdV ⊗R)(ζ−1 ⊗ IdV ⊗ ζ).

Such twists were used by Ewen and Ogievetsky [4]. The condition that ζ ⊗ ζ com-
mutes with R actually allows one to define a certain 2-cocycle on the FRT bialgebra
associated with R. In coordinate form this condition is written out in [6, Lemma
3.1.4]. The FRT bialgebra associated with Rζ is a cocycle twist of the initial bial-
gebra. However, we will never need this interpretation.
The ideal of the tensor algebra T(V ) defining the Rζ-symmetric algebra S(V,Rζ)

is generated by the space

Im(Rζ − q · IdV ⊗V ) = (ζ ⊗ IdV )
(
Im(R− q · IdV ⊗V )

)
.

Hence S(V,Rζ) ∼= S(V,R)ζ .
The initial Hecke symmetry R is itself a twist of Rζ . Indeed, ζ⊗ζ commutes with

Rζ , and R = (Rζ)ζ−1 . Our main result is
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Theorem 1.1. Let V be a vector space of dimension 3 over a field k of character-

istic 6= 2, and let ζ ∈ GL(V ). If R is a Hecke symmetry on V such that the identity

transformation of V extends to an isomorphism of algebras S(V,R) ∼= S(V )ζ , then
R commutes with ζ ⊗ ζ.
As a consequence, such a Hecke symmetry is a twist of a Hecke symmetry with

the associated R-symmetric algebra equal to S(V ).

The final assertion of Theorem 1.1 is an obvious consequence of the first one. If R
commutes with ζ ⊗ ζ, then Rζ−1 is a Hecke symmetry with the associated algebra
S(V,Rζ−1) = S(V ), and we have R = (Rζ−1)ζ .
In section 2 we will associate with the Hecke symmetry R a collection of linear

forms ℓxy ∈ V ∗ indexed by pairs of vectors x, y ∈ V and show that the braid equa-
tion for R implies that these linear forms satisfy a certain identity in the second
exterior power

∧2 V ∗ of the dual space V ∗. Likewise the property that R commutes

with ζ ⊗ ζ will be reformulated in terms of a certain identity in
∧2

V ∗.
The proof of Theorem 1.1 will be completed in section 3 by analyzing all the

identities found in section 2. The most difficult part presented in Proposition 3.2
excludes the possibility of one case which could lead to Hecke symmetries violating
the conclusion of Theorem 1.1. The assumption chark 6= 2 will be used in the proof
of Theorem 1.1 only once in Lemma 3.10.

The twisting transformation R 7→ Rζ is conjugation in the group GL(V ⊗ V ) by
means of the linear operator ζ ⊗ IdV . If R is any Hecke symmetry on V , then for
any ϕ ∈ GL(V ) the linear operator

R′ = (ϕ⊗ ϕ) ◦R ◦ (ϕ⊗ ϕ)−1 (1.4)

is again a Hecke symmetry on V , and ϕ extends to an isomorphism of graded al-
gebras S(V,R) → S(V,R′). Conjugation by the operators ϕ ⊗ ϕ defines an action
of the group GL(V ) on the set of all Hecke symmetries on V which we call the
conjugating action. We say that two Hecke symmetries on V are equivalent if they
lie in the same orbit with respect to the conjugating action of GL(V ).

If R and R′ are two Hecke symmetries such that S(V,R) = S(V,R′) in the sense
that the two algebras have the same space of defining relations in V ⊗2, then equality
(1.4) implies that ϕ extends to an automorphism of S(V,R). In other words, two
Hecke symmetries with the same associated R-symmetric algebra A are equivalent
if and only if they lie in the same orbit with respect to the conjugating action of
the subgroup of GL(V ) consisting of all linear operators on V which extend to an
automorphism of A.

In section 4 we will use Theorem 1.1 to describe equivalence classes of Hecke
symmetries with the associated R-symmetric algebra isomorphic to S(V )ζ .

2. Setup for the proof of the main result

Let V be a vector space of dimension 3 over a field k. We fix a linear operator
ζ ∈ GL(V ). Let A = T(V )/I where I is the graded ideal of T(V ) generated by the
set {ζ(x)⊗ y − ζ(y)⊗ x | x, y ∈ V }. So A ∼= S(V )ζ .
Further on we will write elements of T(V ) omitting the sign ⊗, i.e., xy = x⊗ y,

xyz = x⊗ y ⊗ z for x, y, z ∈ V . Put
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x ⊼ y = ζ(x) y − ζ(y)x ∈ V ⊗2 and

x ⊼ y ⊼ z = ζ2(x) ζ(y) z + ζ2(y) ζ(z)x+ ζ2(z) ζ(x) y

− ζ2(x) ζ(z) y − ζ2(y) ζ(x) z − ζ2(z) ζ(y)x ∈ V ⊗3.

Consider the graded subspace Υ =
⊕

Υ(k) of T(V ) where

Υ(0) = k, Υ(1) = V, Υ(2) = I2, Υ(3) = I2V ∩ V I2

and Υ(k) = 0 for k > 3. Its components Υ(2) and Υ(3) are spanned by the tensors,
respectively, x ⊼ y and x ⊼ y ⊼ z. There are linear isomorphisms

∧k
V ∼= Υ(k) given

by the identity maps for k = 0 and k = 1, and such that

x ∧ y 7→ x ⊼ y, x ∧ y ∧ z 7→ x ⊼ y ⊼ z.

for k = 2 and k = 3. By means of these isomorphisms we obtain an algebra structure
on Υ, and ⊼ can be understood as the respective multiplication. Thus (Υ,⊼) is a
graded Frobenius algebra isomorphic to the exterior algebra of V .
Note that

ζ⊗3(x ⊼ y ⊼ z) = (det ζ)x ⊼ y ⊼ z (2.1)

since this tensor is the image of ζ(x) ∧ ζ(y) ∧ ζ(z) ∈
∧3

V .
Suppose that R is a Hecke symmetry on V such that S(V,R) = A. In other words,

R satisfies the hypothesis of Theorem 1.1. Put

R′ = (ζ−1 ⊗ ζ−1) ◦R ◦ (ζ ⊗ ζ). (2.2)

Then R′ = R if and only if ζ ⊗ ζ commutes with R. In any case R′ is a Hecke
symmetry with the same associated algebra S(V,R′) = A since (ζ ⊗ ζ)(I2) = I2 (so
ζ extends to an automorphism of A).
Let q be the parameter of the Hecke relation, and

Y = q · IdV ⊗V −R (2.3)

the R-skewsymmetrizer . Then ImY = Υ(2) and Y 2 = (q + 1)Y . Hence

Y w = (q + 1)w for all w ∈ Υ(2). (2.4)

The braid equation for R can be rewritten as the equation

(IdV ⊗ Y )(Y ⊗ IdV )(IdV ⊗ Y )− q · (IdV ⊗ Y )

= (Y ⊗ IdV )(IdV ⊗ Y )(Y ⊗ IdV )− q · (Y ⊗ IdV ).
(2.5)

Here the linear operators Id⊗Y and Y ⊗Id acting on V ⊗3 have images, respectively,
V ⊗ Υ(2) and Υ(2) ⊗ V . Therefore the two equal operators in (2.5) have images in
the 1-dimensional subspace

Υ(3) = (V ⊗Υ(2)) ∩ (Υ(2) ⊗ V ) ⊂ V ⊗3.

So it follows that
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(IdV ⊗ Y )(Y ⊗ IdV )w − qw ∈ Υ(3) for all w ∈ V ⊗Υ(2). (2.6)

Fix a nonzero alternating trilinear form ω : V × V × V → k. There is a linear
bijection ω̃ : Υ(3) → k such that

ω̃(x ⊼ y ⊼ z) = ω(x, y, z) for x, y, z ∈ V . (2.7)

Define linear forms ℓxy , ℓ
′
xy ∈ V ∗ by the rule

ℓxy(z) = ω̃
(
x ⊼ Y

(
ζ(y)z

))
,

ℓ′xy(z) = ω̃
(
x ⊼ Y ′

(
ζ(y)z

))
, x, y, z ∈ V,

(2.8)

where Y ′ = q · Id−R′ is the R′-skewsymmetrizer. In this way we obtain two collec-
tions of linear forms on V indexed by pairs of vectors x, y ∈ V . Both ℓxy and ℓ′xy
depend linearly on x and on y. Note that

Y ′ = (ζ−1 ⊗ ζ−1) ◦ Y ◦ (ζ ⊗ ζ) (2.9)

and therefore
ℓ′xy(z) = (det ζ)−1 ℓζ(x)ζ(y)

(
ζ(z)

)
. (2.10)

Containments (2.6) are not fully equivalent to the braid equation for R, but they
are sufficient for our purposes. What is important, (2.6) can be interpreted in terms
of the functions ℓxy and ℓ′xy. We will not need the most general identity equivalent
to (2.6) and will use only its special case stated below:

Lemma 2.1. Containments (2.6) imply the following identity in
∧2

V ∗ :

ℓxy ∧ ℓ
′
xy = ℓxx ∧ ℓ′yy , x, y ∈ V. (2.11)

Proof. For f, g ∈ V ∗ we identify f ∧ g ∈
∧2

V ∗ with an alternating bilinear form on
V setting

(f ∧ g)(u, v) = f(u) g(v)− f(v) g(u), u, v ∈ V. (2.12)

Let e1, e2, e3 be any linear basis for the vector space V . In V ⊗2 and V ⊗3 we take
the bases, respectively, {ζ(ei) ej} and {ζ2(ei) ζ(ej) ek}. They are better adapted to
Υ than the natural bases {eiej} and {eiejek}. Let Y

st
ij , Y

′st
ij ∈ k be the coefficients

in the expressions

Y
(
ζ(ei) ej

)
=

∑
Y st
ij ζ(es) et, Y ′

(
ζ(ei) ej

)
=

∑
Y ′st

ij ζ(es) et.

