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Abstract

While originally developed for novel view synthesis, Neural Radiance Fields (NeRFs) have recently emerged as an alternative to
multi-view stereo (MVS). Triggered by a manifold of research activities, promising results have been gained especially for texture-
less, transparent, and reflecting surfaces, while such scenarios remain challenging for traditional MVS-based approaches. However,
most of these investigations focus on close-range scenarios, with studies for airborne scenarios still missing. For this task, NeRFs
face potential difficulties at areas of low image redundancy and weak data evidence, as often found in street canyons, facades or
building shadows. Furthermore, training such networks is computationally expensive. Thus, the aim of our work is twofold: First,
we investigate the applicability of NeRFs for aerial image blocks representing different characteristics like nadir-only, oblique and
high-resolution imagery. Second, during these investigations we demonstrate the benefit of integrating depth priors from tie-point
measures, which are provided during presupposed Bundle Block Adjustment. Our work is based on the state-of-the-art framework
VolSDF, which models 3D scenes by signed distance functions (SDFs), since this is more applicable for surface reconstruction
compared to the standard volumetric representation in vanilla NeRFs. For evaluation, the NeRF-based reconstructions are compared
to results of a publicly available benchmark dataset for airborne images.

1. Introduction

Image based 3D surface reconstruction is useful for many ap-
plications including urban modeling, environmental studies, sim-
ulations, robotics, and virtual reality. Typically, this task is
solved by matured photogrammetric pipelines. As a first step, a
Structure-from-Motion (SfM) approach estimates camera poses
for further processing. While this step already provides a sparse
reconstruction from tie point measurement as required by the
Bundle Block Adjustment, dense 3D point clouds or meshes are
generated by a multi-view stereo (MVS) pipeline in the second
step. Examples of state-of-the-art approaches developed dur-
ing the last decade are COLMAP (Schönberger et al., 2016),
PMVS (Furukawa and Ponce, 2010) or SURE (Rothermel
et al., 2012). Despite the considerable reconstruction quality
available from such pipelines, they still suffer from problems
at fine geometric structures, texture-less regions, and especially
at non-Lambertian surfaces, i.e. at semi-transparent objects or
reflections. Also due to these remaining issues, alternative ap-
proaches based on Neural Radiance Fields (NeRF) gained con-
siderable attention. Originally, this technique was developed for
synthesizing novel views of complex scenes by using a sparse
set of input views (Mildenhall et al., 2021). For this purpose,
a neural network provides an implicit representation of the sur-
face geometry as well as the appearance of the scene. This rep-
resentation is then used to generate synthetic views by neural
volume rendering. The neural network is trained to minimize
the difference between the observed images and the correspond-
ing virtual view of the scene. While NeRFs were originally
motivated by visualisation applications, a considerable part of
research work meanwhile focuses on 3D reconstruction (Li et
al., 2023, Wang et al., 2023). However, the corresponding ex-
periments are typically limited to reconstructions of close range
scenes while investigations using aerial imagery are just emer-
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ging (Xu et al., 2024). Such aerial applications make specific
demands like the timely processing of large areas including the
reconstruction at different scales, or challenging scenarios like
street canyons, glass facades or shadowed areas. Furthermore,
despite impressive results presented so far, NeRF-based surface
reconstruction frequently suffers from challenges for low image
redundancy and weak data evidence, while the computational
effort for training the neural network is still considerable. To
mitigate this problem recent works use additional cues for ini-
tialization or supervision during training. One option to support
dense reconstruction is to integrate a priori structural informa-
tion as provided from the sparse SfM point cloud to this process.
Since the volumetric representation of vanilla NeRFs is sub-
optimal for surface reconstruction tasks, approaches as (Yariv
et al., 2021, Wang et al., 2021) model 3D scenes using signed
distance functions (SDFs). By these means, VolSDF combines
the advantages of volume rendering methods during training
and implicit surface modeling for geometric reconstruction. As
our main contribution, we integrate tie point supervision into
VolSdf and evaluate its reconstruction capabilities for typical
aerial nadir and oblique image blocks.

