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Abstract. We undertake a theoretical study of a finite-time quantum Otto engine

cycle driven by inter-particle interactions in a weakly interacting one-dimensional

Bose gas in the quasicondensate regime. Utilizing a c-field approach, we simulate

the entire Otto cycle, i.e. the two work strokes and the two equilibration strokes.

More specifically, the interaction-induced work strokes are modelled by treating the

working fluid as an isolated quantum many-body system undergoing unitary evolution.

The equilibration strokes, on the other hand, are modelled by treating the working

fluid as an open quantum system tunnel-coupled to another quasicondensate which

acts as either the hot or cold reservoir, albeit of finite size. We find that, unlike a

uniform 1D Bose gas, a harmonically trapped quasicondensate cannot operate purely

as a heat engine; instead, the engine operation is enabled by additional chemical work

performed on the working fluid, facilitated by the inflow of particles from the hot

reservoir. The microscopic treatment of dynamics during equilibration strokes enables

us to evaluate the characteristic operational time scales of this Otto chemical engine,

crucial for characterizing its power output, without any ad hoc assumptions about

typical thermalization timescales. We analyse the performance and quantify the figures

of merit of the proposed Otto chemical engine, finding that it offers a favourable trade-

off between efficiency and power output, particularly when the interaction-induced

work strokes are implemented via a sudden quench. We further demonstrate that in

the sudden quench regime, the engine operates with an efficiency close to the near-

adiabatic (near maximum efficiency) limit, while concurrently achieving maximum

power output.

Keywords: Quantum thermodynamics, quantum engines, Otto cycle, many-body

dynamics, ultracold atoms, quasicondensate, out-of-equilibrium dynamics
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1. Introduction

Quantum heat engines (QHEs) [1–9] provide a concrete platform for understanding

the fundamental laws of thermodynamics in the quantum domain [10, 11]. Their

exploration has recently expanded to include interacting many-particle systems [12–17],

hence offering access to quantum many-body effects such as entanglement, quantum

coherence, and correlations. Such quantum effects can be exploited for demonstrating

either a form of quantum advantage [18] or a uniquely quantum functionality of QHEs

not accessible classically [1, 4].

In QHEs that rely on interacting many-body systems as their working fluid, the

strength of interparticle interactions provides a tool for engine operation not available

in noninteracting systems. For example, it is possible to tune or quench the interaction

strength to either do work on, or extract work from, the working fluid, analogous

to volumetric compression and expansion work strokes in a conventional Otto engine

cycle [7, 8, 14, 15]. Alternatively, one can quench the interaction strength to change the

internal energy of the system without exchanging heat through coupling it to a thermal

reservoir in a conventional Otto engine. This energy can then be utilized to extract

work from the working fluid, as was recently demonstrated in Refs. [1, 3].

Recent studies have also focused on optimising the finite time performance of

interaction-driven many-body engines [6–8, 19, 20]. In general, the maximum efficiency

for any QHE is attained when the work strokes are executed in the near-adiabatic

or quasistatic limit, in accordance with the quantum-adiabatic theorem [21, 22]. This

leads to zero power output due to infinitely long engine driving times [8, 12, 21]. On

the other hand, if the work strokes are rapid, the production of irreversible work due

to non-adiabatic excitations results in a significant reduction of efficiency [7, 21, 23].

Therefore, a major challenge in quantum thermodynamics is to design QHEs that

provide a favourable trade-off between efficiency and power output, meaning they can

operate with maximum or near-adiabatic efficiencies while providing non-zero power

output in finite time [23–25].

Recent developments aimed at optimising efficiency in finite-time operations have

predominantly focused on employing shortcut to adiabaticity (STA) protocols [7,21,26].

However, given that STA protocols come with certain drawbacks such as modulation

instability [7, 8], additional energetic costs for implementation [27], and challenges in

experimental realization [28], the exploration of alternative and preferably simpler

approaches to operate at near-maximum efficiency while maintaining non-zero power

output becomes important. Furthermore, when evaluating the power, the dynamics of

equilibration of the working fluid with the reservoir during the thermalization strokes

are often ignored. This is reasonable when assuming that the reservoir size is infinite and

that the thermalization time with such a reservoir is much shorter than the duration

of the work strokes [7, 8, 29–33]. However, these assumptions may not hold true in

laboratory experiments, where the system typically interacts with a finite-sized reservoir,

meaning that the characteristic thermalization time of the system with the reservoir
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becomes important for working out the power output of an engine.

In this work, we conduct a theoretical investigation of an experimentally realizable

quantum Otto engine driven by the quench of inter-particle interactions in a weakly

interacting Bose gas in the quasicondensate regime. In addition to conducting

microscopic simulations of the interaction-driven work strokes of such an engine, we

simulate the equilibration strokes of the working fluid with the reservoir. This is done

by treating the working fluid as an open quantum system in thermal and diffusive

contact with another, larger quasicondensate serving as the reservoir. Through this

microscopic treatment of the equilibration strokes, we evaluate characteristic operational

timescales for these strokes which enables us to quantify the power output of the engine

for experimentally realistic time scales of the full Otto cycle. From this analysis, we

demonstrate that, unlike in the uniform 1D Bose gas investigated in Refs. [14, 15],

operation as a heat engine is not possible for the harmonically trapped system. However,

allowing for additional chemical work, in the form of particle flow from the hot reservoir

to the working fluid, enables engine operation. In this scenario, the engine cycle may

instead be considered as an effective chemical engine cycle. Such a cycle is shown

to possess a favourable trade-off between power output and efficiency when the work

strokes are implemented via a sudden quench of the interaction strength. We show that

within the sudden quench regime, the engine functions with efficiency nearing the limit

of near-adiabatic (near-maximum) efficiency, while attaining maximum power output.

