
Potential energy surfaces from many-body functionals: analytical

benchmarks and conserving many-body approximations

Giovanna Lani1 and Nicola Marzari1, 2, 3

1Theory and Simulation of Materials (THEOS),
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Abstract

We investigate analytically the performance of many-body energy functionals, derived respec-

tively by Klein and Luttinger andWard, at different levels of diagrammatic approximations, ranging

from second Born, to GW, to the so-called T-matrix, for the calculation of total energies and po-

tential energy surfaces. We benchmark our theoretical results on the extended two-site Hubbard

model, which is analytically solvable and for which several exact properties can be calculated.

Despite its simplicity, this model displays the physics of strongly correlated electrons: it is proto-

typical of the H2 dissociation, a notoriously difficult problem to solve accurately for the majority of

mean-field based approaches. We show that both functionals exhibit good to excellent variational

properties, particularly in the case of the Luttinger-Ward one, which is in close agreement with

fully self-consistent calculations, and elucidate the relation between the accuracy of the results

and the different input one-body Green’s functions. Provided that these are wisely chosen, we

show how the Luttinger-Ward functional can be used as a computationally inexpensive alternative

to fully self-consistent many-body calculations, without sacrificing the precision of the results ob-

tained. Furthermore, in virtue of this accuracy, we argue that this functional can also be used to

rank different many-body approximations at different regimes of electronic correlation, once again

bypassing the need for self-consistency.

I. INTRODUCTION

Many-body energy functionals, such as the one proposed by Luttinger and Ward (LW) [1],

or the one by Klein [2], or the more recent Ψ functional, originally derived in the work of

Almbladh et al. [3, 4], have been employed starting from the 90’s for total energy calculations

in a limited number of systems, ranging from the homogeneous electron gas (HEG) in [4] and

in [5], to atoms and small diatomic molecules [6–8]. These first results showed great promise,

since the functionals used at various level of many-body approximations, yielded comparable

accuracy to state-of-the-art quantum Monte Carlo (QMC) calculations, but at much cheaper

computational costs. The strength of these functionals lies in their variational properties,

which allow to bypass the need of an expensive and sometimes technically difficult fully

self-consistent many-body calculation in order to obtain total energies (and other properties

as well). An investigation was performed for example in [8] for a small set of spherically
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symmetric atoms: employing the so-called GW approximation [9], the authors obtained

results comparable in accuracy to those obtained by solving self consistently the Dyson

equation, but at a much reduced cost, since their procedure amounted to a one-step post-

processing calculation. Furthermore, more fundamental insights were obtained; for instance,

the superior variational character of the LW functional over the Klein one, or the effect of

using more correlated Green’s functions (e.g., from Hartree-Fock (HF) rather than Kohn-

Sham local density approximation (LDA)). The conclusions were later supported by the

work of You et al. [5] on the homogeneous electron gas (HEG), where the authors obtained

total energies of QMC quality using HF Green’s functions as input for the functionals. A

handful of more recent studies [10–12] have also benchmarked the Klein functional. In these

works, total energies have been calculated at the random-phase approximation (RPA) level

using KS-LDA Green’s functions, and they were found to be in reasonable agreement with

high level approaches, but the question on whether alternative input Green’s functions could

improve on the results was not addressed.

Lately, there has been a renewed interest in the use of many-body functionals, since they

are by no means restricted to the evaluation of zero temperature properties. In fact, if one

is interested in including finite-temperature effects in electronic structure calculations, the

most natural way is precisely to resort to them, because of their straightforward connection

to the grand canonical potential [13]. In [14], the authors employ the LW functional (in its

finite-temperature formulation) to evaluate self-consistently thermodynamical quantities for

a 1D hydrogen chain. In a related work [15], many-body functionals were used indirectly

and in an original way to obtain two-particle properties, such as ⟨S2⟩ or ⟨N2⟩, bypassing

the expensive solution of the Bethe-Salpeter equation. Furthermore, within the dynamical

mean-field theory community [16], the LW functional has long been discussed, and it has also

started to be employed in calculations on correlated materials. For instance, in [17], the free

energy functional is differentiated with respect to the atomic displacements, in order to carry

out structural optimizations. The formalism was also later extended to the use of ultra-soft

pseudo-potentials [18], in order to broaden its applicability to plane-wave based calculations.

In a similar spirit, in another recent work [19], a newly derived many-body functional was

employed to compute the equation of state of SrVO3. Also within the reduced-density-matrix

community there have been ongoing research efforts. Recently, in the work of Giesbertz and

coauthors [20], the functionals where first generalised to be used in the space of one-body
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reduced density matrices and then applied to the computation of the bonding curve of a

model hydrogen molecule. In parallel to the aforementioned works, there have been intense

research efforts geared towards benchmarking Green’s function methods either on model

or very simple systems, in order to gain some fundamental and conceptual insights. For

example, in [21], the authors calculated the photo-emission spectra coupling the one-body

Green’s function with the three-body one, and applied their approach to the Hubbard dimer.

In [22] Crisostomo and coworkers put forward an original approach to extract the exchange-

correlation energy of DFT from the Galitskii-Migdal formula, which is based on many-body

Green’s functions, and test it both on the Hubbard dimer and the HEG. Finally, in [23], the

authors investigated the performance of the GW approximation for the challenging case of

very simple multireference systems, where strong electronic correlation plays a crucial role.

Despite the early works and the more recent ones, this research topic still presents many

open questions and there is a large uncharted territory both at the fundamental and at the

application level. Within the former, only two members of the infinite class of many-body

functionals have been explored and only for a couple of simple many-body approximations,

that is the second Born and the GW one. Within the latter, apart from a few notable

exceptions [10, 19], there has never been an application to solids, which would instead be of

great interest.

This work aim is to gain a fundamental understanding of the most well-known functionals

when employed in conjunction with different combinations of their many-body ingredients.

The analytical nature of the study will provide exact benchmarks and will complement and

clarify earlier numerical works that preceded it.

II. GENERAL THEORY OF MANY-BODY FUNCTIONALS

A. The Klein and Luttinger Ward functionals

Before going into the main results of this paper, we shall introduce the Klein [2, 24] and

the LW functionals [1] and their many-body ingredients. Following [6–8], we use Matsubara

Green’s functions evaluated in the zero-temperature limit, in which the Matsubara sums

can be replaced by frequency integrals. This has the advantage of being adapted to total

energy calculations, while at the same time reducing the necessary algebra as compared to
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the zero-temperature formalism.