The remainder of our paper is as follows: Section 2 gives a brief
overview on classical MVS and the state-of-the-art on NeRF
based reconstruction. Section 3 then presents our approach,
which modifies the framework VolSDF (Yariv et al., 2021) to
supervise and thus support the training process using SfM tie
points. As discussed in section 2 this framework provides an
easy accessible representation of 3D model geometry, which is
well suited for regularization during training. Section 4 eval-
uates our pipeline for three aerial image sets featuring differ-
ent configurations. These investigations on data typically used
in professional aerial mapping are interesting from a practical
point of view while investigating specific challenges of NeRF-
based surface reconstruction. Such aerial image collections fea-
ture limited viewing directions and potentially suffer from re-
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stricted surface observation due to occlusions. Additional chal-
lenges are variances in lighting conditions and moving objects
or shadows. We show that training by tie-points supervision is
crucial for fast convergence and mitigates convergence to local
minima during training. This holds in particular true for de-
manding scenes featuring vegetation or contradictory data e.g
moving shadows. For evaluation, the results of our NeRF based
reconstruction are analyzed for three data sets, including a com-
parison to results of a benchmark on high density aerial image
matching (Haala, 2013).

2. Related Work

2.1 Classical MVS

Taking a collection of images and their pixel-accurate poses
as input, most prominent MVS systems reconstruct dense geo-
metry in form of points or depth maps. Many approaches use
stereo or multi-view stereo algorithms to reconstruct depth maps
(Galliani et al., 2015, Schönberger et al., 2016, Rothermel et al.,
2012). Another prominent line of work starts with a sparse set
of points which are iteratively refined and densified (Furukawa
and Ponce, 2010, Goesele et al., 2007). In a second step a glob-
ally consistent, topologically valid surface is extracted using
volumetric reconstruction such as (Kazhdan and Hoppe, 2013,
Labatut et al., 2009, Jancosek and Pajdla, 2011, Fuhrmann and
Goesele, 2014, Ummenhofer and Brox, 2015). To enhance de-
tail, meshes can be further refined such that photoconsistency
across views is maximized (Vu et al., 2012, Delaunoy et al.,
2008). Such reconstruction pipelines rely on a sequence of
computational expensive optimization algorithms. Moreover,
each module has to be carefully tuned with regard to its para-
meters and quality of input from upstream modules.

2.2 Neural Implicit Representations

The seminal work introducing NeRF (Mildenhall et al., 2020)
opened a new research path in the area of novel view syn-
thesis. (Martin-Brualla et al., 2021) robustify vanilla NeRF
for imagery with varying illumination conditions. (Barron et
al., 2021) show improved rendering quality by employing a
training regime mitigating aliasing and accounting for the fact
that pixels capture the scene with different ground resolution.
Scalability for larger scenes is addressed in (Tancik et al., 2022,
Xiangli et al., 2022, Turki et al., 2022). (Li et al., 2022,
Fridovich-Keil et al., 2022, Hu et al., 2023) greatly improve
training and inference times, by fully or partly replacing the
original representation of scene geometry by spatial data struc-
tures such as multi-scale hash encoding or 3D MipMaps.

NeRF style approaches target the task of novel view-synthesis.
They implicitly represent 3D geometry as density and the light
emitted at a specific position in space, which impedes straight-
forward surface regularization. Instead, methods targeting 3D
reconstruction model the geometry by an implicit surface such
as occupancy or signed distance functions. This enables the for-
mulation of surface regularization losses and defines a global
threshold required to extract surfaces using marching cubes
(Lorensen and Cline, 1987). Early work employed surface
rendering (Niemeyer et al., 2020b, Yariv et al., 2020). How-
ever, geometry and radiance are only optimized near the surface
hampering fast convergence for complex scenes. In contrast
(Oechsle et al., 2021, Wang et al., 2021, Yariv et al., 2021) im-
plement volume rendering, optimizing geometry and radiance
for an extended scene volume eventually approaching surface

