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ABSTRACT. We discuss exponential decay in LP(RY), 1 < p < oo, of solutions of a fractional Schrédinger
parabolic equation with a locally uniformly integrable potential. The exponential type of the semigroup
of solutions is considered and its independence in of 1 < p < oo is addressed. We characterise a large
class of potentials for which solutions decay exponentially.

1. INTRODUCTION

In this paper we discuss exponential decay of solutions of fractional Schrédinger semigroups

ug + (=A)Pu+V(z)u=0, ze€RN t>0
u(z,0) = ug(z), xRN
with 0 < p < 1, up € LP(RY) with 1 < p < oo.
The nonnegative potential V' > 0 belongs to the locally uniform space L%) (]RN ), which, for 1 < py <
00, is composed of the functions V' € L° (R™V) such that there exists C' > 0 such that for all zo € RY

loc
/ ‘V’PO S C
B(zo,1)

IVl zro vy = g IVl 2o (B(z0,1))-

(1.1)

endowed with the norm

For py = oo we define L (RY) = L°(RY).
For ;1 = 1 and potentials 0 < V € LY(RY) + L>®(RY) it was proved in [1] that the exponential
decay in LP(RY) of solutions of (1.1) holds iff V is sufficiently positive at infinity in the sense that

/ V(z)dr = oo (1.2)
G

for any open set G C RY containing arbitrarily large balls, that is, such that for any r > 0 there exists
zo € RN such that the ball of radius r around g is included in G.
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To extend this result to solutions of (1.1) with 0 < ¢ <1 and 0 <V € LFP(RN) we first prove in
Section 3 that if py > max{%, 1} then for any 1 < p < oo, (1.1) is well posed in LP(RY) and that it
defines a contraction semigroup of solutions u(t,uo) = S, v (t)up. This semigroup is order preserving,
strongly continuous if 1 < p < oo and analytic if 1 < p < oo, see Proposition 3.1. Moreover, for smooth
initial data, solutions can be represented in terms of the fractional unperturbed semigroup (that is,
when V' = 0) and the variation of constants formula. Also, for nonnegative initial data, the larger
the potential, the smaller the solution is, see Proposition 3.3. If V &€ LOO(RN ) then the variation of
constants formula applies to all initial data in LP (RN ), see Proposition 3.4, and therefore it is natural
to consider potentials 0 <V € Li} (R™) that can be approximated in Ly (R™) by bounded ones and
to analyse the convergence of the corresponding semigroups, see Proposition 3.5 and Theorem 3.7.

With these tools, in Section 4 we address the exponential decay of solutions of (1.1) in LP(RY)
with 1 < p < oo for potentials 0 < V € LF?(RY) satisfying (1.2). For this, we first prove that the
exponential decay, actually, the exponential type of the semigroup {S,, v (t)}:>0, does not depend on
1 < p < 0o and then characterise it in such a way that if solutions decay exponentially then (1.2) holds.
Conversely, if the potential can be approximated by bounded ones, then (1.2) actually characterises
the exponential decay, see Theorem 4.7.

Finally, in Section 2 we have included several known results for the unperturbed problem (1.1) with
V=0.

In this paper we denote by ¢ or C generic constants that may change from line to line, whose value
is not important for the results.

Also we will denote A ~ B to denote quantities (norms or functions, for example) such that there
exist positive constants ci, ¢y such that c;A < B < e A.

2. BASIC RESULTS ON FRACTIONAL OPERATORS AND SEMIGROUPS

In this section we review several known results for the case of the unperturbed equation, that is,
(1.1) with V = 0.

First, for the standard heat equation, u = 1, we have that for a wide class of initial data, including,
LP(RY) for 1 < p < oo, the solution of (1.1) is given by

S(t)up(x) = / k(t,z,y)uo(y)dy t>0, zeRY, (2.1)
RN
for the selfsimilar convolution kernel
1 - 1 z—y|?
0 <kt z,y) = —xko <:I7 1 y) = N 6_‘ 43‘ . (2.2)
tz t2 (4mt)=2

In particular, (2.1) defines an order preserving semigroup of contractions in LP (RN ), 1 <p <o
and

SOl zzr@ry =1, t>0.

This semigroup is strongly continuous if 1 < p < oo and analytic if 1 < p < oco. In particular, if
1 < p < oo then for up € LP(RY) we have

S(t)ug — up as t— 0t in LP(RY) for any 1 < p < oo.

For all these classical results see e.g. [6].
If p = oo then for ug € L>®(RY)

S(tyug — ug as t — 07 in L (RY) for any 1 < p < oo. (2.3)

loc

Finally, because of the regularity of the kernel, we have that for 1 < p < oo and uy € LP(RY),
u(t) = S(t)ug in (2.1) is of class C°°((0,00) x RY) and satisfies the heat equation pointwise in
(0,00) x RY.
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The semigroup of solutions possesses also several smoothing estimates among which we recall that
for 1 < p < g < oo there exists a constant ¢, , > 0 such that

c
IS (zr@y),La@y)) = %, t>0.
125
The fractional powers of —A can be defined in many equivalent ways, see [14]. From the heat
semigroup (2.1) it can be defined as

1 > dt
AWM - - _ et
(~AVota) = g [ (W) — o(0) 75
for 0 < u < 1, which coincides with the nonlocal operator defined by

O2) — 9(2) o)

(—=A)¢(z) = Cn,p P.V. P T

20, p(N
with Cn,, = %(2:5)))’ see [12]. When considered in LP(RY) for 1 < p < co the domain of (—A)X

is the set of functions ¢ € LP(R") such that (—A)“¢ € LP(RY) with the natural norm