The article is organised as follows: In Section 2, we introduce our model of the

Otto cycle and describe the c-field approach that we use to simulate the complete finite-

time Otto cycle. Following this, in Section 3, we focus on the unitary work strokes and

identify the timescales governing a sudden quench, an intermediate-time quench, and a

near-adiabatic (quasistatic) quench. The knowledge of these timescales will enable us

to evaluate the trade-off between efficiency and power when we analyse the finite-time

performance of the engine. Next, in Section 4, we shift our focus to the equilibration

strokes with the reservoir. In this section, we investigate various dynamical scenarios

governing the equilibration strokes and evaluate the operational timescales of these

strokes, which will help us quantify the power output of the full engine cycle in an

experimentally realisable scenario. In Section 5, we utilize the findings of the previous

sections to evaluate the performance of the proposed interaction-driven chemical Otto

engine in its full four stroke cycle. We quantify figures of merit of the engine, such as the

power output, efficiency, and the trade-off between power and efficiency, as we increase

the duration of the work strokes from the sudden quench regime to the near-adiabatic

(quasistatic) regime. Finally, in Section 6, we summarise our findings and discuss the

outlook.

2. The Otto cycle

The Otto engine cycle, demonstrated schematically in Fig. 1, is widely studied in the

field of quantum thermodynamics due to its relative simplicity [34], in addition to being
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Figure 1. An interaction-driven quantum Otto cycle with a harmonically trapped

1D Bose gas as the working fluid. Panel (a) shows a schematic diagram of the four

strokes of the Otto cycle in the working fluid energy ⟨Ĥ⟩ versus interaction strength g

parameter space. For further details and notations, see text. Panel (b) illustrates the

time sequence of the interaction strength quench (not to scale) during the four strokes

of the Otto cycle: two thermalization strokes of duration tth, and two work strokes

of duration tw. As g ≃ 2ℏω⊥a, the change in g can be achieved via an increase or

reduction of the frequency of transverse confinement ω⊥, which then makes the work

strokes DA and BC analogous, respectively, to (transverse) compression or expansion

strokes of the regular, volumetric Otto cycle.

the closest model to real-world engine cycles. It consists of two unitary work strokes

alternated with two isochoric equilibration strokes in which the working fluid is coupled

to external thermal reservoirs. In particular, the unitary work strokes, denoted BC and

DA in Fig. 1(a), correspond to volumetric compression and expansion, respectively,

and are implemented via an external control parameter over the working fluid. The

equilibration strokes AB and CD consist of coupling the working fluid to hot and cold

thermal reservoirs, at temperatures Th and Tc, respectively, while maintaining constant

volume. In the following subsections, we will describe our model and the implementation

of the individual strokes, as well as their combined operation in a full four-stroke cycle

of the Otto engine.
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2.1. The Model

In this work, we consider a working fluid consisting of a harmonically trapped ultracold

1D Bose gas in the weakly interacting quasicondensate regime [35–41]. The Hamiltonian

of this system (s), in second-quantized form, is given by

Ĥs =

ˆ
dx Ψ̂†

s

[
− ℏ2

2m

∂2

∂x2
+

1

2
mω2x2 +

gs
2
Ψ̂†

sΨ̂s

]
Ψ̂s, (1)

where ω is the longitudinal trapping frequency, m is the particle mass, and Ψ̂†
s(x) and

Ψ̂s(x) are the bosonic field creation and annihilation operators, respectively. Further,

gs is the strength of repulsive (gs > 0) interparticle interactions within the working

fluid that can be related to the frequency of transverse confinement, ω⊥, and the three-

dimensional s-wave scattering length, a, via the relationship gs ≃ 2ℏω⊥a, valid away

from confinement-induced resonances [42].

Modelling the work strokes of the Otto cycle corresponds to simulating the unitary,

real-time dynamics of the working fluid governed by the Hamiltonian (1) in response

to a change of an external parameter. In this work, we study an interaction-driven

Otto cycle, enacted through control over the interaction strength gs. In practice,

the interaction strength can be tuned either by changing the scattering length a

using magnetic Feshbach resonance [43], or by varying the frequency of the transverse

confinement ω⊥ [44], both methods leading to identical results reported here. Tuning

the interaction strength by increasing or reducing ω⊥ can be regarded, respectively, as

transverse compression or expansion of the working fluid [15], offering an analogy to the

conventional volumetric Otto cycle even when the interaction strength is changed via a

magnetic Feshbach resonance. During compression stroke DA, work, Wcom > 0, is done

on the working fluid by increasing the interaction strength, whereas in expansion stroke

BC, the interaction strength is decreased allowing work, Wexp < 0, to be done by the

working fluid. The net work extracted in one complete cycle is thus W = Wcom +Wexp,

which must be negative, W < 0, for the cycle to operate as an engine.

To model the equilibration strokes, on the other hand, we consider a coupled system

in which the working fluid, described by the Hamiltonian (1), is coupled to another,

larger 1D quasicondensate which serves as the reservoir. The coupling to the hot and cold

reservoirs is alternated between the compression and expansion work strokes, but apart

from that we assume that the hot and cold reservoirs are described identically, except for

their respective thermal equilibrium temperatures. More specifically, for modelling the

equilibration strokes, we employ the tunnel-coupled model of two quasicondensates [45]

described by the following Hamiltonian:

Ĥcoupled = Ĥs + Ĥh(c) − ℏJ
ˆ
dx [Ψ̂†

sΨ̂h(c) + Ψ̂†
h(c)Ψ̂s]. (2)

Here, the subscript s denotes the system or the working fluid, whereas the subscripts h

and c denote the hot and cold reservoirs, respectively. The Hamiltonians Ĥh(c) for the

hot (cold) reservoirs have the same structure as Eq. (1), except that the field operators

Ψ̂s(x) are replaced by Ψ̂h(c)(x). The parameter J characterizes the tunnel-coupling
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strength between the working fluid and the reservoir; it can be determined precisely in

experiments by probing their mutual two-point phase-correlation function using matter-

wave interferometry [46].

