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Abstract

Image-guided object assembly represents a burgeoning research topic in computer
vision. This paper introduces a novel task: translating multi-view images of a
structural 3D model (for example, one constructed with building blocks drawn
from a 3D-object library) into a detailed sequence of assembly instructions ex-
ecutable by a robotic arm. Fed with multi-view images of the target 3D model
for replication, the model designed for this task must address several sub-tasks,
including recognizing individual components used in constructing the 3D model,
estimating the geometric pose of each component, and deducing a feasible assem-
bly order adhering to physical rules. Establishing accurate 2D-3D correspondence
between multi-view images and 3D objects is technically challenging. To tackle
this, we propose an end-to-end model known as the Neural Assembler. This model
learns an object graph where each vertex represents recognized components from
the images, and the edges specify the topology of the 3D model, enabling the
derivation of an assembly plan. We establish benchmarks for this task and conduct
comprehensive empirical evaluations of Neural Assembler and alternative solutions.
Our experiments clearly demonstrate the superiority of Neural Assembler.

1 Introduction

The assembly task necessitates predicting a sequence of operations for the placement of various
components. Accurate and efficient assembly algorithms play a pivotal role in robotics. These
assembly challenges are pervasive in daily life, as in scenarios like constructing LEGO models|Chung
et al.| (2021), assembling furniture |Sudrez-Ruiz et al.|(2018)), and Minecraft |Chen et al.| (2019)). In
previous research, Chen et al. |Chen et al.| (2019) suggested replicating human building order with
spatial awareness to construct Minecraft houses without target information. Wang et al. [Wang et al.
(2022a) introduced a step-by-step approach for assembling LEGO models based on the assembly
manual, while the work in|Zhan et al.|(2020) focused on predicting the 6-DoF pose of each component
based on the object’s class for assembly. Li et al. |Li et al.[(2020) predicted the poses of parts using a
single image.

In this study, we define a new task of image-guided assembly. We are provided with a set of multi-view
images captured from a 3-D model, assuming it is built with components from a pre-specified library.
The goal of the task is to generate a sequence of fine-grained assembly instructions, encompassing all
parameters—such as component types, geometric poses of each component, and assembly order—in
accordance with physical rules and suitable for execution by a robotic arm. The task serves as a
valuable testbed for advancing vision-guided autonomous systems, presenting a range of technical
challenges. Firstly, understanding the correspondence between 2D images and 3D objects is crucial.
Given that certain components in the 3D model might be entirely obscured from specific viewpoints,
we employ multi-view images (e.g., typically 4 in this study) as input. The algorithm must effectively
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Figure 1: Schematic illustration of the proposed Neural Assembler. See Section 3 for more details.

integrate information from images captured from multiple perspectives. Secondly, estimating critical
information for each component is non-trivial. With a 3D library in place, the algorithm needs to
segment components across all images and categorize each based on predefined object types in the
library, mainly using shape and texture cues. In addition, one also needs estimate the 3-D spatial
position and rotation matrix of each component. Thirdly, obtaining typological information for all
components is necessary to formulate a physically feasible assembly plan.

Importantly, observations of a component in images are often incomplete, primarily due to frequent
occlusions. This poses a substantial challenge in fully understanding and interpreting the scene.
Such occlusions are particularly challenging when assembling complex, multi-layerd models. For
this novel task, we propose an end-to-end neural network, dubbed as Neural Assembler. The
computational pipeline of Neural Assembler is illustrated in Figure[T] Taking multi-view images
and a 3-D component library as input, Neural Assembler not only identifies each component from
images but also determines its 3D pose at each step of assembly. Leveraging images from multiple
viewpoints, our method aims to enhance the overall scene understanding and accurately predict the
order for placing parts in assembly tasks.

We present two datasets for the proposed image-guided assembly task, namely the CLEVR-Assembly
dataset and LEGO-Assembly dataset. Each sample in these datasets comprises images of the object
captured from various perspectives, along with the pose of each part (2D keypoints, mask, 3D
position, and rotation), and the relationship graph of all components. Comprehensive experiments
are conducted on both datasets. Due to the absence of prior work addressing this novel setting like
Neural Assembler, we establish two robust baselines for comparison. The evaluations unequivocally
demonstrate that Neural Assembler outperforms the baselines across all performance metrics.

