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5Académie des Sciences, 23 Quai de Conti, 75006 Paris, France

(Dated: April 26, 2024)

Cascades of events and extreme occurrences have garnered significant attention across diverse
domains such as financial markets, seismology, and social physics. Such events can stem either from
the internal dynamics inherent to the system (endogenous), or from external shocks (exogenous).
The possibility of separating these two classes of events has critical implications for professionals
in those fields. We introduce an unsupervised framework leveraging a representation of jump time-
series based on wavelet coefficients and apply it to stock price jumps. In line with previous work,
we recover the fact that the time-asymmetry of volatility is a major feature. Mean-reversion and
trend are found to be two additional key features, allowing us to identify new classes of jumps.
Furthermore, thanks to our wavelet-based representation, we investigate the reflexive properties of
co-jumps, which occur when multiple stocks experience price jumps within the same minute. We
argue that a significant fraction of co-jumps results from an endogenous contagion mechanism.
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INTRODUCTION

Extreme events and cascades of events are widespread
occurrences in both natural and social systems [1]. Ex-
amples include earthquakes, volcanic eruptions, hurri-
canes, epileptic crises [2, 3], epidemic spread, financial
crashes [4–6], economic crises [7, 8], book sales shocks
[9, 10], riot propagation [11, 12] or failures in socio-
technical systems [13]. Understanding the origin of such
events is essential for forecasting and possibly stabilizing
their dynamics.
A widely studied question is the reflexive nature of

those shocks – the concept of financial market reflexiv-
ity was introduced by Soros in [14], to describe the idea
that price dynamics are mostly endogenous and arise
from feedback mechanisms. Extreme events, in partic-
ular, are considered to be endogenous when they arise
from feedback mechanisms within the system’s structure
[1, 15, 16]. Quantifying the extent of reflexivity in a com-
plex system and distinguishing events caused by external
shocks from those provoked endogenously, and more gen-
erally identifying different classes of events, are crucial
questions.
Prior research has proposed to differentiate between

endogenous and exogenous dynamics by analyzing the
profile of activity around the shock [9, 10, 17, 18], in
particular in the context of financial markets [19, 20].
It has been observed that endogenous shocks are pre-
ceded by a growth phase mirroring the post event power-
law relaxation, in contrast to exogenous shocks that are
strongly asymmetric. The universality of this result is
quite intriguing as they have been observed in various

∗ Authors contributed equally.

contexts: intraday book sales on Amazon [9, 10], daily
views of YouTube videos [18] and intraday financial mar-
ket volatility and price jumps [19, 20]. Besides, Wu et
al. [21] differentiate exogenous and endogenous bursts
of comment posting on social media using the analysis of
collective emotion dynamics and time-series distributions
of comment arrivals.

Furthermore, in complex systems, occurrences can
propagate along two directions: temporally and towards
the other elements of the system. Financial markets of-
fer an attractive setting for studying multi-dimensional
shocks due to the abundance of available data, the fre-
quent occurrence of financial shocks and price jumps and
the inter-connectivity of markets. In fact, a recent study
by Lillo et al. [22, 23] demonstrates the frequent occur-
rence of “co-jumps”, defined as simultaneous jumps of
multiple stocks (as illustrated in Fig. 1) and establishes
a correlation between their prevalence and the inter-
connectivity of different markets.

In this paper, we address the problem of classifying
financial price jumps (and co-jumps), in particular mea-
suring their reflexivity, by analyzing their time-series us-
ing wavelets. We introduce an unsupervised classification
based on an embedding Φ(x) of each jump time-series
of returns x(t) into a low dimensional-space more ap-
propriate to clustering. Such embedding, composed of
wavelet scattering coefficients (see [25] and below), relies
on wavelet coefficients Wx(0) of the time-series at the
time of the jump t = 0 and wavelet coefficients of volatil-
ity W |Wx|(0). Such coefficients are particularly suitable
to characterize (among other properties) the asymmetry
of time-series at multiple scales.

Through a Principal Component Analysis we retrieve
the fact that time-asymmetry of volatility indeed plays
an important role for classification. However, our anal-
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FIG. 1: Visualization of our co-jumps dataset (295 US
stocks, 8 years) (as in [22–24]). The horizontal axis
corresponds to the day of the co-jump and the vertical
axis gives the time of day. The size and color of the
circle encode the number of stocks jumping
simultaneously (in the same minute). Inset: number of
jumps on a rolling window of 30 days.

ysis identifies two further crucial features for charac-
terizing the nature of price jumps: mean-reversion and
trend. Specifically, mean-reverting jumps are such that
pre-jump and post-jump returns are of opposite signs,
whereas trend-aligned and trend-anti-aligned jumps oc-
cur on a sequence of returns of same sign before and after
the jump, but either aligned with the jump itself, or of
opposite sign.

For each jump, our analysis provides a measure of the
volatility asymmetry, the mean-reversion and the trend.
We propose a visualization of our dataset of price jumps
in the form of two 2D projections. For both projec-
tions, one direction characterizes price jumps based on
volatility asymmetry, or “reflexivity level”. The second
direction characterizes jumps either in terms of mean-
reversion, or in terms of alignement with the local trend
behavior. One can then measure the endogeneity of price
co-jumps, revealing that many jumps/co-jumps are not
related to news and arise only due to endogenous dynam-
ics. This is consistent with the observed power-law dis-
tribution of the number of firms affected by a co-jump,
indeed predicted by a simple branching (or contagion)
process.

Surprisingly, we uncover that a significant number of
large co-jumps (affecting a large number of stocks), which
might have been assumed to be caused by a common fac-
tor and thus share analogous dynamics, actually have un-
correlated returns both pre- and post-jump. This again
suggests that such jumps are mostly of endogenous ori-
gin.

The outline of our paper is as follows. Section I de-
scribes our dataset of price jumps resulting from Mar-

caccioli et al. [20], reviews their supervised classification
method based on news labels, and investigates its limita-
tion. Section II presents our unsupervised classification
of univariate jump time-series based on wavelet coeffi-
cients. Such classification identifies three main directions
in the dataset, the time-asymmetry, the mean-reversion
and the trend. Finally, section III is devoted to the char-
acterization of the endogeneity of co-jumps.

I. SUPERVISED CLASSIFICATION THROUGH
REFLEXIVITY

Prior work has identified reflexivity as an important
feature for the classification of jumps in financial mar-
kets [20]. Given the time-series of a jump, the main chal-
lenge is to efficiently measure such reflexivity.

One can for example look at contemporaneous news la-
bels to determine whether a jump is exogenous. Indeed,
news labels may serve as ground truth to learn a clas-
sification model on the activity profile around a shock.
To exemplify, Fig. 26, from the work of Marcaccioli et al.
[20], illustrates the time asymmetry difference between
endogenous and exogenous jumps.