2.2. Numerical method

To implement the four strokes of the quantum Otto cycle, we utilize the numerical

c-field method, developed for studying the finite-temperature dynamics of Bose gases

[45, 47–51]. This involves decomposing the quantum field operator Ψ̂i(x, t) into two

distinct regions: the classical, or c-field region, composed of highly occupied low-energy

modes that can be described by a complex field amplitude ψ
(C)
i (x, t), and the thermal

region containing sparsely occupied high-energy modes that act as an effective thermal

bath for the c-field. We now detail the numerical implementation of the entire finite-time

Otto cycle using the c-field method.

Step 1: Unitary compression work stroke, DA: We prepare the initial finite-temperature

thermal equilibrium state of the working fluid at point D of Fig. 1 using the stochastic

projected Gross-Pitaevskii equation (SPGPE) [52,53],

dψ(C)
s (x, t) = P(C)

{
− i

ℏ
L(C)

s ψ(C)
s (x, t)dt+

Γ

kBTs
(µs−L(C)

s )ψ(C)
s (x, t)dt+dWΓ(x, t)

}
, (3)

where ψ
(C)
s (x, t) is the classical field of the working fluid or the system (s). In Eq. (3),

the parameters µs and Ts refer to the chemical potential and temperature of the thermal

region and determine the total number of particles in the c-field region of the working

fluid, ψ
(C)
s (x, t). The operator P(C) is a projector operator that sets up the boundary

between the c-field and thermal region, defined by a cut-off energy, ϵcut. The Gross-

Pitaevskii operator, L(C)
s , is given by

L(C)
s = − ℏ2

2m

∂2

∂x2
+

1

2
mω2x2 + gs|ψ(C)

s (x, t)|2, (4)

We note here that we have matched up the strength of interparticle interactions and the

temperature of the working fluid to those of the cold reservoir, which is to be considered

later (in stroke CD, see below), i.e., we have chosen gs = gc and Ts = Tc for the initial

thermal equilibrium state of the working fluid.

Finally, the stochastic noise term, dWΓ(x, t), in Eq. (3) corresponds to complex

white noise, defined by the correlation [51–53],

⟨dW ∗
Γ(x, t)dWΓ(x

′, t)⟩ = 2Γδ(x− x′)dt. (5)

where Γ is the growth rate that characterises the strength of the coupling between the

c-field and the effective thermal bath, with ⟨·⟩ referring to stochastic averaging over

a large number of independent stochastic realisations (trajectories). In practice, the

growth rate Γ may be chosen according to numerical convenience as it does not affect

the final thermal equilibrium configuration [51,53].
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At the end of this preparation stage, the working fluid is at point D in the Otto

cycle diagram of Fig. 1. To initiate the first (compression) work stroke of the Otto

cycle, DA, we assume that the working fluid is isolated from all external reservoirs and

its interaction strength is quenched from an initial value, gs = gc to the final value gh.

We assume that the interaction quench is realised over a finite duration according to a

linear protocol,

gs(t) = gc + (gh − gc)t/tw, (6)

where tw is the duration of the quench. The working fluid now undergoes a unitary

evolution, which is modelled by the following projected Gross-Pitaevskii equation

(PGPE) [47,54]:

iℏ
∂

∂t
ψ(C)
s (x, t) = P(C)

{
− ℏ2

2m

∂2

∂x2
+

1

2
mω2x2 + gs(t)|ψ

(C)
s |2

}
. (7)

Through this stroke, mechanical work Wcom > 0 is done on the working fluid. The

quantity Wcom is computed numerically by evaluating the change in the Hamiltonian

energy of the working fluid after completion of the stroke at point A, i.e, Wcom =

⟨Ĥs⟩A − ⟨Ĥs⟩D. The duration tw in which the compression stroke DA is completed

determines the state of the working fluid at the end of the stroke. If this compression

stroke is executed via a sudden quench, the working fluid at point A will be in a highly

non-equilibrium state with no definable temperature. In contrast, if the compression

stroke is carried out using a slow quasistatic quench, then the working fluid at point A

will have a definite temperature, Ts > Tc.

Step 2: Equilibration with hot reservoir, AB: Upon completion of the unitary

compression stroke DA at time tw, we next model the subsequent equilibration stroke

AB with the hot reservoir by switching on the tunnel coupling between the working

fluid and the hot reservoir. In an experimental setup, the tunnel-coupled system of

1D quasicondensates, or the 1D bosonic Josephson junction, can be realized using

a quantum degenerate Bose gas confined in a tunable double well potential in the

transverse direction [46]. The dynamics of the working fluid coupled to the hot reservoir

are now modelled using the coupled PGPEs [45],

iℏ
∂

∂t
ψ(C)
s (x, t) = P(C)

{
− ℏ2

2m

∂2

∂x2
+
1

2
mω2x2+gs|ψ(C)

s |2−ℏJψ(C)
h (x, t)

}
, (8)

iℏ
∂

∂t
ψ

(C)
h (x, t) = P(C)

{
− ℏ2

2m

∂2

∂x2
+ Vh(x) + gh|ψ(C)

h |2 − ℏJψ(C)
s (x, t)

}
, (9)

where, ψC
h is the c-field for the hot reservoir (h), which is at a temperature Th. The

initial state of the hot reservoir is prepared exactly in the same way as the working fluid,

using the SPGPE, Eq. (3), except with the subscript s replaced by h.

To initiate equilibration strokeAB, the tunnel-coupling parameter is quenched from

J = 0 to a constant value, which we chose to be J = 2ω for definiteness. Moreover,

during the equilibration stroke with the hot reservoir, the interaction strength parameter
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(a) (b) (c)

Figure 2. Illustration of three typical chemical potential offset (∆µ) settings relevant

for modelling the thermalization strokes when the working fluid is tunnel-coupled to a

hot (h, red) or cold (c, blue) reservoir via a transverse double-well potential. In panel

(a), the chemical potentials satisfy µs+∆µ < µh, resulting in net particle flow from the

reservoir to the working fluid, which is the case for stroke AB; panel (b) corresponds

to the reverse situation, which is the case for stroke CD with µs + ∆µ > µc; finally,

panel (c) illustrates a balanced situation of µs + ∆µ = µc, which does not result in

any net particle flow between the working fluid and the cold reservoir (with the same

being true if the cold reservoir is replaced by the hot one).

of the working fluid is kept constant at value gs = gh. The external trapping potential

in Eq. (9) (b) is given by,

Vh(x) =
1

2
mω2x2 −∆µ, (10)

where we have introduced a chemical potential offset, ∆µ, in order to control the net

flow of particles from the reservoir to the working fluid if µs +∆µ < µh, or vice versa –

from the working fluid to the reservoir – if we were to chose µs + ∆µ > µh (see Fig. 2

for illustrations). The latter arrangement, with µs +∆µ > µc, is the case for the stroke

CD (see below). We note here that, while the choice of ∆µ affects the overall net

flow of particles upon completion of the DA stroke, transient transfer and oscillations

of particles between the working fluid and the reservoir is still possible, and is in fact

required for establishing eventual mutual thermal equilibrium.