2 Related work

Assembly algorithms Assembly tasks have utilized computational strategies for part selection and
placement, including action scoring [Yuille and Kersten| (2006); Bever and Poeppel| (2010), genetic
algorithms (2015), and voxel-based optimization Kim et al.|(2020); van den Hengel et al.|
(2015). Manual-driven approaches have been investigated [Shao et al.| (2016); [Wang et al.| (2022a);

Chen et al.| (2019); [Walsman et al.| (2022); Chung et al[(2021), with LSTM showing limitations
in long sequence predictions [Walsman et al.[(2022), and the reinforcement learning methodChung

et al| (2021) struggling with block complexity. Existing research into part-based 3D modeling Zhan
et al.[(2020); Mo et al.| (2019); [Li et al.|(2020); Niu et al. and parts retrieval from 3D meshes
Chaudhuri and Koltun| (2010); Shen et al.| (2012); Sung et al.|(2017)) assumes prior part knowledge.
Our novel task of reconstructing 3D models from multi-view images without prior information
presents a unique challenge not yet addressed by none of above works.

Multi-view scene understanding Many scene understanding tasks are intractable in single-view and
can only be solved given multi-view inputs. For example, The SLAM (simultaneous localization and
mapping) task requires reconstructing the 3D geometric scene and estimating camera poses given a
sequence of video frames. 3D-SIS [Hou et al.| (2019) performed instance segmentation by reading a
set of RGB-D images. MVPointNet Jaritz et al.|(2019) was based on a set of RGB-D images and
point clouds for instance segmentation. Murez et al.| (2020) performed 3D semantic segmentation




and reconstruction based on multiple RGB images. Similarly in our work, the algorithm understands
the structure of 3D brick models and predicts the poses of parts based on multi-view images.

Structural modeling for scenes or 3-D models Recent studies have focused on inferring structural
representations like graphs|/Johnson et al.|(2015));|(Cong et al.|(2023)); ILi et al.|(2022) and programmatic
descriptions Ellis et al.[(2018)); Liu and Wu, (2019); Wu et al.|(2017)) from images. Techniques range
from encoder-decoder architectures for triplet generation (Cong et al.| (2023)) to efficient graph-based
methods L1 et al.|(2022)), CNNs for primitive shape programs Ellis et al.[(2018). An encoder-decoder
approach for scene re-rendering |Wu et al.|(2017) and transformers for structural change detection
Qiu et al.| (2023) have also been proposed. Our work differs by using structural representations to
predict assembly sequences of object parts.

3 Neural Assembler

3.1 Task Specification

Given several multi-perspective images of a 3-D brick model {I; }#*_,, the corresponding camera
parameters with respect to some reference coordinate system, and a predefined 3-D brick (or termed
as component, as used exchangeably in this paper) library Lib = {b1, ba, ..., bas}, our algorithm
identifies the bricks present in the scene, predicts each brick’s pose and constructs a relational graph
G = {V, E}. The vertex set V correspond to the bricks and the directed edge set E represent spatial
configuration that can further be used to derive the assembly instructions. In particular, each brick b;
in the library is denoted as (.S;, T;) where S; is assumed to be point clouds and T; is represented
as texture images. In the relationship graph, each node v; € V describes the i-th brick information
v; = (S;, Ty, Kps;, Rot;, M;) where Kps; € ([0, 1] x [0, 1])%*2 encodes the 2D keypoints (we use
this notation to refer to the planar projection of the brick center) in K views, Rot; € [0, 2r]¥ are the
rotation angles in K views and M; € {0, 1}X*H*W are the binary masks of the brick in K views.
The edge e; ; € I explicitly describes the assembly order, where e; ; = 1 only when a brick v; is
placed into the 3-D model after brick v;.

Here we develop a baseline for the proposed task, namely Neural Assembler, whose computational
pipeline is shown in Figure 2] Our model leverages a graph convolutional network (GCN) to delineate
the assembly sequence effectively. The 3-D poses of objects are inferred from 2D image data across
multiple views, exploiting the geometric constraints provided by the camera parameters to ensure
spatial consistency in the 3D domain. This framework showcases the capability of capturing complex
relational patterns and translating them into a structured assembly protocol.