vicinity. This stabilizes convergence. Training and inference
times can be considerably improved by efficient GPU imple-
mentation and incorporating multi scale hash encoding (Li et
al., 2023, Wang et al., 2023). Inspired by traditional MVS
approaches, (Fu et al., 2022, Darmon et al., 2022) introduce
losses encouraging multi-view photometric consistency of sur-
face patches. Contrary to neural surface representations Gaus-
sian splatting (Kerbl et al., 2023) represents the scene by splats
(3D points, 3D covariances, color and opaqueness). Differ-
entiable rendering of splats can be efficiently implemented on
GPUs which allows for impressive rendering times. To recon-
struct surfaces from splats (Guédon and Lepetit, 2023) regu-
larize 3D Gaussians and extract meshes by subsequent Poisson
reconstruction.

Training of neural implicit representations is challenging for
image collections featuring limited surface observations and
challenging appearance. Additional depth cues from monocu-
lar depth (Yu et al., 2022b) or RGBD-sensors (Azinović et al.,
2022) can mitigate this problem. Similar to (Deng et al., 2022)
we supervise our reconstructions with SfM tie points. In the
domain of remote sensing (Mari et al., 2022, Qu and Deng,
2023) train NeRFs or neural implicit surfaces for satellite im-
agery. (Turki et al., 2022) propose a NeRF variant for large
aerial scenes but focus on novel view synthesis. Most similar to
our work, (Xu et al., 2024) provide an performance and qual-
ity evaluation of a scaleable MipNerf (Barron et al., 2021) for
aerial images. In contrast in this work we investigate implicit
neural surface reconstruction from aerial imagery.

3. Methodology

In this section we first review VolSDF (Yariv et al., 2021) as
it is the base method for our implementation. We then explain
our extension for depth supervision and implemented training
schemes.

3.1 Recap of VolSDF

NeRF. A neural radiance field is a neural function that takes
spatial coordinates x and a viewing direction vector v as input
which is mapped to a scalar density σ and a color vector c.

FΘ : (x,v) → (σ, c).

The function is modeled by two fully connected multilayer per-
ceptrons (MLPs) encoding geometry and appearance respect-
ively. The color Ĉ of a pixel in an arbitrary view encoded by
FΘ can be composed using volume rendering. Let r (with direc-
tion v) be the ray defined by the center of projection of a view
and the pixel coordinate. We sample N points xi, i ∈ [0, N ]
along r, the distances between point samples are given by
δi, i ∈ [0, N − 1]. Using the quadrature based on the rectangle
rule (Max, 1995), the discrete formulation of volume rendering
is given by

Ĉ(r) =

N∑
i=1

Tioici. (1)

Thereby
oi = 1− exp (−σiδi) (2)

is a notion of the emitted light or opacity.

Ti = exp

(
−

i−1∑
j=1

σjδj

)
(3)



represents the accumulated transparency along the ray up to the
current position ri. Thus, light emitted for samples j < i re-
duces the contribution of colored light emitted for sample i in
the rendering equation 1.

Since equation 1 is differentiable, a loss minimizing photo-
consistency across all views can be specified by the projection
error:

LRGB = ∥Ĉ(r)−C∥2. (4)

VolSDF - SDF representation. In contrast to NeRF and vari-
ants, VolSDF models geometry by a signed distance function
which only in a subsequent step is mapped to density. With Ω
the 3D space occupied by some object and M the object bound-
ary, the signed distance function can be formally written by

dΩ = (−1)1Ω(x) min
y∈M

∥x− y∥ (5)

with

1Ω(x) =

{
1 if x ∈ Ω

0 if x /∈ Ω
. (6)

To be able to employ volume rendering the signed distance is
mapped to density with two learnable parameters β and α

σ (x) = αΨβ (−dΩ (x)) (7)

with

Ψβ (s) =


1
2
exp

(
s
β

)
if s ≤ 0

1− 1
2
exp

(
− s

β

)
if s > 0.