At finite temperature the Klein functional for the grand potential Ω is defined as:

ΩK[G] = −Tr ln(−G−1)− Tr(G−1
0 G− 1) + Φ[G], (1)

where we used the definition of the trace as in [8], namely Tr =
∑

σ

∫
dω
2π

∑
i where σ is a

spin index and i a space one. The minus sign in front of G−1 in the logarithm ensures that

with the standard choice of logarithmic branch cut the trace is well-defined [1, 25]. Φ[G] is

a functional of the one-body Green’s function [13] with the property that δΦ/δG = Σ[G]

which is the many-body self-energy. In practical applications this functional needs to be

approximated via a selection of Feynman diagrams of vacuum type. In the zero-temperature

limit, it can be related to the total energy in the following fashion:

EK[G] = µN + ΩK[G], (2)

where µ is the chemical potential, N the particle number and ΩK the grand potential of

Eq. 1. When making a variation δG in the functional, its first order change is given by

[8, 24]:

δΩK = Tr(G−1 −G−1
0 + Σ[G])δG (3)

and the first order derivative vanishes whenever:

G = G0 +G0Σ[G]G ⇔ G−1 = G−1
0 − Σ[G], (4)

which holds when G solves the Dyson equations self-consistently with a so-called Φ-derivable

self-energy Σ[G] [24]. Using the Dyson equation in the first term of Eq. 1 yields a new form

for Φ, known as the Luttinger-Ward functional, defined as [8]:

ΩLW[G] = −Tr ln(Σ[G]−G−1
0 )− Tr(GΣ[G]) + Φ[G]. (5)

Whenever the inputG inserted in the functionals satisfies the Dyson equation self-consistently,

ΩK[G] = ΩLW[G] by construction. However, for any other approximate input Green’s func-

tion G̃, ΩK[G̃] ̸= ΩLW[G̃]. It can be readily checked that also ΩLW[G] is stationary for the

G that solves the Dyson equation self-consistently [8]. It has also been argued [7, 8] that

since the LW functional is obtained by using the Dyson equation once iteratively, it should

be more accurate than the Klein one, given the same input Green’s function. Continuing by

induction, it is easy to see that there is an infinite number of variational functionals, whose
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different expressions can be constructed following, e.g., the prescription given in [26] and

also in [13]. In this work we will restrict ourselves to the study of the Klein and LW ones,

which have already proven to be useful in some practical applications [8, 10, 14, 15]. Both

functionals exhibit a number of important properties, which we will illustrate below.

First, whenever G is a self-consistent solution of the Dyson equation with a Φ-derivable

self-energy, and G̃ an approximate input Green’s function, with ∆G = G̃−G, we have that:

Ω[G̃] = Ω[G+∆G] = Ω[G] +O((∆G)2), (6)

since the first derivative vanishes at the self-consistent G. This means that if ∆G is small

enough, we only make an error of second order in the energy when using an approximate

input G̃, for example obtained from a Kohn-Sham or a Hartree-Fock calculation. This opens

up the possibility of calculating total energies with comparable accuracy to those calculated

self-consistently but using a substantially simpler procedure, thereby saving significant com-

putational effort.

Second, as already mentioned, the Klein and LW forms of the functionals are equal when

evaluated from a self-consistent solution of the Dyson equation. This implies that if for

an approximate G̃, ΩK[G̃] is not close to ΩLW[G̃], one can conclude that the input Green’s

function is far from the self-consistent one, and the converse is also true. This feature can

be used as a test of closeness to self-consistency. This aspect will be discussed later in this

manuscript for the benchmark system of the Hubbard dimer. Due to the aforementioned

properties, both functionals show great promise as a cheap and at the same time accurate

tool for total energies calculations.

In the remaining of this paper, we will present a fully analytical study of both the Klein and

the LW functionals for such an exactly solvable model, which will provide us with a clear

understanding of their performance over a wide regime of electronic correlation.

B. Relation between the functionals for an arbitrary input Green’s function

Let us first consider an arbitrary input Green’s function G̃. The LW functional can be

recast as:

ΩLW[G̃] = −Tr ln(Σ[G̃]−G−1
0 )− Tr(G̃Σ[G̃]) + Φ[G̃]. (7)
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It is convenient to split the self-energy into a Hartree-Fock (HF) and a correlation part:

Σ[G] = ΣHF[G] + Σc[G], (8)

and to further define a Green’s function G which represents the first iteration of the Dyson

equation towards the HF Green’s function [6, 8], starting from a self-energy evaluated at

the input G̃, or more precisely:

G = G0 +G0ΣHF[G̃]G ↔ G−1 = G−1
0 − ΣHF[G̃]. (9)

Then, for the logarithmic expression in the first term of Eq.(7), one can write:

Tr ln(Σ[G̃]−G−1
0 ) = Tr ln(ΣHF[G̃] + Σc[G̃]−G−1

0 ) (10)

= Tr ln(−G−1) + Tr ln(1−GΣc[G̃]), (11)

while for the second term:

Tr(G̃Σ[G̃]) = Tr(G̃ΣHF[G̃]) + Tr(G̃Σc[G̃])

= Tr(G−1
0 G̃− 1) + Tr(1−G−1G̃)

+ Tr(G̃Σc[G̃]). (12)

Using the above equations, one can express the LW functional as:

ΩLW[G̃] = ΩK[G̃] + CLW[G̃], (13)

where the LW correction term has been defined as:

CLW[G̃] =− Tr(G̃Σc[G̃])− Tr ln(1−GΣc[G̃])

+ Tr ln(−G̃−1)− Tr ln(−G−1)

− Tr(1−G−1G̃). (14)

Eqs.(13) and (14) are the main result of this section and play a key role for evaluating

the LW functional written in terms of the Klein one plus a correction term. In the special

case of G̃ = GHF, from Eq.(9) it follows that G = G̃ = GHF, which causes the second line of

Eq.(14) to vanish. This implies that:
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ΩLW[GHF] = ΩK[GHF] + CLW[GHF] (15)

CLW[GHF] = −Tr(GHFΣc[GHF])

− Tr ln(1−GHFΣc[GHF]), (16)

Expanding the logarithmic term of Eq.16, one has:

CLW[GHF] =
1

2
Tr(GHFΣc[GHF]GHFΣc[GHF]) +O(Σ3

c), (17)

which is of second order in the correlation self-energy. This shows that whenever GHF is a

good guess to the self-consistent G, Σc will be small, and so will the correction CLW, and as

a consequence the Klein and LW functionals will yield results very close to each another.

