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Abstract
Given a connection A on a SU(2)-bundle P over R* with finite Yang-Mills energy Y M (A)
and nonzero curvature F A(O) at the origin, and given p > 0 small enough, we construct a new
connection A on a bundle P of different Chern class (Jc2(A) — ca(A)| = 872), in such a way that
A is gauge equivalent to A in R*\ B,(0) and

Y M(A) < YM(A) +87° — eop*|Fa(0)|?

for a universal constant g > 0.

I Introduction

Consider a connection 4 € Q}(R*) ® su(2) on a SU(2)-bundle P. Up to modifying A outside
a compact set, we can assume that A is the pull-back via stereographic projection of a smooth
connection on a SU(2)-bundle over S*. In particular, we can define its Chern class

ca(A) = /}R tr(Fa A Fa) € 87°Z, (I.1)

and its Yang-Mills energy
Y M(A) ::/ |Fal?dz* < oo. (L2)
R4
The precise definition tr(Fa A Fa) and |F4| will be given in the next section. The main result of
this paper is the following theorem:

Theorem I.1. Let A € Q' (R*) ® su(2) be a smooth connection form on R* with finite Yang-Mills
energy such that Fa(0) # 0. Assume that

[Py EA(0)] < |P-Fa(0)]. (1.3)

where Py and P_ are respectively the projections of 2-forms onto self-dual or anti-self dual 2-forms
in R%. Then, for p small enough, one can modify A into A such that A and A are gauge equivalent
to each other on R*\ B,(0),

/ tr(F4 A Fj) = / tr(Fa A Fa) — 877, (L4)
R4 R4
and
/ P da g/ Fal? dat + 872 — eop | Fa(0)]? (L5)
R4 R4
for a positive constant g independent of A and p. o
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Remark I.1. The corresponding result holds in case

P2 FA(0)] = |P-Fa(0)] | (1.6)
with (7)) replaced by
/ tr(F3 A Fj) :/ tr(Fa A Fa) + 872 . (L.7)
R4 R4
O

The geometric meaning of (L4)) and (L7) is that while A is a connection on a given SU(2)-bundle
P, A is a connection on a different SU(2)-bundle P of Chern class co(P) = ¢2(P) + 872, obtained
by a gluing procedure, already described for instance in [4, [8, [I4]. Roughly speaking, P is obtained
gluing the trivial SU(2)-bundle over B,(0) to the trivial SU(2)-bundle over R*\ {0} via the non-
trivial gauge changes g(z) = Ii_l’ or g(x) = % , where we identify R* with the space of quaternions
H, see Section [L1l

Since such change of bundle/Chern class can be obtained by gluing a rescaled (concentrated)
self-instanton SDy as given in (IL31), and since Y M (SD,) = 872, it is not difficult to construct A
such that Y M (A) < YM(A) + 872+ ¢ with £ > 0 arbitrarily small. In fact, scaling arguments lead
to the more quantitative

YM(A) = YM(A) + 81> + 0(p*), asp—0, (1.8)

where p is the scale at which the gluing occurs. This can be made to hold true irrespective of
whether condition ([3) is satisfied or not. On the other hand, for our purposes it will be crucial to
know that the term O(p*) in (L) is negative and of magnitude of order p* (and not o(p?)). This is
precisely the content of (LH]).

The importance of an estimate as in ([5]) was shown in the theory of harmonic maps. In the
seminal work [I], Brezis and Coron showed that given a smooth map u :  C R? — S? and z9 € Q
such that Vu(zg) # 0, it is possible to change u in a ball B,(x) to a new smooth map @ such that
the Brouwer degree of 4 relative to u is £1l0and

E(4,Q) := [ |Va|? dz* < / |Vu|? de? + 81 — gop? (1.9)
Q Q

for p > 0 sufficiently small. To fix the ideas, if 2o = 0, u(0) = (0,0, 1) € S% and Vu(0) # 0, Brezis
and Coron construct @ such that @ = u in Q\ B,(0), @ is, up to a rotation, a rescaling vy of the inverse
stereographic projection in B,/5(0), and 4 is an interpolation between u and vy in B,(0) \ B,/2(0).
The subtle part in [I] is proving that the interpolation energy E(u, B,(0) \ B,/2(0)), which we will
call “cost of gluing” is smaller than the “energy saving” 87— E(vx, B,,/2(0)) + E(u, B,(0)), although
they are both of order p?. The difference between energy saving and cost of gluing will be called
“energy gain”.

The strict inequality of Brezis and Coron (L9)), was originally motivated by the open problem
raised by Giaquinta and Hildebrant [5] of finding more than one harmonic map from the disk into
52 for any non constant boundary datum. For this purpose, the weaker estimate

/ |Va|* de? < / |Vu|® dz? + 87, (1.10)
Q Q

together with a variational argument to minimize in different homotopy classes and the fact that
weakly converging sequence in W2 can jump to a different homotopy class at a cost of at least S,

Ldepending on whether Vu(xq) preserves or reverses orientation, a condition that in complex coordinates can be
expressed as |0zu| < |0;u|, or |0-u| < |9zul, the counterparts of our conditions ([3) and (L8]



would have been sufficient. On the other hand the quantitative form (L9), in which the energy gain
is of the order p?, turned out to be very relevant in the study of the relaxed Dirichlet energy for
3-dimensional maps into S2. In the axially symmetric setting, Hardt, Lin and Poon [7] used (L9) to
construct 3-dimensional dipoles, i.e. maps from B? to S? with two singularities of opposite degree
(in the spirit of Brezis, Coron and Lieb [2]) satisfying a strict inequality. This led them to a partial
regularity theory for axially symmetric minimizers of the relaxed Dirichlet energy.

Here the term —gop? in ([3) cannot be replaced by a lower order term, such as —ggp?, since
in this case the 2-dimensional energy gain would be outspent by the cost of “closing the dipole” in
the third direction, i.e. creating the singularities and gluing them to the original maps. This was
made precise by the first author [9], working on n-axially symmetric maps for n > 1. In this case,
Vu = 0 along the vertical axis, and the energy gain in (L) on disks transversal to the axis is only at
most p?, insufficiente to have a (symmetric) strict dipole. For this reason, the regularity theory for
n-axially symmetric maps from B? into S$? minimizing the relaxed Dirichlet energy is still open, and
for the same reason a classification of tangent maps to minimizers of the Dirichlet relaxed energy is
also open.

Still using the relaxed energy, together with a more general (non-symmetric) dipole construction
satifying a strict inequality, the second author [I1] proved the existence of weakly harmonic maps
from B? into S? which are everywhere discontinuous.

Our Theorem [Tl is the starting point of an analogous regularity project for the Yang-Mills
energy. In particular, for reasons similar to the ones explained above, in order to construct strict
dipoles for the Yang-Mills functional (see [I0]), it is fundamental that the energy gain in (L3)) is of
order p*. In fact, with a different construction, Taubes [I4] was able to obtain

YM(A) < YM(A) + 872 —g0p®, asp—0 [ (1.11)

hence also obtaining a strict energy saving, but of much smaller entity. This sufficient for his
purposes, and to find minimizers of the Yang-Mills energy in different Chern classes, as shown by
Isobe and Marini [6], but not for the construction of dipoles, hence to address the regularity theory
in dimension 5.

Regarding the main difficulty in proving (L[A]), there is a strong analogy with (L9), in that the
energy saving due to the removal of the original connection in B, and to the energy of the glued
instanton (which is strictly less than 872), is of the same order p? of the cost of gluing the instanton
to the original connection. As in [I], there seems to be no deep reason why the good term (energy
saving) should be bigger than the bad term (the cost of gluing), giving a positive energy gain. In
fact, by following in the steps of [I], i.e. replacing A in B,/5(0) with a self-instanton SDy, obtained
by scaling by a suitable factor A > 0, and gluing in the annulus B,(0) \ B,/2(0) we would obtain
that in the most degenerate (least symmetric) cases, the cost of gluing is bigger than the energy
saving for every choice of A > 0. It is only by inserting SDy in B;,(0) for some 7 € (0, 1), then
gluing in B,(0) \ B;,(0) and fine-tuning both 7 and A that we can obtain a net energy gain (and
actually quite small: the energy saving is only around 1% bigger than the gluing cost, in the worst
possible case).

