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Abstract

The prevalent approaches of unsupervised 3D object de-
tection follow cluster-based pseudo-label generation and
iterative self-training processes. However, the challenge
arises due to the sparsity of LiDAR scans, which leads
to pseudo-labels with erroneous size and position, result-
ing in subpar detection performance. To tackle this prob-
lem, this paper introduces a Commonsense Prototype-based
Detector, termed CPD, for unsupervised 3D object de-
tection. CPD first constructs Commonsense Prototype
(CProto) characterized by high-quality bounding box and
dense points, based on commonsense intuition. Subse-
quently, CPD refines the low-quality pseudo-labels by lever-
aging the size prior from CProto. Furthermore, CPD en-
hances the detection accuracy of sparsely scanned objects
by the geometric knowledge from CProto. CPD outper-
forms state-of-the-art unsupervised 3D detectors on Waymo
Open Dataset (WOD), PandaSet, and KITTI datasets by a
large margin. Besides, by training CPD on WOD and test-
ing on KITTI, CPD attains 90.85% and 81.01% 3D Aver-
age Precision on easy and moderate car classes, respec-
tively. These achievements position CPD in close prox-
imity to fully supervised detectors, highlighting the sig-
nificance of our method. The code will be available at
https://github.com/hailanyi/CPD.

1. Introduction

Autonomous driving requires reliable detection of 3D ob-
jects (e.g. vehicle and cyclist) in urban scenes for safe path
planning and navigation. Thanks to the power of neural net-
works, numerous studies have developed high-performance
3D detectors through fully supervised approaches[4, 15,
30–33]. However, these models heavily depend on human
annotations from diverse scenes to guarantee their effective-
ness across various scenarios. This data labeling process is
typically laborious and time-consuming, limiting the wide
deployment of detectors in practice [40].
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Figure 1. Illustration of commonsense prototypes for unsupervised
3D object detection in autonomous driving scenes.

Several studies have explored approaches to reduce la-
beling requirements by weakly supervised learning [3, 26,
46], decreasing the label cost by over 80%. Notably, the
objects within a 3D scene exhibit distinguishable attributes
and can be easily identified through certain commonsense
reasoning (see Fig. 1). For example, the objects are usu-
ally located on the ground surface with a certain shape;
the object sizes are fixed across frames. This insight has
prompted us to develop an unsupervised 3D detector that
operates without using human annotations.

In recent years, traditional methods leveraged ground re-
moval [9] and clustering technique [42] for unsupervised
3D object detection. However, these methods often strug-
gle to achieve satisfactory performance due to the sparsity
and occlusion of objects in 3D scenes. Advanced methods
create initial pseudo-labels from point cloud sequences by
clustering and bootstrap a good detector by iteratively train-
ing a deep network [41]. Nevertheless, the sparse and view-
limited nature of LiDAR scanning leads to pseudo-labels
with inaccurate sizes and positions, misleading the network
convergence and resulting in suboptimal detection perfor-
mance. A subset of objects, denoted as complete objects T ,
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Figure 2. Illustration and statistics of complete and incomplete
objects on WOD [25] validation set (large enough to demonstrate
the general problem). (a) Pseudo-labels of complete object T are
refined by temporal consistency. (b) Pseudo-labels of incomplete
object J fail to be refined by temporal consistency. (c) 65% ob-
jects lack full scan coverage and generate inaccurate pseudo-labels
( Max IoU (Intersection over Union) < 0.5 with GT (Ground
Truth)). (d) The vehicle GT of complete object GT T and incom-
plete object GTJ have similar size distributions. (e) The pseudo-
label of complete object PseT and incomplete object PseJ have
different size distributions. (f)(g) The nearby stationary objects are
with high completeness in consecutive frames.

benefit from having at least one complete scan across the en-
tire point cloud sequence, allowing their pseudo-labels to be
refined through temporal consistency [41] (see Fig. 2 (a)).
However, the majority of objects (e.g. 65% on WOD [25],
as shown in Fig. 2 (c)), termed incomplete objects J , lack
full scan coverage (see Fig. 2 (b)), and cannot be recovered
by temporal consistency.