The coupled PGPEs, Eqs. (8) and (9), are evolved for a duration of time, which we

refer to as thermalization time tth, during which the working fluid comes into thermal

equilibrium with the hot reservoir. In the process, energy, Ein = ⟨Ĥs⟩B − ⟨Ĥs⟩A > 0,

is transferred from the hot reservoir to the working fluid.

Step 3: Unitary expansion work stroke, BC: After completion of the equilibration stroke

with the hot reservoir, we switch off the tunnel coupling, i.e. set J = 0, and perform

the expansion work stroke by evolving the working fluid according to the PGPE given

in Eq. (7), except that now the interaction strength, g(t) is decreased from the value gh
back to gc according to the following linear protocol:

g(t) = gh − (gh − gc)t/tw. (11)

During the expansion work stroke, which is completed in the same duration (tw) as the

compression stroke, the working fluid performs work Wexp < 0. Similarly to Wcom, the
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quantity Wexp is computed numerically by evaluating the change in the Hamiltonian

energy of the working fluid after completion of the expansion stroke at point B, i.e,

Wexp = ⟨Ĥs⟩B − ⟨Ĥs⟩A.

Step 4: Equilibration with cold reservoir, CD: On completion of the expansion stroke, we

enable tunnel coupling with the cold reservoir and simulate the dynamics of equilibration

using the coupled PGPEs given in Eqs. (8) and (9), except that the subscript h is

replaced by c. During this stroke, energy Eout = ⟨Ĥs⟩D−⟨Ĥs⟩C < 0, is being transferred

from the working fluid to the cold reservoir, returning the working fluid and the overall

Otto cycle to the point of initialization D.

The overall performance of this engine cycle may be quantified through the net

work,

W = Wcom +Wexp, (12)

which must be negative for the Otto cycle to operate as an engine, efficiency,

η = −W/Ein, (13)

and power output,

P = −W/ttot, (14)

where ttot is the total cycle time, given by ttot = 2(tw + tth).

3. Quantifying the timescales for the unitary work strokes

In this section, we analyze the three distinct time-scales over which the work strokes may

be performed via a quench of the interaction strength. These include: (i) the sudden

quench, where the efficiency is lowest due to the production of maximum irreversible

work [21, 32]; (ii) the near-adiabatic (quasistatic) quench, which corresponds to near-

maximal efficiency but minimal power output due to extremely long driving time [55];

and (iii) the intermediate quench, which lies in between the first two extremes and

highlights the trade-off between power and efficiency.

In theory, a sudden quench is often treated as if it were instantaneous [48, 49, 56].

However, in practice, a “sudden” quench is not truly instantaneous but occurs over a

finite duration [44]. This duration must be fast enough to be nearly sudden with respect

to the characteristic timescale for longitudinal dynamics, t∥ = 2π/ω, yet slow enough

(near adiabatic) in relation to the characteristic timescale for transverse dynamics,

t⊥ = 2π/ω⊥, so that one avoids exciting any transverse excitations and maintains the

1D nature of the system [44].

Accordingly, in our simulations, the unitary work strokes in the sudden quench

regime are completed in a finite time by performing a linear quench of the interaction

strength described in Eqs. (6) and (11), satisfying the following the condition:

t⊥ ≪ tw ≪ t∥. (15)
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ρ(x, t) lho ρ(x, t) lho(c)                                                                                       (d)

(a)                                                                                       (b)ρ(x, t) lho ρ(x, t) lho

Figure 3. Time-evolution of the real-space density profile ρ(x, t) of a weakly

interacting 1D Bose gas, following an interaction strength quench. After preparing

the initial state (t = 0), a linear quench of the interaction strength gs was performed

according to Eq. (6), from an initial value of gc to the final value gh = 1.80gc, and

the working fluid was evolved according to the 1D PGPE (7). The quench duration

(shown as vertical dashed lines) was chosen as: (a) tw = 0.05/ω (sudden quench);

(b) tw = 30.0/ω (intermediate); (c) tw = 100/ω (intermediate); and (d) tw = 300/ω

(near-adiabatic or quasistatic quench). The dimensionless position x/lho is defined

using the characteristic harmonic oscillator length along the longitudinal dimension,

lho =
√
ℏ/mω. All results in this paper are for a gas of 87Rb atoms with mass

m ≃ 1.44 × 10−25 kg and 3D scattering length as ≃ 5.31 nm. The initial thermal

equilibrium temperature of the working fluid here is Ts = 86.3 nK and the total

number of particles is Ns ≃ 1750 which was obtained using the chemical potential

µs = 6.62 × 10−31 J. The other relevant physical parameters that were used are as

follows: ω/2π = 20.0 Hz and gc = 1.27 × 10−38 J·m. The transverse confinement

frequency that was used to achieve this value of interaction strength was ω⊥/2π = 1.81

kHz (recall that gs≃2ℏω⊥a).