We conclude by mentioning that, similar to the above-mentioned work of Hardt, Lin a Poon
[7], in symmetric situations the gluing is much easier, hence the estimates can be obtained with
considerably less effort, as in Siebner, Siebner, Uhlenbeck [13].
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II Preliminaries and notations

II.1 Connection forms, curvatures and self-duality

Let A € QY(R*) ® su(2) be a smooth 1-form on R* ~ C? with values into su(2), the Lie algebra
of the special unitary group SU(2). We identify su(2) with the vector space Im(H) of imaginary

quaternions i, j, k as
. (i 0 . (0 1 (0 ¢
(%) a5 ) (0 )). i

Observe that ij = k, and in particular
gl =2k [k =21, [ki=2j. (I1.13)

Adding the identity matrix 1 = ((1) (1)), we can identify R*, H and the subspace GL(2,C) spanned
by 1,1, j, k, namely we identify x = (21,22, 73, 74) € R* with
$:$11+$2i+1'3j+$4k€ HC GL(Q,(C), (1114)

and SU(2) correspond to the set of unitary quaternions, i.e. x as in ((LI4) with 2% + - + 23 = 1.
With this identification
1] = [i> = j]* = k* = (IL15)

Moreover, given p = p;i+ p;j + pxk € Sm(H) we have

lp|* = tr(pp) = —tr ((pii+pjj+ pck)(pii+ pjj+prk))

—(p} + 1§ + Pt (1) = —2(p + p + pic) (I1.16)
= —2R(pp)
Using ([LI2)) we can write
A= ZAl dx; = Z (Abi+ AL j+ AL k) day | (I1.17)
=1
with pointwise norm
4 4
Z (1AL @) P17 + (A5 @) PP+ Ak @) PIKP) =2 (14]@)]* + [Af(@)]” + Al (@)]7) -
= =1

We also called such a A a connection one fornﬁ on R%.
Let us now define for A, B € Q' (R*) @ su(2)

[A, BJ(X,Y) = % ([A(X), B(Y)] = [A(Y), B(X)]) - (IL18)
In particular
[pdz;, qdx;] = %[p, qldz; Ndxj, for p,q € su(2). (I1.19)

3We shall be exclusively considering su(2) connections in this work.



Then, the curvature of A is the two form taking values into su(2) given il
VXY €RY Fa(X,Y):=dA(X,Y) + [A(X), A(Y)]

4 4 4
- 121 (8, A™ — 05, AY) Xy Yo + ;Al X1, Z_l A™Y,, (11.20)
1 4
Z (azlAm - awmAl + [AlaAm]) Xl Ym ;

l,m=1

and naturally we introduce the notation
Fim =09, A™ -9, A +[A, A™]. (I1.21)

The norm of F4 is given by
2
[Fal= > |Fa(0s,,0:)]"

1<i<j<4
the norms on the RHS being given by ([LI6).
We recall the definition of the Hodge operator x on the space of alternated 2-forms in R*

Va, B e NPRY anxf= (o, B) *1. (11.22)

where (-, ) denotes the standard scalar product on A?2R* and x1 is the standard volume form on R*
given by
*1 = dxqy ANdxo Ndxs N dry . (I1.23)

A form « is called self-dual (resp. anti-self dual) if ¥« = « (resp. & = —a). The 3 dimensional
vector subspace of A’R* made of self-dual (resp. anti-self dual) form is denoted A2 R?* (resp. AZR*).
An orthonormal basis of (A2R*)T (resp. (A?R*)7) is given by

(dacl A dzxo £+ dxs A d.%'4)

(dacl ANdzxs +drg A dl‘g) (1124)

(dzq A dxy £+ dxo A dxs)

It is important for later purposes to observe

i) The sub-vector spaces (A2R*)* and (A2R*)~ are orthogonal to each-other and
AR = (APRYT @ (A2R*)™ .

ii) The family (w;", wj+, wit, Wy, Wy, Wy ) realizes an orthonormal basis of A2R%.

4We are taking the most spread notation according to which

day A dzm (X,Y) = X, Yo — X Y .



We shall denote Py the orthogonal projections onto (A2R*)*. We recall the well-known
tr(Fa A Fa) = —|PyFal> + |P_Fal?
Also observe that
de NdT = (1dxy +idey + jdos + kdey) A (1day —ides — jdos — kday)

= —2v2 (it o j+wi k)
and

dZ Ndx = (1dxy —idxs — jdes — kday) A (1dey + idas + jdos + kday)

=22 (wi_i—i-wj_j—i—wl:k)
This implies in particular
*(dx NdZT) =de ANdT , *(dT Ndx)=—dT Ndx .

A special case of interest in this work is given by

A(x) = SD(x) = Sm (%)

(11.25)

(11.26)

(11.27)

(I1.28)

(11.29)

where the x € R? is identified canonically with the quaternion as in ([LI4) and T := 11 — 221 —
23] — x4 k is its conjugate. The curvature of SD is given by the formula (see the appendix for

details)
dz N\ dz
Fsp=——"—.
Tt [
Pulling back via a dilation of factor A > 0, gives the rescaled version of SD, namely
Az dz
SD = —_
with curvature
I _ MNdzAdz
T X

Thanks to ([L28]), we observe
*Fsp, = Fsp, ,

that we can also rewrite
P, (Fsp,) = Fsp, or, equivalently, P_(Fsp,)=0.

Denoting

N T dx N dT x
ASD = T ) == 4
A2) “m(lw |:c|2) “m(lw |:c|2)

we obtain as before

A2 dT A dx
P = TN
Combining ([L27) and ([L36)) is implying
P_(Fasp,) =Fasp, <= P{(Fasp,)=0 <=  +Fasp, =—Fasp, .

(I1.30)

(I1.31)

(11.32)

(11.33)

(I1.34)

(11.35)

(I1.36)

(11.37)



I1.2 Gauge changes and the exponential /polar/radial gauge

Let A be a smooth su(2) connection 1-form on R* and g be a smooth map from R* into SU(2).
Following [12] section III.3, we denote

AV =gt Ag+gtdyg . (11.38)

where we identify g with the corresponding unit quaternions. A direct computation (see [I2] section
II1.3) gives
Fao=g 'Fag. (I1.39)

The passage from A to A9 corresponds on R?* to a change of trivialization (or gauge change) of the
underlying principal trivial SU(2) bundle R* x SU(2) for which A is the one form representing a
connection (see [I2] section IIT). First of all we proceed to a first smooth gauge change ensuring
A(0) = 0. This is possible by taking

g :=exp (— le Al(0)> (I1.40)
=1

From now on we will only work with connection form satisfying A(0) = 0.
In [I5] K.Uhlenbeck is considering a special gauge change g such that ultimately
Ve eR* 0= A9x)L 9. i(Ag)l(x)
0

r
=1

xl (IL41)

||

where L is the contraction operator between forms and vectors (more generally between contravariant
and covariant tensors). Such a gauge is called in the literature exponential (or also polar or radial)
gauge. We recall for the convenience of the reader the construction of g. The gauge ¢ is obtained
by “parallel transporting” with respect to A the identity at the origin along the rays given by the
straight half lines emanating from 0. Precisely we solve for any o € S and r € R

arg(T7 U) = 7A(T U) g(T, J)
(IL.42)
9(0,0) =1,

where 1 is either the neutral element in the quaternions or the unit matrix in SU(2). The existence
and uniqueness g € C1(R,, SU(2)) for any o € S? follows using the smoothness of A by classical
ODE theory. We first claim that g € Lip;,.(S® x Ry). Indeed for any pair o and o’ in S® the
quotient difference u(r,o,0") := (g(r,o) — g(r,0"))/|o — 0’| satisfies

A(ro) — A(ro’)

Opu(r,o,0') = —A(ro)u(r,o,0’) — p g(r,o’)
o — ol (I1.43)
u(0,0,0") =0
Hence we have for r < R, that |g(r,o')| = V2,
Olul < 10,ul < Al = qancoy lul +VEr [ VAl L~(zacon - (1L44)
This imples
o, (e—rnA|\Lw<BR<o>> | — V2 ||VA|\LQO(BR(O))) <0. (I1.45)



Since |u|(0,0,0") = 0 we deduce

|g(r, U) — g(?‘, OJ)|
|ro—ro|

Vr<R Vo,0 €8? < 27ter Al @ro) 1 |V A Lo (B (0)) (I1.46)

We have also from ([L42)

|g(7“, U) - g(rlaa)|
=7

Vr.r' <R VYoeb§®

< Allz(Br(0)) - (11.47)

Let 0 < r < 7" and 0,0’ in S? we have

|g(7’, J) 79(7"/70-/” < |g(T70> 79(7’5 OJ>| + |g(7’, OJ) 79(7"/70-/” (1148)
|ro—1r" o |ro—r' o’ |ro—1r" o
Because of the convexity of B,.(0) in R* the point 7o’ is the nearest point to 7’0’ in B,.(0) hence

lro’ —r'd'| < |ro—r'd| (I1.49)

We have also
lro —r'd'P=r2+ (') —2rr’c-0' >2r7 —2r7' g0 (I1.50)

Cauchy-Schwartz inequality gives |0 - o’| < |o||o’| =1 hence
lro —r'd'?>2r1r" (1—-0-0")>2r*(1—0-0)=r*+r* —2rro-o’ =|ro —ro’|>  (IL51)
Combining ([L48) with (IL49) and ([L51) gives then

lg(r,0) —g(r", ") _ lg(r,0) —g(r,0)| | lg(r,0") —g(r', o)

11.52
|ro—r'o'| - |ro—ro| |ro’ —r' o ( )
Combining now ([L52) with (IL46) and ([L47) is implying
g\r,o 797,/50—/ I oo
lg(r,o) —g(r',0’)]| < 271 ¢ 1A= 200 1 |V A oo (0 + 1Al L (Br0)) - (1L.53)

|ro—r' o
The map g obviously extend to a map on R* and we have established the following lemma

Lemma IL.1. Let A be a smooth su(2) connection one form on R* such that A(0) = 0. Let g be the
map from R* into SU(2) solving [IT43). Then g € C*(R*,SU(2)) and for any R > 0 the following
estimate holds:

IVl (Brioy < 27" e 141e=Eron 1 |V A| Lo (B (0y) + 1Al L (B (0)) - (IL.54)

moreover A9 is continuous at the origin and A9(0) = 0. |

Proof of lemma [[T.1] The fact that g is locally Lipschitz in R* and that the estimate ([L54) holds
is a direct consequence of (IL53). From the fact that A(0) = 0 we obtain that

1131510 IVallLe(Br0) =0 (I1.55)

This implies the lemma. d



We recall the standard trivialisation of T'S® by the following orthonormal tangent frame
€1 :=21 Op, — X2 O0gy + T3 Oz, — T4 O,
€9 := 21 Ogy — 3 Ogy + T4 Oz, — T2 O, (I1.56)
€3 :=21 Oy, — X4 O0gy + T2 Opy — T3 O,
To which we add the radial vector
Op = 210, + 220, + 2304, + T40,, .