C. A general input G̃

In this section we consider a spin compensated system with an arbitrary number of

particles, and construct an input Green’s function that is diagonal in the HF basis, but still

differs from it due to a shift in its poles; this allows to take into account in a very simple

way some correlation effects. The HF Green’s function and the model one thus read:

GHF,kl(iω) =
δkl

iω − ϵHF,k + µ
(18)

G̃kl(iω) =
δkl

iω − ϵk + µ
(19)

where the values ϵk need to be suitably chosen (an explicit example is given later for the

Hubbard dimer). Here we consider a closed-shell system with N = 2M particles and which

each level with orbital energy ϵi is either doubly occupied or zero (some of the ϵi may be

degenerate). The fully spin-dependent Green’s function is then diagonal in spin G̃iσ,jσ′ =

δσσ′G̃ij. The chemical potential is chosen in such a way that the system has the correct

number of particles N , i.e.,

N = −iTr(G̃) = 2
∞∑
j=1

θ(µ− ϵj) (20)

where θ(x) is the Heaviside function, i.e., θ(x) = 1 if x > 0 and zero otherwise. We further

assume that the chemical potential µ can be chosen such that both GHF and G̃ have the
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same particle number N = 2M , where the lowest M levels are occupied for both Green’s

functions. So µ becomes:

ϵM < µ < ϵM+1 ϵHF,M < µ < ϵHF,M+1 (21)

which is always possible whenever

max (ϵM , ϵHF,M) < min (ϵM+1, ϵHF,M+1) (22)

Now, since G̃ is diagonal in the HF basis with the same particle number, it follows that the

one-particle density matrix calculated from G̃ and GHF is the same such that

ΣHF[G̃] = ΣHF[GHF] ⇒ G = GHF. (23)

Armed with the above expressions, one can recast the many-body functionals in a more

convenient way. The Klein functional now reads:

ΩK[G̃] = −Tr ln(−G̃−1)− Tr(G−1
0 G̃− 1) + Φ[G̃]. (24)

More specifically, the first term becomes [13] :

−Tr ln(−G̃−1) =
∑
j

2(ϵj − µ)θ(µ− ϵj)

= −µN +
∑
j

2ϵj θ(µ− ϵj), (25)

while the second:

−Tr(G−1
0 G̃− 1) = −Tr(ΣHF[GHF]G̃)− Tr(G−1

HFG̃− 1)

= 2
∑
j

(ϵHF,j − ΣHF,jj − ϵj)θ(µ− ϵj); (26)

collecting all the terms one arrives at:

ΩK[G̃] = −µN + 2
∑
j

(ϵHF,j − ΣHF,jj)θ(µ− ϵj) + Φ[G̃]. (27)

Equivalently, since the total energy is given by EK = µN + ΩK, it holds that:

EK[G̃] = 2
∑
j

(ϵHF,j − ΣHF,jj)θ(µ− ϵj) + Φ[G̃] (28)
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It now only remains to calculate the LW correction of Eq.(14). Using that G = GHF, one

has that:

Tr ln(−G̃−1)− Tr ln(−G−1)− Tr(1−G−1G̃)

=2
∑
j

(ϵHF,j − ϵj)θ(µ− ϵj)

+ 2
∑
j

(ϵj − ϵHF,j)θ(µ− ϵj) = 0, (29)

and the correction for our input Green’s function becomes:

CLW[G̃] = −Tr(G̃Σc[G̃])− Tr ln(1−GHFΣc[G̃]) (30)

In summary, for the model input Green’s function G̃, the following three expressions for the

functionals are valid:

EK[G̃] = 2
∑
j

(ϵHF,j − ΣHF,jj)θ(µ− ϵj) + Φ[G̃] (31)

ELW[G̃] = EK[G̃] + CLW[G̃] (32)

CLW[G̃] = −Tr(G̃Σc[G̃])− Tr ln(1−GHFΣc[G̃]) (33)

These are the key equations that will be used in the remaining of the paper.

III. APPLICATION TO THE EXTENDED HUBBARD DIMER

A. The Hamiltonian

1. Extended Hubbard dimer and H2 model

As a first application of the general theory presented in the previous section, we study

the so-called extended Hubbard dimer. It was demonstrated in [20] that the parameters

in the model can be chosen in such way that they provide a very good representation of

the H2-molecule bonding curve. The details of this are given in Appendix A. The model

allows for a fully analytic study of the variational functionals in the scenario of a homolitic

molecular dissociation and provides a detailed insight of the parameter dependencies, that
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would be very challenging to gain from a purely numerical study.

The Hamiltonian of the dimer has the following explicit form:

Ĥ = α(n̂1 + n̂2)− t
∑
σ

(â†1σâ2σ + â†2σâ1σ)

+ U(n̂1↑n̂1↓ + n̂2↓n̂2↑) + wn̂1n̂2 (34)

â†1σ (â1σ) are creation (annihilation) operators, n̂iσ = â†iσâiσ and n̂i = n̂i↑+n̂i↓ are the density

operators, while the four parameters α, t, U and w are respectively the on-site and inter-site

interactions. These parameters can be given a dependence on the bond distance R in such a

way that the model’s bonding curve closely reproduces the real H2 dissociation curve. The

proper dependencies were already derived in [20], using two-electron integrals in a minimal

basis of Lwdin orthogonalized atomic Slater functions from the real-space Hamiltonian of

the hydrogen molecule; here, we follow the same prescription and our results are presented

in Fig.1, while further details on their derivation can be found in Appendix A. Defining the

total number operator as:

N̂ = n̂1 + n̂2, (35)

it can be readily shown that the Hamiltonian in Eq.(34) can be recast as follows:

Ĥ = αN̂ +
w

2
(N̂2 − N̂) + Ĥ ′, (36)

with:

Ĥ ′ = −t
∑
σ

(â†1σâ2σ + â†2σâ1σ) + (U − w)(n̂1↑n̂2↓ + n̂1↓n̂2↑) (37)

and where Ĥ ′ is the Hamiltonian of a standard Hubbard dimer with a renormalized on-site

repulsion U − w. Since we will study the 2-particle case, and the Hamiltonian commutes

with N̂ , it follows that the eigenstates of Ĥ and Ĥ ′ are the same, while the eigenenergies

Ej and E ′
j are related in the following way:

Ej = 2α + w + E ′
j. (38)

Thus, it suffices to perform all the calculations for Ĥ ′ and simply add the quantity 2α+w to

the final result. The ground state energy of Ĥ ′ can be determined by exact diagonalization

and it reads:

E ′
0 =

1

2
(U − w)−

√
4t2 + (

U − w

2
)2 (39)
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FIG. 1: A plot of the Hubbard parameters α, t, w, U (respectively in solid dark and

medium blue and in dashed light and very ligth blue) as function of the bond distance R.

where the energy of the original Hamiltonian (34) reads:

E0 = 2α + w + E ′
0. (40)

The bonding curve for the H molecule at a given bond distance R, is then obtained by adding

to the ground state energy the term 1/R, which accounts for the nuclear-nuclear repulsion.

