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We re-examine the self-phoresis of a particle that releases(removes) pairs of ions into(from) the
electrolyte solution. We show analytically that in the linear regime the mathematical description of
this system maps onto that of the correlation–induced (self-)chemophoresis (CICP). This connection
provides a unifying perspective of the two phenomena, within which one recovers and extends
recent predictions as particular instances of CICP. Conversely, ion-phoretic particles are identified
as candidates for experimental investigations into the rich variety of motility patterns predicted by
CICP.

The emergence of self-motility for chemically active
colloidal particles suspended in an aqueous solution of
their “fuel” (e.g., hydrogen peroxide for certain bi-
metallic rods [1, 2] or platinum-capped dielectric par-
ticles [3, 4]) has been the topic of many experimen-
tal and theoretical investigations since the first exper-
imental reports were published (insightful reviews of
these developments can be found in, e.g., Refs. [5–
9]). In many instances, the motility was successfully
addressed as self-phoresis (e.g., self-chemophoresis [10–
13], self-thermophoresis through a single-component fluid
[14], self-chemophoresis via demixing of a critical binary
liquid mixture [15–17], or self-electrophoresis [18–22]).
That is, motility was interpreted to emerge as a clas-
sic phoretic linear response to self-generated, rather than
externally imposed, non-equilibrium inhomogeneities (in
the chemical composition or in the temperature of the
solution) [9, 10, 23–25]. Recently, the standard sce-
nario of chemophoresis has been investigated beyond the
usual ideal-gas approximation for the solute by account-
ing for thermodynamic correlations [26, 27]. The result
is the identification of a novel mechanism of phoretic
motility, the so-called correlation–induced chemophoresis
(CICP), which provides a paradigm–breaking example
that self-phoresis involves in general a non-equilibrium
response factor, so that an interpretation as phoresis in
self-generated gradients is not possible [26].

In an ubiquitous experimental setup, the particles are
charged and the chemical activity consists in the release
of ionic radicals in the ambient solution [1, 9, 18, 20, 28–
31]. Additionally, there can be electrical currents through
the solution and the particle in the case of redox reactions
at bi-metallic rods [1, 18], or, as argued by Refs. [21, 22,
32, 33], when a dielectric sphere is covered by a layer of
catalyst (a metal or enzymes) of varying thickness.

Recent studies, complementing the earlier works by
Refs. [28, 29], have reported a number of interesting fea-
tures for the case of a spherical particle, such as motil-
ity of uncharged particles with non-uniform ionic activ-
ity [30] or of non-uniformly charged particles with uni-
form activity [34]. In particular, in the former case the
phoretic velocity was noted to be quadratic in the activ-

ity [30], which evades an interpretation as classic phoresis
under self-generated gradients.

Motivated by these insightful observations, here we re-
examine a simple model for ionic self-phoresis of a di-
electric particle that releases (or removes) pairs of ions
in the electrolyte solution. The theoretical analysis is im-
paired by the nonlinear coupling between the ionic dis-
tribution and the electric field [18, 21, 28–30, 34, 35];
accordingly, the use of perturbative expansions has be-
come a standard approach [36–40]. In the linear regime
of small surface charge and activity of the particle, we
show the unexpected mapping of the mathematical de-
scription of this model onto that of the recently reported
CICP. On the one hand, this result provides a conceptu-
ally clear, unifying perspective which blurs the concep-
tual distinction between ionic self-phoresis and neutral
self-chemophoresis: recent predictions of motility for cer-
tain activity and charge patterns then emerge, and are
extended, as particular instances of the “selection rules”
derived in the CICP model. On the other hand, it high-
lights ionic self-phoresis as a promising option for exper-
imental investigations into the rich variety of patterns of
motility predicted by CICP (see, e.g., the “phase dia-
gram” introduced in Ref. [27]).

Model system.– The model we consider consists of a rigid
and impermeable dielectric colloidal particle, immersed
in a liquid electrolyte solution which is kept at a constant
temperature T . For simplicity, we consider the case of a
spherical shape (radius R) for the particle, of a symmet-
ric electrolyte (thus two species of ions carrying charges
±q, q > 0, respectively), and of the dielectric permittiv-
ity ϵ of the electrolyte solution being much larger than
that of the particle. The concentration of the two ionic
species are equal to c0 ̸= 0 far from the particle. The
particle carries a surface charge σs S(rp), where σs is a
characteristic value of the surface charge (e.g., its maxi-
mum over the surface) and the dimensionless surface field
S(rp), where rp denotes any point on the surface of the
particle, describes the distribution of charge over the sur-
face. The activity of the particle is characterized by the
rate per unit surface AA(rp) at which pairs of ions are
released into (A > 0) or removed from (A < 0) the so-
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lution at the position rp; here, A > 0 is the maximum
absolute value over the surface and the dimensionless sur-
face field A(rp) describes the pattern of activity [41]. The
ions diffuse in the solution with diffusion constants D±;
the associated mobilities are given by the Stokes-Einstein
relation as Γ± = βD±, where β = 1/(kBT ). Finally,
the system “particle + electrolyte solution” is assumed
to be in mechanical isolation, i.e., there are no exter-
nal forces or torques acting on either the particle or the
fluid: this is the characteristic feature of phoresis which
sets it apart from other transport phenomena [23, 42], so
that a self-phoretic particle can be actually qualified as
a “swimmer”.
When the particle is inactive, the system is in an equi-