(8)

Surface points x ∈ M have a constant density of 1
2
α. Density

smoothly decreases for increased distances from the surface.
This smoothness is controlled by β. As β approaches 0, Ψ will
converge to a step function, and σ will converge to a scaled in-
dicator function that maps all points inside the object to α, and
all other points to 0. More intuitively, β can be interpreted as
a parameter encoding the confidence in the SDF in the current
training stage. When the confidence is low, or equivalent, β is
high, points distant from the surface will map to larger densities
and contribute to optimization. In later stages when the confid-
ence is higher, only points close to the surface will contribute
to optimization. Similar to (Yariv et al., 2021), α is set to 1

β
in

all our experiments.

VolSDF - Regularization. The SDF representation allows for
regularization of the surface to cope with weak or contradictory
image data. Similar to (Gropp et al., 2020) we use the eikonal
loss

Leik = (∥∇d(x)∥ − 1)2. (9)

to enforce smoothness of the signed distance field. Addition-
ally we found that including a prior enforcing consistency of
normals (Oechsle et al., 2021) within an increased local neigh-
borhood ∆x benefits reconstruction

Lsurf =
∥∥∥n(x)− n(x+∆x)

∥∥∥
2
. (10)

The normal n is the gradient of the signed distance field and
can be computed using double backpropagation (Niemeyer et
al., 2020a).

VolSDF - Sampling. As in all NeRF-style methods a
sampling strategy, ideally sampling points close to the correct
surface but at the same time being able to recover/converge
from inaccurate states of the NeRF is crucial. VolSDF ulti-
mately places samples based on inverse transform sampling of
the discrete opacity function o(i). The accuracy of o(i) is in-
fluenced by the spatial extent of the ray where the samples are
placed. Furthermore, for low sampling densities an approxima-
tion error is introduced by quadrature. VolSDF implements an
iterative sampling mechanism which (a) bounds the approxima-
tion error of o(i) and (b) adapts the sampling extent being closer
to the surface with increased confidence of the SDF estimation.
For details the reader is referred to the original publication.

3.2 Tie Point Supervision

The input of VolSDF are poses which are computed within SfM
or aerial triangulation. As a side product j tie points, each en-
coding homologous 2D image locations xi,j across i images
and their corresponding 3D point Xj , are generated. For each
xi,j a depth di,j can be computed by projection. Similarly to
(Deng et al., 2022) we use tie points to initialize and supervise
the training of VolSDF. More specifically, we follow (Azinović
et al., 2022) and sample two set of depths Str and Sfs along
rays induced by xi,j . Str contains samples ds close to the sur-
face, |di,j−ds| < tr. Sfs contains samples between the camera
center and the surface point di,j with ds ∈ {0, di,j−tr}. A first
loss enforces the predicted SDF d̂s to correspond with ds

Ltr =
1

|R|
∑
r∈R

1

|Str|
∑

s∈Str

(
ds − d̂s

)2

, (11)

where R is a set of randomly sampled rays over all input images
per training batch. (Azinović et al., 2022) encourage a constant
SDF value tr in freespace. In contrast we relax that constraint
and define a loss which only enforces SDF values larger than tr

Lfs =
1

|R|

N∑
r∈R

1

|Sfs|
∑

s∈Sfs

ReLU2
(
tr − d̂s

)
. (12)

We note the ds is only an approximation of the signed distance
and rigorously valid in front-to-parallel settings, however we do
not introduce any bias on the zero level set. For all experiments
we set tr to 30 times the GSD to safely exceed the noise levels.

