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Abstract

Higher-dimensional automata, i.e., pointed labeled precubical sets,
are a powerful combinatorial-topological model for concurrent sys-
tems. In this paper, we show that for every (nonempty) connected
polyhedron there exists a shared-variable system such that the higher-
dimensional automaton modeling the state space of the system has the
homotopy type of the polyhedron.

1 Introduction

As amply demonstrated in the literature, concepts and methods from al-
gebraic topology can be profitably employed in concurrency theory, the
field of computer science that studies systems of simultaneously executing
processes, see, e.g., [Goubault, 2003, Fajstrup et al., 2006, Glabbeek, 2006,
Fajstrup et al., 2016]. Several topological models of concurrency have been
introduced by various authors, e.g., [Fajstrup et al., 2006, Grandis, 2009,
Krishnan, 2015]. A particularly important combinatorial-topological model
of concurrency is given by higher-dimensional automata [Glabbeek, 2006],
which go back to [Pratt, 1991]. It has been shown in [Glabbeek, 2006] that
higher-dimensional automata are more expressive than the principal tradi-
tional models of concurrency.
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A higher-dimensional automaton (HDA) is a pointed precubical set (cubical
set without degeneracy maps) with edge labeling such that opposite edges of
2-cubes have the same label. The vertices of an HDA represent the states of
a concurrent system, with the base vertex corresponding to the initial state.
The labeled edges model the transitions of the system, and two- and higher-
dimensional cubes express the independence of transitions: an n-cube in an
HDA indicates that the n transitions starting from its origin are independent
in the sense that they can occur in any order or even simultaneously without
any observable difference.

A standard procedure for constructing an HDA model of a concurrent sys-
tem is to first construct a transition system and then fill in empty squares
and higher-dimensional cubes, see, e.g., [Glabbeek, 2006, Gaucher, 2010,
Goubault and Mimram, 2012, Kahl, 2019]. To make this more precise, con-
sider the example of Peterson’s algorithm, a protocol designed to give
two processes fair and mutually exclusive access to a shared resource
[Peterson, 1981]. Peterson’s algorithm is based on three shared variables—
namely, a variable t whose possible values are the process IDs, say 0 and 1,
and two boolean variables b0 and b1. Process i executes the following protocol
with four local states and four transitions:

• Set bi to 1 to indicate the intention to enter the “critical section”.

• Set t to 1− i to give priority to the other process.

• Wait until b1−i = 0 or t = i, and then enter the critical section.

• Leave the critical section setting bi to 0, and repeat the procedure from
the beginning.

To start, all variables are set to 0. A global state of such a shared-variable
system is a tuple whose components are local states of the processes and
values of the variables. The transition system associated with the shared-
variable system is a labeled directed graph whose vertices correspond to the
global states that are actually visited during some execution of the system,
and whose edges model the transitions between these global states. The
transitions starting from a given global state correspond to the actions that
are enabled in that state. These actions are specified in the edge labels,
indexed by the respective process IDs. The HDA model of the system is
then constructed from the transition system as a kind of coskeleton, i.e., by
suitably filling in empty cubes of dimensions ≥ 2, see Figure 1 for the case
of Peterson’s algorithm.

It turns out that the topological analysis of HDAs provides information that
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Figure 1: HDA for Peterson’s algorithm. Parallel arrows are supposed to
have the same label, and the small arrow indicates the initial state.

is relevant from the point of view of computer science. Indeed, two ex-
ecutions of a concurrent system can be considered equivalent if and only
if they can be modeled as directed paths that are homotopic in a di-
rected sense, see, e.g., [Goubault, 2003, Fajstrup et al., 2016]. Addition-
ally, the homology of an HDA model of a concurrent system contains
global information about the independence of processes and components
of the system [Kahl, 2018, Kahl, 2021]. Further connections between alge-
braic topology and concurrency theory are developed in [Goubault, 2003,
Fajstrup et al., 2006, Fajstrup et al., 2016].

The purpose of this paper is to show that the topology of an HDA model of a
concurrent system can be arbitrarily complex. More precisely, we show that
for every (nonempty) connected polyhedron there exists a shared-variable
system whose HDA model has the same homotopy type as the polyhedron.
This is similar in spirit to [Ziemiański, 2016], where it is shown that for ev-
ery connected polyhedron there exists a PV-program (a particular kind of
shared-variable system) whose execution space contains a connected compo-
nent with the same homotopy type as the polyhedron. This paper is also
related to [Fajstrup, 2006], where in particular it is shown that every polyhe-
dron admits a cubical local partial order. In fact, the first step in the proof of
our result is to show that the cubical barycentric subdivision of a simplicial
complex can be constructed as a precubical set. This actually strengthens
[Fajstrup, 2006, Cor. 3.13] because it shows that no further subdivision of
the cubical barycentric subdivision is needed to equip a polyhedron with a
cubical local partial order.

The paper is organized as follows. The precubical set corresponding to the
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cubical barycentric subdivision of a simplicial complex is constructed in Sec-
tion 2. In Section 3, we turn this precubical set into an HDA, which we
show to be an HDA model of the transition system given by its 1-skeleton.
In the next section, we show that one can replace this HDA by a homotopy
equivalent accessible one, i.e., an HDA where all states are reachable by a
directed path from the initial state. In the last section, we then show that
this accessible HDA is isomorphic to the HDA model of a shared-variable
system.

2 The simplicial complex K and its cubical

barycentric subdivision P

Throughout this paper, we consider a connected abstract simplicial complex
K with vertices 1, . . . , N and the associated polyhedron |K|, which we view as
a subspace of the standard (N − 1)-simplex ∆N−1 ⊆ RN . More precisely, we
define |K| to be the subspace

⋃

σ∈K

|σ| ⊆ ∆N−1, where for a simplex σ ∈ K, |σ|

is the geometric simplex in RN with vertices ei = (0, . . . , 0, 1
i
, 0, . . . 0), i ∈ σ.

In this section, we construct the cubical barycentric subdivision of K as a
precubical set.