3.2 Multi-View Feature Fusion

We adopt the pretrained CLIP image encoder to get the feature maps F'* and CLIP feature vec-
tors & p, k € {1,2,...K}. Then the features of all views are fused with others, using an
adapted implementation of group-based semantic agreement Transformer|Xu and Mu| (2023)). The
scene consensus (denoted as a vector g) of the images from different perspectives are extracted
according to the rule: ¢ = L S°% | Norm(vk, ;p), where Norm(-) is the Lo normalization.
Afterwards, the scene consensus g is dispersed to multi-view image features through channel-wise
multiplicationzﬁk =FF.g, k=1,2,...,K.

Template as visual prompts. Let the texture image 7; € RH7:xW7, X3 where (Hr,, Wr,) is the
texture image size, represent the texture template and point clouds S; € RY?*3 represent the shape
template. In all experiments of this work, we fix the parameter Np to be all 1024, striking a balance
between compute expense and capability of representing the bricks. For the texture image, we set
both H7, and Wy, to 224. A CNN backbone (e.g., ResNet-18 He et al.|(2016)) generates template
features T; + C' NN (T;), and a pointnet backbone (e.g., PointNet |Qi et al. (2017)) generates shape
features S; < PointNet(S;).

Transformer decoder. The decoder accepts as input the shape feature library S = {.S; }, the texture

feature library T = {T;} and the fused image features F*. As shown in Fig. [2} the transformer
decoder is designed to obtain the image conditioned object query.
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Figure 2: The proposed Neural Assembler architecture. An image encoder outputs the visual
embeddings of multi-view images. The shape and texture library are provided as visual prompts for
object detection. Then the transformer decoder module is applied to get the library-based object
features. Finally, the object-conditioned image features are decoded to the bricks’ masks, keypoints,
and rotation angles, while the global object features are decoded to the bricks’ textures, shapes, the
number of blocks, and the assembly graph.

The elements from the shape feature library S or the texture feature library T and the N learned object
queries O are concatenated to define a query O’ = [S, T, O]. Given the fused image features F* and
the query O’, the library-based object queries fi’f (t=1,2,...,N, k=1,2,...,K) are obtained
through a couple of decoding layers that employ the structure of FS-DETR Bulat et al.| (2023). Then
we use an averaging operation to obtain a unified, multi-view feature representation for each object:
figl"b“l = Zszl fF, i=1,2,...,N. This approach effectively integrates diverse perspectives to
enhance the overall understanding for the object’s attribute.

As shown in Fig. [2] for the Consensus Dispersion module and Linear Interpolation module, to obtain
the object-conditioned image features, we adapt the combination of CLIPSeg Liiddecke and Ecker|
and group-based semantic agreement Transformer Xu and Mu|(2023). The node features fF
serve as conditional prompts. Feature fusion between node features and image features is achieved
through linear interpolation. Formally, in each perspective, the object-conditioned image features
FF = LI(F*, f¥) where i = 1..N,k = 1,2,...K, LI is linear interpolation. Next, the scene
consensus g is dispersed to multi-view object-conditioned image features through channel-wise

multiplication F¥ = FF - g.

3.3 Brick Number Prediction

For each view k£ = 1,2,..., K, we average the N object-conditioned image features Ffvg =

L 52N | FF. Then the scene feature can be obtained by Fycene = & Sp| F% . Finally a couple
of convolution layers are used to predict the number of bricks in the scene.

3.4 Relation Graph Generation

Predicting the assembly sequence is equivalent to predicting the connections of bricks which can be
described using the relationship graph. If brick A is placed on the top of B, then there is a directed
edge from B to A. A graph convolutional network [Kipf and Welling| (2016)) is adopted to predict
the existence of each edge in the graph. Given the complete graph G = (V, E) with initial node
features p = f7 febal " Similar to |J0hnson et al.| (]2018|); |Wald et a1.| (12020|), we implemented the
GCN using the MLP (multi-layer perception) structure. Each iteration of message passing starts from

computing edge features: eﬁjgl « MLP([p}, p}]). An average-pooling is performed over all edge




features connected to a node, obtaining an updated node feature
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After gathering the edge features via graph convolutions as {e; j }I_ |, we use another MLP to predict
the probability of the existence of each edge, P(; j) = M LP(er)

Finally, to determine the assembly sequence during inference, the directed edges are sorted in
descending order according to the predicted probability and subsequently incorporated into the
directed graph. If a loop is formed after adding an edge, this edge will not be added. The process
continues until it reach a state where there exists a vertex that can reach all other vertices in the graph.