3.3 Implementation and Training Details

Our model builds on the VolSDF implementation (Yu et al.,
2022a). It is composed of learnable multi-resolution hash grid
encoding (Müller et al., 2022) and two MLPs with two layers of
256 neurons each. We set the leaf size of the grid to match the
GSD of each evaluated dataset. Our final training loss consists
of five terms:

L = LRGB + λeikLeik + λsurfLsurf

+λfsLfs + λtrLtr,
(13)

where λ∗ are hyperparameters controlling the contribution of
the respective loss terms. Their values were found by grid



search, are constant in all experiments and listed in table 1. The
network is optimized using the Adam optimizer (Kingma and
Ba, 2015) with a learning rate of lr = 5e−4 and exponential
decay with rate 0.1. The batch size remains constant and is
set to 4096 rays per training iteration. Training and inferences
were run on an AMD Ryzen 3960X 24-Core CPU and a Nvidia
RTX 3090.

Parameter Symbol Values
1st stage 2nd stage

Eikonal factor λeik 0 5e-4
Surface smooth. factor λsurf 1e-2 5e-3
Surface smooth. radius Rsurf 35 GSD 35 GSD
Free-space factor λfs 10 10
Signed-distance factor λtr 60 60
Initial β β0 0.001 0.001

Table 1. Training parameters.

The training is split into two stages: a fast geometric initializa-
tion with depth supervision and smoothness regularization only,
and a second stage additionally activating photometric supervi-
sion. The duration of the first stage is 1 k epochs for all ex-
periments. We evaluate results after training for 30 k and 100 k
epochs.

4. Evaluation

4.1 Datasets

We qualitatively evaluate our method on three datasets. These
include two image blocks captured by professional large-format
cameras in nadir only (Frauenkirche) and oblique (Domkirk)
configuration. Images of Frauenkirche are part of a benchmark
on high density aerial image matching (Haala, 2013). Further-
more, we run tests on precisely georeferenced, high-resolution
UAV images provided within a recent benchmark Hessigheim
3D (Kölle et al., 2021, Haala et al., 2022). More details can
be found in table 2. The image collections cover challenging
urban scenes, including thin structures, low data evidence (e.g.
limited views, occlusions), photometric inconsistency and am-
biguity (e.g. moving objects, shadows, and vegetation). We
generate tie points for each dataset using a commercial AT soft-
ware (Esri, 2023).

4.2 Qualitative Evaluation

In a warm-up stage we train the network with depth supervi-
sion and smoothness regularization only. These models (figure
1) serve as geometric initialization for the main training stage
with photometric supervision enabled. The warm-up optimiz-
ation typically converges within 1 k epochs, which equals ap-
proximately 6 minutes of training on our hardware. We found
the parameters in table 1 to be a good balance between detail
provided by tie points and completeness of reconstructed sur-
faces. Despite the sparsity of tie points, completeness of recon-
structions is rather impressive.

Figures 2, 3 and 4 display the results for VolSDF with depth
prior after 30 k epochs (first column) and vanilla VolSDF after
100 k epochs (second column) for all evaluated datasets. We
found that additional training improves details but does not fix
erroneous topology of extracted surfaces. The boxes in figures
2, 3 and 4 highlight areas of sub-optimal reconstruction (red)
and improvements (black) achieved by using depth supervised
VolSDF.
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Figure 1. Intermediate reconstructions based on depth and
smoothness supervision used as geometric initialization for the

main training stage.

Without depth prior VolSDF has difficulties reconstructing
complete surfaces when trained on Frauenkirche. The ground
level is incomplete, presumably due to (moving) shadows and
weak texture. Furthermore, VolSDF fails in the reconstruction
of facades (figure 2, boxes 4, 5 and 7). We assume that this
is caused by the combination of limited number of observa-
tions and repetitive structure. Topology significantly improves
when using depth-supervised VolSDF. The geometric initializa-
tion ensures more complete ground surface. Despite the limited
number of tie points on facades, depth supervision improves
completeness (figure 2, boxes 2 and 3). In areas where no tie
points are computed, no improvements can be observed (box
6).

For the Domkirk dataset impressive detail is reconstructed for
both approaches (figure 3, box 1 and 2). Again VolSDF gets
stuck in local minima in weakly observed and low-texture areas
(box 6 and 5). In both cases depth supervision facilitates recon-
struction of a more correct surface (box 2 and 3).