We extend this frame by 0-homogeneity to T'(R*\ {0}).
Its dual basis is given for z € S by

€] = w1 dry — xo dry + x3dry — 14 d23
ey =z drs — x3dry + x4 dre — xoduy

(I1.57)
€5 =21 dry — xg dry + x2 drg — 3 d2s

dr := x1dxy + vodxy + x3drs + xadxs |

again extended by 0-homogeneity to T*(R*\ {0}). We recall also the three standard complex
structure (I, J, K) on R*
10y, =0y, and 10y, = 0y,

JOy, = 0y, and  JO,, = Oy, (I1.58)
KOy, =0,, and KO0y, = O,
With these notations we have for instance
er =10, , ex=J0, and e3=KO9,, (I1.59)
and we have by duality
e} =1Idr , e;=Jdr and e5=Kdr, (11.60)

We can then write for the exponential gauge change g given by the beginning of the subsection of
a smooth connection A

3
A9 = ZAgz e where AJ =A%l ¢ . (I1.61)
=1

Using the fact that AL 0, = 0 we write for any [ =1,2,3
Fas(Op,e1) = dA9(Or,e;) + [A9L0,, A9 ¢e)) = dAI(O,, ;) . (11.62)
Using the Cartan Formula for the exterior derivative of one forms we obtain
dAI(Or,e) = d(ALe)0, — d(AILD,) e, — AIL[D,,e] = O, (AY) — AIL[D;, el (11.63)
where we used again A9L_0, = 0. We have for any vector field Y in R*

r0.Y]=> [20.,Y" =Y 0] 0ny =D 10V 0p =Y =10,Y =Y . (I1.64)

1,7 A



In particular, for [ =1,2,3

[rOr, e1] = —e (11.65)
Using the formula
[fXY]=f[X,Y]=VyfX (1.66)
we obtain
[0, el] = =17 e (IL.67)
and
Fas(0r,e1) = dAI(0r,e1) = O (Agl) +r VAL e =110, (r Agl) . (11.68)

Combining ([L61), (IL62) and ([LG3]) we obtain the following expression of the connection form in
exponential gauge in terms of the curvature (which is maybe the main reason why this gauge is
often used in the literature)

3 r
Adro)y=r" > / Fao(to)(8,,e;) tdt ef . (I1.69)
1=1"0

where we have used from lemma [[I] that A9(0) = 0.

From this expression we deduce the following lemma

Lemma II.2. Let A be a smooth su(2) connection one form on R* such that A(0) = 0. Let g be
the map from R* into SU(2) solving (ITZ3). Then

VR>0 Vxe BR(O) |Ag($)| < ||FAHL°°(BR(O)) |.Z'| R (1170)

and

3
Ad(x) = % ZFAQ(O)(ar,el)ef +0(|z*), asl|z] —0.
=1

III Self-instanton insertion

Let A be the exponential gauge of a smooth one form connection which was originally chosen to
be zero at the origin (unlike the previous section we do not mention the gauge change bringing to
the exponential configuration anymore). To fix ideas we assume that A is a connection form issued
from a smooth connection of a principal SU(2) bundle E over S* via the stereographic projection
in such a way that we have respectively

/ |Fal? d2z* < +o0 (IT1.1)
RAL
and

co(F) = /R4 tr(FaAFy) = /W (—=|PLFal? +|P-Fal*) da* =87 k, whereke€Z . (IIL2)

Let go € SU(2) (i.e. go is constant on R*) to be fixed later. In a first step we consider the gauge
transformed of A given by
A% =gt Ago (IT1.3)

10



This gauge is still exponential. Now, away from zero, we proceed to a gauge change of degree +1.

Precisely we denote
Ao e Zoqo T T g () (I11.4)
|z ISCI Izl |z|

It is important at this stage to stress the fact that this new gauge (singular at the origin) is still
exponential in the sense that ~
A%L 0, =0. (IIL.5)

Let 1 be a smooth increasing function from R into [0, 1] such that n = 0 on [0, 7], for some 7 € (0,1)
to be fixed later, and n =1 on [1,400). For p > 0 sufficiently small, we denote

vz € R* np(x) :==n <%) . (II1.6)
Moreover, for a constant ¢y > 0 to be fixed independently of p we set
1
N=— XAoooasp—0T. (I11.7)
Cop

We introduce the following glueing between A% and SD) (compare to ([L31)). First we denote in
B,(0) \ B-,(0) for any 1-form A
A:=grA (IIL8)

where ¢,(z) := px/|z|. Then we define
A(goapa )‘) = npAgO + (1 - np) SD)\ (IIIQ)

Using the identities

£d<£) — Sm (id<i>) — Sm (%df) =2 am (m_;c) L (II1.10)
2|~ \ |z| lz|  \ || || |z| | ) |z
and

— 2 — — —
N T N xdx i_dfac :_LC\ dzr x _ 1 d T\ T 11
“m(m T+ A2 [af? [~ JoP? 2 V" \ T N2 e N\ ) o (T

we obtain

. T _ T N xdT T T x T
Algo, p, A) = 2l (npgolégwr (I —=mp) Sm <7> —) = +npmd <—)

|z L+ X2 a2 ) Ja] ) [ ]

€T T MNadf = dT x T T
- A 1—n,) S L s
B ("PQO 9o+ (1 =) J’"<|w| T2 Ja] |:c|2)> (m)
T 1 1 T T
- Agp—(1—n,) —aZ LTalZ
B ("PQO Ago = (=) T30 e (m))m (u)
(IIL.12)
hence _ _
~ €T ~ X T X
A N =24 N+ gL 11113
where
Agos s N) =mp g5 Ago— (1 =) ——a Z) = (IT1.14)
9o, P =T"p90 490 Mp 112 |z|2 |$| |x| . .

11



Observe that we have

T T .
Fi=190" Fagoi in R\ B,(0)
|z] ] (I11.15)
FA = FSD in BTP(O)
Lemma IIL.1. We have
/ tr(FyAF;) = / tr (Fa A Fa) —81°
R4 R4
Proof. Using the formula (see [4])
2
tr (Fa AFa)=dtr (AAdA+§A/\[A,A]) ) (I11.16)

we get

~ ~ 1 - ~ ~
/ r(Fi AFj) / <A90 A dA% 4 A% A [A% A9“]>
Br(0) 9BR(0) 3
- _ 1 - S
/ <A90/\dAgo+_A90/\[A907A90]>
&BR(0) 3
- _ 1 - L
/ Fioo A Figo) + / tr <A-‘7° A dAP - ZA% A [AgO,A9°]>
Br(0)\B. <o> 0B.(0)
1
/ v (Fas A Faoo) + / tr (A-% A dA% + = A% A [A%,A-%])
Br(0)\B. <o> 0B.(0) 3
/ r(Q)
9B (0)

:/ tI‘(FAgo AFA90)+/ tI‘(Q) ’
Br(0) 0B:(0)

where ) denotes a 3-form with the expansion

o= () na ) e () 3 () e () e () + 067

as € — 0. We have

() ) () = e () e () e ()

(I11.17)

ildr +jJdr + kKdr ildr +jJdr + kKdr (i[dr+deT+de7’) (ITL18)
|z| || ||
6|1'|]k1dr/\JdT/\Kdr f%ldr/\Jdr/\Kdr
We have
[i (E) k3 <z>} 7 [ildr+deT+deT iIdT+deT+deT]
o[\l )" T2l \Ja] ] 2] (I1.19)

(iJdr AN Kdr +jKdr A Idr+XkIdr A Jdr),

2
RER
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hence

() [(2) 02

4
=———=(iIdr+jJdr +k Kdr) A (iJdr N Kdr +jKdr A Idr +kIdr A Jdr)

BRIEE
4
= —11dr AN Jdr N Kdr.
|z[?
Then )
Q= —W 11dr A Jdr A Kdr + O(e72%),
T
and, recalling that tr(1) = 2,
1
/ tr(Q) = —— 4Idr A Jdr A Kdr + O(g) = =812 + O(e).
9B (0) €% JoB.(0)

Letting € — 0 in (IIL17) we conclude.