librium state (fixed by a distant heat bath and reser-
voirs of ions and solvent), in which the particle and the
fluid are motionless. Upon turning on the activity, we as-
sume that a non-equilibrium steady state is established,
in which the particle moves and hydrodynamic flow is in-
duced in the electrolyte. Motivated by the observations
in typical experimental realizations of active particles,
we assume overdamped motion of the particle, while the
fluid flow occurs at small Reynolds and Mach numbers
(“creeping flow”). Additionally, the particle motion can
be assumed slow when compared with the diffusion of
the ionic species. Accordingly, the state of the solution
is characterized by the instantaneous incompressible flow
of the solution and the stationary concentrations c±(r) of
each ionic species at small Péclet number (i.e., convection
is neglected). An electric field described by a potential
ψ(r) will be also induced due to the local charge imbal-
ances; owing to the assumed large contrast in dielectric
constants, the electric field is basically confined to the
electrolyte domain.
Steady–state distribution of ionic species.– The profiles
c±(r) follow from the conservation of ionic species in the
bulk expressed in terms of the ion density currents j±,

∇ · j± = 0 , j± = Γ±f± . (1)

The thermodynamic force densities f± are determined
from the assumption of local equilibrium, consistently
with the assumption of slow particle dynamics, as

f±(r) = −c±(r)∇µ±(r), (2)

in terms of the local chemical potentials µ±(r). The lat-
ter are obtained as

µ±(r) =
δH

δc±(r)
=

∂h

∂c±
(r)± qψ(r) (3)

from the free energy functional of the electrolyte given
by (see, e.g., Refs. [43–45])

H[c+(r), c−(r), ψ(r)] =

∫

fluid

d3r

[
h(c+, c−)−

1

2
ϵ|∇ψ|2

+ q(c+ − c−)ψ − σs S(rp)ψ δ(|r| −R)
]
. (4)

Here, ψ(r) denotes the electric potential, and h(c+, c−)
is a local free energy density that depends implicitly on
temperature. A simple and frequently employed choice
is the ideal gas form,

β h(c+, c−) = c+

(
ln
c+
c0
− 1

)
+ c−

(
ln
c−
c0
− 1

)
. (5)

In such case, Eqs. (1), (2), and (3) render the usually
employed Nernst–Planck equations. Although the for-
malism to be presented can be applied in full generality,
for instance by addressing a local free energy h that ac-
counts for steric effects, we will also use Eq. (5) both for
reasons of simplicity and for straightforward comparison
with previous studies.
The equations are supplemented by the boundary con-

ditions at infinity,

µ±(|r| → ∞)→ µ0 , c±(|r| → ∞)→ c0 , (6a)

and at the surface of the particle, where the catalytic ac-
tivity is modeled as a current along the direction normal
to the particle:

er · j+(rp) = er · j−(rp) = AA(rp) . (6b)

Electric field.– The potential ψ(r) in the fluid is deter-
mined from the minimization of the free energy functional
with respect to ψ(r), i.e., by solving δH/δψ(r) = 0. This
renders the Poisson equation,

∇2ψ(r) = −q
ϵ
[c+(r)− c−(r)] , (7)

and the boundary condition at the surface of the particle,

er · ∇ψ(rp) = −
σs
ϵ
S(rp) , (8a)

associated to a high dielectric constant. These are sup-
plemented by the boundary condition at infinity,

ψ(|r| → ∞)→ 0 . (8b)

Hydrodynamics and the motion of the particle.– The flow
is determined by the incompressible Stokes equations,
i.e., by the mechanical balance between the fluid stresses
and the body force density, f(r) := f+(r) + f−(r), acting
on the solution, complemented by boundary conditions
at infinity (quiescent fluid) and at the surface of the par-
ticle (no slip) [46]. The translational and rotational ve-
locities, V and Ω respectively, of the overdamped mo-
tion of the particle can be obtained from the condition
of mechanical isolation of the composed system “parti-
cle+solution” by using the Lorentz reciprocal theorem,
without the need to compute first the velocity field in
the fluid [11, 19, 26, 47, 48]:

V =
1

6πηR

∫

fluid

d3r K(r) · f(r), (9a)

Ω =
1

8πηR3

∫

fluid

d3r K(r)× f(r), (9b)
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where the (in general non-symmetric) tensorial kernel
K(r) and the vectorial kernel K(r) are determined solely
by the geometrical shape of the particle [49, 50]. These
fields incorporate the incompressibility constraint as (K†

is the transposed tensor)