Precubical sets

Let us briefly recall some basic concepts about precubical sets. A precu-
bical set is a graded set X = (Xn)n≥0 with face maps dki : Xn → Xn−1

(n > 0, k ∈ {0, 1}, i ∈ {1, . . . , n}) satisfying the relations dki ◦ d
l
j = dlj−1 ◦ d

k
i

(k, l ∈ {0, 1}, i < j). If x ∈ Xn, we say that x is of degree or dimension n.
The elements of degree n are called the n-cubes of X . The elements of degree
0 are also called the vertices of X , and the 1-cubes are also called the edges
of X . Precubical sets form a category in which morphisms are morphisms
of graded sets that are compatible with the face maps. A precubical subset
of a precubical set X is a graded subset of X that is stable under the face
maps. The tensor product of two precubical sets X and Y is the precubical
set X ⊗ Y given by

(X ⊗ Y )n =
∐

p+q=n

Xp × Yq

and

dki (x, y) =

{

(dki x, y), 1 ≤ i ≤ p,
(x, dki−py), p < i ≤ n,

(x, y) ∈ Xp × Yq.
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({u}, {u, v})

({u}, {u, w})

({u, v}, {u, v, w})({u}, {u, v, w})

({u}, {u}) ({u, v}, {u, v})

({u, v, w}, {u, v, w})

({u, w}, {u, w}) ({u, w}, {u, v, w})

Figure 2: A 2-cube ({u}, {u, v, w}) and its faces

The geometric realization of a precubical set X is the quotient space

|X| =

(

∐

n≥0

Xn × [0, 1]n

)

/ ∼

where the sets Xn are given the discrete topology and the equivalence relation
is generated by

(dki x, u) ∼ (x, δki (u)), x ∈ Xn+1, u ∈ [0, 1]n, i ∈ {1, . . . , n + 1}, k ∈ {0, 1}.

Here the map δki : [0, 1]
n → [0, 1]n+1 is defined by

δki (u1, . . . , un) = (u1, . . . , ui−1, k, ui, . . . , un).

The geometric realization is functorial. For a morphism of precubical sets
f : X → Y , the continuous map |f | : |X| → |Y | is given by |f |([x, u]) =
[f(x), u]. The geometric realization of a precubical set is a CW complex.
The n-skeleton of |X| is the geometric realization of the precubical subset
X≤n of X defined by (X≤n)i = Xi for i ≤ n and (X≤n)i = ∅ for i > n.

The precubical set P

The cubical barycentric subdivision of K is the precubical set P where the
elements of Pn are pairs (τ, σ) of simplexes of K such that τ is a face of σ
and σ \ τ has n elements, see Figure 2 for a picture. Considering the natural
order on the set of vertices of K, the face maps of P are defined as follows:
if σ \ τ = {w1 < · · · < wn}, we set

d0i (τ, σ) = (τ, σ \ {wi})
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and
d1i (τ, σ) = (τ ∪ {wi}, σ).

One easily checks that P is indeed a precubical set. The remainder of this
section is devoted to the proof that |P | ≈ |K|.

The map f : |P | → |K|

Let (τ, σ) ∈ Pn, and suppose that

τ = {v1 < · · · < vr} and σ \ τ = {w1 < · · · < wn}.

We decompose the standard n-cube [0, 1]n as the union of the n-simplexes

∆θ = {(t1, . . . , tn) ∈ [0, 1]n | tθ(1) ≥ · · · ≥ tθ(n)}, θ ∈ Sn

and define a continuous map fτ,σ : [0, 1]
n → |K| by setting for an element

(t1, . . . , tn) ∈ ∆θ,

fτ,σ(t1, . . . , tn)

=
1−tθ(1)

r

r
∑

i=1

evi +
tθ(1)−tθ(2)

r+1
(

r
∑

i=1

evi + ewθ(1)) + · · ·

+
tθ(n−1)−tθ(n)

r+n−1
(

r
∑

i=1

evi +
n−1
∑

i=1

ewθ(i)) +
tθ(n)

r+n
(

r
∑

i=1

evi +
n
∑

i=1

ewθ(i))

(see Figure 3). If σ = τ , this formula is to be interpreted in such a way

that fτ,σ(()) =
1
r

r
∑

i=1

evi . Note that fτ,σ(t1, . . . , tn) is a convex combination of

barycenters of faces of |σ| and hence itself an element of |σ|. By the following
fact, the proof of which is left to the reader, fτ,σ is well defined:

Lemma 2.1. Let θ, ψ ∈ Sn and (t1, . . . , tn) ∈ ∆θ ∩∆ψ. Then tθ(i) = tψ(i) for
all i ∈ {1, . . . , n}. Moreover, if 1 ≤ i1 < · · · < ik = n are indices such that

tθ(1) = · · · = tθ(i1) > tθ(i1+1) = · · · > tθ(ik−1+1) = · · · = tθ(n),

then {θ(1), . . . , θ(is)} = {ψ(1), . . . , ψ(is)} for all s ∈ {1, . . . , k}.

The next lemma shows that a well-defined continuous map f : |P | → |K| is
given by

f([(τ, σ), (t1, . . . , tn)]) = fτ,σ(t1, . . . , tn), (τ, σ) ∈ Pn, (t1, . . . , tn) ∈ [0, 1]n.
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fτ,σ(∆(2 1))

fτ,σ(∆id)

ev1 ew1

ew2

1
2
(ev1 + ew1)

1
3
(ev1 + ew1 + ew2)

1
2
(ev1 + ew2)

Figure 3: The image of the map fτ,σ for τ = {v1} and σ \ τ = {w1 < w2}

Lemma 2.2. Let (τ, σ) ∈ Pn (n ≥ 1), and suppose that τ = {v1 < · · · < vr}
and σ \ τ = {w1 < · · · < wn}. Then fτ,σ\{wi} = fτ,σ ◦ δ

0
i : [0, 1]

n−1 → |K| and
fτ∪{wi},σ = fτ,σ ◦ δ

1
i : [0, 1]

n−1 → |K|.

Proof. We prove only the first equality and leave the similar proof of the
second to the reader. Let us first note that

(σ \ {wi}) \ τ = {w1 < · · · < wi−1 < wi+1 < · · · < wn}

= {w̄1 < · · · < w̄i−1 < w̄i < · · · < w̄n−1}

with

w̄j =

{

wj, j < i,

wj+1, j ≥ i.

Let θ ∈ Sn−1 and (t1, . . . , tn−1) ∈ ∆θ ⊆ [0, 1]n−1. Then tθ(1) ≥ · · · ≥ tθ(n−1),
and so defining (x1, . . . , xn) = (t1, . . . , ti−1, 0, ti, . . . , tn−1), we will have that
(x1, . . . , xn) ∈ ∆ψ ⊆ [0, 1]n, with ψ ∈ Sn defined by

ψ(j) =











θ(j), j < n, θ(j) < i,

θ(j) + 1, j < n, θ(j) ≥ i,

i, j = n.