Here and later it is assumed that the summation is over the indices repeated as
subscripts and superscripts. Since Y and Y ′ have images in Υ(2), we have

Y st
ij = −Y ts

ij , Y ss
ij = 0, Y ′st

ij = −Y ′ ts
ij , Y ′ss

ij = 0.

Now
Y
(
ζ2(ei) ζ(ej)

)
= (ζ ⊗ ζ)

(
Y ′

(
ζ(ei) ej

))
=

∑
Y ′rl

ij ζ
2(er) ζ(el),
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and for w = ζ2(ei)
(
ζ(ej)ek − ζ(ek)ej

)
∈ V ⊗Υ(2) we find

(Id⊗ Y )(Y ⊗ Id)(w) =
∑(

Y ′rl
ij Y

st
lk − Y ′rl

ik Y
st
lj

)
ζ2(er)ζ(es)et.

If s = r, then the basis element ζ2(er)ζ(es)et has zero coefficient in the elements
of Υ(3), and if i 6= r, then ζ2(er)ζ(es)et has zero coefficient in w. Therefore (2.6)
implies that ∑(

Y ′rl
ij Y

rt
lk − Y ′rl

ik Y
rt
lj

)
= 0 if i 6= r (2.13)

where the summation is over l. Now note that

Y 23
ij = ℓe1ei(ej)α, Y 31

ij = ℓe2ei(ej)α, Y 12
ij = ℓe3ei(ej)α,

Y ′23
ij = ℓ′e1ei(ej)α, Y ′31

ij = ℓ′e2ei(ej)α, Y ′12
ij = ℓ′e3ei(ej)α

where α = ω(e1, e2, e3)
−1. These formulas follow straightforwardly from (2.8). For

example,

ℓe1ei(ej) = ω̃
(
e1 ⊼ Y

(
ζ(ei)ej

))
= Y 23

ij ω(e1, e2, e3) = Y 23
ij α−1

since Y
(
ζ(ei)ej

)
= Y 23

ij e2 ⊼ e3 + Y 31
ij e3 ⊼ e1 + Y 12

ij e1 ⊼ e2 .
If r = t then each term in the left hand side of (2.13) vanishes. Suppose r 6= t,

and let p ∈ {1, 2, 3} be the remaining element 6= r, t. Making use of (2.12) we get

Y ′rl
ij Y

rt
lk − Y ′rl

ik Y
rt
lj =





0 for l = r
(ℓepet ∧ ℓ

′
epei)(ek, ej)β

2 for l = t

(ℓepep ∧ ℓ
′
etei)(ej , ek)β

2 for l = p

where β = ω(ep, er, et)
−1. Take i = t. So i 6= r, and (2.13) can be rewritten as

(ℓepet ∧ ℓ
′
epet − ℓepep ∧ ℓ′etet)(ek, ej) = 0.

Since ek and ej are two arbitrary basis vectors, the above equality is exactly (2.11)
with x = ep and y = et.
All considerations are valid with respect to any basis of V . If x, y ∈ V are two

linearly independent vectors, we can include them in some basis of V , and then
(2.11) for these vectors x, y will follow by making use of the chosen basis. On the
other hand, if both x and y are scalar multiples of some vector, then equality (2.11)
is automatically true. �

Remark. By analyzing equations more fully one can see that for the containments
(2.6) to hold it is necessary and sufficient that the equality

(ℓxy ∧ ℓ
′
xz − ℓxx ∧ ℓ

′
yz)(u, v) = q ω(x, y, z)ω(x, u, v)

be true for all x, y, z, u, v ∈ V . This generalizes the case ζ = IdV considered in
[13, Lemma 2.2]. If ζ = IdV , then ℓ

′
xy = ℓxy, and (2.11) reduces to a much simpler

identity ℓxx ∧ ℓyy = 0 which was used in [13] to determine all Hecke symmetries
with the associated R-symmetric algebra S(V,R) = S(V ).

Equality (2.4) too can be interpreted in terms of the functions ℓxy. Indeed, it
means that ω̃(x ⊼ Y w) = (q + 1) ω̃(x ⊼ w) for all x ∈ V and w ∈ Υ(2). Taking
w = y ⊼ z = ζ(y) z − ζ(z) y, we rewrite this as

ℓxy(z)− ℓxz(y) = (q + 1)ω(x, y, z) , x, y, z ∈ V.

Since R′ is a Hecke symmetry with the same associated algebra S(V,R′) = S(V,R),
there is a similar identity with the functions ℓxy replaced by ℓ′xy. Again, we will use
only a special case of these identities obtained by taking z = x:
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Lemma 2.2. The condition that the linear operators Y and Y ′ act on the subspace

Υ(2) ⊂ V ⊗2 as (q + 1) times the identity operator implies that

ℓxy(x) = ℓxx(y), ℓ′xy(x) = ℓ′xx(y) (2.14)

for all x, y ∈ V .

The braid equation implies other useful properties of the collection {ℓxy}. They
are immediate consequences of the following fact:

Lemma 2.3. If some vector a ∈ V has the property that either Y (ax) = 0 for all

x ∈ V or Y (xa) = 0 for all x ∈ V , then a = 0.

Proof. The equality Y (ax) = 0 means that R(ax) = qax. If this holds for all x ∈ V
then, applying the operators in the braid equation (1.1) to the tensor w = axy ∈
V ⊗3, we get

q2 (IdV ⊗R)w = q (IdV ⊗R2)w.

If a 6= 0, then it follows that qR(xy) = R2(xy) for all x, y ∈ V , whence R = q · Id
since R is an invertible operator. Thus Y = 0 by (2.3). However, this contradicts
the assumption that ImY = Υ(2) is a space of dimension 3.
In the other case when Y (xa) = 0 for all x ∈ V we argue similarly, now working

with the tensors of the form w = xya. �

Lemma 2.4. The set {ℓxy | x, y ∈ V } spans the whole space V ∗. If a ∈ V is such

that either ℓax = 0 for all x ∈ V or ℓxa = 0 for all x ∈ V, then a = 0.

Proof. For the first assertion we have to check that the only vector at which all linear
forms ℓxy vanish is the zero vector. But ℓxy(a) = 0 means that x ⊼ Y

(
ζ(y)a

)
= 0,

and if this equality holds for all x, y ∈ V , then Y (va) = 0 for all v ∈ V . So Lemma
2.3 applies.
If ℓxa = 0 for all x ∈ V , then Y

(
ζ(a)v

)
= 0 for all v ∈ V . If ℓax = 0 for all x ∈ V ,

then a ⊼ t = 0 for all t ∈ Υ(2). The conclusion a = 0 follows in each case. �

Our aim is to show that R commutes with ζ⊗ ζ, and we are going to reformulate
this property in terms of the functions ℓxy, ℓ

′
xy. This will be done in Lemma 2.6.

First we mention one related result derived from an earlier work:

Lemma 2.5. Any Hecke symmetry R satisfying the hypothesis of Theorem 1.1 com-

mutes with the linear operator (ζ ⊗ ζ)3.

Proof. The tensors t in the one-dimensional subspace Υ(3) ⊂ V ⊗3 satisfy the twisted
cyclicity condition with the twisting operator ψ = (det ζ) ζ−3. This means that

t = (IdV ⊗ IdV ⊗ψ) s123(t)

where s123 is the permutation operator on V ⊗3 defined by the rule s123(xyz) = yzx
for x, y, z ∈ V . Since t = x⊼y⊼z for suitable x, y, z, the displayed equality is readily
verified with the aid of (2.1). By [12, Theorem 3.8] R commutes with ψ ⊗ ψ, and
this gives the desired conclusion. �

Under certain conditions on the eigenvalues of ζ the linear operators ζ ⊗ ζ and
(ζ ⊗ ζ)3 have equal centralizers in the group GL(V ⊗ V ). However, in general the
conclusion of Lemma 2.5 is weaker than what we need, and we do not rely on it.
Lemma 2.5 will be used only once to provide special treatment of the case q = −1
in Lemma 2.6. For q 6= −1 Lemma 2.5 will not be used.
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Lemma 2.6. The following conditions are equivalent:

(i) R commutes with ζ ⊗ ζ,

(ii) Y ′ = Y,

(iii) Y ′ = cY for some c ∈ k,

(iv) there is c ∈ k such that ℓ′xy = c ℓxy for all x, y ∈ V .

(v) ℓxy ∧ ℓ
′
xy = 0 for all x, y ∈ V .

Proof. It is immediate from (2.2) that (i) holds if and only if R′ = R, which in turn
is equivalent to the equality Y ′ = Y by the definition of these operators. We have
to show that c = 1 whenever (iii) holds.
So suppose that Y ′ = cY . Recall that both Y and Y ′ act on the subspace Υ(2)

as (q + 1) times the identity operator. Hence c(q + 1) = q + 1. If q 6= −1, we do get
c = 1.
If q = −1, we have to argue differently. Note that containments (2.6) are valid also

for Y ′ since R′ is a Hecke symmetry with the same associated algebra S(V,R′) = A.
However, the assumption Y ′ = cY implies that

(IdV ⊗ Y ′)(Y ′ ⊗ IdV )w ≡ c2qw (modΥ(3)) for all w ∈ V ⊗Υ(2).

Hence c2q = q, i.e., c2 = 1. We now make use of Lemma 2.5. Since the linear oper-
ator (ζ ⊗ ζ)3 commutes with R, it also commutes with Y . On the other hand, from
(2.9) we deduce that

Y ◦ (ζ ⊗ ζ) = c (ζ ⊗ ζ) ◦ Y.

It follows that c3 = 1. Together with c2 = 1 this yields c = 1.
Recalling (2.8), we see that (iv) is expanded as

ω̃
(
x ⊼ Y ′

(
ζ(y)z

))
= ω̃

(
x ⊼ c Y

(
ζ(y)z

))
for all x, y, z ∈ V .