2. The exact Green’s function

The exact Green’s function of the Hamiltonian Ĥ ′ can be evaluated directly from the

Lehmann representation. In the HF basis it has the following expression:

G11(iω) =
I+(β)

iω − Ω1 + µ
+

I−(β)

iω − Ω̄2 + µ
(41)

G22(iω) =
I−(β)

iω − Ω2 + µ
+

I+(β)

iω − Ω̄1 + µ
(42)

where the off-diagonal elements are zero. Here β = (U − w)/4t and

I±(β) =
1

2

√
1 + β2 ± 1√
1 + β2

(43)
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are the pole strengths. The poles are instead given by:

Ω1 = t+
1

2
(U − w)− δ (44)

Ω2 = −t+
1

2
(U − w)− δ (45)

Ω̄1 = −t+
1

2
(U − w) + δ (46)

Ω̄2 = t+
1

2
(U − w) + δ (47)

where we defined:

δ =

√
4t2 + (

U − w

2
)2 > 2t (48)

The poles Ω1 and Ω2 correspond to removal energies while Ω̄1 and Ω̄2 correspond to addition

energies. Setting β = 0 in Eq.(43) and δ = 0 in the equations for the poles, yields the HF

Green’s function. The above expressions will be used to construct a model input Green’s

function by setting β = 0 in Eq.(43), while still keeping δ in its given form in the equation

of the poles. This produces an improved Green’s function with an identical structure of the

non-interacting one, while at the same time displaying the correct dominant poles.

B. Analytical expressions for the Klein functional

Evaluating the expression (31) for the dimer yields a rather compact expression for the

Klein functional, namely:

EK[G̃] = −2t+ Φ[G̃] (49)

where for the poles we used that ϵ1,HF = −t+ (U −w)/2 and Σ11,HF = (U −w)/2. More

in general, in order to plot the bonding curve E(R), it is necessary to move from the Ĥ ′ of

Eq. 37 back to the original Hamiltonian Ĥ, and this is achieved by evaluating the expression:

E(R) = 2α + w + E[G̃] +
1

R
(50)

where the term 1/R is added to take into account the nuclear-nuclear contribution to the

total energy, E[G̃] is either the Klein or the LW functional, and all the terms are functions

of R (see the discussion in the section IIIA 1). In this work two different choices are made

for G̃.
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1. The first one is G̃ = GHF. In this case we have for the poles that:

ϵ1 = ϵHF,1 = −t+
U − w

2
(51)

ϵ2 = ϵHF,2 = t+
U − w

2
(52)

with the HOMO-LUMO gap ∆ = 2t.

2. The second choice amounts to constructing a model Green’s function (Gmod) with poles

of unit strength at the position of the dominant poles of the exact Green’s function

(calculated analytically earlier). In the language of the poles used in the section IIIA 2,

one takes ϵ1 = Ω1 and ϵ2 = Ω̄1 corresponding to the poles with the dominant strength

I+(β), while omitting all together the secondary shake-up poles of the exact Green’s

function with weaker intensity I−(β).

This physical idea translates in the following expressions:

ϵ1 = t+
1

2
(U − w)− δ = ϵHF,2 − δ < ϵHF,1 (53)

ϵ2 = −t+
1

2
(U − w) + δ = ϵHF,1 + δ > ϵHF,2 (54)

δ =

√
4t2 + (

U − w

2
)2 > 2t (55)

The ordering of the eigenvalues ϵ1 < ϵHF,1 < ϵHF,2 < ϵ2 is such that one can find a

common chemical potential µ inside the interval (ϵHF,1, ϵHF,2) that gives equal parti-

cle number for the HF and model Green’s function: this choice is made for all our

derivations.

We can now begin the study of three selected many-body approximations, that second

Born (2B), GW and the so-called T-matrix. The Feynman diagrams for Φ and Σ for the

three approximations are shown in Fig. 2 and 3.

The HOMO-LUMO gap reads:

∆ = ϵ2 − ϵ1 (56)

where for the HF input case ∆ = 2t and for the model Green’s function ∆ = 2δ − 2t. After

some algebra, the Φ functional for the various approximations can be written solely in terms

of the gap ∆ and the U and w parameters:
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ΦHF[G̃] =
1

2
(U − w) (57)

Φ2B[G̃] =
1

2
(U − w)− 1

8

(U − w)2

∆
(58)

ΦGW[G̃] =
∆

2
(

√
1 + 2

(U − w)

∆
− 1) (59)

ΦT[G̃] = ∆(

√
1 +

(U − w)

∆
− 1) (60)

(a) 2B (b) GW (c) T-matrix

FIG. 2: Self-energy diagrams for three selected many-body approximations

(a) 2B (b) GW (c) T-matrix

FIG. 3: Φ diagrams for three selected many-body approximations

Whenever U − w < ∆, both ΦGW and ΦT can be expanded in powers of (U − w)/∆,

yielding:

ΦGW[G̃] =
1

2
(U − w)− 1

4

(U − w)2

∆
+ . . . (61)

ΦT[G̃] =
1

2
(U − w)− 1

8

(U − w)2

∆
+ . . . (62)

Interestingly, ΦT gives the exact expansion up from Eq.(39) to second order. This can

be understood from the fact that the diagrams for the T-matrix approximation contain the
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FIG. 4: The exact gap ∆Exact (thick solid black line) and the HF one (thin solid black line

∆HF = 2t) used in the model G̃ as function of the bond distance R versus the effective

Hubbard interaction U − w (solid red).

second Born diagrams (which also happen to provide the expansion of the exact solution up

to second order). In the GW approximation instead the second order term is way too large

(by a factor of two), the reason being that second order GW self-energy contains the direct

second order bubble diagram but omits the second order exchange term.

Given the mathematical structure of the above equations, it is instructive to examine

how the HF and the exact gap compare to one another and to the quantity U − w. This is

shown in Fig.4. It can be seen that U −w is smaller than both the HF or the exact gap up

to R = 2. Beyond that range, perturbation theory is formally not applicable. However, it

can be observed that the exact gap still remains finite and becomes equal to U −w at large

bond distances while the HF gap closes exponentially fast to zero. This implies that the HF

Green’s function becomes a very poor approximation to the true Green’s function whenever

R > 2.

C. Analytical expressions for the Luttinger-Ward functional

The total energy given by the LW functional can be obtained via the correction given in

Eq.(33), which in turn requires the evaluation of the correlation part of the self-energy Σc[G̃].

As it turns out, for all the three many-body approximations considered, all the self-energy

expressions share a similar structure, which can be summarized as:
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1. Second Born (2B):

Σ2B
c,11[G̃](iω) =

γ2B

iω − ϵ2 − Ω2B + µ
(63)

Σ2B
c,22[G̃](iω) =

γ2B

iω − ϵ1 + Ω2B + µ
(64)

γ2B =
1

4
(U − w)2 (65)

Ω2B = ∆ = ϵ2 − ϵ1 (66)

2. GW:

ΣGW
c,11 [G̃](iω) =

γGW

iω − ϵ2 − ΩGW + µ
(67)

ΣGW
c,22 [G̃](iω) =

γGW

iω − ϵ1 + ΩGW + µ
(68)

γGW =
∆

2ΩGW
(U − w)2 (69)

ΩGW =
√

∆2 + 2∆(U − w) (70)

3. T-matrix:

ΣT
c,11[G̃](iω) =

γT

iω − ϵ2 − ΩT + µ
(71)

ΣT
c,22[G̃](iω) =

γT

iω − ϵ1 + ΩT + µ
(72)

γT =
∆

4ΩT
(U − w)2 (73)

ΩT =
√

∆2 +∆(U − w) (74)

where the gap ∆ = ϵ2 − ϵ1 has been defined as in the preceding section.