In this section, we first introduce the jump detection
method, which allows us to build our dataset. Then,
we present the supervised classification based on news
labels introduced in [20] and show its limitations. This
will motivate an alternative approach in section II.

I.1. Jump detection

We refer to [19, 20, 26] for a detailed description of
the method to detect price jumps. The detection relies
on an estimator of “jump-score” x(t) = r(t)/(f(t)σ(t)),
which is the ratio of 1-minute returns time-series r(t) and
de-seasonalized local volatility f(t)σ(t) where σ(t) is an
estimator of local volatility and f(t) an estimator of the
intraday periodicity (the so-called “U-shape”). Through-
out this paper, our statistical analyses will focus on x(t),
or on its “jump-aligned” version x(t) := x(t)sign(x(0)),
where x(0) is the return corresponding to the jump. In
other words, x(t) is the rescaled return profile in the di-
rection of the jump.

Under the null hypothesis of Gaussian residuals (no
jump hypothesis) |x(t)| converges towards a Gumbel dis-
tribution. A statistical test then allows us to reject the
null hypothesis. The resulting method comes down to
detecting price movements where the z-score deviates by
more than 4-sigma from their average value (here equal
to zero).

The jump detection is performed on time-series de-
scribing individual stocks dynamics but also on averaged
time-series across stocks belonging to the same sector.
Hence, we obtain price jumps of individual stocks but
also sectoral price jumps.
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Similarly to Marcaccioli et al. [20], we find that price
jumps are clustered in time. We assume that jumps tak-
ing place within the same “time-cluster” subsequent to
an initial jump are merely replicas of the initial jump.
They are likely to be either of the same dynamics (as
they occurred for the same reason) or endogenously in-
duced by the first jump of the cluster. We thus discard
all the jumps that follows an initial jump. This leads
to the same detection method as in [20] which allows
to retrieve an exponential distribution for the inter time
between two consecutive initial jumps (see part II.D of
[20]).
From such a collection of price jumps, we can then

extract “co-jumps”. A co-jump is simply defined as a set
of jumps occurring in the same minute. Here we avoid
tackling the question of lagged jumps and consider only
simultaneous jumps (up to the minute resolution).
The price behavior before and after a jump can be

used to classify the jump. In light of Marcaccioli et al.’s
findings ([20]), which indicate that volatility can begin to
rise up to 75 minutes prior to the jump, we adopt a time
window of 2 hours centered around the jump occurrence
at time t = 0. Consequently, for each jump we extract
a time-series of 119 rescaled returns x(t), corresponding
to 1 hour preceding the jump and 1 hour following the
jump.
We implement such detection on 301 US stocks from

January 2015 to December 2022, considering only what
happened between 10:30 and 15:00 in order to avoid spe-
cial jumps due to the high activity at the beginning (due
to people reacting to the overnight news/movement) and
at the end of the day (due to market closing). In or-
der to discard major market shocks, we also remove all
co-jumps involving more than 250 stocks, and days on
which the FED made an announcement (1 per month1).
We end up with 37 452 jumps, of which 16 127 belong
to one of the 2534 co-jumps, and the remainder (21 325)
are single jumps.

I.2. Classification based on news labels

In an attempt to characterize the reflexivity of a jump,
one can gather the date and time of news associated to
each stocks we consider2 and of the main US announce-
ments3. According to such news labels, we might label
as “news-related” a jump which happened within 3 min-
utes of a news and label as “non-news-related” any other
jump. That would lead to a puny ≈ 4.3% of the jumps
being classified as “news-related” and is illustrated in
Fig. 22. Hence, as previously argued in [19, 20, 22], it ap-
pears that individual price jumps and more surprisingly
co-jumps are often not related to news announcements.

1 see FOMC Calendars
2 source: Bloomberg
3 source: economic-calendar

However, it is clear that some news may affect a whole
economic sector and lead to a co-jump without appear-
ing in our considered set of news. An example would
be an OPEC announcement that affects oil prices and
in turn ricochets onto stocks prices, without any of them
explicitly showing up in the news feed. Another vivid ex-
ample is the impeachment of the US president D. Trump
in September 20194. Our “news-related” label is blind to
such events. One objective of our study will be to pro-
pose a possible classification of co-jumps that does not
rely on the news feed, see section III.

I.3. Classification based on the volatility profile

In [20], Marcaccioli et al. built a supervised classifica-
tion of univariate jumps into exogenous and endogenous
classes. The classification relies on parameters derived
from fitting |x(t)| to the following functional form [10]:

|x(t)| = 1t<tc

N<

|t− tc|p<
+ 1t>tc

N>

|t− tc|p>
+ d (1)

and on a measure of the asymmetry of the jump, defined
as:

Ajump =
A> −A<

A> +A<
(2)

where A</> :=
∑

t<0/t>0 |x(t)−mint<0/t>0(x(t))|. Such
an indicator means that when the activity is stronger be-
fore (resp. after) the jump, one has Ajump < 0 (resp.
Ajump > 0). The classification is then obtained as a logis-
tic regression of the news label (endogenous/exogenous)
by the parameters (Ajump, p<, p>, N<, N>, tc). Exoge-
nous jumps appear as strongly asymmetric jumps with
little activity ahead of the jump, i.e. Ajump > 0, whereas
self-exciting endogenous jumps are much more symmetric
with Ajump ≈ 0 [20].
The above approach, based on news labels, presents

several limitations:

• The classification partly relies on the goodness of fit
of a power-law function (1), which is not assured.
As a consequence, Marccacioli et al. [20] restrict
their study to only∼ 5000 jumps out of the∼ 37000
in the dataset, for which such a fit is acceptable.

• As discussed above, news labels might miss some
relevant economic news, so the resulting price
jumps might be wrongly labeled as “non news-
related”.

4 For example, the largest co-jump is related to Nancy Pelosi an-
nouncement of a formal impeachment inquiry into US President
Donald Trump. On 2019-09-24, at 14:13, 248 stocks saw their
price jump in the same minute.

https://www.federalreserve.gov/newsevents/calendar.htm
https://www.investing.com/economic-calendar/
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FIG. 2: Classes of price jumps (synthetic examples). Each column shows an example of a class of jumps (price and
log-return time-series). The three first classes (anticipatory, endogenous, exogenous) are separated by measuring
volatility asymmetry. The three last classes (mean-reverting, trend-anti-aligned, trend-aligned) are identified by
analyzing the signed returns around the jump. See Fig. 25 for examples of true observed jumps.

• Exogenous jumps could have two types of dynam-
ics: if the exogenous shock is a complete surprise,
there should indeed be no activity before the jump.
However, if the announcement is planned or if there
was some news leakage, there might be a growth of
activity before the jump. In this case, one would
wrongly classify a news-related jump as endogenous
based on its approximately symmetric activity pro-
file.