Since ω̃ induces a nondegenerate bilinear pairing V × Υ(2) → k, this identity is
equivalent to

Y ′
(
ζ(y)z

)
= c Y

(
ζ(y)z

)
for all y, z ∈ V ,

which amounts to (iii). Thus (i) ⇔ (ii) ⇔ (iii) ⇔ (iv). It is also clear that (v) follows
from (iv). The opposite implication is more complicated.
Suppose that (v) holds. If x, y ∈ V are any two vectors such that ℓxy 6= 0, then

(v) implies that ℓ′xy is a scalar multiple of ℓxy, and so ℓ′xy = c(x, y) ℓxy for some
c(x, y) ∈ k. We have to deal with the dependency of c(x, y) on x and y.
For each x ∈ V put Kx = {y ∈ V | ℓxy = 0}. This is a vector subspace of V . By

Lemma 2.4 we have Kx 6= V unless x = 0. Put

X = {x ∈ V | dimKx ≤ 1}.

Claim 1. For each x ∈ X there exists c♭(x) ∈ k such that ℓ′xy = c♭(x) ℓxy for all

y ∈ V simultaneously.

Note that Kx is the kernel of the linear map V → V ∗ given by the assign-
ment y 7→ ℓxy. It follows that ℓxy1

and ℓxy2
are linearly independent linear forms

whenever y1, y2 ∈ V are two vectors which are linearly independent modulo the
one-dimensional subspace Kx. Then ℓx(y1+y2) = ℓxy1

+ ℓxy2
6= 0 and
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ℓ′x(y1+y2)
= ℓ′xy1

+ ℓ′xy2
= c(x, y1) ℓxy1

+ c(x, y2) ℓxy2
.

On the other hand, the left hand side is equal to c(x, y1 + y2) ℓx(y1+y2). Hence

c(x, y1) = c(x, y1 + y2) = c(x, y2).

It follows that there exists c♭(x) ∈ k such that c(x, y) = c♭(x) for all y ∈ V such
that y /∈ Kx. Now the set

Vx = {y ∈ V | ℓ′xy = c♭(x) ℓxy}

is a vector subspace of V which contains the set V rKx. Since the latter spans the
whole space V , we conclude that Vx = V .

Claim 2. The set X is nonempty.

Suppose that X = ∅. Then dimKx > 1 for each x ∈ V . If x 6= 0, then we must
have dimKx = 2 since Kx 6= V , and therefore the set Tx = {ℓxy | y ∈ V } is a
one-dimensional subspace of V ∗. Pick some nonzero vectors x1 ∈ V and a ∈ Kx1

.
The set

L = {x ∈ V | ℓxa = 0}

is a vector subspace of V , and L 6= V by Lemma 2.4. Hence V rL spans the whole
space V , and by Lemma 2.4 the linear span of the set {ℓxy | x, y ∈ V, x /∈ L} must
coincide with the whole V ∗ since it contains the functions ℓxy for all x, y ∈ V . We
can find x2 ∈ V r L such that Tx2

6= Tx1
.

Since ℓx2a 6= 0, we have a /∈ Kx2
. Hence Kx1

6= Kx2
, while these two spaces

both have dimension 2. Take some vectors y1 ∈ Kx2
r Kx1

and y2 ∈ Kx1
r Kx2

.
Then ℓx1y1

and ℓx2y2
are nonzero, and moreover these two functions are linearly

independent since they lie in two distinct one-dimensional subspaces Tx1
and Tx2

.
On the other hand, ℓx1y2

= ℓx2y1
= 0. Hence

ℓ(x1+x2)y1
= ℓx1y1

, ℓ(x1+x2)y2
= ℓx2y2

,

and so dimTx1+x2
≥ 2, in contradiction with the assumption dimKx1+x2

> 1.

Claim 3. The linear span kX of the set X coincides with V .

Suppose that kX 6= V . We have dimKu = 2 for all u ∈ V such that u /∈ kX . If
u /∈ kX and x ∈ X , then u + x /∈ kX , whence dimKu+x = 2 as well. Furthermore,
each element a ∈ Ku ∩ Ku+x is contained in Kx since ℓxa = ℓ(u+x)a − ℓua = 0.
This forces Ku 6= Ku+x since dimKx ≤ 1. Hence Ku ∩Ku+x is a one-dimensional
subspace of V , and we must have Kx = Ku ∩Ku+x.

It follows that Kx ⊂ Ku for each x ∈ X and each u ∈ V rkX . Moreover, if we put
K =

⋂
u/∈kX Ku, then Kx = K for each x ∈ X and K ⊂ Ku for each u ∈ V r kX .

We have seen already that Kx 6= 0 for x ∈ X . Hence K 6= 0. If a ∈ K, then ℓxa = 0
for all x ∈ X , as well as for all x ∈ V r kX . This equality holds then also for all
x ∈ kX , and therefore for all x ∈ V . But this contradicts Lemma 2.4.
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Claim 4. The function c♭ : X → k is constant.

We have to prove that c♭(x1) = c♭(x2) whenever x1, x2 ∈ X . If x2 is a scalar
multiple of x1, then this equality is obviously true. Suppose that x1 and x2 are
linearly independent. Note that

c♭(x1 + x2) ℓ(x1+x2)y = ℓ′(x1+x2)y
= ℓ′x1y + ℓ′x2y = c♭(x1) ℓx1y + c♭(x2) ℓx2y

for all y ∈ V . If ℓx1y and ℓx2y are linearly independent for some y, then, comparing
the coefficients, we deduce that both c♭(x1) and c♭(x2) are equal to c♭(x1+x2), and
we are done. We only have to be sure that such an element y exists.
Otherwise we would have ℓx1y∧ℓx2y = 0 for all y ∈ V . In this case ℓx2y is a scalar

multiple of ℓx1y whenever y /∈ Kx1
, and we can write ℓx2y = λ(y)ℓx1y for some

λ(y) ∈ k. If y1, y2 ∈ V are linearly independent modulo the one-dimensional sub-
space Kx1

, then ℓx1y1
and ℓx1y2

are linearly independent, and, expressing ℓ′x2(y1+y2)

as their linear combination, we deduce that λ(y1) = λ(y1 + y2) = λ(y2). It follows
that λ is a constant function.
In other words, there is λ ∈ k such that ℓx2y = λℓx1y for all y ∈ V r Kx1

. By
linearity in y the last equality holds then for all y ∈ V , whence ℓ(x2−λx1)y = 0 for
all y ∈ V . However, this contradicts Lemma 2.4.

Thus Claim 4 is proved. It means that there is c ∈ k such that ℓ′xy = c ℓxy for
all x ∈ X and all y ∈ V . This equality holds then also for all x ∈ kX , hence for all
x ∈ V by Claim 3. This shows that (v) ⇒ (iv). �

3. The proof

We will verify condition (v) of Lemma 2.6. This will be done by analyzing iden-
tities (2.11) and (2.14) involving the linear functions ℓxy and ℓ′xy. Now one may
safely forget the actual connection of these functions with Hecke symmetries. We
will need only their properties stated in Lemma 2.4 and several simple consequences
of (2.10).
Since the construction of R-symmetric algebras commutes with extensions of the

base field, we may assume without loss of generality the field k to be algebraically
closed. This will allow us to work comfortably with algebraic varieties and use some
geometric arguments.
Denote by U and U ′ the subspaces of V ∗ spanned by the sets {ℓxx | x ∈ V } and

{ℓ′xx | x ∈ V } respectively. Note that U ′ = {f ◦ ζ | f ∈ U} by (2.10). In particular,
dimU ′ = dimU .

Proposition 3.1. If dimU = 1, then R commutes with ζ ⊗ ζ.

Proof. Since dimU ′ = 1 too, we have dim(U +U ′) ≤ 2. Therefore
∧2

(U + U ′) is at

most 1-dimensional subspace of
∧2

V ∗ which contains ℓxx ∧ ℓ′yy for any x, y ∈ V .
Identity (2.11) yields

ℓxy ∧ ℓ
′
xy ∈

∧2
(U + U ′)

for all x, y ∈ V . The set O = {(x, y) ∈ V ×V | ℓxy /∈ U+U ′} is a Zariski open subset
of V × V . It is nonempty by Lemma 2.4. Note that for two linearly independent
linear forms ξ, η ∈ V ∗ the containment ξ ∧ η ∈

∧2
(U + U ′) holds only when both

ξ and η lie in U + U ′. Therefore for (x, y) ∈ O the displayed containment implies
that ℓxy ∧ ℓ

′
xy = 0.
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On the other hand, Z = {(x, y) ∈ V × V | ℓxy ∧ ℓ′xy = 0} is a Zariski closed
subset of an irreducible algebraic variety V ×V . We conclude that Z = V ×V since
Z contains a nonempty Zariski open subset of V × V . Thus ℓxy ∧ ℓ′xy = 0 for all
x, y ∈ V . Now Lemma 2.6 applies. �

Proposition 3.1 confirms the conclusion of Theorem 1.1 in the case when U has
dimension 1. In fact this condition holds for all Hecke symmetries obtained by twist-
ing from Hecke symmetries associated with the ordinary symmetric algebra S(V ).
It remains to consider the case dimU > 1 which could possibly lead to another
class of Hecke symmetries.

Proposition 3.2. Assume that chark 6= 2. There does not exist any Hecke sym-

metry R such that the R-symmetric algebra S(V,R) is isomorphic to some twisted

polynomial algebra in 3 indeterminates and for which dimU > 1.

The proof of Proposition 3.2 is much longer. It will be split into a series of lemmas
which occupy the rest of this section. Let us assume that dimU > 1. We will see
eventually that this assumption leads to a contradiction.
The next lemma provides a tool to derive certain relations of linear dependence

between the linear forms ℓxy and ℓ′xy.