Indeed,

xψ(j) =











xθ(j) = tθ(j), j < n, θ(j) < i,

xθ(j)+1 = tθ(j), j < n, θ(j) ≥ i,

xi = 0, j = n

=

{

tθ(j), j < n,

0, j = n.
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So xψ(1) ≥ · · · ≥ xψ(n), i.e., (x1, . . . , xn) ∈ ∆ψ. Note also that

wψ(j) =











wθ(j) = w̄θ(j), j < n, θ(j) < i,

wθ(j)+1 = w̄θ(j), j < n, θ(j) ≥ i,

wi, j = n

=

{

w̄θ(j), j < n,

wi, j = n.

We finally have that

fτ,σ ◦ δ
0
i (t1 . . . , tn−1) = fτ,σ(t1 . . . , ti−1, 0, ti, . . . tn−1) = fτ,σ(x1, . . . , xn)

=
1−xψ(1)

r

r
∑

l=1

evl +
xψ(1)−xψ(2)

r+1
(

r
∑

l=1

evl + ewψ(1)
) + . . .

+
xψ(n−1)−xψ(n)

r+n−1
(

r
∑

l=1

evl +
n−1
∑

l=1

ewψ(l)
) +

xψ(n)

r+n
(

r
∑

l=1

evl +
n
∑

l=1

ewψ(l)
)

=
1−tθ(1)

r

r
∑

l=1

evl +
tθ(1)−tθ(2)

r+1
(

r
∑

l=1

evl + ew̄θ(1)) + . . .

+
tθ(n−1)−0

r+n−1
(

r
∑

l=1

evl +

n−1
∑

l=1

ew̄θ(l)) +
0

r+n
(

r
∑

l=1

evl +

n−1
∑

l=1

ew̄θ(l) + ewi)

= fτ,σ\{wi}(t1, . . . , tn−1).

We can now prove the main result of this section:

Theorem 2.3. The map f : |P | → |K| is a homeomorphism.

Proof. In order to define a map g : |K| → |P |, consider an element x ∈ |K|.

Let σ = {u1 < · · · < un} be the unique simplex of K such that x =
n
∑

i=1

sieui

for (unique) numbers si > 0 such that
n
∑

i=1

si = 1. Choose a permutation

α ∈ Sn such that sα(1) ≥ · · · ≥ sα(n). Let

m = max{i ∈ {1, . . . , n} | sα(i) = sα(1)},

and set τ = {uα(1), . . . , uα(m)}. Let φ be the unique order-isomorphism

{α(m+ 1), . . . , α(n)} → {1, . . . , n−m},

and define θ ∈ Sn−m by θ(i) = φ(α(m+ i)). Set

tθ(i) = (m+ i)sα(m+i) +

n
∑

j=m+i+1

sα(j).
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Then

0 ≤ tθ(n−m) ≤ · · · ≤ tθ(1) ≤
n
∑

j=1

sα(j) = 1.

Hence (t1, . . . , tn−m) ∈ ∆θ ⊆ [0, 1]n−m. We set

g(x) = [(τ, σ), (t1, . . . , tn−m)].

Using Lemma 2.1, one easily checks that g(x) does not depend on the choice
of the permutation α. We have thus defined a map g : |K| → |P |. Tedious
but rather straightforward computations now show that f ◦ g = id|K| and
g◦f = id|P |. Since f is a continuous map between compact Hausdorff spaces,
it follows that f is a homeomorphism.

3 The HDA P

A higher-dimensional automaton (HDA) is a tuple A = (PA, IA,ΣA, λA)
where PA is a precubical set, IA ∈ (PA)0 is a vertex, called the initial state,
ΣA is a finite set of labels, and λA : (PA)1 → ΣA is a map, called the label-
ing function, such that λA(d

0
ix) = λA(d

1
ix) for all x ∈ (PA)2 and i ∈ {1, 2}

[Glabbeek, 2006]. The vertices of an HDA are also called its states. Origi-
nally, an HDA is also equipped with a set of final states, but since we will
never need final states, we omit this part of the structure. HDAs form a cat-
egory in which a morphism from an HDA A to an HDA B is a pair (f, g) con-
sisting of a morphism of precubical sets f : PA → PB and a map g : ΣA → ΣB

such that f(IA) = IB and λB(f(x)) = g(λA(x)) for all x ∈ (PA)1.

We turn the precubical set P defined in the previous section into an HDA P
by setting PP = P , IP = ({1}, {1}), ΣP = {1, . . . , N}, and λP(τ, σ) = a for
(τ, σ) ∈ P1 with σ \ τ = {a}. This is indeed an HDA since for (τ, σ) ∈ P2

with σ \ τ = {a < b},

λP(d
0
1(τ, σ)) = λP(τ, τ ∪ {b}) = b = λP(τ ∪ {a}, σ) = λP(d

1
1(τ, σ))

and

λP(d
0
2(τ, σ)) = λP(τ, τ ∪ {a}) = a = λP(τ ∪ {b}, σ) = λP(d

1
2(τ, σ)).

An HDA is said to be deterministic if no two edges with the same source have
the same label. An HDA is said to be codeterministic if no two edges with
the same target have the same label. We say that an HDA is bideterministic
if it is both deterministic and codeterministic.
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Proposition 3.1. The HDA P is bideterministic.

Proof. Let (τ, τ) be a vertex of P, and let (τ, σ) and (τ, ρ) be two edges with
the same label starting in (τ, τ). Suppose that σ\τ = {a} and that ρ\τ = {b}.
Then a = λP(τ, σ) = λP(τ, ρ) = b. Hence σ = τ ∪ {a} = τ ∪ {b} = ρ, and so
the two edges are the same. Thus, P is deterministic. A similar argument
shows that P is codeterministic.

HDA models

An HDA is extensional if no two edges with the same endpoints have the
same label. If an HDA is deterministic or codeterministic, it is extensional.
A transition system is a 1-truncated extensional HDA, i.e., an extensional
HDA concentrated in degrees ≤ 1.

Let T be a transition system, and let R be a relation on the alphabet ΣT .
The HDA model of T with respect to R is the by [Kahl, 2019, Thm. 4.2,
Cor. 4.5] up to isomorphism uniquely determined HDA Q which satisfies the
following conditions:

HM1 The 1-skeleton of Q, Q≤1 = ((PQ)≤1, IQ,ΣQ, λQ), is T .

HM2 For all x ∈ (PQ)2, λQ(d
0
2x)RλQ(d

0
1x).

HM3 For all m ≥ 2 and x, y ∈ (PQ)m, if d
k
rx = dkry for all r ∈ {1, . . . , m}

and k ∈ {0, 1}, then x = y.

HM4 Q is maximal with respect to the properties HM1–HM3, i.e., there is
no HDA A satisfying HM1–HM3 with PQ $ PA.