[ollzr + [(=2)"¢l e,

see [7, Section A.2] when 1 < p < oo and [8, Appendix A] when p = co. For 1 < p < oo this domain
coincides with the Bessel space Hy*(RN). When p = 2 these spaces will be denoted by H2“(RN).
Using [7, Lemma 6.2] we have in particular, that for 1 < p < oo,

N
1 .
H(—A)2¢”LP(RN) ~ Z ”3j¢”Lp(RN) m H;%(RN%
j=1

and for =3+ 4’ € (0,1)

=z

(=A@ Loy ~ Z A ) 050l Lo (mvy.-

In particular, for p = 2 and for u = 5 + ' € (0, 1)

N
[(=A)*¢| 2@y ~ Z[anS]WZy/Q(RN)
=1

where in the right hand side we have the Gagliardo seminorms

o(y)lP
Phivin @) //RR |x— S W

The fractional semigroup, that is, the semigroup defined by the fractional Laplacian, can be con-
structed from the heat semigroup for 0 < y <1 and 1 < p < oo as

() = /0 " Fin(5)S(s)pds = /0 T Ra()S(sth)bds, £ 0 (2.5)

and S,(0)¢ = ¢ for ¢ € LP(RY), where fiu is given by

) o+100 N
5= e dz A >0,
0 é ft,,u()‘) = 2 /U—ioo

0 A <0,

o > 0, and the branch for z* is chosen such that Re(z#) > 0 if Re(z) > 0, and we have [J° fr.(s)ds =

1, see [7, Appendix A.3], [19, p. 259] and [19, (20’), p. 264]. This semigroup is bounded, strongly

continuous and analytic, see [7, Corollary 4.1] and [7, Appendix A.3]. For p = oo the same construction

is possible, although the semigroup is bounded and analytic but not strongly continuous, see [8,
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Proposition B.1]. In particular, for 1 < p < oo and p € (0,1), as the semigroup is analytic, see [15,
Proposition 2.1.1], we have that u(t) = S, (t)uo with ug € LP(RY) solves
ug + (~A)Fu=0, zeRY t>0, u(0) = up
and for 1 < p < oo we have
Su(tug — ug as t— 0" in LP(RY).
When p = oo the following holds.

Proposition 2.1. For ug € LOO(RN) and 0 < p <1

Su(tyug —ug as t— 0" in L) (RY) for any 1 < p < oco.

loc

Proof. Using the second expression in (2.5) and [19, formula (14), p. 262], if ug € L®(R") and we
take a ball B ¢ RY, using (2.3) and Lebesgue’s dominated convergence theorem, we get

o 1
||Su(t)u() — ’LL(]HLp(B) < / fl,u(s)HSl(st“)’LL() - U()HLp(B) —0 as t— 0T .
0
[ ]

Also, from (2.5) and the properties of the heat semigroup, it is easy to obtain that the fractional semi-
group is of contractions and order preserving in LP(RY) for 1 < p < co. Actually [|S,(?)]| oy =1
for all ¢t > 0, see e.g. [7, Corollary 3.7]. Moreover it satisfies, among other, the smoothing estimates

c
1S, (W)l (1 @3y, Loy = i, >0, (2.6)

tﬂ(p q)7
for 1 < p < ¢ < o0, see [5, Theorem 6.2] and [7, Proposition 6.5].
We also have for 0 <7<+ <1,1<p<g< o0

C /
, < VP4 . 2.
||Sﬂ(t)‘|£(Hg’Y(RN)7H§’Y RN)) = t%—%_%) max{cp,q,u, tﬁ//;“{ }, t>0 ( 7)
The fractional semigroup has a C*°, positive convolution self similar kernel such that
Suthun(e) = [ ku(tspuoly)dy t>0, v R, (2.8
RN
1 -y 1 -y
0 <kult,z,y) = —xkop <—1> ~ —Hy < T > ; (2.9)
t2n t2n t2n t2n
where
H,(2) '{171 } L(2) _ cRY (2.10)
z) =minq 1, ~1,(z)= » Z . :
! | 2| V20 g 1+ |22)5"

The profile kg, is even and satisfies
T N
—AN)ky,, = —Vk —Fk
( ) 0,p 2/~L 0,p + 2/~L 0,15
see [9, Section 6], [4, 5]. Since the kernel is C* so the solution of the fractional heat equation in (2.8)
is C°((0,00) x RN), see [5].
3. THE FRACTIONAL SCHRODINGER SEMIGROUP

In this section we study the perturbed equations
ug + (=A)Pu+V(z)u=0, zeRN ¢t>0
u(z,0) = ug(z), = €RN
for potentials in the uniform space L7? (RN), wit pg > 1, that is, satisfying
HV”LTEJO(RN) = SupN ”VHLPO(B(xo,l)) < 00.

zo€ER
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Proposition 3.1. Assume 0 <V € L’{]O (RN), for po > %

Then —(—A)* — V(z) defines an order preserving semigroup of contractions in LP(RYN) for any
1 < p < oo which is strongly continuous if 1 < p < co and analytic for 1 < p < oo and that we denote

{Suv ()} =0

These semigroups are consistent in the sense that the semigroup in LP(RY) and in L4(RYN) give the
same result for any t > 0 if ug € LP(RY) N LI(RY).