Lemma 3.3. Let X be an irreducible affine algebraic variety over an algebraically

closed field k with a factorial coordinate ring k[X ]. Suppose that W is a finite di-

mensional vector space over k and ϕ1, . . . , ϕn, ψ : X → W are morphisms in the

category of algebraic varieties such that the set

O = {x ∈ X | ϕ1(x), . . . , ϕn(x) are linearly independent}

is nonempty, while for each x ∈ X the n + 1 vectors ϕ1(x), . . . , ϕn(x), ψ(x) ∈ W
are linearly dependent. Then there exist functions p1, . . . , pn, p0 ∈ k[X ] such that

gcd(p1, . . . , pn, p0) = 1 (3.1)

and
p0(x)ψ(x) =

n∑

i=1

pi(x)ϕi(x) for all x ∈ X. (3.2)

Moreover, the equality h0(x)ψ(x) =
∑n

i=1 hi(x)ϕi(x) holds identically on X for

some collection of functions h1, . . . , hn, h0 ∈ k[X ] if and only if there is g ∈ k[X ]
such that hi = gpi for all i.

Proof. For each x ∈ O the vector ψ(x) is a linear combination of ϕ1(x), . . . , ϕn(x)
with uniquely determined coefficients. So

ψ(x) =

n∑

i=1

fi(x)ϕi(x), x ∈ O,

for some functions fi : O → k. It is easy to see that O is a Zariski open subset of
X and f1, . . . , fn are regular on O, hence rational on X . We can find 0 6= p0 ∈ k[X ]
such that p0fi = pi ∈ k[X ] for each i = 1, . . . , n. Equality (3.2) is satisfied on some
nonempty Zariski open subset of X , but then it must hold everywhere. Factoring
out the greatest common divisor of p1, . . . , pn, p0 we achieve (3.1).
In the second assertion we have
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n∑

i=1

(
p0(x)hi(x)− h0(x) pi(x)

)
ϕi(x) = 0 for all x ∈ X.

It follows from the definition of the set O that p0(x)hi(x) = h0(x)pi(x) for all x ∈ O
and i = 1, . . . , n. Any two regular functions X → k must be equal provided that
they agree on a nonempty Zariski open subset of X . Hence p0hi = h0pi for each i.
Factoriality of k[X ] together with (3.1) ensures that p0 divides h0 in the ring k[X ].
So g = h0p

−1
0 will do. �

We will apply Lemma 3.3 in the situation where X is either V or V × V . So X
is a vector space, and k[X ] ∼= S(X∗) is the algebra of polynomial functions on X
generated by the dual space X∗ of linear functions on X .
Polynomial functions on V × V are functions of two arguments taken in V . We

will encounter polynomial functions f : V ×V → k which are homogeneous in each
of the two arguments. We say that (m,n) is the bidegree of f if f is homogeneous
of degree m in the first argument and homogeneous of degree n in the second. The
total degree of f is the sum m+n of its bidegree components. Note that any divisor
of a bihomogeneous polynomial function is itself bihomogeneous.
Each of the expressions ℓxy, ℓ

′
xy, ℓxx, ℓ

′
yy regarded as a function of the pair (x, y)

gives a quadratic polynomial map V ×V → V ∗. Since dimU > 1, there exist x, y ∈
V such that ℓxx and ℓ′yy are linearly independent. On the other hand, the three
elements ℓxy, ℓxx, ℓ

′
yy of the vector space V ∗ are always linearly dependent, and so

too are ℓ′xy, ℓxx, ℓ
′
yy since

ℓxy ∧ ℓxx ∧ ℓ′yy = 0 and ℓ′xy ∧ ℓxx ∧ ℓ′yy = 0 (3.3)

for all x, y ∈ V by (2.11). Lemma 3.3 provides polynomial functions pi, p
′
i ∈ k[V ×V ]

for i = 0, 1, 2 such that

gcd(p0, p1, p2) = gcd(p′0, p
′
1, p

′
2) = 1, (3.4)

and

p0(x, y) ℓxy = p1(x, y) ℓxx + p2(x, y) ℓ
′
yy ,

p′0(x, y) ℓ
′
xy = p′1(x, y) ℓxx + p′2(x, y) ℓ

′
yy

(3.5)

for all x, y ∈ V . As seen from the final assertion of Lemma 3.3, those pi and p′i
are polynomial functions of the smallest degree that can occur in such relations
of linear dependence. Since every polynomial function on V × V is a sum of its
bihomogeneous components, the functions pi and p

′
i are necessarily bihomogeneous.

We will need very precise information about the functions pi, p
′
i. As a first step

we deduce an identity which connects them. Making use of (3.5), we get

p0(x, y) p
′
0(x, y) ℓxy ∧ ℓ

′
xy =

(
p1(x, y) p

′
2(x, y)− p2(x, y) p

′
1(x, y)

)
ℓxx ∧ ℓ′yy.

The rule (x, y) 7→ ℓxx ∧ ℓ′yy defines a nonzero polynomial map V × V →
∧2

V ∗.
Since ℓxy ∧ ℓ

′
xy = ℓxx ∧ ℓ

′
yy and the ring k[V × V ] is a domain, it follows that

p0p
′
0 = p1p

′
2 − p2p

′
1.
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We will see later that p′0 can be taken equal to p0. In this case the previous identity
is written as

p20 = p1p
′
2 − p2p

′
1. (3.6)

Take any basis ℓ1, ℓ2, ℓ3 for the vector space V ∗. We can write

ℓxx =
∑

ai(x) ℓi, ℓxy =
∑

bi(x, y) ℓi,

ℓ′xx =
∑

a′i(x) ℓi, ℓ′xy =
∑

b′i(x, y) ℓi
(3.7)

for some quadratic forms ai, a
′
i and bilinear forms bi, b

′
i such that ai(x) = bi(x, x)

and a′i(x) = b′i(x, x). Now

ℓxx ∧ ℓ
′
yy = ∆1(x, y) ℓ2 ∧ ℓ3 +∆2(x, y) ℓ1 ∧ ℓ3 +∆3(x, y) ℓ1 ∧ ℓ2 (3.8)

where ∆i(x, y), i = 1, 2, 3, are the minors of order 2 of the matrix

(
a1(x) a2(x) a3(x)
a′1(y) a′2(y) a′3(y)

)
.

Lemma 3.4. For each i = 1, 2, 3 the polynomial function ∆i is divisible by p0 and

by p′0 in the ring k[V × V ].

Proof. In terms of coordinate representation (3.7) the first equation in (3.3) means
that the matrix 


b1(x, y) b2(x, y) b3(x, y)
a1(x) a2(x) a3(x)
a′1(y) a′2(y) a′3(y)





has identically zero determinant. Hence there are 3 different relations of linear de-
pendence between the rows of this matrix, the coefficients being the second order
minors each time extracted from some pair of columns of the matrix. This gives 3
relations of linear dependence between ℓxy, ℓxx, ℓ

′
yy in which the respective coeffi-

cient of ℓxy is ∆i(x, y) for i = 1, 2, 3. For example,

∣∣∣∣
a1(x) a2(x)
a′1(y) a′2(y)

∣∣∣∣ ℓxy −
∣∣∣∣
b1(x, y) b2(x, y)
a′1(y) a′2(y)

∣∣∣∣ ℓxx +

∣∣∣∣
b1(x, y) b2(x, y)
a1(x) a2(x)

∣∣∣∣ ℓ
′
yy = 0.

The final assertion in Lemma 3.3 shows that p0 divides ∆i. Working with the second
equation in (3.3) we deduce similarly that p′0 divides ∆i. �

Consider the greatest common divisor

d = gcd(∆1,∆2,∆3) ∈ k[V × V ]. (3.9)

Since ∆1,∆2,∆3 are bihomogeneous of bidegree (2, 2), the function d has to be
bihomogeneous too, and its degree in each of the two arguments cannot exceed 2.
The same can be said about p0 and p′0 which are divisors of d by Lemma 3.4.
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Lemma 3.5. The three polynomial functions ∆1,∆2,∆3 are linearly independent.

As a consequence, deg d < 4.

Proof. Suppose that ∆1,∆2,∆3 are linearly dependent. It is then seen from (3.8)

that the set {ℓxx ∧ ℓ
′
yy | x, y ∈ V } spans a proper subspace of

∧2
V ∗. However, the

linear span of this set is a subspace containing ξ ∧ η for all ξ ∈ U and η ∈ U ′, and
we claim that it is the whole space

∧2 V ∗.
If U = V ∗, then U ′ = V ∗ as well, and the claim is obvious. Suppose that U 6= V ∗.

Then dimU = dimU ′ = 2. If U 6= U ′, then the claim is still true. Finally, if U ′ = U ,
then the argument in the proof of Proposition 3.1 shows that actually ℓxy ∧ ℓ

′
xy = 0

for all x, y ∈ V . By (2.11) in this case ℓxx ∧ ℓ′yy = 0 for all x, y ∈ V , but this
contradicts the assumption dimU = 2. �

Lemma 3.6. The polynomial functions pi, p
′
i are all nonzero. As a consequence,

p0 and p′0 are not functions of just one argument. In particular, deg p0 > 1 and

deg p′0 > 1.