Similar to Frauenkirche depth supervised VolSDF delivers
more complete reconstructions for the Hessigheim 3D scene.
Furthermore, VolSDF struggles to reconstruct areas for which
appearance across views is dissimilar or contradictory, e.g ve-
getation (figure 4, box 2). For such areas the depth prior re-
solves ambiguities and constrains the optimization resulting in
more faithful surfaces. We note our approach seems rather ro-
bust to imprecise or outlier contaminated tie points and only in
rare cases generates artifacts as spikes (box 1).

4.3 Quantitative Evaluation

The number of publically available benchmarks for aerial sur-
face reconstruction is very limited. The main challenge is to
collect precise and geo-referenced 3D ground truth data fea-
turing sufficient density to evaluate reconstruction quality of
sharp depth discontinuities and small details. We base our
quantitative evaluation on DSM raster data of the Frauenkirche
scene. As ground truth we use the benchmark DSM provided
by (Haala, 2013). This DSM was generated by robust fusion
of eight DSMs computed by eight independent reconstruction
pipelines across academia and industry.

Error metrics. We evaluate the correctness of the reconstruc-
tion in terms of accuracy and completeness as defined in the
ETH3D benchmark (Schöps et al., 2017). For both metrics,
we evaluate differences between corresponding height values
of ground truth DSM and a DSM derived from our reconstruc-
tion. For the latter we generate point clouds on the SDF zero
level set and rasterize the highest surface points in the area of



Dataset GSD Configuration Images Pixels Dimensions
Frauenkirche 10 cm Aerial Nadir 35 86MPix 953 m3

Domkirk 3 cm Aerial Oblique 226 1362MPix 423 m3

Hessigheim 3D 1.5 cm UAV 217 1500MPix 273 m3

Table 2. Datasets used for evaluation.
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Figure 2. Results after 30 k (left) and 100 k (right) training
epochs for the Frauenkirche dataset using the sparse, depth
priors from tie points (left) or only RGB input (right) for

training. The first two rows display extracted meshes from
different viewpoints. Row three shows extracted DSMs.

interest. Both metrics are evaluated over a range of tolerance
thresholds, ranging from 1 GSD to 30 GSD.

Additionally, we measure the noise of our surfaces in a robust
fashion. The NMAD metric measures the similarity of the pre-
diction and the ground truth within the error band, i.e. is an
indicator of the amount of noise within the tolerance. More
specifically, NMAD is the Normalized Median Absolute De-
viation and is a robust estimator for the standard deviation in
normally distributed data (Rousseeuw and Croux, 1993).

Reconstruction Quality. Figures 5, 6, 7 and 8 display metric
scores of the models trained on Frauenkirche data. We show
scores for VolSDF and the depth-supervised variant after 30 k
and 100 k epochs.

Figure 6 displays the accuracy and completeness scores. In
terms of completeness, our model trained for 30 k epochs sig-
nificantly outperforms the reference model trained for 100 k
epochs. The respective scores converge with a difference of
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Figure 3. Results after 30 k (left) and 100 k (right) training
epochs for the Domkirk dataset using the sparse, depth priors

from tie points (left) or only RGB input (right) for training. The
first two rows display extracted meshes from different

viewpoints. Row three shows extracted DSMs.

around 10 %. This validates the observation that local min-
ima and incompleteness are mitigated in early training stages
already. The reconstruction accuracy of our model is higher
than that of the reference model throughout the entire tolerance
interval when both are evaluated after 30 k epochs, verifying
accelerated convergence. Furthermore, our model after 30 k it-
erations is almost on par with the reference trained for 100 k
epochs, which only delivers a slightly better score for lower
GSD ranges. Our model trained for 100 k epochs achieves the
best accuracy throughout the entire evaluation range. Figure 7
visualizes the signed differences between the reconstructed and
ground truth DSMs for VolSDF with depth prior (left column)
to vanilla SDF (right column). After 30 k epochs of training
we observe improved quality of the depth supervised variant (A
and B), in particular for the streets around the building. Fur-
thermore, additional training further improves quality of both
solutions although the progress is rather slow. We note that very
inaccurate areas are not improved even beyond 100 k epochs.