3.5 Pose Estimation

The N object query features { figl"b“l N | are used for shape and texture classification. The shape

prediction head predicts the shape label and the texture prediction head predicts the texture label.

Mask and heatmap prediction. We employ a simple deconvolution layer on the object-conditioned
image feature ¥ to obtain the heatmap of keypoint and mask of the object i in each perspective k.

Rotation prediction The rotation angle is represented as a 2D vector representing the sine and cosine

values of it. The rotation predictor accepts conditional image features Ff as input and outputs the
sine and cosine value.

Confidence score prediction Since bricks may not be visible at all perspectives, here we pre-
dict the the confidence score c¥ of each brick at each perspective. Specifically, cF represents the
Iou(Intersection Over Union) between the predicted mask and ground truth mask.

During inference, the pose of each object in 3D

space is obtained by merging the poses from each
perspective (see Figure[3). In more details, for 3D \ /
position prediction, our method involves detecting
keypoints of the object parts from the view whose
confidence score ¢; is higher than a threshold 6.
Then, utilizing the camera parameters, the rays in
3D space generated by keypoints are used to infer
the object’s position in 3D space. Each ray R; is
represented as r;(t) = O; +t - D; where O, is the
()rigin and D; is the direction. Our objective is to Figure 3: Illustration of 3D position prediction mod-
find a point P that minimizes the function: ule.

L
hZ)=>_d(Z Ry), 2)

where L is the number of rays and d(Z, R;) represents the shortest distance from the point P to the
ray R;. Here, the minimization of the objective function h(Z) is approached through the gradient
descent method.

3.6 Training and Loss functions

We train Neural Assembler with full supervision on the generated dataset where each sample we
have the groundtruth shape, texture, keypoint, mask, rotation information of each brick, the number
of bricks and the relationship graph of bricks. The entire neural network is trained end-to-end with
gradient descent. Our objective function is computed by L = &+ Leount + 8 - Lgraph + Lpose, Where
Lcount 1s the L1 Loss between the predicted number of bricks and ground truth count .

Following Carion et al.| (2020), bipartite matching is used to find an optimal permutation {o;}; to
match the N object queries and ground truth bricks in the scene. The pose loss of bricks includes the
loss of shape, texture, keypoint, mask and rotation.

Lpose = Lkeypoint + Lmask + fylLrotation (3)
+ ’72Lshape + 73Ltezture + 74Lconfidencey (4)



where Lieypoint 15 the focal loss [Lin et al.| (2017) computed based on the predicted heatmap and
ground truth heatmap generated by Kps,,, Limask is the focal and dice loss between the predicted
mask and ground truth mask M, Lyotation 1S the L1 Loss between the prediced sine and cosine
and the ground truth sine and cosine of Roty,, Lshape and Licgture are the cross entropy loss
for shape and texture classification and Ly, fidence 1S L1 Loss between the predicted confidence
score and Iou of the predicted mask and ground truth mask. Our model strategically prioritizes
the hyperparameters Lieypoint and Ly, qs1 due to their critical impact on object detection, essential
for accurate object interaction and identification in complex scenes. In contrast, Lyotation> Lshapes
Liegture and Loy, fidence are assigned a reduced weight of 0.1 each, a decision grounded in empirical
findings that highlight their relatively minor incremental benefits to overall model efficacy.

Lgrapn is the loss for relatlonshlp graph prediction. Firstly, we define the loss for any subset of the
entire edge set. For a subset E of the edge set F' of the complete graph, the edge loss of E is defined
as Ly = Z(z’y)eE Leg(Prg.y), E(m_yy)). Then the Lgrqpp is defined as Lyyqpn = Le + Liopk

Kg

1
LtopKE = K7E Z LEtopk’ (5)
k=1

where Iy, is the set of the edges with the top £ highest predicted probability. Since the entire
relationship graph is a directed graph with sparse edges, the hyperparameter K is defined as
countgy + 1.