In summary, the self-energy for the three approximations can be cast in the following

general form:

Σx
c,11[G̃](iω) =

γx

iω − ϵ2 − Ωx + µ
(75)

Σx
c,22[G̃](iω) =

γx

iω − ϵ1 + Ωx + µ
(76)

where x = 2B,GW, and T , and the parameters Ωx and γx are chosen accordingly to the

equations specified above. This observation and choice of notation greatly simplifies the
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evaluation of the LW correction, since it acquires the following form (irrespective of the

many-body approximation considered):

Cx
LW[G̃] = −Tr(G̃Σx

c [G̃])− Tr ln(1−GHFΣ
x
c [G̃]). (77)

For the first term of Eq.77, we find by direct evaluation of residue integrals that:

−Tr(G̃Σx
c [G̃]) =

4γx

∆+Ωx
, (78)

while for the second term we can employ the result (B4) derived in the Appendix B to find:

−Tr ln(1−GHFΣ
x
c [G̃]) =

− 4γx

|ϵHF,1 − ϵ2 − Ωx|+
√
(ϵHF,1 − ϵ2 − Ωx)2 + 4γx

− 4γx

|ϵHF,2 − ϵ1 + Ωx|+
√

(ϵHF,2 − ϵ1 + Ωx)2 + 4γx
(79)

The poles ϵ1 and ϵ2 are chosen depending on which input Green’s function (HF or model

one) is used. For the HF Green’s function one has:

Cx
LW[GHF] =

4γx

∆+Ωx
− 8γx

∆+Ωx +
√

(∆ + Ωx)2 + 4γx
(80)

and where the quantities Ωx and γx should be evaluated using the specified gap ∆ = 2t.

It is readily seen from this expression that Cx
LW[GHF] > 0 and therefore the LW correction

gives a positive shift to the energy.

In the case of the model Green’s function Gmod one has:

Cx
LW[Gmod] =

4γx

∆+Ωx
− 8γx

δ + Ωx +
√
(δ + Ωx)2 + 4γx

(81)

where the quantities Ωx and γx should be evaluated using a different gap, that is ∆ = 2δ−2t,

where δ =
√
4t2 + (U−w

2
)2 > 2t.

In this latter case, the LW correction is negative, Cx
LW[Gmod] < 0, for both the 2B and

T-matrix approximations, as it is shown in Appendix D. For the GW approximation instead,

a positive shift is theoretically possible, although for the H2 model its value would be very

small and only for short bond distances; therefore, also for this case the negative corrections

have a much larger contribution in most of the bonding range.
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IV. RESULTS FOR THE MOLECULAR MODEL

In this section we present our results for two different Green’s function inputs, namely

the HF and the model one, combined with three many-body approximations, specifically

2B, GW and T-matrix.

We shall begin with some general considerations and then dive into the specificity of the

two functional with various combinations of the main ingredients.
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(a) 2B approximation with a Hartree-Fock

Green’s function as input
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(b) 2B approximation with the model Green’s

function as input

FIG. 5: Potential energy surfaces for both the Klein and the LW functionals, at the 2B

level, using GHF (left panel) and the model Gmod (right panel). When using Gmod, both

the Klein functional curve (solid red) and the LW one (solid dark green) lie between the

exact curve (solid thick black) and the HF one (solid thin black). When using HF input,

both the Klein (dashed red) and the LW curves (dashed dark green) exhibit a divergent

behaviour for R > 3.

The general trend is the same for all many-body approximations; however, some impor-

tant differences, which we will thoroughly address, appear. Up until a bond distance of

R ≈ 3 (which includes the equilibrium value), employing both the HF and model Green’s

function in conjunction with any of the three many-body approximations leads to results

that are all fairly close to each other and to the exact bonding curve. This success can

be attributed to the fact that in this particular regime the exact and the HF gap are still

comparable (see once again Fig. 4). This is shown in both panels of Fig. 5 for the 2B

approximation, as well as in Figs. 6 and 7 for the GW and the T-matrix. For R > 3,
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(a) GW approximation with a Hartree-Fock

Green’s function as input
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(b) GW approximation with the model

Green’s function as input

FIG. 6: Potential energy surfaces at the GW level for the HF input (left panel) and the

model Gmod input (right panel). The HF (thin solid black line) and the exact curve (thick

solid black line) are also provided for comparison. When using Gmod, both the Klein

functional curve (solid red) and the LW one (solid dark green) lie between the reference

curves, just like for the 2B approximation. Conversely, in the case of the GHF input, the

LW curve (dashed dark green) crosses the HF one for larger R values, while the Klein

curve (dashed red) approaches the correct dissociation limit.

employing the HF Green’s function, the scenario is remarkably different, can be written

solely be attributed to the poor representation of the HOMO-LUMO gap by the HF Green’s

function (see 4). The energy curves calculated with the Klein and the LW functional deviate

considerably from one another, see in particular Figs.6a and 7a: in both cases the LW func-

tional curve grows monotonically and even crosses the HF result, reaching though a finite

value in the dissociation limit (this was also verified analytically). The large discrepancy

between the Klein and the LW results is a clear indication that the input Green’s function

is rather removed from that of a self-consistent solution of the Dyson equation. This implies

that the second-order correction in ∆G in Eq.(6) is not small, and thus we are evaluating

the functionals far from their stationary point.

Conversely, when using the model Green’s function, whose distinctive feature is having

a HOMO-LUMO gap resembling that of the exact Green’s function, it can be observed in

Figs.5b, 6b and 7b that EK[Gmod] ≈ ELW[Gmod] for all the three many-body approxima-
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tions. In all cases, the LW functional improves the results obtained with the Klein one

(as expected) and even cures the divergence observed in Fig. 5b for the case of the 2B

approximation. The fact that EK[Gmod] ≈ ELW[Gmod] also implies that the LW bonding

curves for the model input are expected to be rather close (at least from the theoretical

standpoint) to those that one would obtain from a self-consistent calculation. This is indeed

confirmed by a fully self-consistent numerical solution of the Dyson equation, as will be

discussed in much more detail below. So also from the numerical standpoint we conclude

that EK[Gmod] ≈ ELW[Gmod] ≈ Esc[G].