∇ · K† = 0, ∇×K = 0. (10)

This ensures that only the solenoidal component of f con-
tributes in Eqs. (9) to the motion of the particle [26, 48].
For the specific case of a spherical particle, they take the
form

K(r) =

[
1

4

(
R

r

)3

+
3R

4r
− 1

]
I+

3R

4r

[
1−

(
R

r

)2
]
erer ,

(11a)

K(r) =

[(
R

r

)3

− 1

]
r er, (11b)

in spherical coordinates with origin at the center of the
sphere, where er is the unit radial vector and I is the
identity tensor.
Quasi-homogenous regime and mapping to CICP.– The
coupled Eqs. (1) and (7) cannot be solved analytically in
general and progress can be made only after approxima-
tions. We will focus on the case that the activity of the
particle and the surface charge are both very small, so
that the system is only weakly out of a spatially homo-
geneous equilibrium state. Thus, the equations govern-
ing the ionic distribution will be solved perturbatively to
leading order in the deviations δc±(r) := c±(r)− c0 [51].
In this approximation, Eqs. (3–5) lead to

δµ± := µ± − µ0 =
1

βc0
δc± ± qψ , (12)

and one finds that the force density is given by [46]

f(r) = −1

2
Q∇M − 1

4βc0
∇N2 ≡ −1

2
Q(r)∇M(r) , (13)

in terms of the local charge density (up to a factor q),

Q(r) := δc+ − δc− = c+ − c− , (14)

the local contrast in chemical potential,

M(r) := δµ+ − δµ− = µ+ − µ− , (15)

and the total concentration of ions N(r) := δc+ + δc−.
This latter field has no effect whatsoever on the motility
due to Eqs. (10) for the incompressibility constraint, in
spite of it varying in space, as it appears in Eq. (13) as an
additive gradient that can be dropped. Therefore, only
charge imbalances matter in the linear approximation.
Upon defining the parameter

1

∆
:=

1

D+
− 1

D−
, (16)

and the Debye length

λD :=

√
ϵ

2q2βc0
, (17)

one finds [46] that Eqs. (1) lead to the boundary value
problem

∇2M(r) = 0 , (18a)

er · ∇M(rp) = − A
βc0∆

A(rp) , (18b)

M(|r| → ∞) = 0 , (18c)

while the electrostatic equation (7) yields the boundary–
value problem

∇2Q(r) =
1

λ2D
Q(r) , (19a)

er · ∇Q(rp) = −A
∆
A(rp) +

σs
qλ2D

S(rp) , (19b)

Q(|r| → ∞) = 0 . (19c)

The equations (13, 18, 19) have the same mathemati-
cal structure as the model for self-phoretic motility by
CICP [26], with λD playing the role of the correlation
length [46]. This mathematical mapping, which is the
main result of this work, allows one to directly import
the results for V,Ω derived by Ref. [26] to the current
problem of ionic self-phoresis. It provides a conceptu-
ally clear and physically insightful unifying perspective
on a number of previously reported results. A first, im-
mediate result is the absence of phoretic motility in this
approximation when the two ionic species have the same
diffusivity (∆−1 = 0⇒M = 0⇒ f = 0) [30, 34].
The solution of Eqs. (19) can be written as the su-

perposition Q(r) = Q(A)(r) +Q(S)(r) [46], where Q(S)(r)
is the charge distribution induced solely by the particle
surface charge (i.e., the charge distribution in equilib-
rium), while Q(A)(r) is the charge distribution due to
activity alone — since A enters Eqs. (19) on equal foot-
ing with S, the activity appears to renormalize the parti-
cle’s charge. Accordingly, the phoretic velocities are, via
Eqs. (9, 13), similarly decomposed. By expanding the
activity in spherical harmonics,

A(rp) =
∞∑

ℓ=0

ℓ∑

m=−ℓ

aℓmYℓm(θ, φ), (20)

and likewise for the other surface field S(rp) (with coef-
ficients sℓm), one can write [26, 46]

V =
∑

ℓm,ℓ′m′

[(
R

λD

)2

V (S) sℓm − V (A) aℓm

]
aℓ′m′ (21a)

×
[
g⊥ℓℓ′

(
λD
R

)
G⊥

ℓm;ℓ′m′ + g
∥
ℓℓ′

(
λD
R

)
G

∥
ℓm;ℓ′m′

]
,

Ω =
∑

ℓm,ℓ′m′

(
R

λD

)2

Ω(S) sℓmaℓ′m′ gτℓℓ′

(
λD
R

)
Gτ

ℓm;ℓ′m′ ,(21b)
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with the characteristic velocity scales

V (A) :=
q2R5A2

6πηϵ∆2
, V (S) :=

qR3Aσs
6πηϵ∆

, Ω(S) :=
3V (S)

4R
.