Proof. Suppose that p2 = 0, for example. By (3.5) and (3.7) then

p0(x, y) bi(x, y) = p1(x, y) ai(x)

for all x, y ∈ V and each i = 1, 2, 3. Since the ring k[V × V ] is factorial and since
gcd(p0, p1) = 1 by (3.4), the function p1 must divide each bi in that ring.
The functions b1, b2, b3 have bidegree (1, 1). Hence each bidegree component of

p1 does not exceed 1. If p1 has bidegree (1, 1), then each bi will be a scalar multiple
of p1, and so ℓxy = p1(x, y) ℓ0 for some linear form ℓ0 ∈ V ∗ which depends neither
on x nor on y. In this case all linear forms ℓxy are contained in the one-dimensional
subspace of V ∗ spanned by ℓ0, in contradiction with Lemma 2.4. Clearly p1 must
depend on y. Therefore the only possibility left is that p1 has bidegree (0, 1), i.e.,
p1(x, y) = ξ(y) for some ξ ∈ V ∗. But then ℓxy = 0 for all x ∈ V and y ∈ Ker ξ,
again in contradiction with Lemma 2.4.
It is proved similarly that p1 6= 0, while p0 6= 0 is clear already from the assump-

tion that ℓxx ∧ ℓ
′
yy does not vanish identically.

Let (mi, ni) be the bidegree of pi. By the uniqueness of expressions (3.5) the basis
linear forms ℓ1, ℓ2, ℓ3 must occur with coefficients of equal bidegrees in each term of
the first equation there. It follows that

m0 = m1 + 1 = m2 − 1 and n0 = n1 − 1 = n2 + 1. (3.10)

Hence m0 > 0 and n0 > 0. The same argument applies to p′0, p
′
1, p

′
2. �

Lemma 3.7. The equality ℓxx ∧ ℓ′xx = 0 holds for all x ∈ V . As a consequence,

U = U ′ = V ∗.

Proof. Setting y = x in (3.5), we get

(
p0(x, x)− p1(x, x)

)
ℓxx = p2(x, x) ℓ

′
xx ,(

p′0(x, x)− p′2(x, x)
)
ℓ′xx = p′1(x, x) ℓxx .

(3.11)

If p0 has degree 1 in the second argument, then by (3.10) p2 must have degree 0 in
the second argument, i.e., p2 depends only on the first argument. In this case p2 is
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not identically zero on the diagonal

D = {(x, x) | x ∈ V } ⊂ V × V,

and for all x ∈ V such that p2(x, x) 6= 0 the linear function ℓ′xx is a scalar multiple
of ℓxx in view of (3.11). Similarly, if p′0 has degree 1 in the first argument, then p′1
depends only on the second argument. In this case p′1 is not identically zero on D,
and so ℓxx is a scalar multiple of ℓ′xx for all x ∈ V such that p′1(x, x) 6= 0. In both
cases the equality ℓxx ∧ ℓ′xx = 0 holds for all x in a nonempty Zariski open subset
of V , and therefore everywhere on V .
To confirm the first assertion of Lemma 3.7 it remains to note that one of the

previous two conditions is satisfied in any event. Since p0 and p′0 are divisors of d,
it follows from Lemma 3.6 that d has positive degree in each of the two arguments.
But deg d < 4 by Lemma 3.5. This leaves only 3 possibilities for the bidegree of d.
It is (1, 1), or (1, 2), or (2, 1). If neither p0 nor p′0 have bidegree (1, 1), then both
functions will be scalar multiples of d, and so they will have the same bidegree,
either (1, 2) or (2, 1).
The equality ℓxx ∧ ℓ′xx = 0 implies that ℓ′xx is a scalar multiple of ℓxx, and so

ℓ′xx ∈ U , whenever ℓxx 6= 0. Thus ℓ′xx ∈ U for all x in a nonempty Zariski open
subset of V , and therefore for all x ∈ V . It follows that U ′ ⊂ U , and in fact U ′ = U
since these two spaces have the same dimension. Now

p0(x, y) ℓxy ∈ U + U ′ = U

for all x, y ∈ V according to (3.5). Hence ℓxy ∈ U whenever p0(x, y) 6= 0. In other
words, ℓxy ∈ U for all pairs (x, y) in a nonempty Zariski open subset of V × V , but
then this containment holds everywhere on V ×V , and the equality U = V ∗ follows
from Lemma 2.4. �

Lemma 3.8. The assumption that the three quadratic forms a1, a2, a3 have a non-

scalar common divisor in the ring k[V ] leads to a contradiction. Hence we must

have gcd(a1, a2, a3) = 1. Also, gcd(a′1, a
′
2, a

′
3) = 1.

Proof. Suppose that ξ ∈ k[V ] is a nonscalar polynomial function which divides each
ai. Clearly, ξ is homogeneous of degree ≤ 2. If deg ξ = 2 then each ai is a scalar
multiple of ξ, and so ℓxx = ξ(x)ℓ0 for some linear function ℓ0 ∈ V ∗ which does not
depend on x. This contradicts the assumption dimU > 1, however.
Therefore deg ξ = 1, i.e., ξ ∈ V ∗. We have ℓxx = 0 for all x ∈ Ker ξ, whence

ℓ′xx = 0 for all x ∈ ζ−1(Ker ξ) in view of (2.10). It follows that each a′i is divisible
in k[V ] by the linear function η = ξ ◦ ζ. We can write

ℓxx = ξ(x)
∑

fi(x)ℓi , ℓ′xx = η(x)
∑

gi(x)ℓi (3.12)

for some linear forms fi, gi ∈ V ∗, and we get ∆i(x, y) = ξ(x) η(y) δi(x, y) where
δi(x, y) is the respective minor of order 2 of the matrix

(
f1(x) f2(x) f3(x)
g1(y) g2(y) g3(y)

)
.

Each δi is a polynomial function on V × V of bidegree (1, 1), and δ1, δ2, δ3 are lin-
early independent by Lemma 3.5. Hence the degree of any common divisor of these
three functions is less than 2.
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Suppose that gcd(δ1, δ2, δ3) 6= 1. Then there exists a linear form h on V × V of
bidegree either (1, 0) or (0, 1) which divides each δi. If, for example, the bidegree of
h is (1, 0), then Kerh = L × V where L is a subspace of codimension 1 in V , and
each δi must vanish on L× V . This means that

fj(x) gk(y) = fk(x) gj(y) for all j, k ∈ {1, 2, 3}, x ∈ L, y ∈ V .

Since dimU ′ = 3 by Lemma 3.7, the functions g1, g2, g3 must be linearly indepen-
dent, and it follows from the displayed equalities above that each fi vanishes on L.
But then f1, f2, f3 are scalar multiples of one function, and we see from (3.12) that
all functions ℓxx, x ∈ V , lie in a one-dimensional subspace of V ∗. This contradicts
the assumption dimU > 1, however.
We conclude that gcd(δ1, δ2, δ3) = 1, and therefore gcd(∆1,∆2,∆3) = d where d

is defined by the formula

d(x, y) = ξ(x) η(y), x, y ∈ V.

Since p0 and p′0 are divisors of d of degree at least 2 by Lemma 3.6, both p0 and p′0
must be scalar multiples of d. By scaling the functions we may assume without loss
of generality that

p0 = p′0 = d.

Here p0 has bidegree (1, 1). This implies that p1 and p′1 have bidegree (0, 2), while
p2 and p′2 have bidegree (2, 0).
Multiplying the first equation in (3.5) by p′2(x, y), subtracting then the second

equation multiplied by p2(x, y), and making use of (3.6), we get

p0(x, y)
(
p′2(x, y) ℓxy − p2(x, y) ℓ

′
xy

)
=

(
p′2(x, y) p1(x, y)− p2(x, y) p

′
1(x, y)

)
ℓxx

= p0(x, y)
2 ℓxx

for all x, y ∈ V . Since the ring k[V × V ] is a domain, the common factor p0(x, y) in
the left and right hand sides can be cancelled out, which results in the identity

p′2(x, y) ℓxy − p2(x, y) ℓ
′
xy = p0(x, y) ℓxx .

Hence

p′2(x, y) ℓxy(x) − p2(x, y) ℓ
′
xy(x) = p0(x, y) ℓxx(x) = ξ(x) η(y) ℓxx(x) .

We have p′2(x, y) = p′2(x, 0) and p2(x, y) = p2(x, 0) since p2 and p′2 depend only on
the first argument. Now making use of (2.14), we rewrite the preceding equality as

p′2(x, 0) ℓxx(y)− p2(x, 0) ℓ
′
xx(y) = ξ(x) ℓxx(x) η(y) .

Since this holds for all x, y ∈ V , we get

p′2(x, 0) ℓxx − p2(x, 0) ℓ
′
xx = ξ(x) ℓxx(x) η (3.13)

for all x ∈ V . The subset
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O = {x ∈ V | ℓxx is not a scalar multiple of η}

is clearly Zariski open in V . It is also nonempty in view of Lemma 3.7. Suppose
that x ∈ O. Then ℓxx 6= 0, and the linear form in the left hand side of (3.13) is
a scalar multiple of ℓxx since so is ℓ′xx by Lemma 3.7. Since ℓxx and η are linearly
independent, both sides of (3.13) must vanish. This yields ξ(x) ℓxx(x) = 0.
We conclude that ξ(x) ℓxx(x) = 0 for all x ∈ V since this equality holds for all x

in a nonempty Zariski open subset of V . Since ξ 6= 0, we get

ℓxx(x) = 0 for all x ∈ V .

With this at hand we go back to (3.12). Consider the bilinear form γ : V × V → k

and linear forms γx ∈ V ∗ defined by the rule

γ(x, y) =
∑

fi(x) ℓi(y), γx(y) = γ(x, y)

for x, y ∈ V . Then ℓxx = ξ(x) γx. Hence ξ(x) γ(x, x) = ℓxx(x) = 0 for all x ∈ V ,
and therefore γ(x, x) = 0 for all x ∈ V . This shows that the bilinear form γ is
alternating, which implies that its rank is even. Since dimV = 3, any alternating
bilinear form on V is degenerate. Hence there exists 0 6= v ∈ V such that γx(v) = 0,
and therefore also ℓxx(v) = 0, for all x ∈ V . This contradicts the equality U = V ∗

of Lemma 3.7.
At the beginning of the proof we have seen that the assumption gcd(a1, a2, a3) 6= 1

implies that gcd(a′1, a
′
2, a

′
3) 6= 1. The opposite implication is proved quite similarly.