Condition HM1 says that Q is built on top of T by filling in empty cubes.
By condition HM2, an empty square may only be filled in if the labels of its
edges are related. Condition HM3 ensures that no empty cube is filled in
twice in the same way. By condition HM4, all admissible empty cubes are
filled in.

Theorem 3.2. P is the HDA model of its 1-skeleton P≤1 with respect to <.

Proof. Since P is deterministic, P≤1 is indeed a transition system.

HM1 is obvious.

HM2: Let (τ, σ) be a 2-cube of P. Suppose that σ \ τ = {a < b}. We have

λP(d
0
2(τ, σ)) = λP(τ, τ ∪ {a}) = a < b = λP(τ, τ ∪ {b}) = λP(d

0
1(τ, σ)).
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HM3: Let m ≥ 2, and let (τ, σ), (τ ′, σ′) ∈ Pm such that dkr(τ, σ) = dkr(τ
′, σ′)

for all r ∈ {1, . . . , m} and k ∈ {0, 1}. Suppose that σ \ τ = {w1 < · · · < wm}
and that σ′ \ τ ′ = {w′

1 < · · · < w′
m}. Since d01(τ, σ) = d01(τ

′, σ′), we have
(τ, σ\{w1}) = (τ ′, σ′\{w′

1}) and therefore τ = τ ′. Since d11(τ, σ) = d11(τ
′, σ′),

we have (τ ∪ {w1}, σ) = (τ ′ ∪ {w′
1}, σ

′) and therefore σ = σ′. Thus, (τ, σ) =
(τ ′, σ′).

HM4: Let Q be an HDA satisfying HM1–HM3 with respect to P≤1 and <
such that PP = P is a precubical subset of PQ. By HM1, (PQ)m = Pm for
m ≤ 1. Let m ≥ 2, and suppose inductively that (PQ)m−1 = Pm−1. Let
x ∈ (PQ)m. By the inductive hypothesis, dki x ∈ Pm−1 for all i and k. Write
dki x = (τki , σ

k
i ) and σ

k
i \ τ

k
i = {wki,1 < · · · < wki,m−1}. Consider i ∈ {1, . . . , m}

and j ∈ {1, . . . , m− 1}. If m = 2, we have

w0
i,j = w0

i,1 = λP(τ
0
i , τ

0
i ∪ {w0

i,1}) = λP(τ
0
i , σ

0
i ) = λP(d

0
ix)

= λP(d
1
ix) = λP(τ

1
i , σ

1
i ) = λP(τ

1
i , τ

1
i ∪ {w1

i,1}) = w1
i,1 = w1

i,j.

If m ≥ 3, we have

λP(d
0
1 · · · d

0
j−1d

0
j+1 · · · d

0
m−1d

0
ix)

= λP(d
0
1 · · · d

0
j−1d

0
j+1 · · · d

0
m−1(τ

0
i , τ

0
i ∪ {w0

i,1 < · · · < w0
i,m−1}))

= λP(d
0
1 · · · d

0
j−1d

0
j+1 · · · d

0
m−2(τ

0
i , τ

0
i ∪ {w0

i,1 < · · · < w0
i,m−2}))

= · · ·

= λP(d
0
1 · · · d

0
j−1d

0
j+1(τ

0
i , τ

0
i ∪ {w0

i,1 < · · · < w0
i,j−1 < w0

i,j < w0
i,j+1}))

= λP(d
0
1 · · · d

0
j−1(τ

0
i , τ

0
i ∪ {w0

i,1 < · · · < w0
i,j−1 < w0

i,j}))

= · · ·

= λP(τ
0
i , τ

0
i ∪ {w0

i,j})

= w0
i,j

and

λP(d
1
1 · · ·d

1
j−1d

1
j+1 · · · d

1
m−1d

1
ix)

= λP(d
1
1 · · · d

1
j−1d

1
j+1 · · · d

1
m−1(τ

1
i , τ

1
i ∪ {w1

i,1 < · · · < w1
i,m−1}))

= λP(τ
1
i ∪ {w1

i,1 < · · · < w1
i,j−1 < w1

i,j+1 < · · ·w1
i,m−1},

τ 1i ∪ {w1
i,1 < · · · < w1

i,m−1})

= w1
i,j.

Since parallel edges in an HDA have the same label (see, e.g., [Kahl, 2019,
Lemma 4.6], it follows that w0

i,j = w1
i,j in the case m ≥ 3 as well.
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Let 1 ≤ i < j ≤ m. Since

d0i d
0
jx = d0i (τ

0
j , σ

0
j ) = (τ 0j , σ

0
j \ {w

0
j,i})

and

d0j−1d
0
ix = d0j−1(τ

0
i , σ

0
i ) = (τ 0i , σ

0
i \ {w

0
i,j−1}),

we have τ 0i = τ 0j . Set τ = τ 0i = τ 0j . Since

d0i d
1
jx = d0i (τ

1
j , σ

1
j ) = (τ 1j , σ

1
j \ {w

1
j,i})

and

d1j−1d
0
ix = d1j−1(τ

0
i , σ

0
i ) = (τ 0i ∪ {w0

i,j−1}, σ
0
i ),

we have τ 1j = τ ∪ {w0
i,j−1}. Since

d1id
0
jx = d1i (τ

0
j , σ

0
j ) = (τ 0j ∪ {w0

j,i}, σ
0
j )

and

d0j−1d
1
ix = d0j−1(τ

1
i , σ

1
i ) = (τ 1i , σ

1
i \ {w

1
i,j−1}),

we have τ 1i = τ ∪ {w0
j,i}.

Since τ 1j = τ ∪ {w0
i,j−1} for all 1 ≤ i < j ≤ m, we have

w0
1,j−1 = w0

2,j−1 = · · · = w0
j−1,j−1

for all 1 < j ≤ m. Since τ 1i = τ ∪ {w0
j,i} for all 1 ≤ i < j ≤ m, we have

w0
i+1,i = w0

i+2,i = · · · = w0
m,i

for all 1 ≤ i < m. Since τ ∪ {w0
i+1,i} = τ 1i = τ ∪ {w0

i−1,i−1} for all 1 < i < m,
we have

w0
1,i−1 = w0

2,i−1 = · · · = w0
i−1,i−1 = w0

i+1,i = w0
i+2,i = · · · = w0

m,i

for all 1 < i < m.

Set

wi =

{

w0
i+1,i, 1 ≤ i < m,

w0
1,m−1, i = m.

12



Then w1 < · · · < wm. Indeed, if m = 2, since Q satisfies HM1 and HM2,

w1 = w0
2,1 = λP(τ

0
2 , τ

0
2 ∪ {w0

2,1}) = λP(d
0
2x) = λQ(d

0
2x)

< λQ(d
0
1x) = λP(d

0
1x) = λP(τ

0
1 , τ

0
1 ∪ {w0

1,1}) = w0
1,1 = w2.