To tackle this issue, this paper proposes a Commonsense
Prototype-based Detector, termed CPD, for unsupervised
3D object detection. CPD is built upon two key insights:
(1) The ground truth of intra-class objects keeps a similar
size (length, width, and height) distribution between incom-
plete objects and complete objects (see Fig. 2 (d)). (2) The
nearby stationary objects are very complete in consecutive
frames and can be recognized accurately by commonsense
intuition (see Fig. 2 (f)(g)). Our idea is to construct a Com-
monsense Prototype (CProto) set representing accurate ge-
ometry and size from complete objects to refine the pseudo-
labels of incomplete objects and improve the detection ac-
curacy. To this end, we first design an unsupervised Multi-
Frame Clustering (MFC) method that yields high-recall ini-
tial pseudo-labels. Subsequently, we introduce an unsuper-
vised Completeness and Size Similarity (CSS) score that
selects high-quality labels to construct the CProto set. Fur-
thermore, we design a CProto-constrained Box Regulariza-

tion (CBR) method to refine the pseudo-labels by incorpo-
rating the size prior from CProto. In addition, we develop
CProto-constrained Self-Training (CST) that improves the
detection accuracy of sparsely scanned objects by the ge-
ometry knowledge from CProto.

The effectiveness of our design is verified by exper-
iments on widely used WOD [25], PandaSet [35], and
KITTI dataset [6]. Besides, the individual components of
our design are also verified by extensive experiments on
WOD [25]. The main contributions of this work include:
• We propose a Commonsense Prototype-based Detector

(CPD) for unsupervised 3D object detection. CPD out-
performs state-of-the-art unsupervised 3D detectors by a
large margin.

• We propose Multi-Frame Clustering (MFC) and CProto-
constrained Box Regularization (CBR) for pseudo-label
generation and refinement, greatly improving the recall
and precision of pseudo-label.

• We propose CProto-constrained Self-Training (CST) for
unsupervised 3D detection. It improves the recognition
and localization accuracy of sparse objects, boosting the
detection performance significantly.

2. Related Work
Fully/weakly supervised 3D object detection. Recent
fully-supervised 3D detectors build single-stage [8, 10, 27,
39, 48, 49], two-stage [4, 20–22, 31–33, 37] or multiple
stage [2, 30] deep networks for 3D object detection. How-
ever, these methods heavily rely on a large amount of pre-
cise annotations. Some weakly supervised methods re-
place the box annotation with low-cost click annotation[17].
Other methods decrease the supervision by only annotating
a part of scenes [3, 26, 45, 46] or a part of instances [34].
Unlike all of the above works, we aim to design a 3D detec-
tor that does not require human-level annotations.

Unsupervised 3D object detection. Previous unsuper-
vised pre-training methods discern latent patterns within
the unlabeled data by masked labels [36] or contrastive
loss [14, 38]. But these methods require human labels for
fine-turning. Traditional methods [1, 19, 24] employ ground
removal and clustering for 3D object detection without hu-
man labels, but suffer from poor detection performance.
Some deep learning-based methods generate pseudo-labels
by clustering and use the pseudo-labels to train a 3D detec-
tor [40] iteratively. Recent OYSTER [41] improves pseudo-
label quality with temporal consistency. However, most
pseudo-labels of incomplete objects cannot be recovered
by temporal consistency. Our CPD addresses this problem
by leveraging the geometry prior from CProto to refine the
pseudo-label and guide the network convergence.

Prototype-based methods. The prototype-based meth-
ods are widely used in 2D detection [11, 12, 16, 29, 44]
when novel classes are incorporated. Inspired by these
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Figure 3. CPD framework. (a) Initial pseudo-labels are generated by multi-frame clustering. (b) The commonsense prototype (CProto) is
constructed from high-quality pseudo-labels based on CSS score. The low-quality labels are further refined by the shape prior from CProto.
(c) A prototype network fed with dense points from CProto produces high-quality features to guide the detection network convergence.

methods, Prototypical VoteNet [47] constructs geometric
prototypes learned from basic classes for few-shot 3D ob-
ject detection. GPA-3D [13] and CL3D [18] build geo-
metric prototypes from a source-domain model for domain
adaptive 3D detection. However, both the learning from
basic class and training on the source domain require high-
quality annotations. Unlike that, we construct CProto using
commonsense knowledge and detect 3D objects in a zero-
shot manner without human-level annotations.