Our goal now is to estimate

/ |F4? dm4—/ |Fal? da*
R4 R4
Thanks to Lemma [[IT1] and ([L25]) we have

/ |F4 )2 dm4—/ |Fal? da?

R4 R4

:/ |PyF ;)2 d:ct/ |Py Fal? d:c4+/ |P_F;[? d:ct/ |P_Fa|? da*
R4 R4 R4 R4

:87T2+2/ |P_F;|? dm4—2/ |P_F4|? da*
R4 R4

Combining ([ILTH) with the fact that Fsp, is self-dual gives

(I11.20)

(I11.21)

(I11.22)

/ |4 dar* */ |Fal? da® = 87% + 2 / |P_Fy[* da* —2 / |P_Fal® da
R4 R4 B,(0)\B-,(0) B,(0)

Because of ([ILI3) we have on B,(0) \ B;,(0)

3 x
Fi=—F;—,
A fal A ]
and in particular
PF —Lpp "
— i =T
AT | ||

Hence finally

/ |F4° dm4—/ |Fa|? da*

R4 R4

=81 42 / |P_Fj|? dz* —2 / |P_F4)? da* .
B, (0)\B-,(0) B, (0)

13
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We are now estimating this difference in the limit p — 0 by taking X as in ([[IL7), where ¢y is going
to be chosen later independent of p. This gives in particular

(1 + A |:c|2)*1HLOO(BP(O)\BTP(O)) =0(p?) . (I11.27)
Combining (IL70) in lemma [L2] with ([IL25) is implying
HAHLOO(BP(O)\BTP(O)) =0(p) . (II1.28)

We have also for any z € B,(0) \ B-,(0)
|P_dA| < [dA| < |0 |oo p™" [|AG)] + |27 (14 A2 [2*)7H] + [dAl(z) + A% (1 + N |zf*) 72

< 0(1) + |Fal(2) + O(p®) + O(Np*) = 0(1)

(I11.29)
Hence
2 e _ XA A X2
[1P-Fx* = [P-dAP| L 5, op 8,0 = H2 (P-4, [, A]) + [14, 4] HL‘”(Bp(O)\Brp(O))
=0(p%) .
(I11.30)
This gives
/ |F;|? da* —/ |Fal? da*
R4 R4
(ITL.31)

=81 +2 / |P_dA?* da* —2 / |P_Fa|? dz* + O(p°) .
B, (0)\B-,(0) B,(0)

This brings us naturally to the estimation of the square of the L? norm of P_dA on the intermediate
annulus B,(0) \ B7,(0).

Recall

b1 _ 1 T T
A(907p7 >\) =15 90 1A90 - (1 — 7],)) m d (m) m . (11132)

We write

. 1 T x
dA =1"dlz| A -1 4 — d|— | —
7o dlal (90 Ao+ T30 (m) |:c|)

_ A2 |z 7\ =z
1 T T
1-— ———d| — dl — | .
#0-m) pp () ()
Observe that
d T IVTEA dt Ndz  dlz|ATdx  drzAd|| (111.34)
|| [ ) Jaf? |z [? lz* '

Hence, thanks to ([L28)) we have

e (o) (@) = e ()

_ dT Ndx 1P (d|x|2/\(dfx—fdx))

o2 7 2 |=[*

(I11.35)
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Observe trivially
0=d|z]* A (dTx+Tdx) .

Combining ([IL35) and ([IL38) gives then

T T 2
P () na() = o+ (e () )
| || || | lz| ) ||
We deduce
A2 |z| x 1 T
Po(2—2 g T d
<(1+)\2|x|2) =l A <| |) EREESErE <|:c|>A (m))

( 272 |z N 2 ) <d||/\d< ) x>+ 1
= T — ——5
(LA [z2)2 2] (1+ A2 [zf?) 2} J=)  J2f? (14 A% [a]?)

2 4+ 47% |z]? < < ) ) 1
= dlz| AN d + —————dT Ndx
2| (1+ A% [z[?)? 2|/ || 2> (1 + A2 |z[?)
Hence

P_dA =), g5 " P (dlz| A A) go+ 1, 95" P-dAgo

1 2+ 422 |x)? x
P 1-— P M - dlz] A d —
* <”P1+A2 e ) T e e el nd(57) i

1—mn,

—d_/\d 0]
|$|2(1+)\2| 2) T Adz + O(p)

In B,(0) \ B;,(0) we have respectively
1 L1 1 L1

/ _ _ 9] 3
o T 22 |22 o 2 Z2 1+ 0(p2) o 2 |22 +0(p’) ,
and
244N |x|2 1 , 4 ,
1-— _—— = (1 — — (1 +0 =(1-— — 4+ 0 .
and

1—mn, 7(1 ) (1*77;7) 4
(1+)\2|.T|2)7 )\2| |2 (1+O( ))* )‘2|$|2 +O(p).

Thus in B,(0) \ B;,(0) we have

1 2+ 472 |z)?
’ 1— S ek B d d
<”P1+A2 EE (=) 2] (1+ A2 [z[2)2 =l A | | le

- o (i) (d'””'“’(| |) i)+

which gives

- _ X _ —
P_dA=p~tyf (;) 90 ' P- (dlz| N A) go+n, g5 ' P-dAgo

1 ’ (1_77/))) ( ( ) -T) 1—n,
n, +4 dlz| Nd + dz N dx + O(p)
A [a[? (p |z| = lz| ) |zl) = A% |af* (v

15
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(I11.36)

(I11.37)

dz N dx

(I11.38)

(I11.39)

(I11.40)

(I11.41)

(I11.42)

(I11.43)

(I11.44)



We have

2 x| P_ (d|x| Ad (| |) —|) = P_ (d|z|> AdZ z) (I11.45)

Moreover

P_(d|z|* NdZz) = P_ (d(Tx) NdTz) =T P_ (dz A dT) x + P_ (dTx A dT x)
=P_(dTz ANdzz) = P_ (dTz Ad|z|?) — P_ (dTx ATdx) (IT1.46)

=—P_ (d]z]* NdTz) — |2|° dT A da

This gives
P (x> Adzx) = — 22 dz A da (I11.47)
Hence combining ([IL45]) and ([IL47) we obtain
x r
(d|x| Ad ( ) ) ———dz Ndx . (T11.48)
=) |l 4zl

This implies

1 / (1*77;7) xr 1 L=
_— 4 dlxz| Nd — dz N d
eIt (”ﬂ* E el nd( 7))+ e e

dz N dx

(I11.49)

TN [P 1y dT
Combining ([ILZ4)) and ([IL49) we obtain
i -1 < -1 -1 1 -
PdA=py (;) 05 P- (@s| A &) g0+, 05" P-dgn — g @A ds (110

We have, using ([L.G9),

P_(dlz|NA) = ALIO, P_ (dr N1dr)+ AL JO, P_ (dr A Jdr)+ ALKO, P_ (dr A Kdr)
(IIL51)
Hence finally

P_(dle| A A) = V2 (ALID, wi +ALJO, wi + ALKD, wy) (IIL.52)
We have

AL 1D, = (6, A)L10, = Alp)L((6,).10,) = L A(p) L(10,) = ;m Fa(0)(0,,10,) + O(6?)

AL JO, = (¢;A)LJ67" = A(p) L((¢P)*Jar) = ﬁA(p) I—(Jar) = ﬁ FA(O)(aTa Ja?“) + O(pQ)

ALKD, = (65A)L K0, = A(p)L((6,).K0,) = - Alp) L(KD,) = p|— £,

|| 2|l

(0)(0r, K0,) + O(p?)
(I11.53)

16



Hence on B,(0) \ B-,(0) there holds

2

Pl A 4) = g (Fa©)0n 107) w7 () + Fa(0)@r,00,) 5 (2) + Fa0)r, KOr) i ()
+0(|2P?)
(IT1.54)

Observe that A = A on 0B,(0), while in B,(0) \ B;,(0)
¢, (dr A ldr) = ¢7(dr A Jdr) = ¢, (dr AN Kdr) =0,

2
¢5(Idr A Jdr) = Lo 1dr A Jdr,

|22
, (I1L55)
¢5(Jdr A Kdr) = L—gdr A Kar,

||
02
¢, (Kdr A ldr) = WKCZT A Idr.