If m ≥ 3, we have

wm−1 = w0
m,m−1 = w0

m−2,m−2 < w0
m−2,m−1 = w0

1,m−1 = wm

and
wi = w0

i+1,i = w0
i+2,i < w0

i+2,i+1 = wi+1

for 1 ≤ i < m− 1.

We have

d0m(τ, τ ∪ {w1 < · · · < wm})

= (τ, τ ∪ {w1 < · · · < wm−1})

= (τ, τ ∪ {w0
2,1 < · · · < w0

m,m−1})

= (τ, τ ∪ {w0
m,1 < · · · < w0

m,m−1})

= (τ 0m, σ
0
m)

= d0mx

and

d1m(τ, τ ∪ {w1 < · · · < wm})

= (τ ∪ {wm}, τ ∪ {w1 < · · · < wm})

= (τ ∪ {wm}, τ ∪ {wm} ∪ {w1 < · · · < wm−1})

= (τ ∪ {w0
1,m−1}, τ ∪ {w0

1,m−1} ∪ {w0
2,1 < · · · < w0

m,m−1})

= (τ 1m, τ
1
m ∪ {w0

m,1 < · · · < w0
m,m−1})

= (τ 1m, τ
1
m ∪ {w1

m,1 < · · · < w1
m,m−1})

= (τ 1m, σ
1
m)

= d1mx.

For 1 ≤ i < m, we have

d0i (τ, τ ∪ {w1 < · · · < wm})

= (τ, τ ∪ {w1 < . . . wi−1 < wi+1 < · · · < wm−1 < wm})

= (τ, τ ∪ {w0
2,1 < · · · < w0

i,i−1 < w0
i+2,i+1 < · · · < w0

m,m−1 < w0
1,m−1})

= (τ, τ ∪ {w0
i,1 < · · · < w0

i,i−1 < w0
i,i < · · · < w0

i,m−2 < w0
i,m−1})

13



= (τ 0i , σ
0
i )

= d0ix

and

d1i (τ, τ ∪ {w1 < · · · < wm})

= (τ ∪ {wi}, τ ∪ {w1 < · · · < wm})

= (τ ∪ {w0
i+1,i}, τ ∪ {w0

2,1 < · · · < w0
m,m−1 < w0

1,m−1})

= (τ ∪ {w0
i+1,i}, τ ∪ {w0

i+1,i}

∪ {w0
2,1 < · · · < w0

i,i−1 < w0
i+2,i+1 < · · · < w0

m,m−1 < w0
1,m−1})

= (τ ∪ {w0
i+1,i}, τ ∪ {w0

i+1,i}

∪ {w0
i,1 < · · · < w0

i,i−1 < w0
i,i < · · · < w0

i,m−2 < w0
i,m−1})

= (τ 1i , τ
1
i ∪ {w1

i,1 < · · · < w1
i,i−1 < w1

i,i < · · · < w1
i,m−2 < w1

i,m−1})

= (τ 1i , σ
1
i )

= d1ix.

Since Q satisfies HM3, it follows that x = (τ, τ ∪ {w1 < · · · < wm}) ∈ Pm.
Thus, (PQ)m = Pm.

4 Accessibility

A state v in HDA is said to be reachable if there exists a path, i.e., a sequence
of consecutive edges, from the initial state to v. An HDA in which all states
are reachable is called accessible. Unreachable states are of very limited in-
terest for the analysis of concurrent systems, since the executions of a system
only pass through reachable states. Therefore, it makes sense to model only
the accessible part of the state space of a system. Another important reason
for doing so is the state explosion problem: the state space of a concurrent
system can easily become very large, and including unreachable states in the
model would dramatically aggravate this problem. Unfortunately, the HDA
P defined in the previous section is highly inaccessible. In this section, we
show that it is possible to modify P to obtain an accessible HDA of the same
homotopy type. More precisely, we prove the following theorem:

Theorem 4.1. Let A be a bideterministic HDA which is the HDA model of
its 1-skeleton with respect to a strict total order on ΣA. Suppose that A is
connected, i.e., |PA| is path-connected, and that A has only a finite number
of unreachable states (e.g., A is finite). Then there exists an accessible and
bideterministic HDA B which is the HDA model of its 1-skeleton with respect
to a strict total order on ΣB and satisfies |PB| ≃ |PA|.

14



For the proof, we may suppose that A is not accessible. Clearly, it is enough
to show that there exists a bideterministic HDA B with less unreachable
states than A that is the HDA model of its 1-skeleton with respect to a strict
total order on ΣB and satisfies |PB| ≃ |PA|. We show first that A admits
an edge from an unreachable to a reachable state. Suppose that there is no
such edge. Let v be an unreachable state. Since A is connected, there is a
sequence of vertices IA = v1, v2, . . . , vk = v such that for each 1 ≤ i < k there
exists an edge between vi and vi+1. Inductively, all vi are reachable, which is
impossible.

Let e be an edge of A from an unreachable state v to a reachable state w.
If w = IA, we define B to be the same as A but with IB = v. Suppose
that w 6= IA. Let λA(e) = a, and let ω = (x1, . . . , xk) be a path from IA
to w with no repeated vertices, e.g., a shortest possible path. We view ω
as a morphism of precubical sets ❲0, k❳ → PA, where the precubical interval
❲p, q❳ (p, q ∈ Z, p ≤ q) is the precubical set defined by ❲p, q❳0 = {p, . . . , q},
❲p, q❳1 = {[p, p+ 1], . . . , [q − 1, q]}, d01[j − 1, j] = j − 1, d11[j − 1, j] = j, and
❲p, q❳n = ∅ for n > 1.

The HDA C

We first extend A to an HDA C such that |PC| ≃ |PA|. We define the precu-
bical set PC by the pushout diagram

❲0, k❳⊗ {2} ❲0, k❳ PA

❲−1, 0❳⊗ {1} ∪ ❲0, k❳⊗ ❲1, 2❳ PC.

∼= ω

ξ

Since the geometric realizations of the precubical sets on the left are con-
tractible and, as is well known, the geometric realization functor preserves
colimits, the inclusion |PA| →֒ |PC| is a homotopy equivalence. Let ΣC =
ΣA ∪ {c} for some element c /∈ ΣA. We extend the labeling function of
A to C by setting λC(ξ(i, [1, 2])) = c (i ∈ {0, . . . , k}), λC(ξ([i − 1, i], 1)) =
λA(xi) (i ∈ {1, . . . , k}), and λC(ξ([−1, 0], 1)) = a. The initial state of C is
IC = ξ(−1, 1).

a
c

· · ·

· · ·

· · ·

· · ·a

IA

IC
v

w
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Lemma 4.2. C is bideterministic and has the same unreachable states as A.