Also the semigroup in LP (RN) is the adjoint of the semigroup in LP(RYN) for 1 < p < oo and
1, 1
lyl=1

Proof. Consider the bilinear symmetric, nonnegative definite form

a@) = [ A o-a)iv [ Vi

RN

We first prove that is is well defined in the Bessel space H*(RY). For this, denote by {Q;} the
family of cubes centered at points of integer coordinates in RY and with edges of length 1 parallel to
the axes. Thus if V € LY (RN), for any ¢,v¢ € H*(RN) we have, using Hélder’s inequality,

L v@en =32 [ W@l < 31Vl ol Wl

with p% + % = 1 and H*(RYN) c L"(RY), that is p — % > —X&_ This implies in turn that we must

T
have py > % (with strict inequality if pg = 1 which implies r = o0). Hence, using embedding
H"(Q;) C L™(Q;), with constants independent of i, we get

L V@lollol < CIVlLgam 3 ol vl

1 1
< CIVllzzmy (2 191m@0) " (D2 18030mi01)) ™ < CUIV Iz oy 191 o 1 ey

by Lemma 3.2 below.
Now if ¢ € HH(RYN) then |¢| € H*(RYN). To see this we will use the generalised Strook-Varopoulos
inequality, see [11, Lemma 5.2], for g(¢), (—A)*¢ € L2(RY)

/ 9(@) (=AY > / (~A)EG)P >0 (3.1)
RN

RN

with ¢’ = (G’)%. In particular, with g(s) = s and G(s) = |s| we get for ¢, (—A)*¢ € L?(RY), that is,
for ¢ € H?**(RYN)

H(—AYep > / (~A)5 (6] > 0
RN RN

and we get, for ¢ € H?*(RY)

NHIE —A)Hp = ~A)z g
/RNI( )59l S/RM Vo /RN|< )29
For ¢ € H*(R™N), by density,

A5 A2 AL 2
L a=arsielr < [ -ayter.

Thus |¢| € HHRY).
In particular, if V' > 0 we have

a(|¢],|9]) < a(¢,9), ¢ € HHRY). (3.2)
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On the other hand, if 0 < ¢ € H#(RY) then v = min{¢, 1} € H*(RY). To see this observe that
v = g(¢) with g Lipschitz and ¢'(s) = &g 3(s). Then in (3.1) we have G(s) = g(s) and for smooth ¢

/ (A5 g(@)? < / dB) Ao = [ (~A)Ege)(-A)Es
RN RN

RN
and Holder’s inequality gives

/ (A g(@)f < / (CA)S6P, ¢ e BMRY).
RN RN

Thus g(¢) € H*(RY). By density, if ¢, € H**(RY) converges in H*(R") to ¢, the inequality above
and g(¢n) — g(¢) in L*(RY) implies that g(¢,) — g(¢) weakly in H*(RY) and we extend the
inequality to ¢ € H*(RY).
In particular, if V' > 0 we have
a(v,v) < alg,9), ¢ € H'RY). (3.3)

Then from (3.2) and (3.3), [10, Theorem 1.3.2, pag 12] and [10, Theorem 1.3.3, pag 14|, we have an
order preserving semigroup of contractions in LP (RN ) for 1 < p < oo. Moreover, from [10, Theorem
1.4.1, pag 22] the semigroup in LP(RY) is the extension of the one in L?(RV), the semigroup in LP(R")
is the adjoint of the semigroup in L?’ (RV) for 1 < p < oo, where 1—1) + 1% = 1. Also, the semigroup is
analytic for 1 < p < oo and strongly continuous for 1 < p < co. m

The following result, used above, was proved in Lemma 2.4 in [2].

Lemma 3.2. Let {Q;} be the family of cubes centered at points of integer coordinates in RN and with
edges of length 1 parallel to the axes.
Then for any 0 < s<2and 1 <p< oo

> WMy < Cléluy  for all o € HERY)

The next result shows in particular that, for suitable p, the semigroup {S,, v (t)}+>0 above in LP(RY)
can be represented in terms of the fractional semigroup {S,(t)};>o and the variation of constants
formula (a.k.a. Duhamel’s principle), at least for smooth initial data.

Proposition 3.3. For 0 < V € LP(RY) with py > max{%,l}, the semigroup u(t) = Sy v(t)uo

satisfies the following.

(i) For 1 < p < oo and p < pg, the operator —(—A)* — V' with domain D((—A)*) = Hg”(RN)
is a sectorial operator and it is the generator of the analytic semigroup S, v(t). Moreover, for
uy € H2*(RN), we have u € C(]0,00), Ho* (RN)) N C1((0, 00), LP(RN)) and

u(t) = S, (t)uog — /0 Syt —s)Vu(s)ds, t>0.

(ii) For 1 <p < oo and ug € LP(RY),
[Su,v (D)ol < Sy (8)|uol < Su(t)]uol.
In particular, the semigroup S, v (t) atzsﬁes the smoothing estimates (2.6).
(iii) For 1 < p < oo and 0 < ug € LP(RN), if Vi > Vi then for ug > 0 we have 0 < Suw (Hug <
Proof. (i) We show that the domain of (—A)* +V coincides with the domain D((—A)*) = HJ*(RN)

and is a sectorial operator. Actually, denote by {Q;} the family of cubes centered at points of integer
coordinates in RN and with edges of length 1 parallel to the axes. Thus if V € L%) (RN), for any

NS Hg“ (R™) we have, using Hélder’s inequality,

Vol em, = [ VP8P =3 /Q VISP < S 1V o 160 @



provided we chose r such that % = = + = which is possible since pg > p. Now we use the Sobolev

embedding
10l @)) < Clloll y20e o,

with constants independent of i, for —7 < 2,us — ;, which requires pﬂo < 2us. Hence we get, using
Lemma 3.2,