3. CPD Method
This paper introduces the Commonsense Prototype-based
Detector (CPD), a novel approach for unsupervised 3D ob-
ject detection. As shown in Fig. 3, CPD consists of three
main parts: (1) initial label generation; (2) label refinement;
(3) self-training. We detail the designs as follows.

3.1. Initial Label Generation

Recent unsupervised methods [40, 41] detect 3D objects in
a class-agnostic way. How to classify objects (e.g. vehi-
cle and pedestrian) without annotation is still an unsolved
challenge. Our observations indicate that some stationary
objects in consecutive frames, appear more complete (see
Fig.2 (f)) and can be classified by predefined sizes. This
motivates us to design a Multi-Frame Clustering (MFC)
method to generate initial labels. MFC involves motion ar-
tifact removal, clustering, and post-processing.

Motion Artifact Removal (MAR). Directly trans-
forming and concatenating 2n + 1 consecutive frames
{x−n, ...,xn} (i.e., past n, future n, and the current frame)

into a single point cloud x∗
0 introduces motion artifacts from

moving objects, leading to increased label errors as the n
grows (see Fig. 4(a)). To mitigate this issue, we first trans-
form the consecutive frames to global system and calculate
the Persistence Point Score (PPScore)[40] by consecutive
frames to identify the points in motion. We keep all the
points from x0 and remove moving points from the other
frames x−n, ...,x−1,x1, ...,xn. After this removal, we
concatenate the frames to obtain dense points x∗

0.
Clustering and post-processing. In line with recent

study [41], we apply the ground removal[9], DBSCAN [5]
and bounding box fitting [43] on x∗

0 to obtain a set of
class-agnostic bounding boxes b̂. We observe that the ob-
jects of the same class typically have similar sizes in 3D
space. Therefore, we pre-define class-specific size thresh-
olds (e.g. the length of vehicle is generally larger than
0.5m) based on human commonsense to classify b̂ into
different categories. We then apply class-agnostic track-
ing to associate the small background objects with fore-
ground trajectories, and enhance the consistency of objects’
sizes by using temporal coherency [41]. This process re-
sults in a set of initial pseudo-labels b = {bj}j , where
bj = [x, y, z, l, w, h, α, β, τ ] represents position, width,
length, height, azimuth angle, class identity, and tracking
identity, respectively.

3.2. CProto-constrained Box Regularization for La-
bel Refinement

As noted in Section 1, initial labels for incomplete objects
often suffer from inaccuracies in sizes and positions. To
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Figure 4. (a) Length absolute error with different frames. (b)
Multi-level occupancy score. (c) Mean size error of initial labels.

tackle this issue, we introduce the CProto-constrained Box
Regularization (CBR) method. The key idea is to construct
a high-quality CProto set based on unsupervised scoring
from complete objects to refine the pseudo-labels of incom-
plete objects. Different from OYSTER [41], which can only
refine the pseudo-labels of objects having at least one com-
plete scan, our CBR can refine pseudo-labels of all objects,
significantly decreasing the overall size and position errors.

Completeness and Size Similarity (CSS) scoring. Ex-
isting label scoring methods such as IoU scoring [21] are
designed for fully supervised detectors. In contrast, we in-
troduce an unsupervised Completeness and Size Similarity
scoring (CSS) method. It aims to approximate the IoU score
using commonsense knowledge alone (see Fig. 5).

Distance score. CSS first assesses the object complete-
ness based on distance, assuming labels closer to the ego
vehicle are likely to be more accurate. For an initial label
bj , we normalize the distance to the ego vehicle within the
range [0,1] to compute the distance score as

ψ1(bj) = 1−N (∥cj∥), (1)

where N is the normalization function and cj is the loca-
tion of bj . However, this distance-based approach has its
limitations. For example, occluded objects near the ego ve-
hicle, which should receive lower scores, are inadvertently
assigned high scores due to their proximity. To mitigate this
issue, we introduce a Multi-Level Occupancy (MLO) score,
further detailed in Fig. 4 (b).