Proof. Since all edges of C that are not edges of A start in vertices of C that
are not vertices of A and in no such vertex start two edges with the same
label, C is deterministic. Since ω has no repeated vertices, no two edges of
C that are not edges of A end in the same vertex. Since any such edge that
ends in a vertex of A has label c, it follows that C is codeterministic.

Since IA is reachable in C, all states of A that are reachable in A are also
reachable in C. On the other hand, since any path in C from IC to a state of
A intersects ω, all states of A that are reachable in C are also reachable in
A. Since all states in ξ(❲−1, 0❳⊗{1} ∪ ❲0, k❳⊗ ❲1, 2❳) are reachable in C, it
follows that C has the same unreachable states as A.

Let < be the strict total order on ΣA with respect to which A is the HDA
model of its 1-skeleton. We extend < to a strict total order on ΣC by setting
b < c for all b ∈ ΣA.

Lemma 4.3. C is the HDA model of C≤1 with respect to <.

Proof. Condition HM1 is trivially satisfied. Since A satisfies HM2 and, for
all i ∈ {1, . . . , k},

λC(d
0
2ξ([i− 1, i], [1, 2])) = λC(ξ(d

0
2([i− 1, i], [1, 2])))

= λC(ξ([i− 1, i], 1))

= λA(xi)

< c

= λC(ξ(i− 1, [1, 2]))

= λC(ξ(d
0
1([i− 1, i], [1, 2])))

= λC(d
0
1ξ([i− 1, i], [1, 2])),

C satisfies HM2. Let x, y ∈ (PC)m (m ≥ 2) such that dkrx = dkry for all
r ∈ {1, . . . , m} and k ∈ {0, 1}. Since A satisfies HM3, x = y if x, y ∈ (PA)m.
If x /∈ (PA)m, then m = 2 and x = ξ([i− 1, i], [1, 2]) for some i ∈ {1, . . . , k}.
Since x is the only 2-cube of C having ξ([i− 1, i], 1) in its boundary, y = x.
Hence C satisfies HM3. Let Q be an HDA with PC ⊆ PQ that satisfies HM1–
HM3. Since A is the HDA model of A≤1, all m-cubes of Q (m ≥ 2) with
faces in A belong to A. Let x ∈ (PQ)2 such that at least one edge of x does
not belong to A. Since every edge that starts in a vertex of A belongs to A,
d01d

0
2x is not a vertex of A. Hence d01d

0
2x = ξ(i, 1) for some i ∈ {−1, . . . , k}.

Since λQ(d
0
2x) < λQ(d

0
1x), we have d01x 6= d02x and therefore 0 ≤ i < k. Since
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λQ(ξ([i, i+ 1], 1)) < λQ(ξ(i, [1, 2])) = c, we have d01x = ξ(i, [1, 2]) and d02x =
ξ([i, i + 1], 1). Since λQ(d

1
1x) = λQ(d

0
1x) = c, we have d11x = ξ(i + 1, [1, 2]).

Since, by Lemma 4.2, Q≤1 = C≤1 is deterministic, d12x = xi+1 because d12x
starts in ξ(i, 2) = d01xi+1 and λQ(d

1
2x) = λQ(d

0
2x) = λQ(ξ([i, i + 1], 1)) =

λQ(xi+1). Since Q satisfies HM3, x = ξ([i, i + 1], [1, 2]) ∈ (PC)2. Suppose
that there exist an integer m ≥ 3 and an element y ∈ (PQ)m such that at
least one face of y does not belong to A. Then d01 · · · d

0
my is not a vertex of

A. Hence d01 · · · d
0
my = ξ(i, 1) for some i. Since, by [Kahl, 2019, Prop. 4.7],

for all 1 ≤ i < j ≤ m,

λQ(d
0
1 · · · d

0
i−1d

0
i+1 · · · d

0
mx) < λQ(d

0
1 · · · d

0
j−1d

0
j+1 · · ·d

0
mx),

m different edges start in ξ(i, 1). This is not the case. Thus, Q = C and C
satisfies HM4.

The HDA D

We now extend C to an HDA D that still satisfies |PD| ≃ |PA| but in
which v is reachable. Let i be the largest index in {0, . . . , k} such that
λC(ξ([i− 1, i], 1)) = a. Since A is codeterministic, λC(ξ([k − 1, k], 1)) =
λA(xk) 6= a. Hence i < k. We define the precubical set PD by the pushout
diagram

❲i, k + 1❳⊗ {1} ∪ {i, k + 1} ⊗ ❲0, 1❳ PC

❲i, k + 1❳⊗ ❲0, 1❳ PD

ν

χ

where ν is the unique morphism of precubical sets such that ν([j−1, j], 1) =
ξ([j − 1, j], 1) (i < j ≤ k), ν([k, k + 1], 1) = ξ(k, [1, 2]), ν(i, [0, 1]) =
ξ([i− 1, i], 1), and ν(k + 1, [0, 1]) = e. Note that ν is injective. Since the
geometric realizations of the precubical sets on the left are contractible, the
inclusion |PC| →֒ |PD| is a homotopy equivalence. Hence |PD| ≃ |PA|. We
set ID = IC and ΣD = ΣC and extend the labeling function of C to D by
setting λD(χ(j, [0, 1])) = a, λD(χ([j − 1, j], 0)) = λA(xj) (i < j ≤ k), and
λD(χ([k, k + 1], 0)) = c.

a
c

· · ·

· · ·

· · ·

· · ·

· · ·

a a

IA

ID = IC
v

w
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Lemma 4.4. D is bideterministic and has less unreachable states than A.

Proof. In each vertex of D that is not a vertex of C start exactly two edges,
one with label a and the other with a different label. The only vertex of C
in which starts an edge of D that is not an edge of C is ν(i, 0) = ξ(i− 1, 1).
By definition of i, the label of this edge is different from a. Since i < k,
this label is also different from c. Hence the edges starting in ν(i, 0) =
ξ(i − 1, 1) have different labels. Since, by Lemma 4.2, C is deterministic,
it follows that D is deterministic. Since no two edges of D that are not
edges of C end in the same vertex, no edge in C with label c ends in v, and
the edges ξ([i, i+ 1], 1), . . . , ξ([k − 1, k], 1) have labels different from a, D is
codeterministic.