Our numerical results for the case of 2B are further supported by Ref. [8]; in Fig. 4 of

the work, the 2B curve calculated fully self-consistently is seen to be very close to the one

obtained in our work. It sits below the HF one and reaches a finite value at large R, al-

beit higher than the exact limit. It is also worth noting that for the 2B approximation the

self-consistency completely removes the divergence, something which was also pointed out

in [27]. This evidence makes the 2B approximation rather appealing for quantum chem-
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(a) T-matrix approximation with a

Hartree-Fock Green’s function as input
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(b) T-matrix approximation with the model

Green’s function as input

FIG. 7: Potential energy surfaces at the T-matrix level for the HF input (left panel) and

the model Gmod input (right panel). The HF (thin solid black line) and the exact bonding

curve (thick solid black line) are also provided for comparison. Once again, when using

Gmod, both curves (Klein functional in solid red and LW solid dark green) are sitting

between the reference ones. Using the HF Green’s function, drastically worsens the LW

results (dashed dark green) while again the Klein curve (dashed red) reaches the

dissociation limit accurately
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istry calculations, as it is computationally inexpensive, yet accurate at various correlation

regimes (barring the dissociation one, where in any case also more sophisticated many-body

approximations exhibit shortcomings).

Another important general trend observed in the calculations is the overall better stability of

the LW functional compared to the Klein one: in other words, the results obtained using the

LW functional are less sensitive to the quality of the input Green’s function. For example,

in Fig.8, for the GW approximation, it can be seen that ELW[Gmod] and ELW[GHF] are very

close up to R ≈ 5, while for the Klein functional the energy curves are in agreement only

up until R ≈ 2 and then start to move apart. In [28], the self-consistent GW result and the

ELW[GHF] for the H2 molecule were found to be very close even up to R = 7. Those cal-

culations were performed with a much larger basis than the model system; nonetheless, the

conclusions that can be drawn are just the same. The remarkable stability of the LW func-

tional was also pointed out in another series of earlier works: in [8] and [29], respectively in

Fig. 4 and Fig. 3, it was noted that the energy calculated from the Galitskii-Migdal formula

(in conjunction with a self-consistent calculation) and that from the LW functional (with

a HF input) are very close up to R = 7 for the 2B approximation. Other self-consistent

results for 2B can be found in [27] for an infinite chain of hydrogen atoms, and in [30] for

various Hn molecules, and they all exhibit the trend highlighted above.
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FIG. 8: Potential energy surfaces computed with the LW and the Klein functional at the

GW level with Gmod and GHF (in solid and dashed dark green respectively) versus the

energies obtained with the Klein one, in solid red and orange dashed (respectively for Gmod

and GHF input). The exact energy (thick solid black) is also reported for comparison.

For the Klein functional with GHF as an input, the bonding curves for both GW and
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T-matrix happen to be close to the exact results apart from a ”bump” [31] at around R = 5

(see Fig.9), which is a very well known behavior of the random phase approximation when

used within the adiabatic-connection fluctuation-dissipation (ACFD) framework. These re-

sults deserve a separate discussion. The ACFD framework within DFT has been considered

for quite some time a promising tool for inexpensive albeit rather accurate calculations of

correlation energies [31–41]. In a number of different works [8, 42] it has been proven that

there is a strict equivalence between the energy calculated with the RPA approximation in

the ACFD scheme and that from a Klein functional in conjunction with the GW approxima-

tion. A notable feature of the energy calculated with the above methodology, or its slightly

improved versions [43, 44], is the accuracy around the dissociation limit for the bonding

curve of several atoms and small molecules, including the challenging case of H2. There

are different ways to improve on the ACFD-RPA approach [45, 46], arguably one of the

most systematic ones is the construction of exchange-correlation kernels for time-dependent

DFT beyond the exact exchange one [32, 33, 47]. In this latter work, employing a vertex

correction based on the exact-exchange potential of TDDFT, the authors obtained some

improvements for the H2 dissociation curve over the whole range of bond distances. Inter-

estingly, the improvements that we obtained using the Klein functional with the T-matrix

approximation and GHF at the minimum, due to the exact first terms in the expansion of

Eq. 62, may have a similar physical justification to those that were obtained in [47] following

a different route.

To get a more quantitative perspective, we also compiled a table (see Tab.I in App.C)

containing the values of the total energy E0 = E(R0) at the optimised bond distance R0,

for both energy functionals with all the approximations considered so far. Additionally, we

also reported the harmonic and anharmonic coefficients and their deviation from the exact

values (in parenthesis). It is not straightforward to extract an overall trend. However, at

the minimum, the approximation that seems to perform best is the 2B one, no matter which

functional or input Green’s function is used. This is no longer true for stronger electronic

correlation, but it is certainly worth to keep this fact in mind if one is focused on properties

related to the energy minimum, such as forces or phonons for which recently an exact Φ-

derivable theory was developed [48].

From all of our calculations, it can be noted that the correction term Cx[GHF] > 0 is

always positive (see Eq.80), making the LW curves lies above the Klein ones for a GHF
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FIG. 9: Potential energy surfaces computed with the Klein functional with GHF as an

input at the GW (red dashed) - equivalent to the RPA - and at the T-matrix level (orange

dashed). The exact curve (thick solid black) and Hartree-Fock one (thin solid black) are

also shown for comparison.

input. On the other hand, Cx[Gmod] is generally negative, which is strictly proven for 2B

and the T-matrix in Appendix D and nearly everywhere for the GW case; this makes the

LW curves lie below the Klein ones with Gmod as input.

Finally we compare, in Fig.10 and Fig. 11, the variational functionals to results obtained

from a fully self-consistent solution of the Dyson equation, which is a veritable test to

determine to which degree the approximate inputs resemble the fully self-consistent ones.

The fully self-consistent data were obtained from the authors of [20], which apart from the

GW data published in the cited reference also consists of previously unpublished 2B and

T-matrix results. When zooming into the model curves, for R < 1.8, a very small positive

correction CGW[Gmod] can be observed, however it is negligible compared to the negative

corrections when R > 2, where it can be clearly seen that the LW curves always lie below

the Klein ones.

In Fig.11 it can be observed that the LW energy Ex
LW[Gmod], calculated with the model G

(which gives our ”best result)” is essentially on top of the corresponding many-body self-

consistent calculation at all three diagrammatic levels, this being particularly true around

equilibrium and for larger R values. There seems to be a slightly better overall agreement for

the GW approximation (in the middle panel of the figure), but it’s not significant enough

to be discussed. The 2B self-consistent curve was obtained only up until R ≈ 6, due to

numerical difficulties in converging the calculation for larger distances, but this does not

hinder our conclusions. Along the same lines, in the top panel of Fig. 10, we compare the
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Ex
LW[Gmod] curves for the three many-body approximations. Interestingly, the ordering of the

curves matches that of the corresponding self-consistent calculations as it can be seen from

the bottom panel of the same figure. This is one of the key results of this work, since it clearly

demonstrates how the LW functional, used together with a rather accurate input, is able to

predict the outcome of fully self-consistent calculations: something of the utmost practical

usefulness. It is well known that one of the caveats of many-body perturbation theory is

the relatively high computational cost, particularly whenever self-consistent calculations are

required. Furthermore, it’s not always guaranteed that simply adding more diagrams to

an initial set will yield improved results: there are many subtleties that needs to be taken

into account [13]. Thus a very effective option to speed up the process would be to employ

the LW functional as a tool to preemptively screen a set of many-body approximations in

order to pick the most accurate one, which can later be used in a full fledged sc-calculation.