MLO score. Considering the diverse sizes of objects, we
divide the bounding box of the initial label into multiple
grids with different length and width resolutions. The MLO
score is then calculated by determining the proportion of
grids occupied by cluster points, via

ψ2(bj) =
1

No

∑
k

Ok

(rk)2
, (2)

where No denotes resolution number, Ok is the number
of occupied grids under k-th resolution, and rk is the grid
number of k-th resolution.

Size Similarity (SS) score. While the distance and MLO
scores effectively evaluate the localization and size quality,
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Figure 5. Completeness and size similarity scoring.

they fall short in assessing classification quality. To bridge
this gap, we introduce the SS score. This score utilizes a
class-specific template box a (average size of typical objects
in Wikipedia) and calculates a truncated KL divergence [7].
Note that, this score is decided by ratio difference, rather
than their specific values. Simple commonsense of l, w, h
ratios (2:1:1 for Vehicle, 1:1:2 for Pedestrian, 2:1:2 for Cy-
clist) can also be used here.

ψ3(bj) = 1−min(0.05,
∑

σ
qbσlog(

qbσ
qaσ

))/0.05, (3)

where qaσ ∈ {la, wa, ha}, qbσ ∈ {lb, wb, hb} refer to the nor-
malized length, width, and height of the template and label.

We linearly combine the three metrics S(bj) =∑
i ω

iψi(bj) to produce final scoring, where ωi is the
weighting factor (in this study we adopt a simple average,
ωi = 1/3). For each bj ∈ b, we compute its CSS score
scssj = S(bj) and obtain a set of scores s = {scssj }j .

CProto set construction. Regular learnable prototype-
based methods require annotations [13, 47], which are un-
available in the unsupervised problem. We construct a high-
quality CProto set P = {Pk}k, representing geometry and
size centers based on the unsupervised CSS score. Here,
Pk = {xpk, b

p
k}, where xpk indicates the inside points, and bpk

refers to the bounding box. Specifically, we first categorize
the initial labels b into different groups based on their track-
ing identity τ . Within each group, we select the high-quality
boxes and inside points that meet a high CSS score thresh-
old η (determined on validation set, using 0.8 in this study).
Then, we transform all points and boxes into a local coor-
dinate system, and obtain xpk by averaging the high-quality
boxes and bpk by concatenating all the points.

Box regularization. We next regularize the initial la-
bels by the size prior from CProto. Based on the statistics
on WOD validation set [25], we observe that the height of
the initial labels is relatively correct than length and width
(see Fig. 4 (c)). Intuitively, the intra-class 3D objects with
the same height have similar length and width. Therefore,
we associate the initial label bj with CProto Pk by the min-
imum difference in box height. The initial pseudo-labels
with the same Pk and similar length and width are natu-
rally classified into the same group. We then perform re-
size and re-localization for each group to refine the pseudo-
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labels. (1) Re-size. We directly replace the size of bj using
the length, width, and height of bpk ∈ Pk. (2) Re-location.
Since points are mostly on the object’s surface and bound-
ary, we divide the object into different bins and align the box
boundary and orientation to the boundary point of the dens-
est part (see Fig. 6). Finally, we obtain improved pseudo-
labels b∗ = {b∗j}j .

3.3. CProto-constrained Self-Training (CST)

Recent methods [40, 41] utilize pseudo-labels for train-
ing 3D detectors. However, even after refinement, some
pseudo-labels remain inaccurate, diminishing the effective-
ness of correct supervision and potentially misleading the
training process. To tackle these issues, we propose two
designs: (1) CSS-Weighted Detection Loss, which assigns
different training weights based on label quality to sup-
press false supervision signals. (2) Geometry Contrast Loss,
which aligns predictions of sparsely scanned points with the
dense CProto, thereby improving feature consistency.