IVl ey < CIV o aon) 160 g < TV Wy 90y (3.4)

Then, since pg > 2ﬁ we can take 0 < s < 1 above and then by interpolation

IV ellr@yy < ClIVI e w19 g2ms vy < ClV Iz ey 1911721 vy [
and then, for any € > 0,
IVl ory < ell(=A) 0l owny + Celldll ony, ¢ € HFRY). (3.5)
The sectoriality result follows from Theorem 2.1 in Chapter 3 in [16]. The regularity of u(t) = S, v (t)uo
when ug € Hp*(RN) also follows from Chapter 1 in [16]. In this case u satisfies
up = —(—AYu—Vu, t>0
and we get the integral representation of u as Vu € C([0,00), LP(RY)), see Chapter 4, Section 4.2 in
[16].
(ii) Since S,y (t) is order preserving, it is enough to prove the second inequality because for any order
preserving semigroup in LP(R™), since —|ug| < ug < |ug| we have
1S (t)uo| < S(t)|uol.
First, for 1 < p <pp, if 0 < uo €n ”(]RN) we know that V' > 0, u(t) = S, v(t)up > 0 and S,(t) is
order preserving and then by (i fo Vu(s)ds > 0 and

u(t) = Sy(tyug /0 Su(t — $)Vu(s)ds < Su(thug, ¢ >0

and (ii) holds for such initial data. By density we get the result for 0 < ug € LP(RY). For initial data
in LP(RY) with pyp < p < oo the result follows again by density from the case above.
Finally, for p = oo and 0 < ug € L®(RY), consider 0 < ¢ € L'(R") and then

(Spv (B)uo, p) = (uo, Suv (H)p) < (uo, Su(t)p) = (Su(t)uo, p)

and we get the pointwise inequality.
Now it is clear that the estimates (2.6) apply to S, v (t).

(i) Again, first for 1 < p < po, if 0 < ug € Ho*(RY) and u;(t) = Suv,(t)ug > 0, by (i) ua(t) satisfies
(u2)t + (—A)uy + Vi(z)ug + (Va(z) = Vi(z))up =0, zeRN, t>0
and then, since 0 < (Vi — Va)us € C([0,00), LP(RY)),

t
ua(t) = Sy (o + [ St = Vi~ VoJua(s)ds = Sy (o, £ >0,
0

By density, (iii) is proved for this range of p. For initial data in LP(R") with pg < p < oo the result
follows again by density from the case above.
Finally, for p = oo and 0 < ug € L®(R"), consider 0 < ¢ € L'(R") and then

<Su,\/1 (t)u07 90> = <u07 SM,V1 (t)90> < <u07 Su,Vz (t)90> = <Su,V2 (t)u07 90>
and we get the pointwise inequality. m

In the case of a bounded potential 0 < V € L*®(RY), part (i) in Proposition 3.3 can be somehow
improved and for all 1 < p < oo, the semigroup {S,, v (t)}>0 above in LP(RY) can be represented by
7



the variation of constants formula for all initial data. Observe that actually the sign condition on V
is not needed in the proof below.

Proposition 3.4. Assume 0 <V € L®(RY). Then for 1 < p < oo the operator —(—A)* —V with
domain D((—A)") = HZ*(RN) is the generator of the semigroup S,v(t).
For1<p < oo and ug € LP(RY), we have that u(t) = S,y (t)uy satisfies

u(t) = S, (t)uog — /0 Syt —s)Vu(s)ds, t>0.

Proof. For 1 < p < oo the semigroup {S,(t)};>0 is strongly continuous and the multiplication by V'
is a bounded operator in LP(RY). Hence the result follows from Section 3.1 in [16].
Before dealing with the case p = oo observe first that for 1 < p < oo and Tp||V||L~ < 1 the mapping

Fp(u)(t) = Su(t)uo — /0 Su(t—s)Vu(s)ds

defines a contraction in L*>((0,Tp), LP(RY)) as

t
[Fp(@)@)l[Lr < [luollzr +/0 Voo llu(s)| e ds

so Fp(u) € L=((0,Tp), LP(RY)) and
[1Fp (u)(t) = Fp(v)(#)llzr < / [Vlzoe llu(s) = v(s)|[zr ds < To|[V[|lzee sup [Ju(s) —v(s)| -
0 0<t<Tp

Take uy(t) for 0 < ¢ < Tp the unique fixed point in L>((0,Tp), LP(RY)) and consider for t > Ty,
t
Hp(u)(t) = St — T)ui(To) — [ Su(t —s)Vu(s)ds.
To
With similar estimates as above it is immediate to get that this is also a contraction in L>((Ty, 2Tp), LP(RY))
and has a unique fixed point ug(t) for Ty < t < 2Tp. Then it is easy to get that the function

{ul(t), 0<t<Tp

u(t) =
( ) UQ(t), TO <t< 2T()

is a fixed point of F, in L>°((0,2Ty), LP(RY)). Proceeding by induction we get a fixed point of F,, in
L>=((0,kTy), LP(RY)) for any k € N. The uniqueness of the fixed point for 7, follows from Gronwall’s
lemma since for two such fixed points and ¢t > 0

[u(t) = v()l|r S/O IVl llu(s) — v(s)l|zv ds.

In particular, for 1 <p < oo and T' > 0, u(t) = S, v (t)uo for 0 <t < T is the unique fixed point of
Fp in L®((0,T), LP(RY)) for all T > 0.