In light of such limitations and in order to uncover new
classes of jumps, beyond the sole study of their reflexivity,
we opt in the rest of the paper for an unsupervised clas-
sification which significantly improves upon the method
of [20] while still leaving open some ambiguities, as we
will see below.
In the following, although news labels do not reveal

the whole truth about the reflexive nature of a jump, we
will still call “news-related” jumps that occurred within
3 minutes of a news present in our database and “non
news-related” all the others.

II. CLASSIFICATION OF SINGLE JUMPS
USING WAVELETS

The rescaled return time-series around a jump x(t) ∈
RT is inherently noisy. Relevant features Φ(x) ∈ Rq must
be extracted to effectively distinguish different classes
of jumps. Such features should be selected carefully,
in particular, they should include time-asymmetry mea-
sures. Indeed, authors in [9, 10, 17, 18, 20] show that
the jumps mostly differ in their time-asymmetry: en-
dogenous jumps tend to be more symmetric around the
jump than exogenous ones. But what are the other pos-
sibly relevant features? In this section, we embrace a sig-
nal processing approach to discover important features

of univariate jumps and unveil new classes of jumps that
are prevalent in the data.

II.1. Wavelet and scattering coefficients

Wavelet filters have been used to analyze and classify
transient events, see e.g. [27–30]. A complex wavelet

filter ψ(t) is a filter whose Fourier transform ψ̂(ω) =∫
ψ(t) e−iωt dt, is real. It is localized both in time and

Fourier domains, see Fig. 3. It has a fast decay away

t = 0

ReψImψ

ω = 0 π 2π

ψ̂

FIG. 3: Filter used to analyze jump time-series. Left:
complex Battle-Lemarié wavelet ψ(t) as a function of t.

Right: Fourier transform ψ̂(ω) as a function of ω.

from t = 0 and a zero-average
∫
ψ(t) dt = 0. We write

ψ(t) = Reψ(t) + i Imψ(t) where Reψ(t) and Imψ(t) are
its real and imaginary parts. They are respectively even
and odd functions:

Reψ(−t) = Reψ(t) and Imψ(−t) = −Imψ(t). (3)

The wavelet coefficients Wjx(t) compute the variations
of the signal x around t at scale 2j , for j = 1, . . . , J with

Wjx(t) := x ⋆ ψj(t) where ψj(t) = ψ(2−jt). (4)

where ⋆ denotes the convolution: x ⋆ y(t) :=
∫
x(t −

u)y(−u) du.
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The sign of the jump sign(x(0)) and its amplitude
|x(0)| vary, but they are not necessarily informative for
their classification. To remove this source of variability
we consider the jump-aligned time-series

x(t) = sign(x(0))x(t) (5)

and we further normalize the wavelet coefficients (4) by
the corresponding “volatility” σj of the full time-series,
defined as σ2

j =
〈
|x ⋆ ψj(t)|2

〉
t
, where ⟨·⟩t denotes the

empirical average over time t.
From Eq. (3), one can see that if x is an even signal

i.e. x(−t) = x(t) then ImWx(t, j) ≡ 0. This property is
key to detect asymmetry of a signal at different scales.
Volatility information can be extracted by taking a

modulus. The time-series |Wjx(t)| provides the volatility
of the signal at scale 2j . This volatility can be asymmet-
rical in t = 0. In order to quantify it, we again consider
the wavelet coefficients at t = 0

Wj2 |Wj1x|(t) := |x ⋆ ψj1 | ⋆ ψj2(t). (6)

Our representation for univariate jumps in this paper
is thus composed of wavelet coefficients (4) at t = 0 and
scattering coefficients (6) at t = 0

Φ(x) =

(
Wjx(0) , Wj2 |Wj1x|(0)

)
. (7)

For a time-series of size T , it contains less than
(log2 T )

2/2 coefficients which represents few coefficients.
In our case, T = 119 and we chose J = 6, which yields 42
coefficients (21 real parts and 21 imaginary parts). The
normalized scattering features Φ(x) (Eq. (7)) are invari-
ant to sign change and to dilation

Φ(−x) = Φ(x) and Φ(λx) = Φ(x).

which means we do not aim at discriminating jumps nei-
ther based on their sign nor on their amplitude.
In order to classify price jumps, we are interested in

Principal Component directions of the 42-dimensional
vector Φ(x) in the dataset. This method, called kernel
PCA [31], relies on the linear separation power of our
scattering coefficients Φ(x). We considered several di-
rections, i.e. combinations of scattering coefficients, and
found three salient features: the time-asymmetry of the
volatility, the mean-reversion and the trend behavior of
the price around the jump.

II.2. First Direction D1: Volatility asymmetry

II.2.1. Three types of jumps

The first PCA direction (called D1 henceforth) is a
linear combination of the 15 coefficients ImWj2 |Wj1x|(0)
in Eq. (7), which characterizes time-asymmetry of the
volatility profile at multiple scales 2j2 , confirming previ-
ous analysis that postulated this asymmetry to be rele-
vant. Such a linear combination allows one to embed each

jump time-series into a one dimensional space, which
quantifies the reflexive nature of each jump. In fact,
Fig. 4 and Appendix C 2 display average profiles |x(t)|
along the “reflexive direction” D1. One can visually ver-
ify that such a representation discriminates jumps ac-
cording to the asymmetry of their profiles as measured
by Ajump (Eq. (2)): the D1 direction continuously sep-
arates asymmetric jumps with dominant activity before
the shock from asymmetric jumps with dominant activity
after the shock; see Figs. 4, 18 and 21a.

0
t

0
t

0
t

0
t

0
t

FIG. 4: Average absolute profiles |x(t)| of jumps along
direction D1 (sliced into five bins, delimited by quantiles
0.1, 0.25, 0.35, 0.9). From left to right: anticipatory
jumps, endogenous jumps and exogenous jumps.

From this analysis, three types of jumps can thus be
defined:

• Asymmetric jumps with dominant activity before
the shock. This type of jumps, which we call “an-
ticipatory”, was quite unexpected and was not dis-
cussed in [20].

• Symmetric jumps, with an pre-shock excitation ac-
tivity that approximately mirrors the post-shock
relaxation activity. These were called “endogenous
jumps” in [20]: increased activity before the jump
is in fact responsible for the jump itself, with some
decay of activity thereafter. The symmetry of the
profile for endogenous jumps is in fact predicted
by a Hawkes process description of the self-exciting
mechanism, see [10, 20].

• Asymmetric jumps with dominant activity after the
shock. These were called “exogenous jumps” in
[20]: the market reacts after unexpected news, but
not before.

In order to validate the above analysis, we created syn-
thetic time-series with volatility profiles of varying time-
asymmetry and applied our classification method. Re-
sults of this benchmark case are shown in Appendix A,
and fully confirm that the D1 direction indeed separates
jumps according to their asymmetry Ajump.