(21c)
In these expressions, the dimensionless functions g∥, g⊥,
gτ encode the dependence on the bulk concentration c0
through the Debye length, and the dimensionless vectors
G⊥, G∥, Gτ , which are purely geometrical factors in-
dependent of any system parameters, vanish for certain
combinations of modes {ℓ,m} and {ℓ′,m′} — accord-
ingly, they imply “selection rules”, i.e., those modes do
not contribute to the phoretic velocities:

G⊥
ℓm;ℓ′m′ = 0

G
∥
ℓm;ℓ′m′ = 0

}
if

{
ℓ− ℓ′ ̸= ±1, or
m+m′ ̸= 0,±1, (22a)

Gτ
ℓm;ℓ′m′ = 0 if





ℓ− ℓ′ ̸= 0, or
ℓ = ℓ′ = 0, or
m = m′, or
m+m′ ̸= 0,±1.

(22b)

The index ∥ denotes the contributions coming from the
components of the force (13) tangential to the surface
of the spherical particle, while ⊥ pertains to the normal
component. The angular velocity Ω only receives contri-
butions from the tangential components [26].
Discussion.– For the physical interpretation of Eqs. (21),
it is useful to separately highlight [27] the source of phore-
sis, associated to the problem (18) describing how the
system is driven out of equilibrium (in this case, the only
source is activity), and the mechanisms of phoresis, asso-
ciated to the problem (19), which concerns how particle
motion emerges.
Pertaining to translation, there are two contributions

inV, similar in mathematical structure but with different
physical meaning and dependence on the system param-
eters. Thus, the “surface-charge–driven mechanism” cor-
responding to V (S) follows from the coupling between the
equilibrium charge distribution induced by the particle
charge (the pieceQ(S)(r) of the solution to Eqs. (19)), and
the departure from equilibrium driven by activity. This
component of the motility mechanism can be captured by
linear-response theory and may eventually be interpreted
as “phoresis in self-generated gradients”. On the con-
trary, the contribution associated to Q(A)(r) and V (A),
which depends entirely on activity and was first identified
in Refs. [26, 30], precludes a similar interpretation due to
the specific bi-linear dependence on the activity rate A;
that is, it cannot be derived in the classic framework of
Ref. [36]. This contribution is precisely the “correlation–
driven mechanism” of chemophoresis [26, 27], so termed
because it vanishes in the absence of correlations (i.e.,
when λD → 0, see, c.f., Eqs. (23)).
As for the rotational velocity Ω, it highlights the con-

ceptual difference between the two mechanisms, which
manifests qualitatively by the lack of a contribution Ω(A).

As shown by Ref. [26], this is due to the fact that chirality
is not broken when both the source and the mechanism
of phoresis (as defined above) have the same origin —
the chemical activity, in this case. On the other hand,
in the generic case that the origins are unrelated, as in
the case of activity vs. surface charge, a preferred di-
rection of rotation emerges for the particle to attempt
to restore equilibrium, which explains the contribution
Ω(S) that is linear in the activity and in the charge. Ac-
cordingly, in experimental studies the rotational phore-
sis could play a key role in disentangling the contri-
butions of the two mechanisms (surface-charge–driven
vs. correlation–driven), as in this quasi–homogeneous ap-
proximation Ω is the telltale signature of, and it is in
whole attributed to, the former.
The selection rules (22) provide constraints on how

motility emerges. Focusing on the translational motion,
it occurs through the coupling of successive multipoles
of source and mechanism, respectively (activity and sur-
face charge for V (S), or just activity for V (A)). This en-
sures that at least one of the two is polar, i.e., there
must exist a “fore-aft” asymmetry in the particle surface
properties. The simplest choices are, e.g., a monopole
plus dipole of activity (aℓm = 0 if ℓ ≥ 2), with either a
monopolar surface charge (sℓm = 0 if ℓ ̸= 0) as was done
in Ref. [30], or with a monopole plus dipole of surface
charge (sℓm = 0 if ℓ ≥ 2) as was the case in Ref. [34].
But, obviously, Eqs. (21) allow one to predict very many
other choices of activity patterns for which motion would
occur, e.g., activity patterns missing the monopolar and
dipolar components but possessing a quadrupole com-
ponent which would couple with the dipole of the sur-
face charge. This observation also clarifies that Ref. [29]
missed the “correlation–driven” contribution (quadratic
in the activity) not because the particle considered was
not a net source of ion pairs (a00 = 0), but rather because
activity was modeled with a single multipole.
The phoretic velocities depend on the background ion

concentration c0 through the ratio λD/R as encoded by
the g functions. The dependence may be quite complex,
but robust features emerge in the limiting cases. When
λD/R → 0 (the so-called “thin–(Debye)–layer approxi-
mation” [11, 23, 25, 26, 29, 36, 40, 42], because the force
field f(r) is non-vanishing only in a thin layer lying on
the particle surface), one gets the universal behavior [46]

g
∥
ℓℓ′ ≈

3

2

(
λD
R

)5

, g⊥ℓℓ′ ≈ 2
λD
R
g
∥
ℓℓ′ , gτℓℓ′ ≈ 2g

∥
ℓℓ′ . (23)