Hence, if ug € LP(RN) N L>®(RY) with p > % then the semigroup solution in LP(RYN), u(t) =
S,,v(t)up satisfies, using the integral expression and (2.6),

t
[u(®)]|zee < lJuollze +/ %HVHLwHU(S)HLP ds
(t —s)2n

and therefore for any 7' > 0, S, v (-)ugp € L*°((0,T), L>°(RY)) and so it is the fixed point of Fi in
[0, 7] in L>((0,T), L>=(RN)).

Now for ug € L®(RY) take a sequence u? € LYRY) N L*[RY) c LP(RY) with p > % such
that ul — up weak-* in L>(RY) (for example, take the truncation by zero of ug outside the ball
B(0,n) C RY). Then for any ¢ € L'(RY) and ¢t > 0, as n — oo we have, since S, v (t)¢ € L*(RY),

(Suy (B)ug, @) = (ug, Spv (t)e) = (uo, Suv (t)e) = (Spv (t)uo, )
ie. S,v(t)up — S,y (t)up weak-* in L°(RY).



On the other hand, setting u™(t) = S, v (t)ug and u(t) = Su v (t)uo, we have,

t
(0.0 = (5. 5,(00) = [ ((:).V S, = 9
Therefore, for fixed £ > 0 and for 0 < s < t we have, as n — oo,
(u"(5), VSu(t = s)p) = (u(s), VSu(t — s)¢)
and for all n € N

[(u"(5), V-Su(t = s)@)| < [[VSu(t — s)ellrr = g(s)
with g € L'(0,t). Then Lebesgue’s theorem implies that, as n — oo, we get

(u(t), @) = (w0, S, (£)) /0 (u(5), VSt — 5)).

Hence, for all T > 0, u(:) = S, v (-)ug € L>=((0,T), L>°(R")) satisfies, for all ¢ € LY(RY),

t
(w(t): ) = (SuOuo ) = [ (St =s)Vuls)e), 0<t<T
and therefore .
u(t) = Sp(t)ug — / Su(t—s)Vu(s)ds
0

and u(-) = Sy, v (-)up is the unique fixed point of of Fu in [0, 7] in L>((0,7), L>°(RY)). m

In view of Propositions 3.3 and 3.4, given 1 < pg < oo we want to discuss the class of V' € L’[}) (}RN )
that can be approximated in L%) (R™) by bounded functions and to analyse the convergence of the
corresponding semigroups. Then we have the following result. Notice that below we use the class
L (RY) of functions in LF? (RY) such that the translations are continuous in the LF? (RY) norm, that
is, V € LY (RN) iff

7y V — VHLII’]O(RN) —0, as|y —0
where y € RY and 7,V (z) = V(z — y). This is a closed proper subspace of LT (RY), see [3].
Proposition 3.5. (i) For 1 < py < oo a function V € LY (RN) can be approzimated in LEP(RY) by
bounded functions if and only if, defining
M if V(z) > M
Vi(z) =< V(z) if —M <V(x) <M, M >0,
~M  ifV(z) < -M
we have Vay —— V in LYY (RY).
M—o00

(i) IfV e L%) (RN) then V can be approzimated in LT (RN) by bounded functions.
(iii) Assume V is not too large at infinity in the sense that there exists My such that

lim IV (y) = Vi ()7 dy = 0.
lz|—00 J B(2,1)
Then Vg — V in LY (RY).
M—o0
(iv) The class of functions in LYP(RYN) that can be approzimated in LYP(RN) by bounded functions is a
closed proper subspace of L’l}o (]RN ).
Proof. (i) Assume V can be approximated in LI (RY) by bounded functions. Then there exists
W, € L®(RY) such that W, — V in LIP(RY). Letting M,, = ||[Wy||r~, we have, for every
n [e.e]
z e RN,

/ V(y) — Var, ()P dy = / V(y) — M, [Po dy + / V(y) + M, dy
B((E,l) B(x71)n{V2Mn} B(w71)n{VS_Mn}
9



and thus

/ V(y) — Var, ()7 dy < / V() — W)™ dy.
B(x,1) B(z,1)

Therefore Vyy, — V in LPP(RY). Since clearly ||V — Vi LPO(RN) decreases with M, then
n o
—— Vin LP(RM).
VM M—o0 m U( )
The converse is immediate.

(ii) If V € LEP(RY) from the results in [3] we know that the solution of the heat equation satisfies
SV —— V in LI (®RY) and S(t)V € L¥(RY).

(iii) Deﬁne the family of bounded continuous functions in RY, Hy(z) = [ Ba1) [V (y) — Var(y)|Po dy
which are decreasing in M and converge to 0 as M — oo unlformly in bounded sets, by Lebesgue’s
theorem.

Then the assumption reads lim,|_o Ha,(z) = 0. Therefore, given ¢ > 0 there exists R > 0 such
that for |x| > R and M > M, we have

0 < Hpy(z) < Hpyy(x) <e.
This and the uniform convergence Hys(x) —— 0 for |z| < R implies Hy; — 0 uniformly in RY
M—o0 M—o00
and hence Vajy —— V in LPP(RY).
M—o0

(iv) The closedness is immediate as this class is the closure of L>®(R") in LI?(RY).
To show the subspace is proper, consider a sequence |z, | — oo with |z, — z,,| > 2 for all n,m € N.
N
Then define V(z) = 32, nn0X g, 1)(z). Clearly ||V|ro B,y < c for all z € RYN since B(z,1)
contains at most one point of {z,},, so V € L¥?(RY). Also, for any M > 0 if n > M we have

N
(nro — M )Po
v - VM”Lpo(B (@n,1)) = € v

s ¢ >0

n—oo

and therefore ||V — Vi ||”S >c>0foral M >0. m

L9 (RN)

Remark 3.6. (i) Assume V € LE*(RY) with py > 1 and can be approzimated in LYP (R™) by bounded
functions. Then V' can be approrimated in Lzlj(RN) by bounded functions. To see this just observe
that uniform spaces are nested, that is, L%(RN) C LqU(RN), if p>q.