II.2.2. Discussion

Using the above classification, we find that a large pro-
portion (∼ 50%) of our sample exhibit positive asymme-
try and should naively be considered as exogenous jumps.
This seems in contradiction with the results of [20], where
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exogenous jumps were found to be a minority, and with a
fraction of jumps associated to a news found to be 4.3%,
as already quoted above. Several arguments can explain
such a difference.

• The main one is the fact that our analysis includes
all jumps involved in a sector jump (corresponding
to 24% of all jumps) whereas those jumps were dis-
carded in [20]. Sector jumps are such that many
stocks of the same industry jump simultaneously.
While some of these jumps are likely due to major
exogenous shocks – like macro-economic announce-
ments – that affect a whole economic sector or even
the whole market, we argue in section III that these
jumps can actually be induced by a jump of one
particular stock of the sector, which is deemed as
“news” in and by itself. In any case, taking these
sector jumps into account mechanically increases
the count of jumps with a positive D1 score. In the
present study, we chose to keep these co-jumps and
study their statistics, to which we will specifically
turn in section III.

• As already noted above, the classification of single
jump profiles in [20] relies on the goodness of fit
of power law function (1), and as such, was only
conducted on a smaller sample for which such a fit
is acceptable (∼ 5000 jumps out of ∼ 37000 jumps).

The appearance of “anticipatory jumps”, where the
asymmetry parameter Ajump (see Eq. (2)) is negative,
came somewhat as a surprise to us. One possible inter-
pretation is that these jumps are in fact also endogenous,
with a pre-shock self-exciting dynamics and very little
“after-shocks”. Indeed, if such jumps are immediately
deemed endogenous by the market, it might make sense
that activity quickly reverts back to normal. This would
simply mean that the Hawkes framework predicting a
symmetric profile is not adapted to describe all endoge-
nous shocks.
Another possibility is that such events correspond to

news/exogenous events whose timing is expected by the
market, which leads to increased activity before the ac-
tual release time. But if the actual news content turns
out to be insignificant, it would again make sense that
the market activity quickly wanes off. We in fact find a
very small fraction of news-related jumps with D1 < 0,
see in Fig. 6, bottom graph.

II.3. Second Direction D2: Mean-Reversion

II.3.1. Capturing Mean-Reversion

We observed that coefficients ImWj1x(0) (7) for fine
scales, i.e. small j1, are consistently chosen by the leading
PCA directions. They amount to multiplying the jump-
aligned time-series x(t) by the imaginary filter Imψ1(t)

−6 −4 −2 0 2 4 6
−2

−1

0

1

2

(a) ψMR

−6 −4 −2 0 2 4 6
−2

−1

0

1

2

(b) ψTR

FIG. 5: Handcrafted filters for measuring the
mean-reversion (filter ψMR) or the trend (filter ψTR)
character of a jump. Average profiles along resulting
mean-reversion and trend directions are shown in Fig. 7
and Fig. 8.

(see Fig. 3) and averaging over t. Such coefficients cap-
ture the asymmetry of the return profile shortly before
and shortly after the jump, and define what we will call
below direction D2.
A typical time-series that maximizes this coefficient is

thus characterized by a positive value of x(−1) and a
negative value of x(1). In other words, large positive val-
ues along the D2 coordinate capture mean-reverting re-
turn profiles, i.e. positive (resp. negative) returns before
a positive (resp. negative) jump that become negative
(resp. positive) immediately after the jump.

Large negative values along the D2 coordinate, on the
other hand, also capture mean-reverting return profiles,
but in this case mean-reversion starts with (or is triggered
by?) the jump itself, and not after the jump.

Now that we identified a potentially discriminating di-
rection using PCA, we transition to a simpler filter tai-
lored to capture short time mean-reversion, depicted in
Fig. 5. This filter is then applied to the jump-aligned
time-series x(t)

D̃2(x) := x ⋆ ψMR(0), (8)

where the tilde indicates that we have simplified the true
second PCA direction and only retained the component
spanned by ψMR.

II.3.2. A 2D representation of jumps

Based on the first volatility asymmetry direction D1

and the mean-reversion direction D̃2, we are in a position
to propose the 2D representation of jumps shown in Fig. 6
(top), in which the horizontal axis corresponds to D1 and
the vertical axis corresponds to the mean-reversion index

D̃2. Visually, news-related jumps are mostly to the right
of the projection, corresponding to increased volatility
after the jump, as expected.

In order to illustrate the discriminating power of such
coefficient, Fig. 7 displays the average profiles of x(t)

along the D̃2 axis. One can see that jumps with a high
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FIG. 6: Top graph: Projection of jumps in our dataset
onto the reflexive direction D1 (horizontal axis) and

mean-reverting direction D̃2 (vertical axis)
Middle graph: Projection of our dataset on the reflexive

direction D1 (horizontal axis) and trend direction D̃3

(vertical axis). Each point represents a jump, the blue
color corresponds to news-related jumps according to
the classification of Section I I.2, the oranges are jumps
involved in a co-jump of size greater than 2 and non
news related and the greens are all the other jumps.
The vertical and horizontal lines represent the following
quantiles: 0.05, 0.35, 0.65, 0.95. Bottom graph: ratio of
“news-related” jumps along the reflexive direction D1,
based on a direct classification using the news feed
(rolling ratio every 2000 jumps).

coefficient D̃2 (rightmost graph) are characterized by a
strong pre-jump trend aligned with the jump, followed
by a change of sign in the next minute after the jump (as
also shown in Appendix C 1 a).
The leftmost graph, on the other hand, shows relatively

mild pre-jump trends opposite to the jump, followed by
stronger trends in the direction of the jump, not very dif-
ferent from the cases corresponding to quantiles between
0.1 and 0.5. In our dataset, 60% of the jumps have a
positive mean-reversion score D2 > 0; we refer to Fig. 14
in Appendix B for the full distribution of D2.
To confirm this observation and ascertain that it is not

attributable to spurious effects in the data processing, we
looked deeper into these jumps. To get a better under-
standing of the mechanisms at play, we investigated what
happens at tick-by-tick scale in the Limit Order Book.
We show in Appendix D two illustrative examples, see
Fig. 19. We again observe, at a different time resolution,
a strong mean-reversion behavior induced by order place-
ment. Note that both exogenous, or endogenous jumps

can have such mean reverting behavior, as clear from the
2D representation Fig. 6.

In fact, a mean reverting behavior can be expected
both following an exaggerated response to a news release,
or after a self-initiated jump with no discernible catalyst.
This is confirmed by Fig. 15 which shows positive average

values of D̃2 for all levels of reflexivity D1, except for
strongly exogenous jumps (large values ofD1 > 0), where

the mean-reversion disappears (D̃2 ≈ 0).