That is, in this limit the phoretic velocities are dominated
by the tangential components of the force and they are
predicted to vanish with increasing electrolyte concen-

tration as V,Ω ∼ c
−3/2
0 if V (S) ̸= 0, or as V ∼ c

−5/2
0 if

V (S) = 0. A vanishing velocity agrees [52] with experi-
mental observations [12, 32, 33]. In the opposite limit,
λD/R→∞, the phoretic velocities V,Ω reach finite val-
ues that are independent of λD (thus of c0) [46]. It is
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(a) V (S)/V (A) = 10−2

(b) a20 = 7

FIG. 1. Translation velocity V = ez ·V as a function of the
scaled Debye length λD/R, the quadrupolar moment a20(≡
s20), and the ratio V (S)/V (A) (see the main text for details).

It is shown in (a) at fixed V (S)/V (A) = 10–2 (white curves are
contour lines of constant V ) and in (b) at fixed a20 = s20 = 7.

noteworthy that both limiting behaviors hold regardless
of the specific combination of activity and surface charge
multipoles, and thus extend the results reported for spe-
cific choices [28–30, 34].

Beyond these limiting cases, the different dependence
on the system parameters of the two contributions to
V, but also the combination of multipole moments in
each of them, can be expected to lead generically to
changes in the direction of motion upon varying c0 and
R [29, 30, 34], even multiple times [26]. Figure 1 pro-
vides an illustrative example of the complexity emerging
when going beyond the usually considered configuration
of monopole plus dipole; e.g., we consider a model sys-
tem with a00 = s00 = 1, a10 = s10 ̸= 0, a20 = s20 ̸= 0,
all other multipoles being zero [53], so that V = ezV ,
Ω = 0 according to Eqs. (21), and choose realistic val-
ues of the ratio V (S)/V (A) = σs∆/qR

2A [54]. Panel (a)
shows that, upon varying the Debye length, the transla-
tional velocity can change sign once (e.g., at a20 = 6),
twice (at a20 ≈ 6.5), or three times (e.g., at a20 = 7)

due to the competition between the two mechanisms in
Eq. (21a) (surface-charge–driven vs. correlation–driven).
In panel (b) we illustrate how this behavior depends on
the ratio V (S)/V (A) for a fixed a20 = 7. Moreover, it
highlights that the values of the Debye length where this
competition is more significant lies in the experimentally
accessible range (from R = 1 µm and λD/R = 10−2, cor-
responding to ∼ 1 mM salt concentration, to R = 100 nm
and λD/R = 3 for deionized water). This behavior bears
similarity with certain experimental observations, both
in self-phoresis [55] and in classical phoresis in electrolyte
gradients [39].

Conclusion.– We have shown that an exact mathematical
mapping exists between a model of ionic self-phoresis and
the model of correlation–induced self-phoresis introduced
in Ref. [26]. This conceptual connection builds a consis-
tent unifying perspective for previously derived results,
provides several additional theoretical predictions, and
reveals insightful similarities between ionic self-phoresis
and self-chemophoresis.

A number of directions for further exploration emerge.
A study beyond the quasi-homogeneous approximation,
e.g., layering effects due to a finite ion size, should reveal
to what extent the mapping holds beyond this simplifi-
cation. An extension to the case of multiple types of ion
pairs in the electrolyte, including electrolytes with asym-
metric ions, would be also useful in order to address re-
alistic experimental configurations. Finally, it would be
interesting to examine other mechanisms of ionic activity
that involve either the release of a single species of ions,
e.g., the redox reactions in bi-metallic structures [18], or
an ion exchange with the electrolyte, as in the case of the
Nafion [57, 58] or resin [59, 60] particles.
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I. HYDRODYNAMICS

The flow u(r) is determined by the mechanical balance between the body force density acting on the solution, see
Eq. (2),

f(r) = f+(r) + f−(r) = − c+(r)∇µ+(r)− c−(r)∇µ−(r), (I.1)

and the fluid stresses. This is expressed by the Stokes equation for incompressible flow,

η∇2u−∇p+ f = 0, ∇ · u = 0, (I.2)

where η is the viscosity of the solution and p is the pressure field enforcing incompressibility. The hydrodynamic flow
is subject to the boundary conditions of quiescent solution at infinity,

u(|r| → ∞)→ 0 , (I.3a)

which sets the rest frame with respect to which the velocities are measured, and of no slip at the surface of the particle,
which translates with velocity V and rotates with angular velocity Ω,

u(rp) = V +Ω× rp . (I.3b)

Finally, the yet unknown translational and rotational velocities V and Ω of the overdamped motion of the particle
are fixed by the requirement that the system “particle + fluid” does not experience external forces or torques.