All states of C that are reachable in C are also reachable in D. Since all states
in χ(❲i, k+1❳⊗ ❲0, 1❳) are reachable in D and, in particular, v = χ(k+1, 0)
is reachable in D, the number of unreachable states of D is less than the
number of unreachable states of C and hence, by Lemma 4.2, of A.

The HDA B

Unfortunately, we cannot guarantee that D is the HDA model of its
1-skeleton, because the labels of the edges of the squares added to C might
be related in the wrong way. In the final HDA B, we solve this problem. We
set (PB)m = (PD)m for all m and define the face maps of PB by

∂ki x =

{

dk3−ix, x ∈ (PD)2 \ (PC)2, λD(d
0
1x) < λD(d

0
2x),

dki x, else.

Then PB is a precubical set and |PB| ≈ |PD|. Hence |PB| ≃ |PA|. We set
IB = ID = IC, ΣB = ΣD = ΣC, and λB = λD. Then B is an HDA with
B≤1 = D≤1. By Lemma 4.4, B is bideterministic and has less unreachable
states thanA. To finish the proof of Theorem 4.1, it remains to show that B is
the HDA model of its 1-skeleton. This is done in Proposition 4.6 below.

Lemma 4.5. Let Q be an HDA which satisfies HM2 with respect to Q≤1 and
a strict total order on ΣQ, and let x be an element of PQ of degree m ≥ 3.
Then dkpx 6= dlqx for all 1 ≤ p < q ≤ m and k, l ∈ {0, 1}.

Proof. Suppose that dkpx = dlqx for some 1 ≤ p < q ≤ m and k, l ∈ {0, 1}.
Then

d01 · · ·d
0
p−1d

k
pd

0
p+2 · · · d

0
mx = d01 · · · d

0
p−1d

0
p+1 · · · d

0
m−1d

k
px

= d01 · · · d
0
p−1d

0
p+1 · · · d

0
m−1d

l
qx = d01 · · · d

0
p−1d

0
p+1 · · · d

0
q−1d

l
qd

0
q+1 · · · d

0
mx.
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By the arguments given in [Kahl, 2019, Lemma 4.6, Prop 4.7], it follows that

λQ(d
0
1 · · · d

0
pd

0
p+2 · · · d

0
mx) = λQ(d

0
1 · · · d

0
p−1d

0
p+1 · · · d

0
mx)

< λQ(d
0
1 · · · d

0
pd

0
p+2 · · ·d

0
mx),

which is impossible.

Proposition 4.6. B is the HDA model of B≤1 with respect to <.

Proof. By construction, B satisfies HM1 and HM2. HM3 can be shown in
a similar way as for C, see Lemma 4.3. Let Q be an HDA that contains B
and satisfies HM1–HM3 with respect to B≤1 and <. Since, by Lemma 4.3, C
is the HDA model of C≤1, all m-cubes of Q (m ≥ 2) with faces in C belong
to C. Let x ∈ (PQ)2 such that at least one edge of x does not belong to C.
Since every edge with endpoints in C belongs to C, x has a vertex that does
not belong to C. Since λQ(∂

1
2x) < λQ(∂

1
1x), we have ∂11x 6= ∂12x. Since in no

vertex that does not belong to C ends more than one edge, it follows that
∂11∂

1
2x ∈ (PC)0. This implies that if ∂01∂

0
2x ∈ (PC)0, then ∂01∂

0
2x = χ(i, 0).

Indeed, in this case, ∂11∂
0
1x /∈ (PC)0 or ∂11∂

0
2x /∈ (PC)0, and so ∂01∂

0
2x is a

vertex of C in which starts an edge that ends in a vertex of (PB)0 \ (PC)0.
The only such vertex is χ(i, 0). Thus, there exists j ∈ {i, . . . , k} such that
∂01∂

0
2x = χ(j, 0).

Suppose that ∂01∂
0
2x = χ(j, 0) with i < j ≤ k. Since λQ(∂

0
2x) < λQ(∂

0
1x),

we have ∂01x 6= ∂02x. Therefore there exists r ∈ {1, 2} such that ∂0rx =
χ(j, [0, 1]) and ∂03−rx = χ([j, j + 1], 0). Since λQ(∂

1
rx) = λQ(∂

0
rx) = a, we

have ∂1rx = χ(j + 1, [0, 1]). Since Q≤1 = B≤1 is deterministic, we have
∂13−rx = χ([j, j +1], 1) because ∂13−rx starts in χ(j, 1) = ∂01χ([j, j +1], 1) and
λQ(∂

1
3−rx) = λQ(∂

0
3−rx) = λQ(χ([j, j + 1], 0)) = λQ(χ([j, j + 1], 1)). Since Q

satisfies HM3 and < is asymmetric, it follows that x = χ([j, j + 1], [0, 1]) ∈
(PB)2.

Suppose now that ∂01∂
0
2x = χ(i, 0). Since λQ(∂

0
2x) < λQ(∂

0
1x), we have

∂01x 6= ∂02x. The edges starting at χ(i, 0) are χ(i, [0, 1]) and χ([i, i+ 1], 0),
and ξ(i − 1, [1, 2]) when i > 0. Since all edges starting at the endpoints
of χ(i, [0, 1]) and ξ(i − 1, [1, 2]) are edges of C, there exists r ∈ {1, 2} such
that ∂0rx is χ(i, [0, 1]) or ξ(i − 1, [1, 2])}, and ∂03−rx = χ([i, i + 1], 0). Since
all edges starting at the endpoints of χ(i, [0, 1]) and ξ(i − 1, [1, 2]) end in
reachable vertices of C and there exists no edge starting in a reachable vertex
of C and ending in χ(i+2, 0), we have ∂11∂

1
2x = χ(i+1, 1), ∂1rx = χ(i+1, [0, 1]),

∂0rx = χ(i, [0, 1]), and ∂13−rx = χ([i, i + 1], 1). Since Q satisfies HM3 and <
is asymmetric, it follows that x = χ([i, i+ 1], [0, 1]) ∈ (PB)2.
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Suppose that there exists an element y ∈ (PQ)3 such that at least one face
of y, say ∂ljy, does not belong to C. Then ∂ljy = χ([r, r + 1], [0, 1]) for some
i ≤ r ≤ k. Since, for some s ∈ {1, 2},

χ([r, r + 1], 0) = ∂0sχ([r, r + 1], [0, 1]) = ∂0s∂
l
jy =

{

∂lj−1∂
0
sy, s < j,

∂lj∂
0
s+1y, s ≥ j,

Lemma 4.5 implies that (χ([r, r + 1], 0) is an edge of two distinct faces of y.
Since χ([r, r + 1], [0, 1]) is the only 2-cube of B having (χ([r, r + 1], 0) as an
edge, this is impossible.