−5 0 5
t

−5 0 5
t

−5 0 5
t

−5 0 5
t

FIG. 7: Mean-reverting profiles. Average jump-aligned
return profiles x(t) = sign(x(0))x(t) along the

mean-reverting direction D̃2 (sliced into four bins,
delimited by quantiles 0.1, 0.5 & 0.9). Left-most graph:
price jumps mean-revert on previous trends. Right-most
graph: prices mean-revert after the jump.

Note finally that mean-reversion is characterized by a
V-shape price profile (see Fig. 19), which has recently
been used as a criterion to detect price jumps in time-
series ([32]).

II.4. Third Direction D3: Trend

In the previous section, we have defined a filter ψMR

that detects mean-reversion, but is by construction or-
thogonal to trends, i.e. post-jump returns continuing in
the same direction as pre-jump returns. This feature can
be naturally captured by the trend filter ψTR shown in
Fig. 5, which is orthogonal to the mean-reversion filter
ψMR. This filter is then applied to the jump-aligned pro-
file x(t) to get the following trend score

D̃3(x) := x ⋆ ψTR(0). (9)

A large positive value of D̃3(x) therefore describes a per-
sistent trend aligned with the direction of the jump. If
such jumps exist, we refer to them as “trend-aligned”

jumps. A large negative value of D̃3(x) indicates that the
jump goes against the pre- and post-jump trend. If such
jumps exist, we refer to them as “trend-anti-aligned”
jumps.
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FIG. 8: Trending profiles. Average jump-aligned return
profiles x(t) = sign(x(0))x(t) along the trend direction

D̃3 (again sliced into four bins, delimited by quantiles
0.1, 0.5 & 0.9). Left-most graph: anti-aligned trends.
Right-most graph: aligned trends.

Fig. 8 shows that both classes of jumps do indeed ex-
ist: the average profiles in the first and last quantiles in
Fig. 8 do conform to expectations. Furthermore we di-
rectly observe many stylized examples such as the one
reported in Fig. 25. As for the mean-reversion indicator,
we can represent all jumps in 2D plane based on D1 and

D̃3 (see the bottom graph in Fig. 6). Visually, trend-
ing news-related jumps appear to be mostly aligned with
the jump (top-right corner), although anti-aligned trends
can also be spotted for moderate values of D1. Different
profiles of x(t) corresponding to the grid are shown in
Appendix C 1 b.

II.5. Preliminary Conclusions

Let us summarize the results obtained by our unsu-
pervised approach so far. First, our proposed 2D projec-
tions provide an embedding of a jump according to three
meaningful, intuitive properties: its self-reflexive nature
(along horizontal axis), its mean-reversion character or
its trend character (along vertical axis). On top of the
separation between exogenous and endogenous jumps,
our clustering method revealed new classes of jumps,
some of which we did not expect a priori: anticipatory
jumps, mean-reverting jumps, trend-aligned and trend-
anti-aligned jumps. Identifying additional interpretable
classes of jumps might be possible by considering more
expressive wavelet-based embeddings such as Scattering
Spectra recently used in the context of financial time se-
ries [33, 34]. However, our attempts so far seemed to
mostly recover directions which overlap with the volatil-
ity time-asymmetry and mean-reverting directions.

III. CLASSIFICATION OF CO-JUMPS

A “co-jump” is defined as a collection of jumps across
several stocks, occurring in the same minute. The num-
ber S of assets involved in the co-jump is referred to
as the “size” of the co-jump. Co-jumps reveal inter-
connectivity and contagion in financial markets [22, 23,
35]. As such, studying them – in particular their possi-
ble reflexive nature – is a crucial question for investors
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FIG. 9: Statistics on co-jumps. (a) Main: Distribution
of co-jumps size i.e. number of stocks involved in a
co-jump. Inset: Cumulative distribution of co-jumps
size for co-jumps with min(D1) < 0 and
min(D1) < D1 − 1σ, defining the LL and LR regions in
Fig. 12. The slope of the fit in log-log coordinate (plain
line in blue) is −τ = −0.95. Notice that the data bends
down faster for large S. (b) Average sign of jumps
involved in a co-jump, showing that most co-jumps are
composed of jumps in the same direction.

and regulators alike. This section aims at investigating
whether co-jumps are created through endogenous dy-
namics or exogenous shocks.

To assemble our co-jump dataset we consider the same
dataset of jumps as in the previous section. We end up
with 2534 co-jumps, the size of which varies from 2 stocks
to 248 stocks. The co-jumps cumulative size distribution,
restricted to endogenous jumps, is shown in Fig. 9a,
inset. Quite remarkably, the tail of this distribution is
well fitted by a power-law S−τ with exponent τ ≈ 1, with
a cut-off for S ≳ 100. As we discuss in Appendix E, such
a value for τ can be rationalized within the framework
of critical branching processes [36], as if co-jumps were
the result of a contagion mechanism. Such a power-law
behaviour was already noted in previous works: in Ref.
[19] on a US data set from 2004 to 2006, in [23] from 2001
to 2013 and in [24] from 2013 to 2018.

The signs of the jumps involved in a co-jump are, most
of the time, all aligned, i.e. different stocks jump in the
same direction, as shown in Fig. 9b.

The first stage of co-jump characterization is to classify
jumps according to their reflexivity coordinate along the
D1 direction. In Fig. 10, we highlight the coordinates
of three particular co-jumps in the 2D projections intro-
duced in the previous section. Each color point is a stock
involved in one of the three co-jumps. Let us comment
on each of these three cases in turn:

• The purple co-jump, with 29 stocks involved, has
most of its elements in the right side of the 2D
projection, suggesting an exogenous, news driven
shock. However, one of the jump is below the 0.35
quantile and therefore appears endogenous. This
might be a mis-classification because of the inher-
ent noise in our D1 reflexivity score. An alternative
interpretation might however be that this particu-
lar stock jumped for no particular reason and this
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created a surprise to which other stocks reacted.

• The pink co-jump, with 19 stocks involved,
staunchly belongs to the anticipatory class – which
we believe to be of endogenous nature, as explained
above. Co-jumps with a negative or positive but
moderate maximum value of the D1 score can thus
be deemed endogenous.

• The yellow co-jump, with 9 stocks involved, has
most of its elements in the intermediate “endoge-
nous” region, except one which is classified as
exogenous. This might be either again a mis-
classification because of the inherent noise in our
D1 reflexivity score, or else a stock that was not
part of the anomalous pre-jump activity but is
drawn into the jump through contagion.

FIG. 10: Projections of 3 co-jumps along our 2D
projections. Yellow co-jump: one jump is exogenous
and the others are more endogenous. Pink co-jump: all
jumps of the co-jumps are endogenous and are
trend-aligned. Purple co-jump: Most jumps appear to
be exogenous except one. Those jumps are also
trend-anti-aligned.