4 [Experiments

Dataset preparation. Experiments are conducted on two self-constructed datasets. The CLEVR-
Assembly Dataset, created via the CLEVR-EngineJohnson et al.[(2017), comprises a shape library
with 6 brick shapes and 16 textures, a 76.5% visibility probability of each brick per perspective, 7.51
bricks per sample, and an average assembly graph depth of 4.01, with approximately 10K training,
500 validation, and 2000 test samples. The LEGO dataset, synthesized using Pytorch3d, features 12
LEGO brick shapes and 8 textures, an 82.6% visibility probability of each brick per perspective, 7.39
bricks per sample, and an average graph depth of 4.49, also with approximately 10K training, 500
validation, and 2000 test samples. The two datasets, characterized by brick number, occlusion from
variable visibility, and complex assembly graph, reflect the complexity of assembly tasks.

Baseline models. In addressing this novel task, for which no direct baseline exists, we have
established a comparative framework against three distinct baseline methods to demonstrate the
efficacy of our approach. First, to assess the validity of our assembly order prediction methodology,
we introduce a Long Short-Term Memory (LSTM) (Graves and Graves|(2012) module as a surrogate
baseline to contrast with our Graph Convolutional Network (GCN) based module. This comparison
aims to highlight the enhanced predictive capabilities our GCN model brings to complex assembly
sequences.

Furthermore, for the object pose estimation component, our methodology is rigorously benchmarked
against DETR3D Wang et al.|(2022b), a prominent baseline in the realm of object detection within
autonomous driving scenarios. This comparison is pivotal in underscoring the adaptability and
accuracy of our model in 3D pose estimation, a crucial aspect in varied application domains.

Lastly, in evaluating our multi-view image feature fusion process, we contrast our approach with
a method that does not leverage scene consensus. This comparison is instrumental in showcasing
the enhanced scene understanding and feature integration our method offers, thus demonstrating its
superiority in synthesizing and utilizing multi-view image data.

Implementation details. Our approach is implemented in single-scale version for fair comparison
with other works. It incorporates a CLIPRadford et al.|(2021)) pre-trained ViT-B/16 image encoder,
a PointNet-based Q1 et al.|(2017) point cloud encoder, and a ResNet-18He et al.| (2016) for texture
encoding. We employ a two-layer residual network for brick number prediction. The shape, material,
iou prediction heads are implemented using 3-layer MLP and ReLU activations. Rotation prediction
also uses a two-layer residual network, and our GCN architecture employs two message-passing
layers. Training is conducted on an RTX 3090 GPU using AdamW, with an initial rate of 5e-4,
decaying by 0.8 per epoch, a weight decay of 1e-3, and batch size 8 over 10 epochs for both datasets.



Evaluation metrics. In this assembly task, we introduce several metrics to evaluate the performance
of our algorithm both at a per-scene and per-step level, providing a holistic measure of our method’s
efficacy. Specifically, for the per-scene metrics, our approach necessitates the prediction of the
entire assembly sequence based on multi-view images, emphasizing the ability to comprehend and
reconstruct the complete scene from various perspectives. In contrast, the per-step metrics operate
under the assumption that the assembly order is known a priority. Here, we focus on calculating
the error between the predicted information for each individual brick and the corresponding ground
truth, independent of the assembly order. This allows for a comprehensive evaluation of the method’s
ability in both holistic scene understanding and step-wise brick analysis.

Table 1: Comparison of per-scene metrics.
Method Complete Rate  Per-scene Acc~ Count Acc ~ Order CR