The quasistatic or near-adiabatic engine cycle, on the other hand, corresponds

to completing the work strokes over timescales during which the system remains

approximately in thermal equilibrium states. This implies that the work strokes are

near-adiabatic relative to both time-scales introduced above, i.e.,

t⊥ ≪ t∥ ≪ tw. (16)
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Finally, to complete the work strokes in the intermediate regime, we follow the following

condition:

t⊥ ≪ t∥ ∼ tw. (17)

In Fig. 3, we demonstrate the time-evolution of the real-space density profile of the

working fluid as we quench the interaction strength to perform the unitary compression

work stroke CD in time tw. (The dynamics during the expansion strokes are similar and

will not be shown). To identify distinct dynamical regimes as a function of the quench

duration, we complete the interaction strength quench over various values of tw and

then continue simulating the unitary post-quench dynamics of the system (instead of

immediately implementing the next stroke of the Otto cycle – the thermalization stroke

BA). This is done for diagnostics purposes only – as to identify the presence, or lack

thereof, of any longitudinal excitations in the system – for the quench to be regarded as

sudden or intermediate, as opposed to near-adiabatic (quasistatic) quench.

The vertical dashed lines in Figs. 3 (a)–(d) mark the completion of the interaction

quench over duration tw. In Fig. 3 (a), this duration is too short for the dotted line to

be visible; here, we are in the sudden quench regime and can clearly see excitation of

breathing mode oscillations [44, 49, 56–59] after the interaction quench is completed.

In contrast, Fig. 3 (b) and (c) depict the dynamics after the intermediate quench.

Here, post-quench breathing mode oscillations are significantly suppressed, however,

we can still observe weak breathing mode excitations during the quench, indicating that

these quenches are not yet slow enough to be classified as near-adiabatic or quasistatic.

Finally, Fig. 3 (d) illustrates what we classify as a near-adiabatic (quasistatic) quench.

Over these timescales, no observable non-adiabatic excitations are produced. This

regime of the Otto engine is expected to result in near-maximum efficiency due to

minimal irreversible work produced during the work strokes [7, 21,32,60].

4. Operational timescales for thermalization strokes under various

dynamical scenarios

The power output of an engine cycle is inversely dependent on the total cycle time.

This is broken down into a sum of the duration of the unitary work strokes, which are

controlled externally, and the equilibration strokes, which are not externally controlled

but are typically assumed to be fast in comparison to that of the work strokes [7,8,29–33].

In this section, we analyze these equilibration strokes in order to determine the

characteristic operational timescale that governs the thermalization of the working fluid.

In particular, we explore the effects of various factors, such as the size and temperature

of the reservoir, as well as the duration of the prior work stroke which can leave the

system in a highly non-equilibrium state after a sudden quench; or in a near-equilibrium

state after a quasistatic quench.

Specifically, we focus on the thermalization stroke AB that follows immediately

after the unitary compression stroke DA studied in the previous section. In Fig. 4 (a),
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Figure 4. Relative change in energy and particle number, ∆Es(t)/Es(0) and

∆Ns(t)/Ns(0), of the working fluid versus dimensionless time ωt during the

thermalization stroke AB. (b) Absolute value of the work extracted from the working

fluid in the sudden-quench expansion stroke BC as a function of the dimensionless

duration of the thermalization stroke AB ωtth. The dimensionless duration of

expansion stroke BC is ωtw = 0.05. All parameter values for the initial state of the

system and the ratio of the values of gc and gh are the same as in Fig. 3, except that

now (during the expansion stroke) the interaction strength is quenched from gh back to

gc. The hot reservoir is prepared with interaction strength gh = 2.29× 10−38 J·m and

temperature Th = 258 nK. The ratio of particle number between the reservoir and the

system is Nh/Ns ≃ 7.31. The particle number of the reservoir is Nh ≃ 12800, which is

obtained using the chemical potential µh = 39.7 × 10−31 J. The ratio of temperature

between the initial states of the system and the hot reservoir is Th/Tc = 3.00. The

results in this figure correspond to the chemical offset arrangement shown in Fig. 2(c),

where we have maintained ∆Ns(t ≫ 1/ω) ≃ 0, by using µh ≃ µs + ∆µ, with

∆µ = 29.5 × 10−31 J.

we illustrate the time evolution of relative changes in the working fluid’s (or system’s,

for which we use the subscript s) energy and particle number, ∆Es(t)/Es(0) = (Es(t)−
Es(0))/Es(0) and ∆Ns(t)/Ns(0) = (Ns(t) − Ns(0)/Ns(0), during this thermalization

stroke. Here, the quantities Es(t) = ⟨Ĥs(t)⟩ and Ns(t) =
´
⟨Ψ̂†

s(x, t)Ψ̂s(x, t)⟩dx are

evaluated by replacing the creation and annihilation field operators by time-evolving

stochastic realizations of the c-fields, Ψ∗
C(x, t) and ΨC(x, t), and by replacing quantum

mechanical ensemble averages by stochastic averages over a large number (typically

2000) of stochastic realisations. In the examples shown in Fig. 4 (a), we consider the

scenario where the thermalization strokeAB is initiated immediately after executing the

work strokeDA via a finite-time sudden quench (as in Fig. 3(a)); completion of the work

stroke at t = tw, corresponds to the start of the thermalization stroke AB, which we

reset to be the zero, t = 0, in the horizontal axes labels. We observe that, after an initial

rapid exchange of particles, which occurs in the form of damped oscillations, we have

maintained—in this example—zero net exchange in the particle number of the working

fluid, i.e. ∆Ns(t≫ 1/ω) ≃ 0. This is achieved by tailoring the chemical potential offset,

∆µ, such that we maintain zero net flow of particles, as was illustrated in Fig. 2 (c).
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Figure 5. Relative change in energy of the working fluid, ∆Es(t)/Es(0), versus the

dimensionless time ωt during the thermalization stroke AB, for various scenarios: (a)

different ratios of particle number, Nh/Ns ≃ 7, Nh/Ns ≃ 4, and Nh/Ns ≃ 2; (b)

different temperature ratios, Th/Tc = 3, Th/Tc = 2, and Th/Tc = 1; (c) dynamics of

thermalization following a sudden quench in the work stroke (tw = 0.05/ω) compared

to a quasistatic quench (tw = 300/ω); and (d) dynamics of thermalization in a pure

heat engine scenario (∆N = 0) compared to a chemical engine scenario with a net

particle flow of ∆N = 751 into the system from the hot reservoir. In all cases, the

initial parameters of the system and the ratio of interaction strength quench for the

work stroke are the same as in Fig. 3. In all panels, the system’s initial particle number,

Ns ≃ 1750 and temperature, Ts = Tc = 86.3 nK were the same. For the remaining

parameter values, see [61].