(ii) Conversely, if V € LY (RN) with py > 1 and can be approzimated in L};(RY) by bounded functions,
then for every 1 < q < pg, V can be approximated in LqU(]RN ) by bounded functions. To see this,
just notice that like in bounded domains, we have the interpolation inequality

1 1-60 6

< 3 - = ) 0<b< 1,
11 zg ||f||LponHL1 2= o 1

for any f € LY (RY).

Now we analize the approximation of the corresponding semigroups. For this assume now 0 <
V e LP(RY) with py > max{%, 1} and consider the increasing sequence 0 < Vjy < V. Then, by

Proposition 3.3, we have, for 1 < p < 0o and 0 < ug € LP(RY),
and for M7 < My
0< SMVMQ (t)uo < S%VMl (t)uo.
Hence, the monotonic decreasing limit

=, def
Sy (B)uo = Hm Sy, (H)uo

10



exists pointwise and in LP(RN) for all ¢ > 0 and satisfies 0 < S,, v (t)up < S, v (t)uo, S,v (t + s)ug =
Suv(®)Suv(s)ug and limy g+ Sy (t)ug = up in LP(RY). Using the positive and negative part of
ug € LP(RY) we can extend S, v (t) to an order preserving C® semigroup of contractions in LP(RY).

Now we prove that S, (t) = S, v(t) for t > 0 if V can be approximated in LP(RY) by bounded
functions.

Theorem 3.7. Assume 0 <V € LI (RY) with py > max{%, 1} can be approzimated in LY? (RY) by
bounded functions.
Then S,y (t) = S, v (t) for t >0, as operators in LP(RY) for 1 < p < cc.

Proof. Take 0 < ug € CX(RY) and up(t) = Syvy, (H)uo and u(t) = S, v (t)ug for t > 0. Since these
semigroups are consistent in the Lebesgue spaces, it is enough to show that w(t) = limps— 00 ups(t)

for t > 0 in some of these spaces. Take 1 < p < pg. As ug belongs to the domain of the generator,
Hg”(RN), we have, by Propositions 3.3 and 3.4,

wnt(t) = S, (g — /0 St — $)Varuni(s) s, u(t) = Sy(t)uo — /0 Su(t — s)Vu(s)ds, t>0.

Also by general properties of semigroups in [16], we have that up(t), u(t) € Hy*(RN) for t > 0.
Now notice that (3.4), (3.5) and the closed mapping theorem also imply that the graph norm of
L= (—A)¥+V in H*(RY) is equivalent to the Hy*(RN) norm, that is,
colléllgze < NLGlo + 18ls < 19l
This implies, using that Lu(t) = LS, v (t)ug = Su,v (t)Lug, that

() gze < cluoll gz t>0.

Now using the integral representations above, and adding and subtracting the term fot Su(t —
s)Vau(s) ds, we get that zp/(t) = u(t) — ups(t) satisfies

t t
() = —/ Su(t — )(V — Var)u(s) ds —/ Su(t — s)Varzai(s)ds, ¢ 0.
0 0
Hence for 0 < r < 1, using (2.7),
t C t &
r < —_— — S
i ®llzer < [ G IV = Vil ds+ [ o= lVars(9)un s
and (3.4) yields

t c t c
HZM(t)Hng < /0 WHV - VMHL,’}O ||U(3)||ng ds +/0 WHVMHL,’}O ||ZM(3)||H§W ds

and then

t
lens ()l gz < CE IV = Vagll o ol yzu + € /0 201 (3)1] gz ds.

1
(t—s)
Then Henry’s singular Gronwall Lemma 7.1.1 in [13] implies that for any 7" > 0

lzae (Ol zer < CDOIV = Viallpgo ———0, 0<t<T.

Therefore S, v (t)ug = S,,v(t)ug for t > 0 and 0 < ug € C°(RY). By linearity and density we have
the result. m
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4. EXPONENTIAL DECAY

In this section we want to characterise certain classes of non negative potentials 0 < V' e Li} (RM)
with py > % such that the fractional Schrédinger semigroup {S,, v (t)}+>0 decays exponentially in

LP(RY). Since the semigroup is of contractions in LP(RY) for 1 < p < oo then either ||S,, v (2) | 2(Lrmyy) =
1 for all £ > 0 or there exists a > 0 such that

1Suv )l ze@yy < e, >0,
Then we define the exponential type of the semigroup {S, v (t)}i>0 in LP(RY), 1 < p < o0, as
def _
wp = sup{a € R, [|S,v (1)l gomnyy < e, t>0},

and w, > 0, since the semigroup is of contractions. The exponential type is related to the spectral

bound of the generator A, = —(—A)* — V, since these semigroups are order preserving, then for
1 <p<oo,
def
wp = 5(4p) := sup{Re(N), A € o(4)},
see [17, 18].
Before proving our main results, we state the following lemma. Below we denote by || - ||, =
I le(ze,oy-

Lemma 4.1. For 0 <V € LP(RY) with py > max{%, 1}, the semigroup u(t) = S, v (t)uo satisfies
the following.
(i) For1<p<oo andt >0,

1S,y (D)ll2—2 < [[Su,y (O)llp—p = [[Su,y O)llp—p < 115,y ()lloc—so0 = [|Su,v () [l1-1
(ii) The exponential type wy is independent of 1 < p < oo.