Therefore the assumption gcd(a′1, a
′
2, a

′
3) 6= 1 leads to a contradiction too. �

Lemma 3.9. The polynomial function d = gcd(∆1,∆2,∆3) has bidegree (1, 1), i.e.,
d : V ×V → k is a bilinear form on V . As a consequence, both p0 and p′0 are scalar

multiples of d.

Proof. For each x ∈ V the linear forms ℓxx and ℓ′xx are linearly dependent by Lemma
3.7. Applying Lemma 3.3 to the two polynomial maps V → V ∗ given by the as-
signments x 7→ ℓxx and x 7→ ℓ′xx, respectively, we deduce that there are polynomial
functions ξ, η ∈ k[V ] such that gcd(ξ, η) = 1 and

ξ(x) ℓ′xx = η(x) ℓxx for all x ∈ V .

In the ring k[V ] we have then ξa′i = ηai for each i = 1, 2, 3 (see (3.7)). Hence ξ is a
common divisor of quadratic forms a1, a2, a3, and so ξ ∈ k by Lemma 3.8. Clearly,
deg ξ = deg η, whence η ∈ k as well. It follows that there is 0 6= c ∈ k such that
a′i = cai for each i. But then each ∆i is skewsymmetric, i.e.,

∆i(y, x) = −∆i(x, y) for all x, y ∈ V ,

and it follows that the degree of d in the second argument must be the same as its
degree in the first argument. So the total degree of d is even and less than 4 by
Lemma 3.5. Since p0 and p′0 are divisors of d, there is no possibility other than

deg d = deg p0 = deg p′0 = 2,

and the bidegree of these functions is necessarily (1, 1). �

Thus we may take p0 = p′0 = d in (3.5).
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Lemma 3.10. The function p0 is a bilinear form of rank 1, i.e., p0 is the product

of two linear forms of bidegrees (1, 0) and (0, 1).

Proof. Identity (3.6) shows that p0 is contained in the radical of the ideal of the ring
k[V × V ] generated by p1 and p2. Hence p0 vanishes on the set of common zeros of
the two functions p1 and p2. Note that p1 and p′1 have bidegree (0, 2), while p2 and
p′2 have bidegree (2, 0). Hence the zero sets of p1 and p2 are, respectively, V × Y
and X × V where X and Y are some quadratic conical hypersurfaces in V . The
common zero set of p1 and p2 is X×Y . Since p0 is bilinear, it vanishes on kX×kY
where kX and kY are the linear spans of X and Y .
Since p0 6= 0, the equalities kX = V and kY = V cannot hold simultaneously.

Therefore either X or Y must be a linear subspace of codimension 1 in V . This
means that at least one of the two functions p1, p2 is the square of a linear form on
V × V . If kX = V then Y is a linear subspace of V contained in the right kernel of
p0, whence rank p0 = 1. Similarly, rank p0 = 1 whenever kY = V .
Suppose that rank p0 6= 1. Then both X and Y are linear subspaces of codimen-

sion 1 in V . Hence there exist ξ, η ∈ V ∗ such that

p1(x, y) = η(y)2, p2(x, y) = ξ(x)2

for all x, y ∈ V . A similar argument shows that there are ξ′, η′ ∈ V ∗ such that

p′1(x, y) = η′(y)2, p′2(x, y) = ξ′(x)2

for all x, y ∈ V . Identity (3.6) is now written as

p0(x, y)
2 = η(y)2 ξ′(x)2 − ξ(x)2 η′(y)2.

Hence p20 = fg where f, g ∈ k[V × V ] are defined by the formulas

f(x, y) = η(y) ξ′(x) − ξ(x) η′(y), g(x, y) = η(y) ξ′(x) + ξ(x) η′(y).

Since p0 is a bilinear form of rank > 1, it is an irreducible element of the factorial
ring k[V × V ], and it follows from the factoriality that f and g are both scalar
multiples of p0. Then so too is f + g. But

(f + g)(x, y) = 2 η(y) ξ′(x),

in contradiction with irreducibility of p0. Note that here we do need the assumption
that chark 6= 2. �

Lemma 3.11. There are ξ, η ∈ V ∗ such that

p0(x, y) = ξ(x) η(y) (3.14)

and either p1(x, y) = η(y)2 or p2(x, y) = ξ(x)2 for all x, y ∈ V .

Proof. We continue the argument in the proof of Lemma 3.10. Since p0 has rank 1,
its left kernel L = {x ∈ V | p0(x, V ) = 0} is a vector subspace of codimension 1 in
V . If X = L, then, as we have seen in Lemma 3.10, p2 is a square, i.e., p2 = ξ 2

1 where
ξ1 is a linear form of bidegree (1, 0). There is ξ ∈ V ∗ such that ξ1(x, y) = ξ(x) for
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all x, y ∈ V . Since the function p0 vanishes on X × V = Ker ξ1, it is divisible by ξ1
in the ring k[V × V ]. This yields factorization (3.14).
Suppose that X 6= L. Then X 6⊂ L since X is a subvariety of codimension 1 in

V , and it follows that kX + L = V . Since p0 vanishes on (kX + L) × Y , its right
kernel K = {y ∈ V | p0(V, y) = 0} contains Y . Moreover, K = Y since Y is a
subvariety of codimension 1 in V . In particular, Y is a linear subspace. This implies
that p1 = η 2

2 where η2 is a linear form of bidegree (0, 1). There is η ∈ V ∗ such that
η2(x, y) = η(y) for all x, y ∈ V . Since p0 vanishes on V × Y = Ker η2, it is divisible
by η2, whence formula (3.14) with a suitable ξ. �

The rest of the proof will go really fast. In the first equation of (3.5) we compare
the coefficients of each basis linear form ℓi. This gives

p0(x, y) bi(x, y) = p1(x, y) ai(x) + p2(x, y) a
′
i(y)

for all x, y ∈ V . There are two possibilities described in Lemma 3.11. In one case
both p0 and p2 are divisible by the linear form ξ1 of bidegree (1, 0) corresponding
to ξ. On the other hand, ξ1 cannot divide the function p1 of bidegree (0, 2), and it
follows from the displayed equality above and factoriality that each ai is divisible
by ξ. In another case both p0 and p1 are divisible by the linear form η2 of bidegree
(0, 1) corresponding to η, but η2 does not divide p2. This implies that each a′i is
divisible by η. Now Lemma 3.8 eliminates both possibilities. �

This completes the proof of Proposition 3.2 and Theorem 1.1.

4. Explicit determination of Hecke symmetries

Given a graded factor algebra A of the tensor algebra T(V ), we denote by

HeckeSym(A)

the set of all Hecke symmetries on the vector space V such that S(V,R) = A where
the exact equality means that the two algebras are factor algebras of T(V ) by the
same ideal. In the case when A = T(V )/I where I is the ideal of T(V ) generated by
{ζ(x)y− ζ(y)x | x, y ∈ V } ⊂ V ⊗2 for ζ ∈ GL(V ) we write S(V )ζ instead of A, thus
identifying the twisted algebra S(V )ζ with a factor algebra of T(V ) by means of an
isomorphism of graded algebras which acts as the identity operator on homogeneous
elements of degree 1.
Assume that chark 6= 2. By Theorem 1.1 the set HeckeSym(S(V )ζ) consists of

the ζ-twists Rζ of those Hecke symmetries R in the set HeckeSym(S(V )) which
commute with ζ ⊗ ζ. By [13, Theorem 5.1] each R in the latter set is given by the
formula

R(xy) =
q − 1

2
xy +

q + 1

2
yx− g(x, y) a ⊼ b− x ⊼ Ty − y ⊼ Tx, x, y ∈ V, (4.1)

where a, b ∈ V are two vectors, g : V × V → k a symmetric bilinear form satisfying

(q − 1)2 = 4
(
g(a, b)2 − g(a, a) g(b, b)

)
(4.2)

and T : V → V the linear operator defined by the rule
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Tx = g(b, x) a− g(a, x) b, x ∈ V. (4.3)

The product ⊼ used in (4.1) is the one defined in section 1, however with respect to
the identity operator, i.e., x ⊼ y = xy − yx for x, y ∈ V .
The linear operator given by (4.1) depends on the pair (t, g) where t = a ∧ b is a

bivector. A different choice of vectors a, b making the same bivector does not change
the operator. The parameter q is determined by relation (4.2) in which the right
hand side is a function of the pair (t, g). If either t = 0 or g = 0, then this operator
is the flip R0 which sends xy to yx for all x, y ∈ V . If t 6= 0 and g 6= 0, then another
pair (t′, g′) produces the same operator if and only if t′ = ct and g′ = c−1g for some
0 6= c ∈ k.
This leads to the following parametrization of the set HeckeSym(S(V )). Define

∆(a ∧ b, g) = g(a, a) g(b, b)− g(a, b)2 (4.4)

and denote by P the set of all triples (t, g, q) where t ∈
∧2

V is a nonzero bivector,
g : V × V → k a nonzero symmetric bilinear form, q ∈ k a nonzero scalar such that

(q − 1)2 = −4∆(t, g). (4.5)

The multiplicative group k× of the field k acts on P according to the rule

c · (t, g, q) = (ct, c−1g, q), c ∈ k
×. (4.6)

The elements of the set HeckeSym(S(V ))r {R0} are then in a bijective correspon-

dence with the k×-orbits in P . Furthermore,
∧2 V and the space of symmetric

bilinear forms on V are GL(V )-modules in a natural way. These module structures
give rise to an action of GL(V ) on P under which q remains unaffected. Conjugation
by the operators ϕ⊗ϕ, ϕ ∈ GL(V ), is the corresponding action of GL(V ) on Hecke
symmetries. Therefore two Hecke symmetries in the set HeckeSym(S(V )) r {R0}
are equivalent if and only if they correspond to two triples in the set P lying in the
same (GL(V )× k×)-orbit.
The flip R0 commutes with ζ ⊗ ζ for any ζ ∈ GL(V ). The corresponding twist

R0ζ is the linear operator on V ⊗2 such that

R0ζ(xy) = ζ(y) ζ−1(x) for x, y ∈ V . (4.7)

It may be viewed as a distinguished element of the set HeckeSym(S(V )ζ). The re-
maining Hecke symmetries in this set can be described in terms of triples in P :

Proposition 4.1. Assume chark 6= 2. For ζ ∈ GL(V ) put

P (ζ) = {(t, g, q) ∈ P | ζ · (t, g, q) ∈ k
× · (t, g, q)},

G(ζ) = {ϕ ∈ GL(V ) | ϕζϕ−1 is a scalar multiple of ζ}.