From these cursory observations, one may propose
three natural indicators for classifying co-jumps:

1. The average value of the individual reflexivity score
D1 over all jumps belonging to a given co-jump, see
Fig. 11.

2. The maximum value of the individual reflexivity
score D1 over all jumps belonging to a given co-
jump: if the most exogenous jump is still deemed
endogenous, the whole co-jump is classified as en-
dogenous (see distribution in Fig. 20b).
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FIG. 11: Reflexive score D1 of co-jumps in our dataset,
obtained by averaging the reflexive score D1 of each
jump involved in a co-jump. Large co-jumps tend to
have a higher average score (in red) but, surprisingly,
there many large co-jumps with pale color that would
be classified as endogenous. See discussion in the text.

3. The minimum value of the individual reflexivity
score D1 over all jumps belonging to a given co-
jump: if the most endogenous jump is still deemed
exogenous, the whole co-jump is classified as exoge-
nous (see distribution in Fig. 20a).

Fig. 12 represents the normalized minimum value of
reflexivity score D1 over all jumps of a given co-jump
as a function of the normalized average value of reflexiv-
ity score D1 over all jumps of a given co-jump (co-jump
indicator 3 as a function of co-jump indicator 1). The
normalization is such that Fig. 12 can be read in units
of standard deviation of the reflexivity score D1 for co-
jumps of same size, i.e. σ is the average of the standard
deviation of the score D1 over co-jumps with same size.
The size and color of a point depict the size of the co-
jump. The gray shaded region represents jumps with
insignificant differences between the mean and the mini-
mum value of the D1 score.

Co-jumps with negative minimum and average values
of reflexivity score D1 (lower left quadrant of Fig.12, LL)
can be deemed endogenous, whereas co-jumps with pos-
itive minimum and average values of reflexivity score D1

(upper right quadrant of Fig.12, UR) can be deemed ex-
ogenous.

The lower right quadrant (LR) represent more intrigu-
ing co-jumps. Indeed, according to their average score
D1 those co-jumps should naively be classified as exoge-
nous, however they contain at least one strongly endoge-
nous co-jump. It might be that those endogenous jumps,
whose pre-activity starts while most other stocks are still
quiet, are interpreted in and by themselves as news. This
surprise triggers all other jumps – which therefore appear
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FIG. 12: Minimum value of reflexivity score D1 over all
jumps of a given co-jump as a function of the average
value D1 of reflexivity score D1 over all jumps of a given
co-jump (co-jump indicator 3 as a function of co-jump
indicator 1). Both indicators have been normalized by
the average standard deviation of the reflexivity score
D1 of co-jumps with the same size σ. The size and color
of a point depict the size of the co-jump. The grey area
represents the zone between min(D1) = D1 and
min(D1) = D1 − 1, corresponding to co-jumps where
the difference between the minimum and the average
D1 score is less than 1σ. Here, we only consider
co-jumps with a size strictly greater than 2. LL, LR &
UR stand for lower left, lower right and upper right.

as exogenous, with no special pre-jump activity but with-
out being related to any news!
Note that the largest co-jumps are in the LR region;

our interpretation in terms of a contagion mechanism
would then naturally explain the power-law distribution
of size S−τ shown in Fig. 9a.
There are obviously also large sector wide co-jumps

that are truly news-related – upper-right quadrant of Fig.
12. For instance, the significant co-jumps highlighting
the year 2019 mostly exhibit a negative average (exoge-
nous) and are related to the announcements during the
US vs China trade war.
Conversely, some co-jumps (20% of our sample) involve

only jumps exhibiting a symmetric or anticipatory profile
(LL region of Fig. 12). Those co-jumps are usually S = 2
stocks co-jumps (76%), but their size can go up to S = 87
stocks.
Hence, the most striking conclusion of this section is

that many large co-jumps are in fact explained by en-
dogenous dynamics and propagate across stocks, rather
than being due to impactful external news. A (in)famous
example of such propagation is the flash crash of May 6th
2010, where the S&Pmini crashed in less than 30min, due
to a sell algorithm set with an excessively high execution
rate. This crash triggered a price drop in other US stocks.
Here, our results suggest that this synchronization phe-
nomenon is not such a rare event and actually happens

quite often [22, 35].

This finding is further supported by examining the cor-
relation of the individual jump time-series composing a
co-jump. Naively, one would expect large co-jumps to be
exogenous, i.e. induced by news. As a result, the stocks
involved in the co-jump should all share the same pro-
file around the jump, as in Fig. 24a for example. In
fact, Fig. 23 shows that there remain many co-jumps
whose constituting univariate jump profiles are weakly
correlated (see Appendix G for more details). We also
refer the reader to additional statistics on co-jumps in
Appendix F. For example, Fig. 21b shows that the sec-
tor jumps are not all exogenous, as discussed in Section
II II.2.

IV. CONCLUSION

Thanks to an unsupervised approach based on wavelet
scattering coefficients, we have identified three main di-
rections along which price jumps can be classified. The
first, well-known direction relates to the time-asymmetry
of the volatility of the price around the jump and results
in three classes of jumps, endogenous, exogenous and an-
ticipatory.

We also evidenced that mean-reversion and trend are
important features for classification. This allowed us
to identify three additional classes of jumps, “mean-
reverting”, “trend-aligned” and “trend-anti-aligned”
which concerns a significant portion of the dataset.
Thanks to this classification we have shown that a large
portion of the jumps are endogenous or anticipatory
jumps, confirming – but also making much more precise
– the main conclusions of [19, 20].

Extending our analysis to co-jumps, we have gathered
several pieces of evidence that a large proportion of these
co-jumps should also, quite surprisingly, be classified as
endogenous in the sense that they seem to originate from
the contagion of one single endogenous jump triggering
the jump of possibly many others. One striking signa-
ture of such a scenario is the power-law distribution of
co-jump sizes, which is indeed close to that predicted by
a critical branching (contagion) process. Such a broad,
power-law distribution of co-jump sizes was noted previ-
ously for different datasets in [19, 23, 24]. Further work
should focus on higher frequency data that would allow
one to dissect more precisely the contagion mechanism
and ascertain that many large co-jumps are indeed not
triggered by exogenous news, but related to the close-
knit nature of financial markets that brings them close
to critical fragility, as argued many times in the past, see
e.g. [13, 16, 37, 38] and refs. therein.

Unlike parametric fit of the time-series, the wavelet
scattering embedding is defined and can be computed for
any time-series. As such, our study could be transposed
to other fields as well.
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[15] Bäk P. How Nature Works: The Science of Self-
Organized Criticality (Copernicus, New York). 1996.

[16] Bak P, Paczuski M. Complexity, contingency, and criti-
cality. Proceedings of the National Academy of Sciences.
1995;92(15):6689-96.

[17] Sornette D, Helmstetter A. Endogenous versus exogenous
shocks in systems with memory. Physica A: Statistical
Mechanics and its Applications. 2003;318(3-4):577-91.