Proof. (i) Since for 1 < p < oo the semigroup in L (RV) is the adjoint of the semigroup in LP(RY)
we get the equalities in the statement.

Now, if 1 < p < 2 < p’ then by the Riesz-Thorin interpolation we get ||S,,.v (t)|l2—2 < IS, v () |lp—p =
1S, (E)lp—pr-
(ii) From (i) we immediately get wo > wp = Wy > Weo = wi.

Since the semigroup in L (R¥) is order preserving, then for t > 0, [|S,.v (t)|lcom00 = [1S,v ()Ll oo (-
Denote by X'g the characteristic function of the ball B(0, R), then for 2 € R, using that the semi-
group is of contractions in L>(R"Y) we get for z € RY,

1Suv (O 1(2)] < Sy ()X r(2)] + [Suy ()1 = Xr) ()] < 1+ |S,,v ()X r(2)|.
Now since from part (ii) in Proposition 3.3 the semigroup S, v (t) satisfies (2.6) we have, for ¢t > 1,
Suy ()X r(z) = Spv(1)Suy (t — 1) X r(2)
and therefore
Sy (DX B(@)] < Sy (Dllasooll S (t = DllasalXrlla = Cl[Suv(t = DasaRE.
Taking R =t we finally get

15,0 () lsomsoo < (1 4+ )18y (t = 1)]las2

and therefore wy, > wo and the result is proved. m

Remark 4.2. Observe that if [|Suv(t)llzr@myy = 1 for all t > 0 then there are solutions that
converge to 0 arbitrarily slow.
More precisely, for any continuous function g : [0,00) — (0,1] such that limy_o g(t) = 0, there

exists ug € LP(RY) such that
Suvi(t
lim sup 1Sy Buollzr _
t—o0 g(t)
12



To see this, assume by contradiction that for all ug € LP(RY) there exists C = C(uq) such that

1S,,v (t)uol e
VAT O = C(ug), ¢ > 0.
g(t) < Oluo)

Then, the uniform bounded principle implies that, for some M > 0,

1S, v ()l (L) <M.
9(t)
But then for large enough t we have ||S, v (t)|zry < Mg(t) < 1 which is a contradiction.

Now we give conditions on the potential to have exponential decay. Following [1] we consider the
following

Definition 4.3. The class G consists of all open subsets of RN containing arbitrarily large balls, that
is, the sets such that for any r > 0 there exists xg € RN such that the ball of radius r around zq is
included in this set.

Theorem 4.4. Assume that 0 <V € LI (RN) with py > max{%, 1} and there exists M > 0 such
that 0 < Viy(z) = min{V (z), M} satisfies

/ Vi (z)dr =00 forall Geg.
G
Then there exists a > 0, independent of 1 < p < 0o, such that

1Sy (D)l o(ro@yy < e, >0,

Proof. Since 0 < Vis(z) < V(x), by Proposition 3.3, it is enough to prove the decay for S, v, (t).
Therefore we can assume V' is bounded.
From Lemma 4.1, to prove the exponential decay it is enough then to find ¢t > 0 such that

154, (D)l oo—s00 = [15,v ()1 oo vy < 1.

For this, notice that with ug = 1, we have in particular that, from Proposition 3.4, u(t) = S, v(t)1
satisfies

u(t) = Su(t)1 — /O Syt — 5)Vu(s)ds = 1 — /O Sy(t — 5)Vu(s) ds.

Substituting the expresion above for u(s) inside the integral term we get
t t s
u(t) =1-— / St —s)Vds +/ St — s)V/ Su(s —r)Vu(r)drds
0 0 0
We use that u(s) < S,(s)1 =1and 0 <V < ||[V]|s1 and then

/0 St — s)V/O Su(s —r)Vu(r)drds < HVHOO/O Syt — s)V/O S,u(s—r)ldrds

t

t t
_ ||VHOO/ 5S,(t — $)V ds — ||VHOO/ (t— 5)S,(s)V ds < \|V||oot/ S, (s)V ds.
0 0 0

Therefore
t t t
u(t) <1-— / Su(t—s)Vds+ HVHoot/ Su(s)Vds =14 (||[V]|oot — 1)/ Su(t—s)Vds.
0 0 0
From the results in Section 2

(Su(s)V)(z) = . ku(s, 2, y)V (y) dy

where k, (s, z,y) = ko x—;ﬁ’) is as in (2.2) and (2.9). Using [1, Proposition 1.4] we see in turn
126 2k
that there exist ¢ > 0 and r > 0 such that
/ V(y)dy > c for all z e RY,
B(z,r)
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For any = € RY and s > 0 we have

SV = [ b (S22 Vi dy

N g2n s2n

1 T —y
> / — Fou (T) Vi(y)dy
B(z,r) s2n S2u

. 1 z
Z inf —Nlﬁ07u <j>/ V(y)dy
lzI1<r ¢2u s2u B(z,r)

N r2

(Ars)"2e 5, pu=1

> =

=¢ —I & SN+2M7 O<pu<l gu(s)
(sli—i-rz)T

where we have used the estimate of fractional heat equation kernel from (2.2) and (2.9)-(2.10).

. def
Denoting ,,(t) = fg gu(s)ds, we get, for 0 < t < m and z € RY
Lo (R

(Spv(OD)(x) <1 = (1 =tV ocmr))Fpu(t) < 1.
|

In case V' can be approximated by bounded potentials, we have the following result.