Accelerated convergence for depth supervision can also be ob-
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Figure 4. Results after 30 k (left) and 100 k (right) training
epochs for the Hessigheim 3D dataset using the sparse, depth

priors from tie points (left) or only RGB input (right) for
training. The first two rows display extracted meshes from
different viewpoints. Row three shows extracted DSMs.

served in the loss curves over training time (figure 5). Right
after initialization, the loss of the depth-guided model drops sig-
nificantly faster compared to the baseline. After the first hour
of training, however, the values of both curves are only slowly
decreasing. This underlines the observation that in early train-
ing stages the depth priors rapidly guide the reconstruction to
a faithfull solution. In later training stages, details are refined
which for both approaches still demands considerable compu-
tation time.

Depth-supervised VolSDF outperforms vanilla VolSDF in terms
of NMAD scores (figure 8). Notably even after 30 k iteations the
NMAD is slightly better than training its counterpart for 100 k
iterations. After 100 k iterations we achieve a NMAD score be-
low 3 GSD.
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Figure 5. Loss curves for training based on Frauenkirche data
using RGB input only (blue), or additional depth priors (orange)
from SfM/AT in form of tie points (TPs). The grey, dashed line
shows the loss after 10 hours of training when using RGB only.
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Figure 6. Accuracy (solid line, left) and completeness (dashed
line, left) scores for the Frauenkirche dataset using the sparse,

depth priors from tie points for training.
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Figure 7. Differences between the extracted DSMs and the GT
DSM, where the colors saturate outside of ±10 GSD.
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Processing Time. The use of tie point priors improves con-
vergence in the early training stages, thus decreases runtimes.
We note that it is difficult to rigorously compare training times
across the approaches since surface states as well as final solu-
tions differ. However, for the majority of scene parts com-
parable visual reconstruction quality of vanilla VolSDF and its
depth supervised variant is obtained after 100k iterations vs 30k
iterations respectively. For both approaches, training for 30 k
and 100 k iterations takes about 3:20 h and 11 h respectively.

Furthermore, we profiled the algorithm to identify most com-
putationally expensive routines. Figure 9 shows the relative
time requirements of the different model components within
one training epoch. The additional depth-supervision terms do
not generate noticeable computational overhead. The main bot-
tleneck is VolSDF’s sampling routine accounting for 70 % of
training time, which suggests future optimization.

70%

6%

10%

7%
7%

Sampling
Inference
Optimization
I/O
Others

Figure 9. Relative time requirements of different model
components within one epoch. The sampling algorithm accounts

for 70 % of training time.

5. Conclusion

We present the applicability of VolSDF, a NeRF variant mod-
eling implicit neural surfaces, for 3D reconstruction from air-
borne imagery. We demonstrated that supervising VolSFD by
tie points improves reconstructions: we observed faster conver-
gence in early training stages and better quality in terms of com-
pleteness and accuracy. This is in particular true for challenging
areas featuring only limited data evidence for which VolSDF
tends to get stuck in local minima or does not converge at all.
Reconstructed surfaces of an example nadir scene featured less
than 4 GSD deviations to traditional MVS pipelines in terms
of NMAD. To completely converge and recover full detail pro-
longed training times are still required. This hampers practical
application. However, we obtain topologically correct surfaces
in reasonable time which could be subject to subsequent mesh
post-processing. Sampling routines are the main bottle neck
in the evaluated implementation and subject to future work.
On the one hand efficient GPU implementation could speed up
this process (Wang et al., 2023), on the other hand we want
to investigate possibilities to dynamically reinforce sampling
in areas with a large potential for improvements (Kerbl et al.,
2023). Neural implicit surface reconstruction is still an active
research topic and we hope that this article encourages future
work also in the domain of geometric reconstruction from aer-
ial imagery and other remote sensing applications.
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