LEGO-Assembly

LSTM|Graves and Graves|(2012) 27.5 53 60.3 35.1

DETR3D|Wang et al.[(2022b) 25.8 2.5 61.5 63.5

QOurs (w/o consensus) 43.7 18.4 69.0 64.5

Ours 439 229 76.3 69.4
CLEVR-Assembly

LSTM |Graves and Graves|(2012) 19.7 8.0 91.5 22.6

DETR3D|Wang et al.[(2022b) 16.8 45 89.5 353

Ours (w/o consensus) 28.6 6.6 92.1 45.5

Ours (2 views) 22.0 4.6 88.7 38.6

Ours (3 views) 25.7 9.3 94.0 44.5

Ours 41.5 22.5 95.5 62.1

For per-scene metrics, we evaluate the Complete Rate (completion percentage of the brick model),
Order CR (completion rate of the sequence of brick types), Per-scene Acc (accuracy of completely
assembling an entire brick model), Count Acc(precision of predicting the number of bricks). For
per-step metrics, we evaluate the Pos Acc and Rot Acc (3D position accuracy and rotation accuracy),
Shape Acc and Texture Acc (shape accuracy and texture accuracy), Kps Mse (error of the predicted
2D keypoints of the object), mlou (mean Intersection over Union between the predicted mask and
the ground truth), the F1-score between predicted relation graph and ground truth relation graph and
Per-step Acc(accuracy of correct predictions for each brick’s information).

Results on CLEVR-Assembly. Per-scene quantitative results on the CLEVR-Assembly Dataset are
summarized in Table[I] Neural Assembler outperforms baseline models in all metrics considered.
From Table [2} we can see Neural Assembler locates objects more accurately than DETR3D.

The metric CCA proposed by |Chen et al.|(2019)

is adopted here for the brick order evaluation. It I —
denotes the probability distribution of the num- = . -
ber of brick that a model can consecutively place N
from scratch. As shown in Figd] LSTM perform
worse than GCN. This is because time depen-
dence is not crucial for the assembly order pre-
diction. Instead, the assembly problem requires
prediction from complex spatial relationships.
The adeptness of GCN in capturing spatial re-
lation plays a critical role in understanding the
assembly order.

Figure 4: The probability distribution of CCA.

Consensus Module As shown in Table 2] extracting the consensus can better align the information
of the images from various perspectives. Without scene consensus, it is difficult for the model to
integrate information from multi-view images to obtain the overall information of each brick.

Number of views Furthermore, we compared the results obtained by accepting different numbers of
images as input. As shown in Tables [[|and 2] the result shows that more perspectives as input can
improve the performance. This is because each brick may not be seen from some perspectives due to
the existence of occlusion. More views mean more information for prediction.

Fig. [5|further shows the generated assembly instructions for a brick model in the CLEVR-Assembly
Dataset. Perspectives with confidence score greater than 0.66 are selected to infer the brick’s
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Table 2: Comparison of baselines on per-step metrics.
Method Per-Step Acc Pos Acc Rot Acc Shape Acc Texture Acc  mloU  Kps Mse F1

LEGO-Assembly

DETR3D (2022b) 41.7 472 78.2 87.8 98.3 - - 0.797

Ours (w/o consensus) 71.7 79.0 87.2 89.9 98.3 76.3 1.12 0.829

Ours 73.5 80.4 88.0 91.5 98.3 78.5 0.88 0.820
CLEVR-Assembly

DETRSD (2022b) 29.2 324 75.6 724 67.0 - - 0.734

Ours (w/o consensus) 57.2 67.9 78.9 87.1 88.5 61.2 1.2 0.781

Ours (2 views) 56.1 71.7 73.0 80.0 86.4 65.4 2.5 0.721

Ours (3 views) 61.1 74.6 77.9 85.7 90.7 67.1 1.5 0.772

Ours 69.2 79.1 84.1 91.5 93.8 71.1 0.78 0.840

information. It is evident that Neural Assembler is adept at excluding perspectives where bricks are
obscured by predicting confidence scores, thereby identifying optimal perspectives for predicting
positional information. Concurrently, it is capable of predicting the structure between bricks to
determine the appropriate assembly sequence.

Results on LEGO-Assembly. Different from CLEVR-Dataset, LEGO bricks are connected through
slots. It is easier to infer the position of the bricks based on the connection constraints between the
LEGO bricks, as long as the rough position of the LEGO bricks is predicted. However, there are
many challenges in predicting the assembly sequence of LEGO brick models. For instance, the more
compact assembly of LEGO bricks results in increased occlusion.

The LEGO brick will only have rotations chosen from (0°,90°, 180°,270°). Meanwhile, the position
of LEGO bricks is discretized. We adopt the connection-constrained inference subroutine and an
inference-by-synthesis subroutine used in|Wang et al.|(2022a) to predict the position and rotation
angle for each view, and then integrated them through voting. The results in Table[T|and Table [2]
shows that Neural Assembler can yield more accurate results than other baselines. Figlf| further
shows the generated assembly instructions for a LEGO model.