Network architecture. We adopt a dense-sparse align-
ment architecture (Fig. 3 (c)), consisting of a prototype net-
work Fpro and a detection network Fdet, constructed from
two-stage CenterPoint [39]. During training, for each b∗j ,
we add its corresponding points xpk from CProto Pk to the
scene to obtain a dense point cloud xpro. We feed xpro to
Fpro to produce relatively good features and detections. We
then feed randomly downsampled points xdet as a sparse
sample to the Fdet. We align the features and detections
from two branches by the detection loss and contrast loss.
During testing, we feed points without downsampling to the
detection network Fdet to perform detection.

CSS weight. Considering that the false pseudo-labels
may mislead the network convergence, we first calculate a
loss weight based on different label qualities. Formally, we
convert a CSS score scssi of a pseudo-label to

ωi =


0 scssi < SL
scssi −SL

SH−SL
SL < scssi < SH

1 scssi > SH

, (4)

where SH and SL are high/low-quality thresholds (we em-
pirically set 0.7 and 0.4, respectively).

CSS-weighted detection loss. To decrease the influence
of false labels, we formulate the CSS-weighted detection
loss to refine N proposals

Lcss
det =

1

N

∑
i
ωi(Lpro

i + Ldet
i ), (5)

where Lpro
i and Ldet

i are detection losses [4] of Fpro and
Fdet, respectively. The losses are calculated by pseudo-
labels b∗ and network predictions.

Geometry contrast loss. We formulate two contrast
losses that minimize the feature and predicted box differ-
ence between the prototype and detection network. (1)
Feature contrast loss. For a foreground RoI ri from the
detection network, we extract features fp

i from the proto-
type network by voxel set abstract [4], and extract features
fd
i from detection network. We then formulate the contrast

loss by cosine distance:

Lcss
feat =

1

Nf

∑
i
ωi

fd
i · f

p
i

∥fd
i ∥∥f

p
i ∥
, (6)

whereNf is the foreground proposal number. (2) Box con-
trast loss. For a box prediction dpi from the prototype net-
work and a box prediction ddi from the detection network.
We then formulate the box contrast loss by IoU, location
difference, and angle difference:

Lcss
box =

1

Nf

∑
i
ωi[1− I(ddi , d

p
i )

+ ∥cdi − cpi ∥+ |sin(αd
i − αp

i )|], (7)

where I denote IoU function; cdi , α
d
i refers to position and

angle of ddi ; cpi , α
p
i refers to position and angle of dpi . We

finally summat all losses to training the detector.

4. Experiments
4.1. Datasets

Waymo Open Dataset (WOD). We conducted extensive
experiments on the WOD [25] due to its diverse scenes.
The WOD contains 798, 202 and 150 sequences for train-
ing, validation and testing, respectively. We adopted simi-
lar metrics (3D AP L1 and L2) as fully/weakly supervised
methods [31, 34]. No annotations were used for training.

PandaSet dataset. To compare with recent unsuper-
vised methods [41], we also conducted experiments on the
PandaSet [35]. Like [41], we split the dataset into 73 train-
ing and 30 validation snippets and use class-agnostic BEV
AP and recall metrics with 0.3, 0.5, and 0.7 IoU thresholds.

KITTI dataset. Since the KITTI detection dataset [6]
did not provide consecutive frames, we only tested our
method on the 3769 val split [4]. We used similar met-
rics (Car 3D AP R40 with 0.5 and 0.7 IoU thresholds) as
employed in fully/weakly supervised methods [32, 34].



Method
Vehicle 3D AP Pedestrian 3D AP Cyclist 3D AP

L1 L2 L1 L2 L1 L2
IoU0.5 IoU0.7 IoU0.5 IoU0.7 IoU0.3 IoU0.5 IoU0.3 IoU0.5 IoU0.3 IoU0.5 IoU0.3 IoU0.5