Even though ∆Ns(t≫ 1/ω) ≃ 0, we observe a net increase in the energy of the working

fluid after a sufficiently long duration of the thermalization stroke, ∆Es(t ≥ 40/ω),

which is due to purely temperature imbalance. We point out here that, even though the

working fluid may have not come to complete thermal equilibrium at time t ∼ 40/ω,

the bulk of the energy transfer, which is to be converted into useful work in the next

stroke BC, has already taken place by this time.

In Fig. 4 (b), we show how the duration of the thermalization stroke AB affects the

amount of work, Wexp < 0, done by the working fluid during the subsequent expansion

stroke BC. More specifically, we show the absolute value of the work, |Wexp|, as a
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function of the duration, tth, of the thermalization stroke AB during which the working

fluid is kept in contact with the hot reservoir. We observe that after tth ≃ 40/ω the

absolute work |Wexp| shows negligible further change with an increased duration of the

thermalization stroke AB. This is consistent with the observation made in Fig. 4 (a)

that the bulk of the energy from the hot reservoir, that is being converted into work,

has already been transferred to the working fluid by tth ≃ 40/ω.

In Figs. 5 (a) and (b) we illustrate, respectively, the effects of the size and

temperature of the hot reservoir on the dynamics of the relative change in energy,

∆Es(t)/Es(0), of the working fluid during the thermalization stroke AB. In both these

cases, just as we begin the thermalization stroke, the working fluid is in an out-of-

equilibrium state after the completion of the compression work stroke via a sudden

quench (tw = 0.05/ω). The completion of the work stroke at t = tw, corresponds to the

start of the thermalization stroke AB, which we reset to be the zero, t = 0, in Fig. 5,

just as we did in Fig. 4.

In the examples of Fig. 5(a), the thermalization stroke is implemented using

three different hot reservoirs, each with a different particle number but an identical

temperature, whereas the number of particles in the working fluid is kept constant at

Ns = 1750. The energy transfer from the reservoir to the working fluid again takes

place through damped oscillations. The net increase in energy of the working fluid after

a sufficiently long duration of the thermalization stroke, ∆Es(t≫ 1/ω), increases with

the size of the hot reservoir, as expected. Furthermore, when using a small reservoir,

the amplitude of oscillations, responsible for energy transfer, is smaller than in the case

of a larger reservoir, and the oscillations damp faster. This means that, when using a

smaller reservoir, the thermalization stroke can be terminated at an earlier time, since

the bulk of the energy transfer has already occurred during the first few oscillations.

For the examples of Fig 5 (b), we employ the same procedure as in Fig.5(a), but in

this case we consider three different temperatures of the hot reservoir, and keep its total

particle number fixed. In these three scenarios, we observe that the dynamics of the

relative change in energy of the working fluid are largely insensitive to the temperature of

the reservoir and that the bulk of energy transfer from the reservoir to the working fluid

occurs on the same timescale. This suggests that the temperature of the hot reservoir

may not have a significant effect on the Otto engine power output. Additionally, we see

that the net energy transfer from reservoirs of different temperatures does not vary much,

suggesting that these temperatures may not have a significant effect on the efficiency of

the engine either. This is consistent with a similar recent finding from Ref. [62], for a

study of the conventional (volumetric) Otto cycle with partially condensed, harmonically

trapped Bose-Einstein condensate as the working fluid.

In Fig. 5 (c), we analyse the dynamics of energy transfer from the reservoir to

the working fluid, depending on whether the working fluid, after the previous work

stroke, was left in a highly non-equilibrium state (such as in a sudden quench work

stroke) or in a near-equilibrium state (such as after a quasistatic work stroke). Here, the

curve corresponding to energy transfer after a sudden quench work stroke is the same
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as the respective curve from Fig. 5 (a). The curve corresponding to energy transfer

after a quasistatic work stroke, on the other hand, is shown in red. As we see, the

dynamics of energy transfer in both cases are very similar: thermalization in both cases

occurs over similar time scales, and the net increase in energy of the working fluid is

approximately the same, with the net energy increase after a quasistatic work stroke

being only marginally larger than that after a sudden quench work stroke. This suggests

that the rate and magnitude of energy transfer during the thermalization stroke does

not strongly depend on the state (highly non-equilibrium versus near equilibrium) of

the working fluid. Therefore, executing the work strokes in a quasistatic manner does

not lead to faster thermalization nor a more significant increase in energy of the system

at the end of the thermalization stroke with the hot reservoir.

Finally, in Fig. 5 (d), we demonstrate our model’s capability to function as a

chemical engine. We compare the relative increase in energy of the working fluid during

the thermalization stroke AB in two scenarios: first, corresponding to a pure heat

engine, when there is no net flow of particles from the hot reservoir to the working

fluid, i.e. ∆Ns(t ≫ 1/ω) ≃ 0, using the scheme of Fig. 2 (c) and repeating the result

for Nh/Ns = 7 from Fig. 4 (a) (blue curve); and second, corresponding to a chemical

engine, where we allow for an additional flow of ∆N particles from the hot reservoir into

the working fluid, using the scheme of Fig. 2 (a) (red curve). We observe a significant

increase in the energy of the working fluid as we perform additional chemical work via

the particle inflow. Thus, increasing the particle inflow from the hot reservoir to the

working fluid provides an opportunity to increase the beneficial net work, as we have

more energy, Ein, at our disposal to be utilized to perform work,Wexp, in the subsequent

expansion stroke.

5. Performance of the full Otto cycle

In this section, we combine the analysis of characteristic timescales for the work and

thermalization strokes in the interaction-driven Otto cycle to evaluate the overall

performance of the proposed Otto engine and the trade-off between its power and

efficiency.