II. DETAILS OF THE CALCULATIONS IN THE QUASI-HOMOGENEOUS REGIME

The procedure is very similar to the one carried out in Ref. [1]. We start with the body force density (2), which,
up to second–order in the small deviations from homogeneity, is given by

f± = −(c0 + δc±)∇(µ0 + δµ±) = −c0∇δµ± − δc±∇δµ± (II.1a)

⇒ f = −c0∇ (δµ+ + δµ−)− δc+∇δµ+ − δc−∇δµ− . (II.1b)

It is immediately apparent that, in the flow problem, it is necessary to go to the second order because at the first
order, f is a gradient, and thus cannot contribute to the fluid motion. But in the diffusion equations (1), the expansion
of f± to first order is sufficient, and it leads to Laplace equations for the chemical potential deviations,

∇2δµ± = 0 , (II.2a)

with boundary conditions at the surface of the particle following from Eqs. (6b),

er · ∇δµ±(rp) = −
A

c0Γ±
A(rp) , (II.2b)

a Here, equations of the main text are referenced by their respective numbers. Equations appearing only in the Supplemental Material are
cited by a combination of the section number (in Roman numerals) and the equation number within the section (in Arabic numerals).
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and at infinity, corresponding to the particle reservoir, see Eq. (6a),

δµ±(|r| → ∞) = 0 . (II.2c)

Similarly, for the electrostatic problem the first order expansion is sufficient, and Eqs. (7, 8) render the boundary–
value problem

∇2ψ = −q
ϵ
(δc+ − δc−) , (II.3a)

er · ∇ψ(rp) = −
σs
ϵ
S(rp) , (II.3b)

ψ(|r| → ∞)→ 0 . (II.3c)

The “excess” concentrations δc± follow from expanding at linear order the chemical potential (3) with the ideal gas
approximation (Eq. (5)):

δµ± = δc±
∂2h

∂c2±
(c0, c0) + δc∓

∂2h

∂c+∂c−
(c0, c0)± qψ =

1

βc0
δc± ± qψ , (II.4)

which is Eq. (12). One notices immediately the relation

N(r) := δc+ + δc− = βc0(δµ+ + δµ−) , (II.5)

for the deviations from homogeneity of the total concentration of ions. With δµ±(r) known as the solution of the
boundary–value problem (II.2), the relations (II.4) provide δc±(r); by plugging these into Eqs. (II.3) the boundary–
value problem for the electric potential ψ(r) can be solved, and all the relevant functions are thus determined.
However, for the purpose of just calculating the phoretic velocities of the particle, not all of the above steps are

necessary. As noticed, the first order terms in the expression (II.1a) for the force do not make contributions to the
velocity. At the second order, we have

f = f+ + f− = −(δc+∇δµ+ + δc−∇δµ−) = −
1

2
(δc+ + δc−)∇(δµ+ + δµ−)−

1

2
(δc+ − δc−)∇(δµ+ − δµ−)

= − 1

4βc0
∇
(
N2

)
− 1

2
Q∇M, (II.6)

after using the definitions (II.5, 14, 15). The first term in the final expression is a perfect gradient, and thus
irrelevant for the motion of the particle; accordingly, after dropping it we arrive at the (for our purposes equivalent)
expression (13) for the body force density responsible for the particle motility.
By subtracting the two problems contained in Eqs. (II.2) (one for δµ−, another one for δµ+), one immediately

obtains the boundary–value problem (18) obeyed by M(r). Likewise, by subtracting the two Eqs. (II.4), one obtains
the relation

2qψ(r) =M(r)− 1

βc0
Q(r). (II.7)

And then, the electrostatic boundary–value problem (II.3), complemented by Eqs. (18), leads to the problem (19) for
the charge concentration field. Due to the superposition of sources in Eq. (19b), one can write the solution as

Q(r) = Q(A)(r) +Q(S)(r) , (II.8)

where each field satisfies a different problem:

∇2Q(A)(r) =
1

λ2D
Q(A)(r) , (II.9a)

er · ∇Q(A)(rp) = −A
∆
A(rp) , (II.9b)

Q(A)(|r| → ∞) = 0 , (II.9c)
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and

∇2Q(S)(r) =
1

λ2D
Q(S)(r) , (II.10a)

er · ∇Q(S)(rp) =
σs
qλ2D

S(rp) , (II.10b)

Q(S)(|r| → ∞) = 0 , (II.10c)

respectively.