DBSCAN [5] 2.32 0.29 1.94 0.25 0.51 0.00 0.19 0.00 0.28 0.03 0.20 0.00
DBSCAN init-train [40] 17.36 2.65 14.87 2.29 1.65 0.00 1.35 0.00 0.48 0.25 0.43 0.20
MODEST [40] 18.51 6.46 15.83 5.48 11.83 0.17 8.96 0.10 1.47 1.14 1.17 1.01
OYSTER [41] 30.48 14.66 26.21 14.10 4.33 0.18 3.52 0.14 1.27 0.33 1.24 0.32
Proto-vanilla 35.22 20.19 31.58 18.36 17.60 10.34 14.62 8.59 4.21 3.45 3.80 3.31
CPD (Ours) 57.79 37.40 50.18 32.13 21.91 16.31 18.01 13.22 5.83 5.06 5.61 4.87

Table 1. Unsupervised 3D object detection results on WOD validation set. The results of previous methods are reproduced by us.

Method 3D AP L1 (IoU0.7,0.5,0.5) 3D AP L2 (IoU0.7,0.5,0.5)
Vehicle Ped. Cyclist Vehicle Ped. Cyclist

MODEST [40] 7.5 0.0 0.0 6.5 0.0 0.0
OYSTER [41] 21.6 0.6 0.0 18.7 0.5 0.0
CPD (Ours) 37.2 18.6 5.7 32.4 16.5 5.5

Table 2. Unsupervised 3D detection results on WOD test set.

Method BEV AP BEV Recall
IoU0.3 IoU0.5 IoU0.7 IoU0.3 IoU0.5 IoU0.7

MODEST [40] 22.0 7.5 2.8 49.7 28.9 14.9
OYSTER [41] 43.5 29.5 18.1 62.8 44.8 28.1
CPD (Ours) 50.7 41.0 24.6 63.1 54.8 37.4

Table 3. The class-agnostic comparison results on the PandaSet
dataset, evaluated on the 0-80m detection range.

4.2. Implementation Details

Network details. Both prototype and detection networks
adopt the same 3D backbone as CenterPoint [39] and the
same RoI refinement network as Voxel-RCNN [4]. For the
WOD and KITTI datasets, we use the same detection range
and voxel size as CenterPoint [39]. For the Pandaset, we
use the same detection range as OYSTER [41].

Training details. We adopt the widely used global scal-
ing and rotation data augmentation. We trained our network
on 8 Tesla V100 GPUs with the ADAM optimizer. We used
a learning rate of 0.003 with a one-cycle learning rate strat-
egy. We trained the CPD for 20 epochs.

4.3. Comparison with Unsupervised Detectors

Results on WOD. The results on the WOD validation set
and test set are presented in Table 1 and Table 2. All meth-
ods use identical size thresholds to define the object classes
and use single traversal. Our method significantly outper-
forms existing unsupervised methods. Notably, under the
3D AP L2 with IoU thresholds of 0.7, 0.5, and 0.5, our CPD
outperforms OYSTER [41] by 18.03%, 13.08%, and 4.55%
on Vehicle, Pedestrian, and Cyclist, respectively. These ad-
vancements come from our MFC, CBR, and CST designs,
which yield superior pseudo-labels and enhanced detection
accuracy. CPD also surpasses the Proto-vanilla method,
which uses class-specific prototype [23].

Method Labels 3D AP @ IoU0.5 3D AP @ IoU0.7

Easy Mod. Hard Easy Mod. Hard
CenterPoint [39] 100% 97.07 89.23 81.81 88.55 78.38 71.43
Sparsely-sup. [34] 2% - - - 49.69 31.55 25.91
MODEST [40] 0 47.56 33.43 30.57 12.65 11.14 10.60
OYSTER [41] 0 65.33 54.82 43.59 23.22 20.31 19.97
CPD (Ours) 0 90.85 81.01 79.80 72.98 55.07 53.94

Table 4. Car detection comparison with fully/weakly supervised
detectors on KITTI val set. The models are trained on WOD.

Method Labels 3D AP L1 3D AP L2
IoU0.5 IoU0.7 IoU0.5 IoU0.7

CenterPoint [39] 100% 89.23 73.72 78.52 65.52
Sparsely-sup. [34] 2% - 32.15 - 27.97
MODEST [40] 0 18.51 6.46 15.83 5.48
OYSTER [41] 0 30.48 14.66 26.21 14.60
CPD (Ours) 0 57.79 37.40 50.18 32.13

Table 5. Vehicle detection comparison with fully/weakly super-
vised detectors on WOD validation set.