Then we have

dA = ¢5dA = 65 Fa + O(p) = Fa(0)(18,,J0,) ¢5(Idr A Jdr) + Fa(0)(Jd,, K8,) ¢%(Jdr A Kdr)

+F4(0)(K0,,10,) gb;(Kdr AIdr)+ O(p),
(I11.56)
hence

2
dA = (ﬁ) [F4(0)(I8,, Jd,) Idr A Jdr + Fa(0)(JO,, Kd,) Jdr A Kdr
|| (IIL.57)

+FA(0)(KO,, 10,) Kdr A Idr]+ O(p) .
Observe that we have respectively
*(dr AN Idr) = Jdr N Kdr , x(dr A Jdr) = Kdr A Idr , x(dr N Kdr) = Idr A Jdr (IT1.58)

This gives in particular

1

P_(Idr A Jdr) = — P_(dr A Kdr) = —V2 wi (x)
P_(Jdr A Kdr) = — P_(dr Adr) = —V2 ' w () (IIL.59)
P_(Kdr A Idr) = — P_(dr A Jdr) = —V2 ' w;™ ()
Hence
P_dA(0) =—v2 ' % FA(0)(JO,, KO, wi (z) — V2 ' % Fa(0)(Kd,, 10,) w; ()

Vo % F4(0)(10r, JO,) wy (x) + O(p)
(I11.60)
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Combining ([IL52) and ([[IL6Q) is giving

n, 90 P (dlz| ANA) go+m, g5 ' P-dAgo

1 p*, _ - -
=75 r’?'n; g5t (FA(O)((')T,IGT) Wi+ Fa(0)(dy, JO,) wi + Fa(0)(0,, K0,) wk) 90
m PP
_7% W g()_ (FA(O)(JGT; Kar)wl_ + FA(O)(KaTa Iar)wj_ + FA(O)(IaTa Ja?")wl:) gO + O(p)
(IIL61)
Recall
. 1
P_dA =), g5 " P_ (d|z| AN A) go+1n, g5t P-dA gy — —5—= 1, dT A da (I11.62)

472 |z|3
Combining ([IL62) with ([ILGT) is giving in B,(0) \ B-,(0)

go P_dA g5

- 2_\1/5 f?' i, (FA(O)(GT, 10,) wy (x) + Fa(0)(0r, JOr) wy () + Fa(0)(0r, KO;) wy (w))

7%ﬁWJmmwaxawﬂ@+mmm&&%quﬂmw&ﬂmwuﬂ

1 _
TIN [P n;godf/\dfcgol +O(p)

(I11.63)
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Thus

/ |P_dA* da*
B, (0)\Bry(0)

- %2/,3 s <§)2 ds /5 (IFA(0)(y, 10,)* + | Fa(0)(Dr, JO)|* + | Fa(0)(8y, K8,)[?) dvolgs
_/ ( > . /S (|FA(0)(18r, JO)* + |Fa(0)(JDy, KO,)|* + |Fa(0)(K 0y, 10,)|?) dvolgs
16A4 /: 0 (;) Cslj /S 4% A de|2dvolgs

__/ ( ) (f) ds [5 [(Fa(0)(8r, 18,), FA(0)(JO,, KO,))

+< )(67“’ JO, ) ( )(Karalar» + <FA(0)(67“’Kar)aFA(O)(IaT; Jar))] dUOlss

1 Poo(s\ ds
4\/_)\2/ ( ) s
X /33 <godf/\ dxg(;l’FA(O)(ar,Iar) w; (x) + Fa(0)(0r, JO:) wjf(z) + F4(0)(0,, KOy) w;(:c)> dvol gs

o [V
22 \2 Tp77 0)"\p)

></S3 <godf/\dxgo_1,FA( )(JOr, KOy) wy (x) + Fa(0)(K 0y, 10;) wy (x) + Fa(0)(10y, JO,) w;(ac)>dvolss

+0(p°)
(IIL.64)
Lemma II1.2. We have
[ (EA @10, + [Fa(©)(0, 30,) -+ Fa(0)(0r, K0,)P) dools:
S3
= / (IFa(0)(IDy, J,)|* + |Fa(0)(JOy, KO, + |Fa(0)(KD,, 19,)[2) dvolss (IL.65)
5‘3
= m°|Fa(0)/?
Proof of Lemma [III1.2l We have
| UEA @10, 50, + [Fa©)(0,. KO, + [Fa©)(50,, 10,)) dvols:
s (I1L.66)
=272 |F(0) / |FA(0)L 0, dvolgs .
Moreover .
. 1 iy
= F3(0) du; Ada; = 3 > F{(0) da Aday (IIL.67)
i<j ij=1
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and on S°

:% > F{0) dfcizr% > FR(0) @i da; :Z (ZFJ ) v . (IIL68)

ij=1 ij=1 i=1 \j=1

Hence

/ |FA(0)L 0, dvolgs = dvolgs
3

4 4 ?
> FL0) @

=S o

4

Z <F” ), Fi(0) > /S xj x; dvolgs

1j,1=1 s

[
M»&

2

I
M%

—

=1 j=

7,j=1 i<j

Lemma IT11.3. We have

[, (A0 10,). FaA @), K0,) + (PAO)(0r. 70,). Fa(0)(50,.10,) dols

+/53< 4(0)(0r, K0y), Fa(0)(10y, J8y)) dvolss = —= [|[P+Fa(0)]” — |P-Fa(0)?]

7r_
\/_
Proof of Lemma [[TL.2l We have

PeFA(0) =VZ ' (Fa(0)(@r, 10,) £ Fa(0)(J0r, KO,)) wi (x)
V2 (Fa0)(Dy,70,) + FA(0)(KD,, 10,)) wit(z)

V2 (Fa0)(0,, KO,) £ FA(0)(I9,, J8,)) wi(x) .

Then
[Py FA(0)[2 = |P_Fa(0)? \iﬂ A(0)(0,,10,), Fa(0)(J0y, K0,))
+%< A(0)(0r, J0,), Fa(0)(K 0, 10,)) + j§< A(0)(0y, K0,), Fa(0)(10,,J0,)) |
and ([IIZ0) follows.
‘We denote L
1gp := g0 14gg
Joo =903 95"
ig, == go kg

20

4
Z| / 23 dvolgs = Z |FY(0))2 = =2 Z |FY(0)]2 = 72 |Fa(0)?

(I11.69)
0

(I11.70)

(IIL.71)

(I11.72)

(I11.73)



Lemma I11.4. We have

/ <g0df/\dzg0_1,FA(O)(8T,I(9r) wi (z)) dvolgs
S3

:/ <g0df/\dxgal,FA(O)(aT,JaT) wjf(x)> dvolgs
S3

(IIL.74)
= / {godT A dx gy, Fa(0)(9,, KO,) wy (x)) dvolgs
S3
V2 _ _
=5 2 <g0 dz A dx g; L P,FA(O)> .
Proof of Lemma [[TI.4l We have respectively
/53 {godT A dx gy, Fa(0)(y,10,) wi (z)) dvolgs
:/ 2V2 W - wyi () (igy, Fa(0)(9y, 10,)) dvolgs
SB
(IIL.75)
+ [ 2VEG @) G, FA0)(@,, 1) duols:
S3
—|—/ 2V2 wy - wi (%) (Ko, Fa(0)(0y, 19,)) dvolgs
SS
We recall from (B.5)
o (@) = a4 a3 — o a3
wi wy (2) =2 (z223 — 21 24) (IT1.76)

wy wy (2) =2 (2123 + 22 24)
Recall that on S® we have
FA(0)(0r,10,) = Fa(0)(21 Opy + T2 Opy + 3 Ongy + T4 Opyy 1 Ony — T2 Oy + T3 Oy, — T4 Ony) (IILTT)

Hence we have successively using corollary [B.2]

[ 2VE ) G Fa )1, 10,)) ol

S3

=2 \/5 (‘T% + $§ - $§ - xi) (‘T% + ‘T%) dUOZSS <igoa Fi2(0)>
SS

+2v2 [ (2423 — a3 — %) (a3 +23) dvolgs (igy, F3*(0)) (I11.78)
SS

2v2 | (o] +ad —af —ad) (27 +a3) dvolse (ig,, Fi*(0) — F'(0))
g3

- 2—;,/5 ™ (igy, F3(0) + F4*(0))
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we have

/S3 2 \/5 wji ’ w; (SC) <jgoa FA (0)(ar, Iar» d’UOZSS

=42 r3 3 dvolgs <jgo,F3,4(0) + FI}‘3(0)>
S3

+4V2 | alad dvolss (g, F5(0) + F£(0)) (I1L.79)
S3

= 82 x%x% dvol g3 <jg0,F§4(0)+F},3(O)>

SS
2v2 , .
= T 7w’ <J90’F}13(0) + Fi4(0)>
and
[ 2VE i () e Fa0)01,10,)) duols
SS
=4Vv2 [ 2123 dvolgs (kgo, F5*(0) + F32(0))
SS
+4v2 [ 232? dvolss (kg,, F5(0) + F32(0)) (IT1.80)
SS
=82 z} 3 dvolgs (kg,, F4*(0) + F37(0))
SS
212
= 2V (ky, FY0) + FRO)
We deduce
/ (go dT A dz g5t Fa(0)(0y, 10,) wi (z)) dvolgs
S3
22 . 242 :
=" 7 (ige, FA*(0) + F3*(0)) + - 7 (go. F43(0) + F3%(0)) (I11.81)
22
+ 2022 (. FY(0) + FR(0)
We recall