5.1. Impossibility of operating as a heat engine

We first discuss a full interaction-quench Otto cycle with a harmonically trapped 1D

Bose gas operating in a pure heat engine setup, i.e., when the chemical potential offset

∆µ (see Fig. 2) is chosen in such a way that there is no net particle flow between the

working fluid and the reservoirs. This study was motivated by an attempt to extend the

uniform 1D Bose gas results of Refs. [14, 15] to a harmonically trapped system, which

is easier to realise experimentally. What we found, however, was that a harmonically

trapped 1D Bose gas, unlike the uniform system, did not result in engine operation

regime with large and negative W < 0: the net work was either positive in the sudden
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quench scenario (implying that the system gained energy as a result of the cycle, rather

than lost energy to a useful work), or was negative, but very small, in the quasistatic

quench. This finding is illustrated in Fig. 6 (a), where see that −W as a function of the

number of particles ∆N is negative (i.e., W > 0) for ∆N = 0, in the sudden-quench

Otto cycle. The quantity −W becomes positive (i.e., W < 0) only at some finite ∆N , in

which case we refer to the Otto cycle as a chemical engine (see next subsection), rather

than heat engine.

The main reason hindering the operation of the Otto cycle as a heat engine using

a harmonically trapped 1D Bose gas is that the net work is now not only a function of

the difference of the local atom-atom correlation functions at the hot and cold thermal

equilibrium points B and D of the Otto cycle diagram of Fig. 1 (for details, see [15]),

but it also depends on the inhomogeneity of the density profile and, in particular, on

the peak density at these equilibrium points. The overall effect of this is that, while

the atom-atom pair correlation has a favourable dependence on the temperature T for

the net work done by the fluid to be large and positive, the dependence of the peak

density on the temperature is not favourable and it cancels out the positive net work

that would be otherwise realisable in a uniform system where the densities in the hot

and cold equilibrium points are the same.

5.2. Operating as an Otto chemical engine

Although operating our interaction-driven Otto cycle as a purely heat engine is not

feasible using a harmonically trapped Bose gas, we find that one can still operate it as a

chemical engine by performing additional chemical work on the working fluid during the

thermalization stroke AB. This additional chemical work is performed via the inflow of

particles ∆N from the hot reservoir to the working fluid, using the chemical potential

offset arrangement shown in Fig. 2 (a) and demonstrated in Fig. 5 (d). The increase in

total particle number results in a corresponding increase in the energy of the working

fluid, which is available to be converted into mechanical work in the subsequent work

stroke BC. After completing this work stroke, we couple the working fluid to the cold

reservoir and transfer the same excess number of particles ∆N to the cold reservoir in

the equilibration stroke CD, hence returning the working fluid into the state with the

same initial number of particles.

The efficiency, η = −W/Ein of such a chemical Otto engine can be calculated by

simply evaluating the energy differences at the end of each stroke, as described in Sec. 2.

Unlike the case of a pure heat engine, the energy, Ein = ⟨Ĥs⟩B−⟨Ĥs⟩A > 0, in an Otto

chemical engine includes a contribution from chemical work and can be expressed as

Ein = Qin +Wchemical. (18)

Here, Qin is the heat taken in by the working during the thermalization stroke with the

hot reservoir, AB, whereas Wchemical represents the additional chemical work done on

the working fluid via the transfer of ∆N particles. Though calculating the individual

contributions, Qin and Wchemical, in the total Ein is a nontrivial task, as the heat and
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Figure 6. Net work and power output of an interaction-driven Otto engine as a

function of the number of particles, ∆N , exchanged with the hot and cold reservoirs

during the thermalization strokes for sudden, intermediate, and quasistatic quenches.

In panel (a), we show the net work −W/ℏω (in units of ℏω), with −W > 0

corresponding to positive net work done by the working fluid. For the first two data

points of the blue curve and the first data point of the red curve, we have −W < 0,

meaning these points do not correspond to performance as an engine. In panel (b), we

show the power output, P/ℏω2 (in units of ℏω2) of the Otto engine cycle corresponding

to the data in (a). The data points that do not correspond to engine operation have

been removed from (b). The duration of the thermalization stroke with each of the

reservoirs was fixed at tth = 40/ω in all three cases. All other parameters are the same

as in Fig. 4.

particle transport are intrinsically coupled processes (see, e.g., [63, 64]), we emphasise

here that the chemical work is included in the overall energetic cost of evaluating the

efficiency of the Otto chemical engine by defining the efficiency via η = −W/Ein, rather

than via η = −W/Qin.

5.3. Trade-off between power and efficiency

We finally analyse the overall performance of the finite-time Otto chemical engine and

evaluate the trade-off between its power and efficiency. In Fig. 6, we show the net work

and power output of the Otto chemical engine as a function of the number of particles

∆N exchanged with the reservoir, for three types of work strokes, corresponding to:

sudden interaction quench, intermediate quench, and quasistatic quench. We see that,

as we increase ∆N , both the net work and power output increase in all three scenarios.

Furthermore, as evident in Fig. 6 (a), the maximum work output occurs when the unitary

work strokes are implemented through a quasistatic (near- adiabatic) quench of the

interaction strength, as expected. We observe, however, that transitioning from the

slowest quasistatic quench to the fastest sudden quench regime results in a relatively

minor loss in work output, despite the work stroke being executed orders of magnitude

faster. This suggests that in the explored engine cycle, non-adiabatic excitations
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Figure 7. Efficiency, η, and efficient power as a function of the number of particles

∆N exchanged with the hot and cold reservoirs during the thermalization strokes for

sudden, intermediate, and quasistatic quenches. All initial parameters of the working

fluid and the reservoir are the same as in Fig. 4. The thermalization time with the

reservoir was fixed at tth = 40/ω for all three cases. In panel (a), we show the efficiency

η, with η > 0 corresponding to operation as an engine, i.e., when net work −W > 0;

the first two data points of the blue curve and the first data point of the red curve in

(a) do not correspond to engine operation, as −W < 0 and hence η < 0. In panel (b),

we show the efficient power (see text) of the Otto engine cycle, corresponding to the

data in (a). The data points that do not correspond to engine operation have been

removed from (b).

contribute minimally to irreversible work and therefore optimising the quench protocol

via a shortcut to adiabaticity [65,66] may not be necessary to operate at near-maximum

efficiency [6–8,21].