III. MAPPING BETWEEN IONIC SELF-PHORESIS AND CICP

The relevant ingredients of the model introduced in Ref. [1] for CICP are the concentration field n(r) of a chemical,
its chemical potential µ(r) and the associated free energy,

HCICP[n] =

∫

fluid

d3r

[
h(n) +

1

2
λ2|∇n|2

]
, (III.1)

where λ is a parameter related to the correlation length (see Eq. (III.2)). Notice that, unlike with the free energy
employed in Eq. (4), the correlations are modeled through a square–gradient term in the concentration without the
mediation of a field like the electric potential ψ(r). The quasi-homogeneous approximation is obtained by linearizing
around the equilibrium state n(r) = n0, in which the correlation length is given as

ξ =
λ√

h′′(n0)
. (III.2)

The following table provides, in a side-by-side form, the mapping between this model for CICP and the model
presented in the main text for ionic chemophoresis.

eq. numbers in
this work

ionic chemophoresis
correlation–induced

chemophoresis (CICP)
eq. numbers in
Suppl. Mat. [1]

(13) f = −1

2
Q∇M f = −n0Ψ∇µ (III.31)

(18a) ∇2M = 0 ∇2µ = 0 (II.5)

(18b) er · ∇M(Rer) = −
A

βc0∆
A(er) er · ∇µ(Rer) = −

q

n0Γ︸︷︷︸
b1

A(er) (II.6)

(18c) M(r→∞) = 0 µ(r→∞) = µ0 (II.6)

(II.9a, II.10a) ∇2Q(A,S) = λ−2
D Q(A,S) ∇2Ψ = ξ−2Ψ (II.10)

(II.9b)

(II.10a)

er · ∇Q(A)(Rer) = −
A
∆
A(er)

er · ∇Q(S)(Rer) =
σs
qλ2D

S(er)





er · ∇Ψ(Rer) =
q

n20Γ

(
ξ

λ

)2

︸ ︷︷ ︸
b2

A(er) (II.12)

(II.9c, II.10c) Q(A,S)(r→∞) = 0 Ψ(r→∞) = 0 (II.11)
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This table leads to the following “translation rules”:

ionic
chemophoresis

M Q(A) Q(S) λD A/βc0∆ −A/∆ σs/qλ
2
D A =

∑
ℓm aℓm Yℓm S =

∑
ℓm sℓm Yℓm

CICP µ− µ0 2n0Ψ ξ b1 2b2n0 A =
∑

ℓm aℓm Yℓm

The phoretic velocities for CICP can be represented with the same kind of sums over modes as in Eqs. (21) (see
Eqs. (III.37, III.44) in Ref. [1])

V = V0
∑

ℓm,ℓ′m′

aℓmaℓ′m′ · · · , Ω = Ω0

∑

ℓm,ℓ′m′

aℓmaℓ′m′ · · · , (III.3)

with the characteristic scales (see Eqs. (III.38, II.2))

V0 = b1b2n0
R3

6πη

(
R

ξ

)2

, Ω0 =
3V0
4R

. (III.4)

Therefore, making use of the translation table one arrives at the expansions (21a, 21b) with the scales shown in
Eq. (21c):

V (A) ←→ − V0 = − A
βc0∆

(
− A
2∆

)
R3

6πη

(
R

λD

)2

=
q2R5A2

6πηϵ∆2
, (III.5a)

V (S) ←→
(
R

λD

)−2

V0 =

(
R

λD

)−2 A
βc0∆

σs
2qλ2D

R3

6πη

(
R

λD

)2

=
qR3Aσs
6πηϵ∆

. (III.5b)

IV. THE PHORETIC VELOCITIES

The expressions (21) follow from solving the boundary–value problems (18, 19) as expansions in spherical harmonics
(see Eq. (20)), and evaluating the integrals appearing in Eqs. (9) with Eqs. (11) for the hydrodynamic kernels and
Eq. (13) for the force density. The details can be found in Ref. [1] and lead to explicit expressions for the g functions
and the G vectors. Specifically, one has (we here use the short-hand notations λ ≡ λD/R, s ≡ r/R)

g⊥ℓℓ′(λ) :=
∫ ∞

1

ds

(
− 1

2s3
+

3

2s
− 1

)
s−ℓ′ cℓ(s, λ) , (IV.1a)

g
∥
ℓℓ′(λ) :=

∫ ∞

1

ds

(
1

4s3
+

3

4s
− 1

)
s−ℓ′ cℓ(s, λ) , (IV.1b)

and

gτℓℓ′(λ) :=

∫ ∞

1

ds

(
1

s3
− 1

)
s1−ℓ′ cℓ(s, λ). (IV.1c)

One can recognize the pieces stemming from the hydrodynamic kernels (11), while the functions

cℓ (s, λ) := γℓ(λ)
Kℓ+1/2(s/λ)√

s
, (IV.2)

are the coefficients in the expansion in spherical harmonics of the solution to Eqs. (19); the functions Kn(x) are the
modified Bessel functions of the second kind of order n [2, 3], and

γℓ(λ) = −
λ2

(ℓ+ 1)Kℓ+1/2(λ−1) + λ−1Kℓ−1/2(λ−1)
. (IV.3)
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And one also has the vectors

G⊥
ℓm;ℓ′m′ =

√
(2ℓ+ 1)(2ℓ′ + 1)