P_F40) =27" (F}?(0) + F4*(0)) (do1 A dxo — dag A day)
+271 (F33(0) + F54(0)) (day A dzg — dwg A das)
+271 (F34(0) + F32(0)) (day A dzy — dg A das)

RO ERO) (RO RO) (0 FR0)

V2 ! V2 ; V2
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Thus

(godT A dw g3t, P_Fa(0)) = 2V2 <ig0 W7+ g0 w5+ Ko i

w; + w

V2 ! V2 NG
=2 (igy, FA2(0) + F1*(0)) + 2 (jgo, F4*(0) + F3*(0)) + 2 (ky,, F1*(0) + F32(0))

and finally

(F20) + F*0) _  (FRP0) +F340) _  (Fa'0) + F2(0)) WED (I11.83)

2
/ {godT A dx gy, Fa(0)(9y,10,) wi (z)) dvolgs = \/?_772 (godz Adx gy, P-F4(0)) .
S3

(I11.84)
We have then respectively
/ <g0 dz Adzx gyt Fa(0)(0,, JO,) wjf(x)> dvolgs
SS
= / 2V2 Wi - wy (2) (igy, Fa(0)(y, JO,)) dvolgs
SB
(IT1.85)
/ 2V3 Wi i (2) (igo, Fa(0)(Dr, J0,) dvolss
SS
+ / 2V2 wy - wy (z) (Kgy, Fa(0)(0r, J0,)) duolgs
SS
We recall from (B.5])
w; - wj_(ac) =2 (z1 24 + 22 3)
wy wi (z) = R R R 1 (IT1.86)

wy - wy (7) =2 (r324 — 21 T2)

Recall that on S® we have
FA(O)(&«, Jar) = FA(O)(ZL‘l 8961 —+ X9 8962 “+ x3 (913 —+ x4 8I4, 1 8963 — I3 8961 —+ x4 8952 — T2 8I4) (11187)

Hence we have successively

/ 2V2 Wi - wy (@) (igy, Fa(0)(0r, JO,)) dvolgs

SS

=42 x1 23 dvolgs < iy, F42(0) + F33(0) >
S3

+4V2 22 x2 dvolgs < ig,, F32(0) + F3(0) > (I11.88)
SS

82 x1 23 dvolgs < iy, F42(0) + F33(0) >
53

22
= B2y RO+ FEO) >
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we have

/53 2\/§wj_ “wy (@) (igo, £4(0)(Or, JO;)) dvolgs

=22 (23 + 23 — 23 — 23) (2] + 23) dvolgs < jgo, F4>(0) >
S3

+2v2 [ (@2 422 — 22 — 22k + 22) dvolgs < jg, F32(0) > (I11.89)
S3

=2V2 [ (21423 — 23 —a3)(a] +23) dvolgs < g, FA*(0) — F4*(0) >
SS

22
= 22 B0) 4 FR0) >

and
/ 2V2 w - wi (2) (Kgo, Fa(0)(0r, JO,)) dvolss
SS
=42 [ a22% dvolgs < kg, F3*(0) 4+ F32(0) >
3
> (IIL.90)
+4v2 [ 2?22 dvolgs < kg, F54(0) + F3%(0) >
SS
2v2

= 5 7 <ka, FAN0) + FP(0) >

Hence we have also

2
/ <godf/\dxgal,FA(O)(aT,JaT) wj7($)> dvolgs = %7‘(‘2 {godT A dxgy*, P-F4(0)) .
S3

(I11.91)
We have
/ (godZ Ndx g5, Fa(0)(0r, KO,) wy (7)) dvolgs
SS
— [ 234l @) Gy, FAO)(0. KO,)) duols:
S3
(I11.92)
+ / 2v2 wy i (&) (igns F(0)(8r, K,)) dvolss
SB
+ [ 2R i @) (ks Fa0)0r, K0) dvols
We recall from (B.5])
wi - wy (@) =2 (ze x4 — 21 T3)
wy - wy (@) =2 (2122 + 23 24) (I11.93)

—iN_ 2., 92 2 9
Wy Wy (T) =27 + a5 — 25 — 73
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Recall that on S? we have

FA(O)(E)T, K(’)T) = FA(O)($1 Gzl + a0 GZZ +x3 813 +x4 az4,.%'1 &M — Ty 811 + a0 813 — I3 GZZ) . (11194)

Hence we have successively

we have

and

Hence we have also

/53 <godf/\dxg0_1,FA(0)(8r,K8T) w;(:c)> dvolgs =

[ VB i () G Fa0)0r,K0,)) duols

SS

=42 2323 dvolgs < igy, F52(0) + F33(0) >
SB

+42 23 x2 dvolgs < ig,, F52(0) + F13(0) > (I11.95)
SS

= 82 x3 23 dvolgs < igo,F};Q(O) + F33(0) >
5’3

= =77 <y, F2(0) + F33(0) >

[ 2VBar @) L Fa0)r, K0,)) dvols

=42 x3 23 dvolgs < jgo, F52(0) + F3*(0) >
SS

+4+/2 22 23 dvolgs < jgo, F52(0) + F31(0) > (I11.96)
S3

= 82 dvolgs < jgo, F32(0) + F3%(0) >
SS
22

= = 7 <jg, FA2(0) + F340) >

[S 2VE g i (2) (g, Fa0)(0,, K0,)) dvolso

=22 . (22 4 22 — 22 — 22)(2? + 22) dvolgs < kg, F51(0) >

(x3 + 23 — 23 — 23)(25 + 23) dvolgs < kgy,, F33(0) > (I11.97)
(23 4+ 23 — 23 — 22) (2% + 22) dvolgs < kg, F5*(0) — F33(0) >

2 < kg, FAY0) + F32(0) >

2
% w2 <g0 dT A dzgo_l,P,FA(O)> .

(I11.98)
0
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Lemma IT11.5. We have

/ (godZ N dx gy, Fa(0)(JO,, KO,) wi (x)) dvolgs
S3

:/ <g0df/\dxggl,FA(O)(Kar,I&) wjf(z)> dvolgs
S3

(I11.99)
:/ (g0 dT A d g3t Fa(0)(I0y, JO,) wi (z)) dvolss
SS
2
= 7% 2 <g0 dz A dxgo_l, P,FA(O)> .
Proof of Lemma [[TL.5l We have
/ (godZ Ndx gy, Fa(0)(J0,, KO,) wi (x)) dvolgs
SB
= [ 2VEur (@) G, Fa0)(0,. KO,) duols
S3
(I11.100)
+/ 2V2 Wi - wi (2) (g0, Fa(0)(JOr, KO,)) duolgs
SS
+/S3 2V2 wie - wi (x) (K, Fa(0)(JOy, Kd,)) dvolgs
We recall from (B.3])
o e (@) =24 2 — o - 28
wi wy (2) =2 (z223 — 21 74) (IT1.101)

wy cwy (2) =2 (2123 + 2224)
Recall that on S? we have

FA(O)(J@T,K(?T) = FA(O)(Z’l 8I3*£L'3 811+SC4 8I2—z2 814,1'1 (9147564 8I1+£L'2 (9137563 8962) (111102)

Hence we have successively using corollary [B.2]

/ 2V2 W - wi () (igy, Fa(0)(J0y, K8,)) dvolgs

S3

=22 (23 + 23 — 23 — 23) (21 +23) dvolgs < iy, F3*(0) >
SS

+2V2 [ (2 + a3 — a2 —23) (23 +23) dvolgs < iy, F52(0) > (I11.103)
S3

=22 (zF 4+ 25 — 235 — 27) (23 +23) dvolgs < iy, —F4>(0) + F3*(0) >
SS

22
-2y BP0+ FRO) >
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we have

and

We finally get

[ 2VE () G Fa0)(0,, KO) duols

5’3

=42 w325 dvolgs < g, F32(0) + F3H(0) >
SS

+4v2 [ 2223 dvolgs < jg, F12(0) + F31(0) > (I11.104)
S3

= —8V2 x5 235 dvolgs < g0, F34(0) + F3*(0) >
S3

22
:*Tfﬁ <Jgos FA(0) + F31(0) >

/ 2V2 wi - wi (x) (g, Fa(0)(JO,, K8,)) dvolgs
S3

=4V2 | 2222 dvolgs < kg, F5H(0) + F2(0) >
SS

+4V2 [ 2222 dvolgs < kg, F31(0) + F2(0) > (I11.105)
SS

= —8V2 rias dvolgs < kg, FA4(0) + F32(0) >
S3

22
= 22k, B0+ FRO) >

2
/ <godf/\dzgo_l,FA(O)(Jar,Kar) wl_(z)> dvolgs = —% 2 <g0df/\dxg0_1,P,FA(O)> .
S3

We have

We recall from (B.5])

(I11.106)
/33 <go dz ANdx gyt Fa(0)(KO,, 10,) wjf(ac)> dvolgs

= / 2V2 wi - w; () (igy, Fa(0)(K Dy, 10,)) dvolgs
SS

(I11.107)