Method Per-scene Acc  Complete Rate
Novel-Dataset
LSTM |Graves and Graves| (2012 16.0 27.3
DETR3D |Wang et al.| (2 7.3 21.8
Ours 34.2 58.5
Real-World Dataset

LSTM |Graves and Graves| (2012 7.3 21.8
DETR3D |Wang et al.| (2 24 12.8
Ours 22.0 50.5

Table 3: The performance of the fine-tuned model on the novel simulated dataset and real-world
dataset.

Real-world experiments.

To confirm the model’s generalizability, a comprehensive test dataset is constructed, complete with
annotations for each brick’s shape, position, and rotation. For each sample, we acquired real brick
images using a Realsense camera in the real world and generated corresponding simulated images
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Figure 7: The result from the real-world brick model. The left box displays 4 images captured using a Realsense
camera, while the right delineates the detected type, position, rotation angle of each brick, and the sequential
assembly order of the brick model.

in the simulation environment employing real-world camera parameters to ensure the consistent
coordinate between the simulated and real environments. The dataset encompasses 5 brick types and
7 textures, averaging 6.1 bricks per brick model.

To evaluate the Neural Assembler, we collected point clouds and textures from real bricks. This data
facilitated the creation of a synthetic dataset, used for fine-tuning the model initially trained on the
CLEVR-Assembly dataset.

As indicated in Table 3] the Neural Assembler achieves performance in real-world experiments close
to the results obtained in simulated environments, demonstrating its robust applicability. Fig. [7]
presents the result on the real world dataset.

Discussion. As shown in Fig.[8] the occlusion still greatly affects the performance of the model,
especially the objects under the brick model will be greatly blocked by the bricks pressing on it.
To alleviate this problem, in future work, we plan to enhance model performance with a deeper
integration of physical scene understanding. The model is expected to not only interpret the visual
aspects but also the underlying physical principles governing the scene.

View 1 View 2 View 3 View 4

..

Ground Truth

Prediction

Figure 8: Failure case. The model confidently but incorrectly predicts the highlighted block in View 1, while
in View 3, despite correct keypoint identification, occlusion results in a less confident. This causes erroneous
overall prediction.

5 Conclusion

We study the problem of generating robotic assembly instructions from multi-view images and
propose Neural Assembler, a model that predicts the assembly instructions of the brick model. The
key idea behind our model is to learn the graph structure to predict the relationships among bricks
and infer the 3D pose according to multi-view images. Results show that our model outperforms
existing methods on the newly collected CLEVR-Assembly and LEGO-Assembly Dataset.
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A Appendix / supplemental material

The data generation pipeline for CLEVR-Assembly and LEGO-Assembly dataset is introduced in
Section[A.T] Then we provide more implementation details and hyperparameters of models in Section
[A.2] Section[A.4]shows the details of the real-world robotic experiment.

A.1 Dataset Generation

CLEVR-Assembly Dataset In constructing the CLEVR-Assembly dataset, each sample is randomly
generated. For each step of assembly, a brick with a random shape and texture is selected, followed
by randomizing its horizontal position (z,y) and rotation angle. The operation is rolled back if the
brick is unstable upon free fall. Each brick’s information including keypoints, mask, 3D coordinate,
rotation, shape, and texture is recorded, and relationships with other bricks are computed. All models
are confined within a [—3, 3] x [—3, 3] horizontal area, with the smallest cubic brick being 1 x 1 x 1
in size.

The CLEVR-Assembly dataset comprises various brick shapes: cubes (1 x 1 x 1), rectangular prisms
(Ix1x2,1x2x0.5,2x2x 0.5),cylinder with a base diameter of 1 unit and a height of 1 unit,

and triangular prisms featuring a square base with each side measuring /2 units and a height of %

units. For textures, 8 distinct brick textures are sourced, and their average colors are used, leading to
16 unique textures. This results in a total of 96 different brick categories.

LEGO-Assembly Dataset LEGO-Assembly Dataset For the LEGO-Assembly dataset construction,
each sample begins with selecting a base brick randomly. Subsequently, at every step, we choose a
random brick and determine feasible poses for this brick, considering the connection constraints of
the pre-assembled brick model. A pose is then randomly selected from this set as the brick’s final
placement.