Proposition 4.5. Assume V € L,(RN) can be approzimated in LL;(RYN) by bounded functions. Then,
they are equivalent
(i) [oVam = o0 for all G € G with some M.
(i) [V =00 forall G eg.
Proof. Since 0 < Vjy <V, clearly (i) implies (ii).

Conversely, from [1, Proposition 1.4], (ii) is equivalent to the existence of ¢ > 0 and r > 0 such that

inf V>ec
z€RN JB(zr)
By a simple covering argument, independent of z, we get that sup,cpn [|[Var — V11 (B@r)) < CllVa —
V”L%](RN) — 0 as M — oo and therefore, for some M we have sup,cgn |Var — V|1 (B@,r)) < 5. This
implies that for all x € RY
/ Vi = V+/ (Vi —V)>c— =2,

B(z,r) B(z,r) B(z,r) 2 2

Again [1, Proposition 1.4] gives (i). =

Remark 4.6. Now we give an example that shows that in general in Proposition 4.5 (ii) does not
imply (i). That is, we show that may have for all M >0 and r >0

inf Vie=0
z€RN JB(zr) M

inf / vV >0.
T€RN B(z,r)

Denote by {Q;} the family of cubes centered at points i € ZN of integer coordinates in R and with
edges of length 1 parallel to the axes. Then notice that B(i,1) C Q; and define in Q; for i # 0,

V() =clil" Xp; 1)

Il

but for some r > 0,

and V = %XB(O,I) in Qo where c is the the measure of the unit ball.
Then

(i) For every i, fQi V =1s0V e L;RY).
14



(ii) There exists an v > 0 such that for every x € RY, B(x,r) contains at least one cube Q;. Then

[ ve
B(z,r)

(iii) For every M > 0 and every r > O there exists m(r) € N such that B(x,r) is contained in m(r)
cubes and if |x| is large then the centers of these cubes satisfy |i| > |x| —2r > 0. For any such

cubes
cM

Vi < |N

Q
and then if we take |x| — oo we see that
cM
Vi <m(r)———— — 0.
/B(x,r) (|l‘| - 2T)N

Our next results characterises the exponential type of the fractional Schrodinger semigroup.

Theorem 4.7. With the notations in Theorem 4.4, assume 0 <V € L7} (RN with pg > max{%, 1}.
Then for all 1 < p < oo the exponential type of the semigroup {S,, v (t)}i>0 is given by

def eS)
o= int( [ (=8)E0P + [ VIoPs o € C@Y), 6]y, =1} 20
Moreover, if a, > 0 then
/V(x)dx:oo forall G €g. (4.1)
G

Conversely, if V' can be approximated in Lb(]RN) by bounded functions, then (4.1) implies a, > 0.

Proof. From Lemma 4.1 it is enough to show that a, = ws. For this, for any a < wy we have that the
semigroup {e%S, v (t)}>o in L*(RY) is of contractions and from Section 3 it is strongly continuous,
analytic and its generator is the operator & = —(—A)* —V + a in L2(RY) with domain H2?*(RY).
Then, by the Lummer-Phillips Theorem, see [16, Theorem 4.3], we have that < is accretive, that is,

(—d ¢, ¢)p2@ny >0 for all ¢ € H#(RY).
In particular, taking ¢ € C2°(RY) with [|¢]l 2wy = 1 then [pn (=A)Z )2 + Jan VIo|? = a > 0.

Hence a, > a and therefore a, > ws.
Conversely, if a < a, we take f(t) = e2®|ju(t )HL2(RN with u(t) = S, v(t)¢ and then

f/(t) — 2ae2at/

R

. u(t)? 262 /]RN u(t)%u(t) = 2qe /]RN u(t)? 4262 /]RN u(t)(—(=A) u(t)=Vu(t))

and then

e—2at "
10 == [ 1Al + VP +a [

RN

u(t)? < (a — a*)/ u(t)> <0

RN

which yields f'(t) <0 and then [[S, v (t)||zz2@®y)) < e”*. Therefore wa > as.
Now, if a, > 0, assume that (4.1) fails, that is, there exists G € G such that

/V<oo.
G

1
Then we choose a positive sequence satisfying r,, > n# and a sequence of points {x,} C R such that
B(zy,r,) C G for each n € N.
Assume we had a sequence of functions such that {¢n} C C°(B(2n,7n)), l|énl 2@~y = 1 such that
. I3
lim ||¢nllpeonvy =0, lim [[(=A)2¢n|L2@y) = 0.
n—oo

n—o0
15



Then we would have

0<acs [ 1P [ Vo= [ I-a)EaP+ [ Vi

< [ R8P+ ol [V 0 a5 n
RN G

which is a contradiction and therefore (4.1) must be true. To construct a sequence as above we take
Y € C(RY) such that [pn [¢|? =1 and defining

Un(z) = n_%w(n_ix), zeRY, neN

we see that {1} C C°(B(0,72)), [[¥nllL2@yy = 1, limp—eo [[¥0n || oo ey = 0 and

Jim (=) 2 | 2y = T}LH;O”_IH(—A)%W\LZ(RN) =0

since (—A)% is an homogenous operator of degree p. Then ¢, (1) = ¥, (- + x,), n € N, satisfies the
conditions above since (—A)% is invariant under translations, see (2.4).

Conversely, if V' can be approximated in Lllj(RN ) by bounded functions, then from Proposition 4.5
and Theorem 4.4 we get that (4.1) implies a, > 0. =
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