+/Sz 2V2 Wi - wi (2) (g0, Fa(0)(KD,, 10,)) duolgs

+ / 22wy -wy (2) (kgys Fa(0)(K Dy, 10,)) duvolgs
SS

Wi W

i wy (@) =2 (2124 + 22 33)

(v) = o + 25 — 25 — 2]

w; Wi

7w (I11.108)

Wy - Ws

5 (2) =2(z3 24 — 21 72)
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Recall that on 52 we have
FA(O)(KGT, I@T) = FA(O)(.Tl 814 — X4 Gzl +xo 813 — 3 GZZ , T1 GZZ — X2 Gzl +x3 814 — X4 6%) (111109)

Hence we have successively using corollary [B.2]

/5 ) 2V2 wi - wy () (igy, Fa(0)(K Dy, 10,)) dvolgs
=42 2323 dvolgs < gy, F52(0) + F33(0) >
S3
—4V2 x3 22 dvolgs < iy, F32(0) + F33(0) > (I11.110)
SS

=—8V2 x3 23 dvolgs < ig4y, Fi2(0) + F33(0) >
S3

242
= 2P B0 ER0) >

we have

/S 2VB w0y (2) Ggus FaA(0) (KD, 10,) duols:

=22 (x1 + 23 — 25 — 23) (27 + 23) dvolgs < jg,, F3%(0) >
SS

+24/2 (22 + 22 — 22 — 2)(22 + 22) dvolgs < jg, F52(0) > (IIL.111)
5‘3

=-2v2 | (2} +23 — 23 —a})(af +23) dvolss < jg,, F5*(0) — F42(0) >
SS

2+/2
= 2P g FRO) 4 FRO) >

and
/ 2v2 wi w; (1) (Kgos Fa(0) (K Dy, 10,)) dvolss
S3

= —4v2 | 222 dvolgs < kg, Fi(0) + F33(0) >
3
° (II1.112)
—4V2 [ 2¥xd dvolgs < kg, F540) + F3%(0) >
SB

22
:f‘Tfﬁ < kg, FY4(0) + F32(0) > .

We finally get

_ _ V2 -
/53 <godf/\dxg01,FA(O)(K8T,18T) w; (z)> dvolgs = —3 2 <g0df/\dxg01,P,FA(O)> .
(IIL.113)
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We have

We recall from (B.5])

/ <godf/\dxggl,FA(O)(Iﬁr,Jar) wy (2)) dvolgs
S3

_ /5 2B i (0) (g, Fa(0)(10,,70,) dvolss
+ / 2V2 Wi - wi (z) (3go, Fa(0)(I0y, JO,)) dvolgs
SS

+ / 23 wp - wp () (kyy Fa(0)(I,, J8,)) dvols
S3

w; cwy (2) =2 (zoxg — a1 23)
wi wy (2) =2 (x1 22 + 23 24)

—N_ 2, 2 2 9
Wyt wy (T) = 2] + a5 — 25 — 73

Recall that on S? we have

(I11.114)

(IIL.115)

FA(O)(IGT, J@T) = FA(O)(.Tl 612—.%'2 Gzl +x3 6z4—:z:4 6“), X1 613—.%'3 Gzl +x4 GZZ —T2 614). (111.116)

Hence we have successively

we have

/ 2V2 W - wy () (igy, Fa(0)(1y, JD,)) dvolgs
SS

=—42 2223 dvolgs < gy, F52(0) + F33(0) >
SB

— 42 23 23 dvolgs < iy, F42(0) + F33(0) >
SS

=—8V2 x5 23 dvolgs < i, Fi2(0) + F33(0) >
S3

242
=2 BP0+ FRO) >

/S 3 2V2 wi - wi (2) (g0, Fa(0)(10,,J0,)) dvolss
— 42 . z3 23 dvolgs (g, F4*(0) + F3%(0))
—4/2 . a2 a3 dvolgs (g, F5*(0) + F34(0))
%) . dvolss {jg, F3*(0) + F34(0))

242

=——3 7 (Jgo, FA4*(0) + F5'(0))
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and

/ 2VE wp - w () (kyy Fa(0)(10,, J8,)) dvols

SB

=2V2 | (af +af —af — af)(af + o) dvolsa (ky,, F5(0))
S3

+2V2 (27 + 23 — 23 — 23) (23 + 23) dvolss (kg,, F4*(0)) (I11.119)
SB

=2v2 [ (af +af - a3 —ad)(a] +af) dvolss (kg —FA"(0) + F3*(0))
S3

T ¥ 7 (kgy, F41(0) + F32(0))

We finally get
-1 - _ V2 , — -1
<g0df/\d:cg0 L Fa(0)(10y, JOy) wy (x)> dvol gz =-—3 7 <g0dx/\dzg0 ,P,FA(O)> .
53

(I11.120)
0

Lemmas [TT2] T3] M4 and [ILH imply
- 2 P 2 4 p 2d
/ \P_dA|? dat = "’—/ s (f) ds+p—/ n<f> S 2| Fa(0)
B,(0)\B~,(0) 3 TP 1Y 2 P 14 S
672 [* <s)2ds w23 [P, <s) <s> 5 5
+—— - = - - — | ds (|PLFa(0)|" —|P_Fa(0
stz [ 0(5) 555 [ (5)n(3) a (reraor - 1p-pyo)

72 (1 [P s\>ds p [° s s\ ds _
RE (1 L) S8 [ (G)n(;) &) twmamnans® praon 000

(I1L.121)

Then, with a change of variables and ([IL7)
2 4

§ 1! ! dt
/ \P_dA|? dat = T2 (—/ t 0 (1) dt+/ n(t)2—) |Fa(0)]?
B, (0)\Br,(0) 2 \4/: . ¢

w126 [ (025 - —= [ W00 dt (PFAOF ~P-FA0))

1 1

S=aey s [ - 55 [ @) a0

+ (% /Tlt n'(t)* dt + /T1 n(t)Q% - % /Tl 7' () n(t) dt) P FA(0))?
—co (% /Tl 77'(t)2@ +/T1 ' () n(t) g) (godT A dzgg ', P_Fa(0)) + 12¢2 /T1 n,(t)Q%

] +0(p°)
(II1.122)
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We write
P_F4(0)

——— = =aw; +bw, +cw_ 111.123
|P7FA(0)| i J k ( )
where a, b and ¢ belong to Sm(H) and satisfy
laj* + b +c*=1, (IT1.124)
and we have
1 P-Fa(0 Lo - . .
<gO ! ﬁ go, 1wy +.]w_j =+ kwk> = <aa 190> + <b7.]go> + <Ca k90> (111125)
Recalling ([LIG) and using Lemma [B] we choose gy such that
G PFA(O) \F
1
— ; Ttk >3/ = I1I1.12
(6" (i 3o s )2 5. (I 126)
so that
{godZ A dzgy ', P-Fa(0)) > \/_|P Fa(0)] . (I11.127)
Moreover, since
2
I 0?1 <¢i n<t>>
—tn' () + = — —=n'(t)nt) > [ =—n't) - —==) >0
11 (@) ; \/577()77()_ 5 (t) i)z

and [Py F4(0)| < |P-F4(0)|, we can further estimate from ([IL122])

: 204771 (1 ! dt
/ |P_dAP? da* < Z2 [(-/ ¢ (t)? dt+2/ n(t)2—> |P_F4(0)]2
B,(0)\ By, (0) 2 2./ . t

. </ wer 2/: 7000 5 ) IP-Fa0)] + 12c3/71n (055 + 06"

Finally:

/ |P_dA|* dz* 7/ |P_Fa|*da?
B, (0)\B-,(0) B,(0)
2047 /1 1 ! dt
< ”; Kg/ £ (1) dt+2/ Nty T - )|PFA(O)|2 (I11.129)

f_jg (/Tln() @m/:n'(t)n() dt) P_FA(0 )|+12c%/71n()2dt} +0(°)

Considering now that the minimum of a degree 2 polynomial az? + bx + ¢ is f% + ¢ and is attained

(I11.128)

at xg = —%, we have that the minimum of the polynomial in ¢y inside the square brackets above

is is

dt

(Rrerec2dou0 %) np L 2
m(r,n) = |— 36[:77’(15)2% + <§/r tn'(t) dt+2/T n(t) Tl) |P_F4(0)]

(I11.130)
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Choosing

t—7
UO(t) = 1_ 7
leads to
272 (2 3~ log i 1) 2
(1—7) T 5— 1171 T 1 9
_ — 2\ |pF
m(Tv 770) 9(1 — 7_2) (8(1 — 7_) (1 — )2 g > | A(0)|

()P Fa(0)

(II.131)
and is attained for a constant ¢y = ¢o(7) > 0. Now, considering that ¢(7,19) < 0 for 7 € [0.3,0.4],
we can modify 7y to a function n € C*°(R) with n(¢) = 0 for ¢t < 7 and n(t) = 1 for ¢t > 1, choose
7 € 10.3,0.4], such that ¢(n,7) < 0 and conclude

2.4
/B(O)\B (0)|P,dA|2 d:ct/B o |P_Fy|2dz? < %<p(¢,n)|P,FA(0)|2+0(p5). (II1.132)