A simple induction now shows that (PQ)m = (PC)m for all m ≥ 3. It follows
that B satisfies HM4.

5 Shared-variable systems

In this section, we consider shared-variable systems given by program graphs
and establish our main result:

Theorem 5.1. There exists a shared-variable system such that the geometric
realization of its HDA model has the homotopy type of the polyhedron |K|.

Program graphs and shared-variable systems

Let V be a set of variables. The domain of a variable x, i.e., the set of
its possible values, will be denoted by Dx. A program graph over V is a
tuple

(L,A, T, g, ı)

where L is a set of locations or local states, A is a finite set of actions, i.e.,
functions

∏

x∈V

Dx →
∏

x∈V

Dx, T ⊆ L × A × L is a set of transitions, g is a

function that specifies a guard condition, i.e., a subset of
∏

x∈V

Dx, for each

transition, and ı ∈ L is an initial location (cf. [Baier and Katoen, 2008]). A
shared-variable system over V is a tuple (G1, . . . ,Gn, η) consisting of program
graphs Gi and an initial evaluation η ∈

∏

x∈V

Dx.

The HDA model of a shared-variable system

Consider a shared-variable system (G1, . . . ,Gn, η) over a set of variables V ,
and write Gi = (Li, Ai, Ti, gi, ıi). The state graph of (G1, . . . ,Gn, η) is the
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1-truncated precubical set Q where

Q0 = L1 × · · · × Ln ×
∏

x∈V

Dx,

Q1 =
⋃

i∈{1,...,n}
t∈Ti

L1 × · · · × Li−1 × {t} × Li+1 × · · · × Ln × gi(t),

and for y = (l1, . . . , li−1, t, li+1, . . . , ln, γ) ∈ Q1 with t = (l0t , at, l
1
t ),

d01y = (l1, . . . , li−1, l
0
t , li+1, . . . , ln, γ)

and
d11y = (l1, . . . , li−1, l

1
t , li+1, . . . , ln, at(γ)).

The initial state of the system is the state I = (ı1, . . . , ın, η). The transi-
tion system model of (G1, . . . ,Gn, η) is the transition system T where PT is
the largest precubical subset of Q such that all states are reachable from

the initial state I, IT = I, ΣT =
n
⋃

i=1

{i} × Ai, and the label of an edge

y = (l1, . . . , li−1, t, li+1, . . . , ln, γ) ∈ (PT )1 with t = (l0t , at, l
1
t ) is given by

λT (y) = (i, at). The HDA model of (G1, . . . ,Gn, η) is the HDA model of T
with respect to the relation R on ΣT given by

(i, a)R (j, b) ⇐⇒ i < j.

Remark 5.2. In practice, the transition system model of a shared-variable
system can be constructed without handling unreachable states using a pro-
cedure such as the one described in the reference manual of the Spin model
checker [Holzmann, 2008, Sect. 7]. HDA models of shared-variable systems
written in Promela, the process description language of Spin, can be com-
puted using the tool pg2hda [Kahl, 2024].

Proof of Theorem 5.1

Since K is connected and |K| ≈ |P | = |PP | by Theorem 2.3, the HDA P is
also connected. By Proposition 3.1 and Theorems 3.2 and 4.1, there exists an
accessible and deterministic HDA B which is the HDA model of its 1-skeleton
with respect to a total order on ΣB and satisfies |PB| ≃ |PP | ≈ |K|.

Suppose that ΣB = {a1 < · · · < an}. Consider a single variable x with
domain Dx = (PB)0, and let (G1, . . . ,Gn, η) be the shared-variable system
over V = {x} where η = IB and the program graphs Gi = (Li, Ai, Ti, gi, ıi)
are defined by
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• Li = {0};

• Ai = {āi} where āi(v) =

{

d11y, ∃ y ∈ (PB)1 : d
0
1y = v, λB(y) = ai,

v, else;

• Ti = {(0, āi, 0)};

• gi(0, āi, 0) = {d01y | y ∈ (PB)1, λB(y) = ai};

• ıi = 0.

Since B is deterministic, the action āi is well defined. Let Q be the state
graph of (G1, . . . ,Gn, η). We have

(PB)0 ∼= L1 × · · · × Ln ×Dx = Q0.

Since B is deterministic, the map

d01 : {y ∈ (PB)1 | λB(y) = ai} → {d01y | y ∈ (PB)1, λB(y) = ai} = gi(0, āi, 0)

is a bijection for each i. Hence

(PB)1 =
⋃

i∈{1,...,n}

{y ∈ (PB)1 | λB(y) = ai}

∼=
⋃

i∈{1,...,n}

L1 × · · · × Li−1 × {(0, āi, 0)} × Li+1 × · · · × Ln × gi(0, āi, 0)

= Q1.

Since for y ∈ (PB)1 with λB(y) = ai we have

d01(0, . . . , 0, (0, āi, 0), 0, . . . , 0, d
0
1y) = (0, . . . , 0, d01y)

and

d11(0, . . . , 0, (0, āi, 0), 0, . . . , 0, d
0
1y) = (0, . . . , 0, āi(d

0
1y)) = (0, . . . , 0, d11y),

the precubical sets (PB)≤1 and Q are isomorphic.

Let T be the transition system model of (G1, . . . ,Gn, η). Since the initial state
of the system, I = (0, . . . , 0, IB), corresponds to IB under the isomorphism
(PB)≤1

∼= Q and B is accessible, all states of Q are reachable from I. Hence
PT = Q. We have

ΣB = {a1, . . . , an} ∼= {(1, ā1), . . . , (n, ān)} = ΣT .

Since for an edge y ∈ (PB)1 with λB(y) = ai we have

λT (0, . . . , 0, (0, āi, 0), 0, . . . , 0, d
0
1y) = (i, āi),
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it follows that the transition systems B≤1 and T are isomorphic.

Let A be the HDA model of (G1, . . . ,Gn, η). Then A is the HDA model of T
with respect to the relation R on ΣT given by

(i, āi)R (j, āj) ⇐⇒ i < j ⇐⇒ ai < aj .

By [Kahl, 2019, Thm. 4.2, Cor. 4.5], it follows that the HDAs A and B are
isomorphic. In particular, |PA| ≈ |PB| ≃ |K|.
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[Ziemiański, 2016] Ziemiański, K. (2016). On execution spaces of PV-
programs. Theoretical Computer Science, 619:87–98.

24

https://github.com/twkahl/PG2HDA/

	Introduction
	The simplicial complex  and its cubical barycentric subdivision 
	The HDA 
	Accessibility
	Shared-variable systems