There is a bijection between the set HeckeSym(S(V )ζ)r{R0ζ} and the set P (ζ)/k×

of k×-orbits in P (ζ). Under this bijection the equivalence classes of Hecke symme-

tries correspond to the G(ζ)-orbits in P (ζ)/k×.
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Proof. If R ∈ HeckeSym(S(V )) corresponds to a triple (t, g, q) ∈ P then the Hecke
symmetry (ζ ⊗ ζ) ◦R ◦ (ζ ⊗ ζ)−1 corresponds to ζ · (t, g, q). Therefore R commutes
with ζ ⊗ ζ if and only if (t, g, q) ∈ P (ζ). Such Hecke symmetries are in a bijec-
tive correspondence with the k×-orbits in P (ζ). Composing this bijection with the
twisting transformation R 7→ Rζ we get a bijection asserted in Proposition 4.1.
For any ϕ ∈ GL(V ) the space {ζ(x)y − ζ(y)x | x, y ∈ V } of quadratic defining

relations of the algebra S(V )ζ is stable under the linear operator ϕ⊗ ϕ if and only
if ϕζϕ−1 = cζ for some c ∈ k×. In other words, ϕ extends to an automorphism of
S(V )ζ if and only if ϕ ∈ G(ζ). This means that the equivalence classes of Hecke
symmetries in the set HeckeSym(S(V )ζ) are precisely the orbits with respect to the
conjugating action of the group G(ζ) (see the discussion at the end of section 1).
If ϕ ∈ G(ζ), then (ϕ ⊗ ϕ)(ζ ⊗ IdV ) = c(ζ ⊗ IdV )(ϕ⊗ ϕ) for some c ∈ k×, and it

follows that

(ϕ⊗ ϕ) ◦Rζ ◦ (ϕ⊗ ϕ)−1 = R′
ζ ⇔ (ϕ⊗ ϕ) ◦R ◦ (ϕ⊗ ϕ)−1 = R′.

Hence the constructed bijection between HeckeSym(S(V )ζ)r {R0ζ} and P (ζ)/k×

is G(ζ)-equivariant. We thus get the second assertion of Proposition 4.1. �

The set P (ζ) can be determined for each ζ ∈ GL(V ), and this leads to the clas-
sification of the corresponding Hecke symmetries. In this paper we will investigate
in detail the case of a diagonalizable twisting operator.
Equivalence classes in the set HeckeSym(S(V )) are of 8 types described in [13].

Types 1 and 2 include Hecke symmetries with parameter q 6= 1, while q = 1 in the
other types. The action of a Hecke symmetry R of respective type is given with
respect to a suitable basis x1, x2, x3 of V by the following formulas:

Type 1.

R(x21) = qx21 R(x1x2) = (q − 1)x1x2 + x2x1 R(x1x3) = (q − 1)x1x3 + x3x1

R(x2x1) = qx1x2 R(x22) = qx22 R(x2x3) = qx3x2

R(x3x1) = qx1x3 R(x3x2) = (q − 1)x3x2 + x2x3 R(x23) = qx23 − x1x2 + x2x1

Type 2. The same formulas as in Type 1 with the exception that R(x23) = qx23.

Type 3.

R(x21) = x21 + x1x2 − x2x1 R(x1x2) = x2x1 R(x1x3) = x3x1 − x2x3 + x3x2

R(x2x1) = x1x2 R(x22) = x22 R(x2x3) = x3x2

R(x3x1) = x1x3 − x2x3 + x3x2 R(x3x2) = x2x3 R(x23) = x23 + 2(x1x3 − x3x1)

Type 4. As in Type 3 with the exception that R(x23) = x23 − x1x2 + x2x1.

Type 5. As in Type 3 with the exception that R(x23) = x23.

Type 6. R(x21) = x21 R(x1x2) = x2x1 R(x1x3) = x3x1

R(x2x1) = x1x2 R(x22) = x22 R(x2x3) = x3x2

R(x3x1) = x1x3 R(x3x2) = x2x3 R(x23) = x23 + 2(x1x3 − x3x1)

Type 7. The same formulas as in Type 1, but with q = 1.

Type 8. R is the flip operator R0 sending xixj to xjxi.
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Such an operator R corresponds to a pair (t, g) in which t = x1 ∧ x2, while the
bilinear form g depends on the type to which R belongs (see [13]).
When forming the twist Rζ , the condition that R should commute with ζ ⊗ ζ

forces the basis vectors x1, x2, x3 to be adapted to the twisting operator ζ in some
way. Some types of Hecke symmetries may not be permitted by a particular twisting
operator.
If ζ is a scalar operator, then S(V )ζ ∼= S(V ), and twisting by ζ does not change

Hecke symmetries. The case of nonscalar diagonalizable operators is described as
follows:

Proposition 4.2. Assume that chark 6= 2 and ζ ∈ GL(V ) is a diagonalizable

linear operator with at least two distinct eigenvalues. Any Hecke symmetry in the

set HeckeSym(S(V )ζ) is the ζ-twist of a Hecke symmetry R whose action is given

by the formulas for one of Types 1–8 with respect to some basis of V consisting of

eigenvectors x1, x2, x3 of ζ.
Moreover, with αi being the eigenvalue of ζ corresponding to the eigenvector xi,

Types 1 and 7 occur only when α2
3 = α1α2,

Type 3 does not occur,

Type 4 occurs only when α1 = α2 = −α3,

Type 5 occurs only when α1 = α2,

Type 6 occurs only when α1 = α3.

Proof. By Theorem 1.1 any Hecke symmetry in the set HeckeSym(S(V )ζ) is Rζ for
some R ∈ HeckeSym(S(V )) such that R commutes with ζ ⊗ ζ. If R is the flip R0,
then its matrix form does not depend on the choice of a basis for V . So we may
assume that R 6= R0. Let (t, g, q) ∈ P (ζ) be the corresponding triple.
There is a 2-dimensional subspace V (t) of V spanned by any pair of vectors a, b

such that t = a∧b. The condition that ζ · t = ct for some c ∈ k× implies that V (t) is
invariant under ζ. Since ζ is diagonalizable, there exist its eigenvectors x1, x2 ∈ V (t)
such that t = x1 ∧ x2. Then c = α1α2 where α1, α2 are the respective eigenvalues.
The condition that ζ · g = c−1g derived from (4.6) means that g(u, v) = 0 whenever
u, v are two eigenvectors for ζ with eigenvalues λ, µ such that λµ 6= α1α2.
Let α3 be the third eigenvalue of ζ corresponding to any eigenvector x3 linearly

independent from x1 and x2. There are several cases distinguished by some condi-
tions on the triple of eigenvalues α1, α2, α3.
If α1, α2, α3 are pairwise distinct, then none of the products α2

1, α
2
2, α1α3, α2α3

is equal to α1α2. In this case the matrix of the bilinear form g with respect to the
basis x1, x2, x3 is 


0 β 0
β 0 0
0 0 γ


 (4.8)

for some β, γ ∈ k. In view of the previously mentioned condition on g we must have
γ = 0 unless α2

3 = α1α2. By (4.4) and (4.5) we have (q − 1)2 = 4β2. Hence β is
either (q − 1)/2 or (1− q)/2. Since t = −x2 ∧ x1, we can replace x1, x2 by the pair
−x2, x1, and then β in the matrix of g will be changed to −β. Thus we can always
find a basis of V consisting of eigenvectors of ζ with respect to which the matrix

23



of g will have β = (q − 1)/2. Note that βγ 6= 0 since g 6= 0. If γ 6= 0, then we can
achieve γ = 1, replacing x3 with its scalar multiple. Computing the action of R
defined in (4.1) we obtain the formulas given for Types 1, 2, or 7.

Suppose now that α1 = α2 6= α3. In this case V (t) is a 2-dimensional eigenspace
of ζ which is orthogonal to x3 with respect to g because α1α3 6= α2

1. If the restriction
of g to V (t) is nondegenerate, then there is a basis x1, x2 for V (t) consisting of
isotropic with respect to g vectors. With this choice the matrix of g will have the
form (4.8), and we continue as in the previous case. So we do also when g vanishes
on V (t)× V (t). If the restriction of g to V (t) has rank 1, then we adjust the choice
of x1 and x2 to obtain the following matrix of g :




1 0 0
0 0 0
0 0 γ



 . (4.9)

If γ 6= 0, then we achieve γ = 1 by scaling. This is only possible when α2
3 = α2

1, i.e.,
α3 = −α1. The corresponding operator R acts by formulas of Type 4 or 5 depending
on whether γ is 1 or 0.