[18] Crane R, Sornette D. Robust dynamic classes revealed
by measuring the response function of a social sys-
tem. Proceedings of the National Academy of Sciences.
2008;105(41):15649-53.

[19] Joulin A, Lefevre A, Grunberg D, Bouchaud JP. Stock
price jumps: news and volume play a minor role. Wilmott
Magazine. 2008;46.

[20] Marcaccioli R, Bouchaud JP, Benzaquen M. Exogenous
and endogenous price jumps belong to different dynami-
cal classes. Journal of Statistical Mechanics: Theory and
Experiment. 2022;2022(2):023403.

[21] Wu Q, Sano Y, Takayasu H, Takayasu M. Classification
of endogenous and exogenous bursts in collective emo-
tions based on Weibo comments during COVID-19. Sci-
entific Reports. 2022;12(1):3120.

[22] Bormetti G, Calcagnile LM, Treccani M, Corsi F, Marmi
S, Lillo F. Modelling systemic price cojumps with Hawkes
factor models. Quantitative Finance. 2015;15(7):1137-56.

[23] Calcagnile LM, Bormetti G, Treccani M, Marmi S, Lillo
F. Collective synchronization and high frequency sys-
temic instabilities in financial markets. Quantitative Fi-
nance. 2018;18(2):237-47.

[24] Aubrun C, Benzaquen M, Bouchaud JP. Multivariate
quadratic Hawkes processes—part I: theoretical analysis.
Quantitative Finance. 2023;23(5):741-58.

[25] Bruna J, Mallat S. Invariant scattering convolution net-
works. IEEE transactions on pattern analysis and ma-
chine intelligence. 2013;35(8):1872-86.

[26] Boudt K, Croux C, Laurent S. Robust estimation of
intraweek periodicity in volatility and jump detection.
Journal of Empirical Finance. 2011;18(2):353-67.

[27] Probert S, Song Y. Detection and classification of high
frequency transients using wavelet analysis. In: IEEE
Power Engineering Society Summer Meeting,. vol. 2.
IEEE; 2002. p. 801-6.

[28] Kim DI, Chun TY, Yoon SH, Lee G, Shin YJ. Wavelet-
based event detection method using PMU data. IEEE
Transactions on Smart grid. 2015;8(3):1154-62.

[29] Rueda L, Cardenas A, Kelouwani S, Agbossou K. Tran-
sient event classification based on wavelet neuronal net-
work and matched filters. In: IECON 2018-44th Annual
Conference of the IEEE Industrial Electronics Society.
IEEE; 2018. p. 832-7.

[30] Cuoco E, Razzano M, Utina A. Wavelet-based classifica-
tion of transient signals for gravitational wave detectors.
In: 2018 26th European Signal Processing Conference
(EUSIPCO). IEEE; 2018. p. 2648-52.

[31] Schölkopf B, Smola A, Müller KR. Kernel principal com-



12

ponent analysis. In: International conference on artificial
neural networks. Springer; 1997. p. 583-8.

[32] Flora M, Renò R. V-shapes. Available at SSRN 4260832.
2022.

[33] Morel R, Rochette G, Leonarduzzi R, Bouchaud JP,
Mallat S. Scale Dependencies and Self-Similarity
Through Wavelet Scattering Covariance. arXiv preprint
arXiv:220410177. 2022.

[34] Morel R, Mallat S, Bouchaud JP. Path Shadowing
Monte-Carlo. arXiv preprint arXiv:230801486. 2023.

[35] Gerig A. High-frequency trading synchronizes prices in
financial markets. arXiv preprint arXiv:12111919. 2012.

[36] Harris TE, et al. The theory of branching processes.
vol. 6. Springer Berlin; 1963.

[37] Bouchaud JP. The endogenous dynamics of markets:
Price impact, feedback loops and instabilities. Lessons
from the credit crisis. 2011:345-74.

[38] Fosset A, Bouchaud JP, Benzaquen M. Endogenous liq-
uidity crises. Journal of Statistical Mechanics: Theory
and Experiment. 2020;2020(6):063401.



13

Appendix A: Benchmark: Validation through synthetic

FIG. 13: Middle: Projection of our dataset on the reflexive direction D1 (horizontal axis) and mean-reverting

direction D̃2 (vertical axis). Benchmark jumps projection moves from left (anticipatory) to right (exogeneous). Left
and right figures show two extreme benchmark time-series.

In order to verify that the D1 direction indeed measures reflexivity, we create synthetic time-series with volatility
profiles of varying time-asymmetry and apply our classification. Relying on [20], we construct jump time-series
using the power law representation of Equation (1), with tc = −0.5min, and d = 0.5. We adjust the parameters
(Nr, Nl, pr, pl) to render the asymmetry of the signal. The time-series are then multiplied by a Gaussian noise (the
same noise for all time-series). We then compute the features Φ(x) of each time-series x and project it on the 2D
space formed by our time-asymmetry and mean-reversion directions. Fig. 13 shows these projections, the color code
corresponds to the asymmetry parameter. It clearly appears that the D1 direction measures the time-asymmetry of
the volatility.
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Appendix B: Distribution of reflexivity/mean-reversion/trend scores
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FIG. 14: Distribution of reflexivity D1(x), mean-reversion D̃2 and trend D̃3 scores used in this paper to identify
classes of jumps. The red vertical lines indicate the quantiles used to delimit the zones for the jumps taken into
account when computing the average profiles in Figs. 4,7,8.
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FIG. 15: Mean-reversion and trend scores along reflexivity of a jump.
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Appendix C: Projection grid

1. Signed projections

a. asymmetry VS mean-reversion

FIG. 16: Average jump-aligned return profiles x(t) = sign(x(0))x(t). Each plot represents the average over the
jumps whose 2D projection falls in the respective box in the upper figure in Fig. 6.
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b. asymmetry VS trend

FIG. 17: Average jump-aligned return profiles x(t) = sign(x(0))x(t). Each plot represents the average over the
jumps whose 2D projection falls in the respective box in the lower figure of Fig. 6.
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2. absolute projection - Asymmetry VS mean-reversion

FIG. 18: Average absolute profiles |x(t)|. Each plot represents the average over the jumps whose 2D projection falls
in the respective box in the upper figure of Fig. 6.
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Appendix D: Example from the LOB

−60 0 60
t (min)

(a) Jump-aligned return
profile x(t) = sign(x(0))x(t)
of the jump which occurred
on stock HCA (Hospital
Corporation of America), on
the 2017-3-21 at 11h37.
mean-reverting score: 2.61.

(b) Respective LOB illustration. Each colored square represents an order in the LOB whose
price is referred on the y-axis. The x-axis describes the time. Red is for the ask side, blue for
the bid side. The color bar depicts the size of the order and is in log scale.