In a recent study [49] it has been shown that sc-calculations can often be more accurate

than those including some sort of vertex correction, when computing molecular ionization

potentials. This development further supports the utility of the aforementioned screening

procedure.

V. CONCLUSIONS

In this work we investigate the performance of two many-body functionals — Luttinger-

Ward and Klein — in predicting total energies when used in combination with various

classes of Φ-derivable, and thus conserving, many-body approximations. The choice of per-

forming the study on the challenging case of the extended Hubbard dimer, a paradigmatic

and solvable case of molecular dissociation, confers it a fully analytical character, providing

a detailed and unprecedented knowledge of the dependence of the functionals on the model

parameters, which enables the calculation of special limits and the benchmark of numerical

results. Many of our findings bear a conceptual character and are thus general, without

being restricted to the model system chosen.

A first important result is the confirmation of the improved variational properties of the LW

functional over the Klein one, which was already noted in a few earlier numerical works.

Furthermore, we show how it is possible to obtain the LW functional from the Klein one by

the addition of a compact, elegant and simple to evaluate correction. The study of the po-
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FIG. 10: In the top panel, the potential energy surface for the LW functional calculated

with Gmod and three different many-body approximations, namely 2B, GW and T-matrix

(in solid dark, medium and light green respectively) is shown together with the reference

exact curve (solid thick black). In the bottom panel the potential energy surface has been

obtained via fully self-consistent (numerical) calculations with the 2B, GW and T-matrix

approximations (in dashed-dotted dark, medium and light green).

tential energy surface of the extended Hubbard dimer leads to a number of key observations:

2B, GW and the T-matrix are all very accurate at equilibrium and in the presence of a weak

correlation regime (corresponding to an inter-site distance of R = 3) irrespective of the type

of input Green’s function employed in the calculations. However, at larger distances and at

dissociation, this is no longer the case. Among the many-body approximation tested, we

find that 2B is the most accurate of all over the whole range of inter-site distances. This

may seem surprising in the first instance, given that the approximation contains a small

and finite set of Feynman diagrams, however it includes the exchange ones, which have been

shown to be crucial to obtain an accurate description of the properties of finite systems [30].

The fact that 2B outperforms the more sophisticated T-matrix, which also includes the

exchange diagrams, can be attributed to the fact that in the dimer only a limited number

of excitations can occur, and while 2B capture them all, the extra diagrams contained in

the T-matrix worsen an already good result. Apart from the innate shortcomings of the
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FIG. 11: In each panel it is shown the comparison between the potential energy surface

obtained through a numerical fully self-consistent calculation, versus that calculated with

the LW functional using the model Green’s function. The self-consistent results are always

depicted with a dash-dotted line, while the LW results always with a solid line. From the

top one has the 2B, the GW and the T-matrix approximations. In all cases there is good

agreement between the different curves.

many-body approximations, the role of the input Green’s function becomes crucial: a model

G that is constructed to reproduce the HOMO-LUMO gap of the exact one, allowed us to

obtain reasonable results for all the three many-body approximations. While the potential

energy surfaces remain far from the exact one in the dissociation regime, they are on top of

previous numerical self-consistent calculations. This clearly shows how the functionals, and

particularly the LW one, used together with a cleverly designed input GF, can yield results

as accurate as those of a fully self-consistent calculation, but at a much cheaper cost. As a

corollary, the ordering of the dissociation curves in the one-shot calculation is the same as for
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the self-consistent ones. This suggests that one could use the LW functional to screen many-

body approximations, prior to performing more expensive and accurate fully self-consistent

ones. Last but not least, many-body functionals can be systematically improved by adding

further diagrams, or can tackle the problem of more general Hamiltonians, as in the case

of electron-phonon couplings. In the light of the present results, we believe that this work

would pave the way to explore and adopt more systematically many-body functionals for

accurate and inexpensive total energy calculations, and for calculations of other properties

of interest in real materials.
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Appendix A: Distance dependence of the Hubbard parameters for the H2-model

We give here the explicit formulas for the R-dependence of the parameters α, t, U, w used

in the H2 model. They are derived in [20] from two-electron integrals in a minimal basis

of Lwdin orthogonalized atomic Slater functions. Since we make slightly different choices

from the original paper, we give the explicit formulas needed to reproduce the results of this

work. The parameters are given by

α =
h11 − s h12

1− s2
(A1)

t = −h12 − s h11

1− s2
(A2)

U = I1111 +
s2

2(1− s2)
(I1111 − I1122) (A3)

w = I1122 +
s2

2(1− s2)
(I1122 − I1111) (A4)

where for t we use the opposite sign of the aforementioned Ref.[20] to be in accordance with

the most widespread definition of the Hubbard hopping. The functions on the right hand
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side of these equations have the explicit form:

s = (1 + ρ+
ρ2

3
)e−ρ (A5)

h11 =
ζ2

2
− ζ +

ζ

ρ
(e−2ρ(1 + ρ)− 1) (A6)

h12 = e−ρ(
ζ2

2
(1 + ρ− ρ2

3
)− 2ζ(1 + ρ)) (A7)

I1111 =
5ζ

8
(A8)

I1122 = ζ(
1

ρ
− e−2ρ(

1

ρ
+

11

8
+

3ρ

4
+

ρ2

6
) (A9)

where ρ = ζR with R being the bond distance, and ζ the Slater parameter appearing in

atomic orbitals of the form χ(r) = (ζ3/π)1/2e−ζr. In [20], ζ is optimized for each bond

distance R such that the exact total energy of the Hubbard system is minimized, and we

repeat the same procedure; the result is shown in Fig.12.
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FIG. 12: Optimized Slater exponent ζ(R) as a function of the site distance R

For R → ∞, we see that ζ(R) → 1, which is to expected as in this limit one obtains two

separate hydrogen atoms, which are exactly described by a Slater function of exponent one.

For R → 0, a helium atom of nuclear charge two is formed, however the electron repulsion

reduces this to an effective charge of about ζ(0) = 1.7.

Appendix B: Logarithmic integral

Most integrals in the main text can be calculated using the Cauchy residue theorem.

However, in order to calculate the trace of the logarithmic term for the LW correction in
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Eq.77, one should be able to perform the following integral:

Λ(a, b, c) =

∫ ∞

−∞

dω

2π
ln

[
1− a

(iω − b)(iω − c)

]
, (B1)

where a, b, c are real and a > 0. The calculation is carried out by first performing a partial

integration, followed by successive applications of the Cauchy theorem, together with a care-

ful consideration of the position of the logarithmic branch cut. The result of the integration

reads:

Λ(a, b, c) =
a

2Q

[
2 +

a− 2bc− 2b2

|bc− a|+ b2 + |b|Q

+
a− 2bc− 2c2

|bc− a|+ c2 + |c|Q

]
, (B2)

where

Q(a, b, c) =
√

b2 + c2 + 2a+ 2|bc− a|. (B3)

If the parameters b and c have opposite sign, i.e. one of the values is positive and the other

one is negative, then the expression (B2) can be simplified into the more compact form:

Λ(a, b, c) =
2a

|b− c|+
√

(b− c)2 + 4a
, (B4)

which is the expression used in the main section of the paper.