(
1 ℓ ℓ′

0 0 0

)
(IV.4a)

×
[
ez

(
1 ℓ ℓ′

0 m m′

)
− ex − iey√

2

(
1 ℓ ℓ′

1 m m′

)
+

ex + iey√
2

(
1 ℓ ℓ′

−1 m m′

)]
,

G
∥
ℓm;ℓ′m′ = −

√
(2ℓ+ 1)(2ℓ′ + 1)

ℓ′ + 1

(
1 ℓ ℓ′

0 0 0

)
(IV.4b)

×
{
m′

[
ex + iey√

2

(
1 ℓ ℓ′

−1 m m′

)
+

ex − iey√
2

(
1 ℓ ℓ′

1 m m′

)]

+

√
ℓ′(ℓ′ + 1)−m′(m′ + 1)√

2

[
ex − iey√

2

(
1 ℓ ℓ′

0 m m′ + 1

)
− ez

(
1 ℓ ℓ′

−1 m m′ + 1

)]

+

√
ℓ′(ℓ′ + 1)−m′(m′ − 1)√

2

[
−ex + iey√

2

(
1 ℓ ℓ′

0 m m′ − 1

)
− ez

(
1 ℓ ℓ′

1 m m′ − 1

)]}
,

Gτ
ℓm;ℓ′m′ = − i(−1)

m

ℓ+ 1
δℓ,ℓ′

[
ezm

′δm+m′,0 +
√
ℓ(ℓ+ 1) +mm′

(
ex − iey

2
δm+m′,−1 +

ex + iey
2

δm+m′,1

)]
, (IV.4c)

expressed in a Cartesian basis {ex, ey, ez} and in terms of the Wigner 3j symbols.

A. Limiting behaviors in λ = λD/R

The integrals appearing in the definitions of the g–functions can be expressed analytically in terms of the exponential
integral function [1], and not all of them are needed: because of the selection rules (22), the only functions that are
required are of the form

g⊥ℓ,|ℓ±1|, g
⊥
|ℓ±1|,ℓ, g

∥
ℓ,|ℓ±1|, g

∥
|ℓ±1|,ℓ, g

τ
ℓ,ℓ ̸=0,0. (IV.5)

The plots in Fig. S1 show some of them. Of particular interest are the limiting behaviors, already explored in Ref. [1].
When λ→ 0, the functions (IV.2) behave exponentially,

cℓ(s, λ) ≈ −
λ3

s
e(1−s)/λ. (IV.6)

Therefore, the integrals in the definitions (IV.1) of the g–functions are exponentially dominated by the lower limit
(s = 1) and can be thus approximated using Watson’s lemma (see, e.g., [4]) in order to obtain the leading asymptotic
behavior,

g⊥ℓℓ′ ≈ 3λ6, g
∥
ℓℓ′ ≈

3

2
λ5, gτℓℓ′ ≈ 3λ5, (IV.7)

(this is Eq. (23)), which turns out to be independent of the value of the indices ℓ, ℓ′.
In the opposite limit, λ → ∞, one has to address separately the contributions associated to V (A) and V (S), i.e.,

following from the decomposition (II.8). One first notices that the functions (IV.2) behave in this limit as

cℓ(s, λ) ≈ −
λ2

(ℓ+ 1)sℓ+1
, (IV.8)

and all the integrals that comply with the constraints (IV.5) are convergent. Thus, all the g–functions scale as
λ2 in this limit. Since the velocity scales V (S) and Ω(S) are always accompanied by a factor λ−2 = (R/λD)2 in
expressions (21), this gives a λ–independent value for the phoretic velocity stemming from the surface-charge–driven
mechanism.
One would be tempted to conclude that the velocity due to the correlation–driven mechanism will therefore grow

as λ2. This is however not the case because the leading asymptotic contributions cancel altogether when inserted in
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the expressions (21). This can be easily understood as follows: if the limit λD = Rλ→∞ is taken in Eq. (II.9a), the
boundary–value problem for the field Q(A)(r) becomes the same as the problem (18) for the field M(r), and one can
write Q(A) = M/βc0, so that the contribution to the force field (II.6) is a perfect gradient, and thus irrelevant. This
means that this contribution to the phoretic velocity is determined by the next-to-leading asymptotic behavior of the
g functions. This was done explicitly in Sec. VI of the Supplementary Material of Ref. [1] for the functions g⊥, g∥;
the same method can be applied straightforwardly to gτ . The final conclusion is that also this piece of the velocity
adquires a finite, λ–independent value in this limit.
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FIG. S1. Log-log plots of the functions g⊥ℓℓ′(λ), g
∥
ℓℓ′(λ), g

τ
ℓℓ′(λ) for some choices of the pairs (ℓ, ℓ′) (as indicated by the labels)

that fulfill the constraints (IV.5). Also shown are the asymptotic behaviors derived analytically.
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