−60 0 60

t (min)

(c) Jump-aligned return
profile x(t) = sign(x(0))x(t)
of the jump which occurred
on stock INCY (Incyte), on
the 2021-10-14 at 11h00.
Mean-reverting score: 3.25.

(d) Respective LOB illustration. Each colored square represents an order in the LOB whose
price is referred on the y-axis. The x-axis describes the time. Red is for the ask side, blue for
the bid side. The color bar depicts the size of the order and is in log scale.

FIG. 19: Limit Order Book illustration of two strongly mean reverting jumps.
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Appendix E: Heterogeneous Near-Critical Branching Processes

Consider a simple branching process where a single event can trigger on average φ new events. It is well known
that when φ→ 1, very large “avalanches” of events can occur. In fact, the probability that an avalanche of total size
S is triggered by a single event takes, in the limit ε = 1− φ→ 0, the following scaling form:

P (S|ε) ∝ S−3/2e−ε2S . (E1)

Now suppose that the proximity to the critical point φ = 1 is itself random, reflecting the time varying fragility of
the market and/or the intrinsic propensity of a shock to propagate across stocks. We will assume for simplicity that ε
has uniform distribution between εmin and 1. The observed distribution of avalanche sizes (in our case co-jump sizes)
is then given by the following mixture:

P (S) =
1

1− εmin

∫ 1

εmin

dε P (S|ε) ∝ S−3/2

∫ 1

εmin

dε e−ε2S . (E2)

After a change of variable, the integral over ε can be rewritten as

∫ 1

εmin

dε e−ε2S =
1√
S

∫ √
S

εmin

√
S

du e−u2

Now, in a intermediate regime where S ≫ 1 but εmin

√
S ≲ 1, the integral is close to

√
π/2, and one finally finds

P (S) ∝ S−1−τF (εmin

√
S), τ = 1, (E3)

with F (x) decreasing fast as x ↑. Hence this simple model predicts τ = 1 (i.e. a Zipf law) for co-jump sizes, truncated
beyond S ∼ ε−2

min. From the data shown in Fig 9, we estimate εmin ∼ 0.1. In other words, the market does not have
to be poised extremely close to criticality to explain a broad power-tail for the co-jump size distribution.
Note finally that we could relax the hypothesis that the distribution of ε is strictly uniform. In the scaling regime,

one only needs this distribution to be constant in the vicinity of εmin. The calculation above can be extended to cases
where the distribution of ε is of a power law type close to zero, i.e. behaves as εγ for ε → 0. In this case, one finds
P (S) ∝ S−1−τ with τ = 1 + γ/2.
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Appendix F: Statistics on co-jumps
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(a) Distribution of the D1 score of the most endogenous
jumps of each co-jump (the leftmost jump in our 2D
projections (see Fig. 6) of all jumps belonging to a same
co-jumps).
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(b) Distribution of the D1 score of the most exogenous
jumps of each co-jump (the rightmost jump in our 2D
projections (see Fig. 6) of all jumps belonging to a same
co-jumps).

FIG. 20: Statistics on co-jumps from the reflexive direction on co-jumps.

(a) The 2D projections where the color represents the
asymmetry of the jump computed with Eq. (2).

(b) Projection of sector jumps in our 2D projections.
The gray points represent the 2D projections of
individual jumps of individual stocks. The “sector
jumps” are obtained by averaging time-series across
socks of a same sector. The blue points represent the
projection of those sector jumps time-series.

FIG. 21: Statistics on co-jumps from the reflexive direction
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FIG. 22: Visualization of our co-jump dataset (295 US stocks over 8 years). The horizontal axis corresponds to the
day in the sample and the vertical axis gives the time of day. The size of the circle encodes the number of stocks
simultaneously jumping in a given minute (see color bar). The circle’s color signifies whether a co-jump coincided
with a news related to one of the involved stocks within a 3-minute window (blue), or in the absence of reported
news (green).
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Appendix G: Correlation of jump profiles in a co-jump

In this appendix, we investigate to which extent the different price profiles in a co-jump are correlated to each other.
To achieve this, we consider the average correlation of the trend score Eq. (9) among the jumps in a given co-jump of
size S, defined as

ρ =

∑S
k ̸=k′=1 D̃3(xk)D̃3(xk′)

(S − 1)
∑S

k=1[D̃3(xk)]2
.
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FIG. 23: Correlation measure ρ of a co-jump. Blue line
represents average over bins of co-jumps of roughly the
same size. As expected, the larger the co-jump the more
correlated. Surprisingly, there remain weakly correlated
(ρ ≈ 0) large co-jumps.

Fig. 23 shows that the larger the co-jump, the more
correlated are its constituents, although the effect is
weak. Jumps affecting the market in its entirety are
more likely to have a common external reason (exoge-
nous) and lead to the same profile. Strongly corre-
lated co-jumps come down to a single jump time-series
which can be accessed through the average of normal-
ized jumps:

⟨x⟩ (t) =
〈
σ−1
k xk(t)

〉
k

where σk =
〈
x2k(t)

〉 1
2

t
. Fig. 24a shows an example of

co-jump, of size 83 with correlation ρ = 0.96. We see
that the average time-series ⟨x⟩ is non-zero for t ̸= 0.
In line with the discussion of section III about

contagion-driven co-jumps, Fig. 23 shows that there
persist large co-jumps whose average correlation is
close to zero, i.e. co-jumps composed of return time-
series that are weakly correlated and that have no a
priori reason to jump together, except through conta-
gion. A typical example is shown on Fig. 24b, it is of size 81 and correlation ρ = 0.06. As we can see, averaging
its different jumps makes small sense since the average ⟨x⟩ is zero for t ̸= 0 (up to the variance). Far from being
reduced to a single jump profile, such weakly large co-jumps could still be described by a small number of “hidden”
profiles, depending on the “dimensionality” of the co-jump. Determining such dimensionality and hidden profiles
would require applying a decomposition per co-jump, which would require more data on large co-jumps.
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(a) Strongly correlated
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(b) Weakly correlated

FIG. 24: Average profile of two co-jumps. The average (black curve) is taken over the profiles of the jumps involved
in each co-jump (gray curves). Left: a strongly correlated co-jump that exhibits a non-zero average profile. Each
jump time-series in the co-jump is a variation around this average profile. Right: a weakly correlated co-jump which
has no meaningful average. The co-jumps are of size 83 and 81 respectively.
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Appendix H: Additional figures
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FIG. 25: Classes of price jumps (observed examples). Each column shows an example of a class of jumps (price and
log-return time-series). The three first classes (anticipatory, endogenous, exogenous) are separated by measuring
volatility asymmetry. The three last classes (mean-reverting, trend-anti-aligned, trend-aligned) are identified by
analyzing the signed returns around the jump.
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FIG. 26: Examples of different asymmetry profiles in price jumps. Plain black lines are power law fits from [20]
described in Eq. (1).
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