The LEGO-Assembly dataset selects 12 distinct brick types from the LEGO library and utilizes 8
different colors for textures, resulting in a total of 96 unique brick categories.

Four cameras are positioned at the left-front, left-back, right-front, and right-back of the brick model.
Their translations are randomly chosen within a sphere of radius 1.5 at a distance of 12 from the
origin. The rotation is sampled from (0, (90 - k& + 30)°, (45 + 15)°) for camera k.

A.2 Implementation Details

Hyperparameters For training loss:

L=o- Lcount + B . Lgraph + Lpose; (6)
Lpose = Lkeypoint + Lmask + ’VlLrotation (7)
+ 72Lshape + V3 Ltezture + 74Lconfidencea ()

We set av to 0.2, 5 t0 0.5, 1 to 0.1, v to 0.1, 3 to 0.1 and 4 to 0.1. All models are trained using
AdamW, with an initial rate of Se-4, decaying by 0.8 per epoch, a weight decay of le-3, and batch
size 8 over 10 epochs for both datasets. We use the pre-trained ViT-B/16 weights and fine-tune it
with the learning rate setting to the same value as other modules.

Details of 3D Pose Inference The center of each brick is defined as the keypoint. For 3D pose
estimation, we select the perspective with a confidence score greater than a threshold and extract its
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2D keypoint coordinates (z, y). In the camera coordinate system, we derive the world coordinates
for points (z,y, —1) and (z,y, 1) in the camera coordinate, which form the predicted ray for the
keypoint from the perspective. Consequently, the 3D position of the keypoint is determined by the
intersection of rays predicted from multiple perspectives.

Model Architecture A pre-trained Vision Transformer (ViT-B/16) processes an image of size
224 x 224, yielding image features of dimension 768 x (196+1). These features are then transformed
via a fully connected layer into a feature space of 256 x (196 + 1), where 196 represents the number
of tokens, equating to 14 x 14, and the resulting CLIP feature vector has a dimension of 1 x 256.
Concurrently, the PointNet processes the point cloud of size N; x 1024 x 3 to extract N1 X 256
shape features of the brick. For texture information, N, images of size 224 x 224, processed through
the ResNet-18 network, yield the texture features of dimension Ny x 256.

For the Transformer Decoder, the query is constituted by object queries of dimension (N7 + No +
16) x 256. The key is established as 196 x 256 image embeddings, augmented with positional
encoding, while the value is set as the image embeddings, obtaining the global object features.
The per-view object feature and the fused image feature are intricately processed by the Linear

Interpolation module to yield the object-conditioned image feature Fi’“ of dimension 256 x 14 x 14.

A.3 The computational complexity

The runtime of the baseline consists of forward propagation (T1) and inferring bricks’ poses and
assembly sequence (T2). The average T1 for Neural Assembler/ DETR3D / LSTM is 0.24s/ 0.23s /
0.20s respectively. For T2, the averages are 1.79s / 1.04s / 1.32s for Neural Assembler / DETR3D /
LSTM respectively. The total runtime T1 + T2 is acceptable.

Figure 9: Real-world robotic experiment scenario. The image above shows the assembly scene,
including Detection Area, Assembly Area, Robotic Gripper, Brick Library. In the bottom four images,
the red box within each view represents camera on the Robotic Gripper.

A.4 Real-World Robotic Experiment

To evaluate the practical applicability of Neural Assembler, a real-world assembly experiment is
conducted. The experimental setup comprises an Aubo-i5 robotic arm equipped with an Intel
RealSense D435i RGB-D camera, facilitating precise visual perception. The manipulation component
involves a Robotiq 2F-85 two-finger gripper, providing adept grasping capabilities.

The grasping process begins as the robotic arm captures images from four distinct perspectives within
the Detection Area, as illustrated in Fig. [0} This enables the extraction of structural information about
the brick model. Subsequently, the arm relocates to the Assembly Area, where it utilizes bricks from
the Brick Library to reconstruct the brick model. At each step of assembly, the arm determines the
brick’s location within the library based on its shape and texture. The brick is then grasped from a
vertical direction and positioned at the predicted pose.
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