In Fig. 6 (b), which shows the power, we observe that beyond a specific threshold

value of ∆N ≃ 530, the engine driven by a sudden quench of the interaction strength

achieves a higher power output compared to the engine driven by a slow quasistatic

and an intermediate quench for the work strokes. This increased power output can be

attributed to the combination of two factors: first, the total engine driving time, ttot,

in the sudden quench scenario is significantly shorter than the intermediate and the

quasistatic quench; second, as demonstrated in Fig. 6 (a), in a sudden quench engine,

there is a relatively minor loss in net work −W , despite the work strokes being executed

significantly faster. Consequently, given that power output is defined as P = −W/ttot,
the sudden interaction quench engine significantly outperforms both the quasistatic and

intermediate quench engines in terms of power output.

In Fig. 7 (a), we plot the efficiency as a function of the number of particles,

∆N , for the chemical Otto engine driven by sudden, intermediate, and near-adiabatic

(quasistatic) quenches of interaction strength during the work strokes. Consistent with

observations in work and power output, an increase in ∆N leads to enhanced efficiency

for all three quench scenarios. Furthermore, we observe that the sudden quench engine

operates at efficiencies that are very close to the near-maximum limit achieved by the
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quasistatic work strokes. This result aligns with the results shown in Fig. 6 (a), and

means one can operate at near-maximum efficiencies by implementing the simplest finite-

time and even sudden work strokes without relying on any optimisation protocol such

as the STA to achieve similarly high efficiency [6–8,21,65]. The results of Figs. 6 (a) and

7 (b) confirm that irreversible work due to non-adiabatic excitations is not significant

in this model, thereby making the use of STA practically redundant in our proposed

engine cycle.

Furthermore, to quantify the trade-off between efficiency and power, we use the

parameter “efficient power”, which was first proposed in Ref. [67]. Efficient power is

simply a product of the efficiency and power output, and provides a direct relation

between the increase in the power output per unit decrease in the efficiency [67,68]. In

Fig. 7 (b), we show the efficient power for the engines driven by sudden, intermediate

and quasistatic interaction quenches for work strokes as a function of ∆N . We observed

that the engine operating in the sudden quench regime provides the maximum efficient

power provided a certain threshold value of ∆N (equal to ∆N ≃ 900 in this example)

is crossed.

The main takeaway from the finite-time analysis of the proposed Otto chemical

engine cycle is the favourable trade-off between efficiency and power output achieved

by executing the work strokes through a sudden quench of the interaction strength.

Furthermore, as we increase the number of particles, ∆N , exchanged with the reservoirs,

we observe a boost in engine performance across all three chosen quench times of the

work strokes considered in this study: sudden quench, intermediate, and quasistatic

quench. We additionally note that the qualitative conclusions presented above remain

valid as long as we are within the weakly interacting regime of the 1D Bose gas,

irrespective of the specific values of the parameters chosen.

6. Conclusions

We simulated a finite-time quantum Otto cycle driven by a quench of atomic interactions

of a 1D Bose gas in the weakly interacting quasicondensate regime. Our analysis

included a simulation of both the unitary work strokes and the thermalization strokes

for the proposed Otto cycle. To simulate the work strokes, we treated the working fluid

as an isolated many-body quantum system undergoing unitary evolution, starting from

a thermal initial state. The thermalization strokes, on the other hand, were simulated

by treating the working fluid as an open many-body quantum system coupled to another

many-body quantum system serving as the reservoir, both treated microscopically.

We identified characteristic operational timescales for these thermalization strokes in

experimentally realistic regimes.

The Otto engine’s performance was evaluated in three different scenarios

corresponding to three typical timescales for the execution of the work strokes: a sudden

quench, an intermediate quench, and a slow quasistatic (near-adiabatic) quench. We

first found that, contrary to a uniformly trapped Bose gas [15], a harmonically trapped
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system does not function as a heat engine. Nonetheless, we have also found that

engine operation can be restored by enabling additional chemical work in the form

of particle inflow from the hot reservoir to the working fluid. Thus, we have found that

a harmonically trapped 1D Bose gas can operate effectively as a chemical Otto engine.

We have shown that such a chemical Otto engine, when operating in the sudden quench

regime, achieves an efficiency that is quite close to the near-maximum limit obtained by

implementing the work strokes in a quasistatic fashion. Thus, in our proposed engine

cycle, it is possible to operate at near-maximum efficiency by executing the simplest

finite time quench (linear quench) or even a sudden quench of the interaction strength,

without relying on optimization protocols such as the STA. The primary reason for

this is the minimal amount of irreversible work generated by non-adiabatic excitations

during the finite-time driving of the Hamiltonian to execute the work strokes. Hence,

when work strokes are executed through a sudden quench of the interaction strength,

we observe a favourable trade-off between efficiency and power output in the chemical

Otto engine explored in this work.

In terms of future outlook, we note that the c-field approach employed here is

limited to only the weakly interacting regime of the 1D Bose gas [47]. Thus, future

work could utilize alternate theoretical approaches, such as generalized hydrodynamics

(GHD) [69–71], to explore the finite-time performance of the proposed engine across a

much broader available parameter space of interaction strength and temperature in a

1D Bose gas [37, 38]. Further, conducting a similar analysis with a weakly interacting

quasicondensate as the working fluid and a strongly interacting Tonks–Girardeau gas as

the thermal reservoirs, or vice versa, could be another interesting scenario to address.
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[59] Rüdiger Schmitz, Sven Krönke, Lushuai Cao, and Peter Schmelcher. Quantum breathing dynamics

of ultracold bosons in one-dimensional harmonic traps: Unraveling the pathway from few-to

many-body systems. Physical Review A, 88(4):043601, 2013.
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