Appendix
A The self-instanton

Define JT
xdT

SD(x) =S T A.133

=5 (3% (15

where the € R* is identified canonically with the quaternion x := z; 4+ x2i + x3j + 24k and

T:=x1 —x2i—x3)— x4k. As a consequence we have the more explicit formula

roi+xsj+ask

SD'(z) =
SD2(;C) o 71‘117$4j+$3k
S IFRP
. . 5 (A.134)
SD3 :56417:61.]71'2
@ =TT
SD4(;L') . 71‘3i+$2j 75611{
- 14 [af?
The curvature of this connection form is given by
xdzT X zY
Fsp(X,Y) :=dS —F | (XY R — ., ——— A.135
sox )= avm (5 ) o+ [om (s ) om ()| o
Recall that for any pairs of quaternions (p, q) one has respectively
[p,a] =pg—ap
= (R(p) + Sm(p)) (R(q) + Sm(q)) — (R(q) + Sm(q)) (R(p) + Sm(p)) (A.136)
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Hence in particular

xdT X rY
Fsp(X,Y)=d< —— | (XY A.137
sp(61) =d9m (5905 ) 060 + [+ 7 ) .
We have first
xdT dx A\ dT d|x|?
dss — | (X,Y) =9 X,Y)— NA)(X)Y). A.138
o () (60 = 9m (5 ) ) = (757 1 4) 60 (A.138)

Observe that

4
de Ndx =271 Zc’)ﬂ”xa Z—0

Tm Tm

20, T dxy N\ dap,

l,m=1

4
=271 Z 0z, % 05, T — O3, 0y, T dx; N dTy,

Lm=1 (A.139)
4
=91 Z 03, 0y, T — Oy, 0y, T dxy, A dx;
I,m=1
= —dx Ndx .
Hence
xdT dx A dT d|z|?
d¥ — | (X,)Y) = —(X,Y) — ANSD ) (X,Y). A.140
am (570 ) () = TR ) - ({5 A8D) (X0) (A140)
Observe that . o d ) |2
x dT lazdr+dxT 1 T
R _1 1 A141
(s3%p) =3 °ToRF =2 T4 .

where we have used the identity 27 = |z|?. Combining (AT40) and (AI4I) gives then

xdT dx N dzx d|x|? xdT
d¥ _— = — — XY
m<1+|x|2)( V)= ey <1+|x|2 i) %Y
dx N\ dx xdT xdT dxT xdT
= —(X.Y) — A X.Y) — A X.Y A.142
AL (1+|z|2 1+|z|2)( Y) (1+|z|2 1+|z|2)( Yy (A
dx N\ dT 2 XzY —z2Y 2 X dx N\ dT
= (X,Y) - — |z|? X,Y).
e T arEee T T

Combining (AI37) and (A142)) is implying
dz N dx

Fsp(XY) = 3oy

(X,Y) (A.143)

B Some lemma

Lemma B.1. For any triple of 3 vectors in R3, (a, 5,6) there exists a positive orthonormal basis

(€1, €, €3) such that
I /- I
a-el+b-eg+c-e32% |@|? + [b]% + |82 (B.1)

O
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Proof of lemma [B.Il By linecarity we can assume 1/|d@|? + |b]2 4 |@2 = 1. There exists a vector
of length at least 1/4/3. Assume this is @ We choose & := @/|d@|. We choose & and & arbitrary

such that (€7, &, €3) is forming a positive orthonormal basis.. If
€ - g-f— ez -C<0
we change (€1, €2, €3) into (€1, —€>, —€3) and we get

a-e1+b-éy+c-e3>

Sl

The result is optimal by taking (@, a, @) where |@|?> = 37!, Hence the lemma is proved.

Lemma B.2. We have

2 m :
:L'Z-dO':? for1<i<4,
SS
4 m :
xidazz for1 <i<4,
SS
2
12

forl<i<j<A4.

xfz? do =
S3

Proof of Lemma [B.2l We recall the following well-known formula, see e.g. [3]: Given a monomial

p(x1, T2, k3, x4) = 2] x5 x5 it with o, ..., a4 € 2N, we have
JR S ALY
58 LB+ B2+ B3+ Pa)

where 3; = %(al +1) forl=1,...,4, and T denotes the usual T function.

(B.2)

The lemma follows ([B.2), using that I'(3) = /7, I'(3) = /7, ['(2) = 3/7, and I'(k) = (k—1)!

for k positive integer.

Lemma B.3. The set of 2-forms

w (x) = V2 P_(dr A Idr)

wy (z) = V2 P_(dr A Jdr)

wy (z) = V2 P_(dr A Kdr)

realizes an orthonormal basis of (A°R?)

The compatibility with the previous notations is given by

w; =w; (1,0,0,0)

1

wy = wjf(l,0,0,0)

wy, =wy (1,0,0,0)
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Proof of Lemma [B.3l We compute

r2dr A Idr = (x1 dz1 4+ 2o dxe + w3 drs + x4 day) A (1 dre — 2o day + x3dry — 24 d2s)
= (23 + 23) dvy N dxo + (23 + 27) dxg A dey + 21 23 (doy A dwg + das A dos)
+x1 24 (dl‘3 A dx1 + dxg N\ dl‘g) + T2 I3 (dl‘g A dxg + dry N dl‘3)

+ag x4 (daxs A drg + dey ANdry) = (m% + x%) dxy N dzo + (m% + 23) das A day

+(z1 w3 + w2 z4)\/§w1: + (xox3 — X1 X4) \/§wj_ (B-5)
-1 _
= (@ +a3) V2 (0 Foi) + @ e V2 (e —w))
+(x1 w3 + 22 24) \/§w1: + (xox3 — 21 X4) ﬁw{
2 2 2 2 2
rt o (@i t+ad—ag—ap) _ _
= —w,; + w.+xz+zx\/§w+zxf:cz\/§w..
\/5 i \/5 i ( 143 2 4) k ( 243 1 4) 5
Hence )
Py (r?dr A 1dr) =271 |z)? (doy A dag + das A day) = % wit . (B.6)
This implies
r2dr Aldr =2 r?wl + P_(r*dr A Ldr) . (B.7)
Similarly
r2dr A Jdr = (21 dxy + o dwg + x3deg + x4 dag) A (x1 des — x5 dey + x4 dae — 2o day)
= (ZC% + ,Tg) dzi A drs + (m% + xi) dag N\ dxg + 21 x4 (dzy A dae + dzg A dag)
+x1 T2 (dl‘4 A dx1 + dxo N dl‘3) + T2 X3 (dl‘l A dxg + dxg N dl‘3)

B.8
a3 24 (dg A drg + dxy Aday) = (23 + 23) doy A das + (25 + 23) dzg A dag (B8)
+(z1 x4 + 22 23) \/5&1: + (x3 24 — 21 X2) \/5&11:

2 2?42l — a2 —23) _ _ _
Ew;qu( L 3\/54 )wj +(x1z4+z2x3)\/§wi +(z3x4fx1z2)\/§wk.
Hence )
Py (r?dr A Jdr) =271 z|? (day A das + dxg A das) = % wj+ (B.9)
This implies
P2dr A Jdr =2 r2wj+ + P_(r?dr A Jdr) . (B.10)
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We have also

r2dr A Kdr = (z1 dz1 + 2o dae + w3 das + xq4 dxy) A (1 deg — x4 dxy + 2o drg — 23 dxo)
= (23 + 2%) doy A dxy + (23 + 23) dwg A dos + 21 23(dve A dzy + dos A day)
+a1 29 (dxy A dxs + deg A dey) + 2o g (dzg A dae + dzg A dxg)
+as x4 (dey Ades + des Adry) = (m% + xi) dxy N dzy + (m% + x%) dxo A dxs

+(zo gy — 11 1'3)\/5&]; + (z1 22 + w3 14) \/§wj_

2

r (22 + 23 — 2% —23) _ _ _
= —uwf + 2 1 2 3w+xz—zx\/§w.+zx+xz\/§w..
Vot NG T (T2m4 — 31 73) i (T 22 + 23 74) 5
(B.11)
Hence -1
Py (r¥dr A Kdr) = 27" 22 (d2y A day + dos Adas) = V2 rPwf (B.12)
This implies
r?dr A Kdr = \/5_1 r?wl + P_(r*dr A Kdr) . (B.13)
From (B7), (BI0) and (B.I3) we deduce that
L=|dr Aldr|*> =271 + |P_(dr A Idr)|* ,
1= |dr AJdr|* =271+ |P_(dr A Jdr)|* , (B.14)
1= |dr AKdr|?> =27+ |P_(dr A Kdr)|? .
Moreover
0 = (dr A Idr,dr A Jdr) = (P_(dr A Idr), P_(dr A Jdr)) ,
0= (dr A Idr,dr N Kdr) = (P_(dr A Idr), P_(dr A Kdr)) , (B.15)
0= (dr A Jdr,dr N Kd) >= (P_(dr A Jdr), P_(dr N Kdr)) .
This implies that {w; (z), w; (), wy (z)} is a orthonomal basis. O
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