Suppose finally that α1 6= α2, but α3 equals either α1 or α2. Since α
2
i 6= α1α2, we

have g(xi, xi) = 0 for each i. Moreover, g has zero restriction to the 2-dimensional
eigenspace U of ζ corresponding to the eigenvalue α3. If g(x1, x2) 6= 0, then we can
find x3 ∈ U orthogonal to both x1 and x2. In such a basis the matrix of g is of
form (4.8) which has been considered already. If g(x1, x2) = 0, then we may assume
α3 = α1, replacing x1, x2 with the pair −x2, x1 in the case when α3 = α2. With this
assumption we will have g(x3, x2) 6= 0, and scaling the vectors brings the matrix of
g to the form 


0 0 0
0 0 1
0 1 0


 . (4.10)

In this case the action of R is given by the formulas of Type 6. �

The explicit formulas for the twisted operator Rζ contain the same monomials
as the formulas for R, but altered coefficients. For example, if R is of Type 1 or 2,
then

Rζ(x1x2) = (q − 1)x1x2 + α2α
−1
1 x2x1.

We do not write out such formulas in full because of space considerations.

It should be stressed that the eigenvectors x1, x2, x3 in Proposition 4.2 are not
fixed for the given operator ζ but each time are suited to a particular Hecke symme-
try. This means that different Hecke symmetries in the description of that propo-
sition require different numbering of eigenspaces and eigenvalues. For example, if ζ
has an eigenvalue α1 of multiplicity 1 and another eigenvalue α2 of multiplicity 2,
then the formulas for Type 5 should be used with respect to an ordered triple of
eigenvectors with respective eigenvalues α2, α2, α1, while the formulas for Type 6
require a reordering, so that the respective eigenvalues should be α2, α1, α2.

The question concerning equivalence of twisted Hecke symmetries can be solved
with the aid of Proposition 4.1. For this we need to know the group G(ζ).
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Lemma 4.3. The group G(ζ) either coincides with the centralizer of ζ in GL(V ) or
contains this centralizer as a subgroup of index 3. In the latter case chark 6= 3 and

the linear operator ζ has 3 distinct characteristic roots α1, α2, α3 in the algebraic

closure of k such that

α1α
−1
2 = α2α

−1
3 = α3α

−1
1 = ε (4.11)

where ε is a primitive cube root of 1.

Proof. Extending the base field k, we may assume k to be algebraically closed. If
ϕ ∈ G(ζ), then ϕζϕ−1 = cζ for some c ∈ k×. If c 6= 1, then ζ maps the gener-
alized eigenspace of ζ corresponding to some eigenvalue α to another generalized
eigenspace which corresponds to the eigenvalue cα. It follows that α and cα have
the same multiplicity as roots of the characteristic polynomial of ζ. Since dimV = 3,
there can occur at most one eigenvalue of multiplicity larger than 1. If α is such an
eigenvalue, then cα = α, whence c = 1. In the other case ζ has 3 distinct eigenvalues
which are permuted by the operator of scalar multiplication by c. Hence c3 = 1,
and so c is a primitive cube root of 1 whenever c 6= 1. �

Now define the type of a triple (t, g, q) ∈ P as the type of the corresponding Hecke
symmetry with the associated algebra S(V ). Let ζ ∈ GL(V ) be a diagonalizable
linear operator. Note that its centralizer C(ζ) in GL(V ) consists of all invertible
linear operators which leave stable each eigenspace of ζ.
In Proposition 4.2 we have seen that for each (t, g, q) ∈ P (ζ) there exist 3 linearly

independent eigenvectors x1, x2, x3 of ζ such that t = x1 ∧ x2 and the matrix of
g with respect to x1, x2, x3 has one of several possible forms depending on q and
certain relations between the eigenvalues of ζ. If q 6= 1, then the condition that the
matrix of g is (4.8) with β = (q − 1)/2 determines such an ordered basis x1, x2, x3
of V uniquely up to scaling of vectors.
Various choices of eigenvectors x1, x2, x3 and permissible matrices of a symmetric

bilinear form give in this way all triples in the set P (ζ).
Suppose first that the three eigenvalues of ζ are pairwise distinct. Then P (ζ) has

precisely six k
×-orbits of Type 2 with any fixed q 6= 1, each corresponding to one

of 6 possible orderings of the eigenvalues. Each of these orbits is invariant under
the action of the centralizer C(ζ). This gives 6 elements of the set P (ζ)/k× fixed
by the action of C(ζ). If α1, α2, α3 satisfy (4.11), then the group G(ζ) contains
transformations which permute cyclically the eigenspaces of ζ. In this case the 6 just
mentioned elements form two G(ζ)-orbits in P (ζ)/k× with 3 elements in each. They
correspond to two equivalence classes in the set HeckeSym(S(V )ζ) with 3 different
Hecke symmetries in each. If (4.11) does not hold, then G(ζ) = C(ζ), whence we
get 6 equivalence classes with only one Hecke symmetry in each.
If there is an eigenvalue λ of ζ such that λ2 equals the product of the two other

eigenvalues, then the set P (ζ) contains also triples of Type 1 and 7 with α3 = λ for
the respective choice of x1, x2, x3. Since the action of C(ζ) allows arbitrary scaling
of the value g(x3, x3) while leaving x1 and x2 unchanged, each C(ζ)-orbit of Type
1 or 7 in P (ζ)/k× has infinitely many elements. If (4.11) does not hold, then there
is only one eigenvalue λ with the property needed. In this case the set P (ζ)/k× has
two C(ζ)-orbits of Type 1 with any fixed q 6= 1. However, for q = 1 there is only
one C(ζ)-orbit of Type 7 since g does not change when the triple (t, g, q) is formed
with the basis x1, x2, x3 replaced by −x2, x1, x3. If the three eigenvalues of ζ satisfy
(4.11), then each of them can be taken to obtain triples of Type 1 and 7. There are
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six C(ζ)-orbits of Type 1 with any q 6= 1 and three C(ζ)-orbits of Type 7, while
extra transformations in the group G(ζ) permute these orbits in cycles of length 3.
Thus, regardless of (4.11), the set P (ζ)/k× always has two G(ζ)-orbits of Type 1
with any q 6= 1 and one G(ζ)-orbit of Type 7 with q = 1.
Suppose now that ζ has an eigenvalue α1 of multiplicity 1 and an eigenvalue α2

of multiplicity 2. In this case G(ζ) = C(ζ) ∼= k× × GL2. In correspondence with 3
possible orderings of the triple of eigenvalues α1, α2, α2, the set P (ζ)/k× has three
G(ζ)-orbits of Type 2 with any fixed q 6= 1. If α1 = −α2, there is one G(ζ)-orbit
of Type 1 with any fixed q 6= 1. It consists of all elements of P (ζ)/k× with repre-
sentatives (t, g, q) ∈ P (ζ) such that the bivector t corresponds to the 2-dimensional
eigenspace of ζ and the bilinear form g is nondegenerate. Considering all triples in
P (ζ) corresponding to the Hecke symmetries of Type either 5 or 6, as discussed in
the proof of Proposition 4.2, we see that they form one G(ζ)-orbit in P (ζ)/k×, and
so do the triples of Type 4 and Type 7 in the case when α1 = −α2. Each of these
orbits of Type 1, 2, 4, 5, 6, and 7 has infinitely many elements.

In Corollary 4.4 we will summarize the preceding conclusions. Note that for a
diagonalizable linear operator ζ with eigenvalues α1, α2, α3 the algebra S(V )ζ has
defining relations

x3x2 = p1x2x3, x1x3 = p2x3x1, x2x1 = p3x1x2 (4.12)

where
p1 = α2α

−1
3 , p2 = α3α

−1
1 , p3 = α1α

−1
2 . (4.13)

Conversely, the skew polynomial algebra with defining relations (4.12) is isomorphic
to the algebra S(V )ζ for a suitable ζ provided that p1p2p3 = 1.
Any cyclic permutation of parameters p1, p2, p3 results in an isomorphic algebra.

For this reason we do not mention cyclically permuted triples of parameters in the
list of conditions given in the next corollary.

Corollary 4.4. Assume that chark 6= 2. Let A be the graded algebra with generators

x1, x2, x3 and defining relations (4.12) where p1p2p3 = 1. For each nonzero q ∈ k

the set HeckeSym(A) contains finitely many equivalence classes of Hecke symme-

tries with the chosen parameter q. The number of equivalence classes depends on q
and p1, p2, p3 as shown in the table below:

q 6= 1 q = 1

p1, p2, p3 are pairwise distinct and pi 6= 1 for each i 6 1

p1 = p2 6= p3 and pi 6= 1 for each i 8 2

p1 = p2 = p3 = ε where ε is a primitive cube root of 1 4 2

p1 6= p2, p3 = 1 3 3

p1 = p2 = −1, p3 = 1 4 5

p1 = p2 = p3 = 1 2 6

Only R0ζ and the twists of Hecke symmetries of Type 2 in the case when pi 6= 1 for

each i form equivalence classes of finite cardinality. In particular, HeckeSym(A) con-
tains finitely many Hecke symmetries with some fixed value of q only when p1, p2, p3
are pairwise distinct and pi 6= 1 for each i.
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Proof. If i, j, k are three distinct elements of the set {1, 2, 3}, then it follows from
(4.13) that pi = 1 if and only if αj = αk, and also pj = pk if and only if α2

i = αjαk.
By Proposition 4.1 the equivalence classes in the set HeckeSym(A) are in a bijective
correspondence with the G(ζ)-orbits in the set P (ζ)/k×. So we can refer to the
counting of orbits in the discussion preceding Corollary 4.4. The first three lines of
the table correspond to the case of pairwise distinct eigenvalues α1, α2, α3. The last
line records the 8 types of Hecke symmetries with the associated algebra S(V ). �

Motivated by Corollary 4.4 we are led to ask

Question 4.5. Let A be an arbitrary graded Artin-Schelter regular algebra of global

dimension 3 with quadratic defining relations. Is it always true that for each nonzero

q ∈ k there are only finitely many equivalence classes of Hecke symmetries with the

chosen parameter q and the property that S(V,R) ∼= A ?

It is very unlikely that finiteness of this kind can be always satisfied in dimensions
larger than 3.
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