Appendix C: Summary of total energy results

In this section we present a table with the values of the total energy E0 = E(R0) at the

optimised bond distance R0, i.e. the minimum of the curve, extracted from the bonding

curve E(R) for all our approximations. We further define the coefficients

cn =
dnE(R)

dRn
|R0 (C1)

where c2 are the harmonic coefficients and cn for n ≥ 3 the anharmonic ones. Since R0 is at

the minimum c1 = 0, we have the Taylor expansion:

E(R) = E0 +
1

2
c2(R−R0)

2 +
1

6
c3(R−R0)

3 +
1

24
c4(R−R0)

4 + . . . (C2)

around R = R0. Additionally the table lists the values of the harmonic coefficient c2, and

the anharmonic coefficients c3 and c4.
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TABLE I: Minimum of the total energy, harmonic and anharmonic coefficients for all the

approximations considered in this work

E0 R0 c2 c3 c4

Exact -1.15041 1.42804 0.341331 -1.17092 3.83355

HF -1.13031 (0.02010) 1.38214 (-0.04590) 0.410051 (0.06872) -1.35488 (-0.18396) 4.56773 (0.73418)

E2B
K [GHF ] -1.15070 (-0.00029) 1.43037 (0.00233) 0.336672 (0.00466) -1.16647 (0.00445) 3.79075 (-0.04280)

E2B
K [Gmod] -1.14960 (0.00081) 1.42190 (-0.00615) 0.353482 (0.01215) -1.18505 (-0.01413) 3.93920 (0.10564)

EGW
K [GHF ] -1.15883 (-0.00842) 1.42830 (0.00025) 0.348166 (0.00683) -1.16481 (0.00612) 3.83302 (-0.00053)

EGW
K [Gmod] -1.15772 (-0.00731) 1.42145 (-0.00659) 0.360504 (0.01917) -1.18546 (-0.01454) 3.93862 (0.10507)

ET
K [GHF ] -1.14689 (0.00352) 1.41277 (-0.01528) 0.365893 (0.02456) -1.22590 (-0.05498) 4.06337 (0.22981)

ET
K [Gmod] -1.14617 (0.00424) 1.40817 (-0.01987) 0.374923 (0.03359) -1.23936 (0.06844) 4.14125 (0.30770)

E2B
LW [GHF ] -1.14955 (0.00086) 1.42133 (-0.00672) 0.355003 (0.01367) -1.18399 (-0.01307) 3.95963 (0.12608)

E2B
LW [Gmod] -1.14964 (0.00077) 1.42239 (-0.00566) 0.352213 (0.01088) -1.18552 (-0.01460) 3.92456 (0.09100)

EGW
LW [GHF ] -1.15747 (-0.00706) 1.42110 (-0.00694) 0.360164 (0.01883) -1.18946 (-0.01854) 3.93999 (0.10643)

EGW
LW [Gmod] -1.15754 (-0.00713) 1.42173 (-0.00631) 0.358821 (0.01749) -1.18820 (-0.01728) 3.92913 (0.09558)

ET
LW [GHF ] -1.14633 (0.00408) 1.40943 (-0.01861) 0.372198 (0.03087) -1.23644 (0.06552) 4.11844 (0.28488)

ET
LW [Gmod] -1.14636 (0.00405) 1.40968 (-0.01836) 0.371611 (0.03028) -1.23610 (-0.06518) 4.11337 (0.27982)

SC-2B -1.14241 (0.00799) 1.40065 (-0.02739) 0.379490 (0.03815)

SC-GW -1.14940 (0.00100) 1.40480 (-0.02324) 0.376746 (0.03541)

SC-T -1.13830 (0.01210) 1.39114 (-0.03690) 0.395308 (0.05398)

The deviation ∆x = xapproximation − xexact for all of the calculated quantities x =

(E0, R0, c2, c3, c4) is given in brackets. The self-consistent results are calculated at too

few points to make a reliable estimate of of c3 and c4 possible, thus these coefficients have

been omitted from the table.

Appendix D: LW correction for the model input

In this section we explicitly show that the sign of the LW correction used in combina-

tion with the model Green’s function is negative for the 2B and T-matrix approximations.
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Factoring out a common denominator in Eq.(81) one finds:

Cx
LW[Gmod] =

4γxBx

(∆ + Ωx)(δ + Ωx +
√

(δ + Ωx)2 + 4γx)
, (D1)

with Bx defined by:

Bx = δ + Ωx +
√

(δ + Ωx)2 + 4γx − 2(∆ + Ωx)

= 4t− 2δ +
√

(δ + Ωx)2 + 4γx − (δ + Ωx) (D2)

where we used that ∆ = 2δ− 2t. Now, since δ ≥ 2t and Ωx ≥ ∆ ≥ 2t such that δ+Ωx ≥ 4t

and it follows that: √
(δ + Ωx)2 + 4γx − (δ + Ωx) ≤

√
(4t)2 + 4γx − 4t (D3)

since the function
√

x2 + 4γx − x is a monotonically decreasing function of x. Equipped

with this inequality we find:

Bx ≤ −2δ + 2
√

(2t)2 + γx (D4)

= 2[
√
(2t)2 + γx −

√
(2t)2 + (U − w)2/4]

From the above expression it follows that Bx ≤ 0 and therefore Cx
LW[Gmod] ≤ 0 whenever

γx ≤ (U − w)2/4. An inspection of the specific form of γx for our approximations reveals

that this condition is exactly satisfied for the 2B and T-matrix approximations. For the GW

case, we only have γGW ≤ (U − w)2/2 and calculations show that in this case, Cx
LW[Gmod]

can become positive, as is displayed in Fig.14.

Instead Fig.13 clearly shows that for 2B and T-matrix Cx
LW[Gmod] is negative. The underlying

reason is that both 2B and T-matrix correctly include the second order exchange diagram

which makes the condition γx ≤ (U −w)2/4 valid, whereas such diagrams is absent in GW,

which thereby overestimates the value of γx.
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(a) LW correction for the 2B approximation

with the HF and the model input Green’s

function (in red and blue respectively)
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FIG. 13: The LW corrections for the 2B and T-matrix approximation, where it can be seen

that CLW[Gmod] < 0 for both the 2B and the T-matrix
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FIG. 14: LW correction for GW with the HF and the model input (red and blue curves

respectively). We see that CGW
LW [Gmod] can become positive for small values of R
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