Results on PandaSet. The class-agnostic results on
PandaSet are presented in Table 3. Our method outper-
forms OYSTER by 6.5% AP and 9.3% Recall under 0.7 IoU
threshold. This improvement is largely due to our CPD’s
enhanced label quality. Unlike OYSTER, which suffers
from the misleading effects of false labels during training,
our CPD leverages the size prior from CProto to signifi-
cantly improve these labels.

4.4. Comparison with Fully/Weakly Supervised De-
tectors

Results on KITTI dataset. To further validate our method,
we pre-trained our CPD, along with OYSTER [41] and
MODEST [40], on WOD and tested them on the KITTI
dataset using Statistical Normalization (SN) [28]. The car
detection results are in Table 4. We first compared our
method with a sparsely supervised method (weakly super-
vised with 2% labels) [34] that annotates a single instance
per frame for training. Our unsupervised CPD outper-
forms this sparsely supervised method by 23.52% 3D AP @
IoU0.7 on moderate car class. Additionally, our method at-
tains 90.85% and 81.01% 3D AP for the easy and moderate
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Figure 7. (a-c) IoU distribution between pseudo-labels and ground
truth. (d-f) Mean absolute error associated with the size, position,
and angle of pseudo-labels generated by different methods.

car classes at a 0.5 IoU threshold. Notably, this performance
is comparable to that of the fully supervised method Center-
Point [39], demonstrating the advancement of our method.

Method
3D Recall 3D Precision

IoU0.3 IoU0.5 IoU0.7 IoU0.3 IoU0.5 IoU0.7

DBSCAN [5] 22.85 16.44 6.52 29.41 21.16 8.39
MODEST [40] 17.35 12.04 4.89 32.28 22.81 10.05
OYSTER [41] 31.10 21.01 11.12 31.22 21.09 9.45
Ours 45.66 39.33 20.54 34.17 28.22 14.74

Table 6. Pseudo-label comparison results on WOD validation set.

Results on WOD. We also compared our method with
fully/weakly supervised methods on the WOD validation
set [25]. The vehicle detection results are in Table 5.
Our unsupervised CPD outperforms the sparsely supervised
method (2% annotation) by 5.25% and 4.16% in terms of
3D AP L1 and L2 respectively.

4.5. Pseudo-label Comparison

To validate our pseudo-labels, we analyzed their 3D recall
and precision on the WOD validation set. As shown in Ta-
ble 6, our method surpasses the previous best-performing
OYSTER with a 9.42% recall and 5.29% precision im-
provement (under a 0.7 IoU threshold). To understand the
sources of this improvement, we examined the IoU between
the pseudo-labels and ground truth, and compared the IoU
distributions in Fig. 7 (a)(b)(c). We also present the mean
absolute error of size, position, and angle between different
pseudo-labels in Fig. 7 (d)(e)(f). The IoU distribution of
our method is much closer to 1 than other methods, and it
also exhibits lower errors in size, position, and angle. These
results verify that our MFC and CBR significantly reduce
label errors.

4.2 Ablation Study For C-Proto Method

AP curve of CSS compared with baseline
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Figure 8. (a)(b)The recall and precision of initial pseudo-labels
by using different frames. (c) The recall-precision curve of initial
pseudo-labels by using different scores.

Components 3D AP L1 3D AP L2
SFC MFC CBR CST IoU0.5 IoU0.7 IoU0.5 IoU0.7

✓ 17.36 2.65 14.87 2.29
✓ 19.91 5.01 18.31 4.77
✓ ✓ 48.26 28.01 41.69 24.04
✓ ✓ ✓ 57.79 37.40 50.18 32.13

Table 7. CPD component analysis results on WOD validation set.

CSS Components
BEV AP

IoU0.3 IoU0.5 IoU0.7

Distance 32.70 24.57 14.80
Distance+MLO 34.40 26.25 15.91
Distance+MLO+SS 38.95 31.06 19.49

Table 8. CSS component analysis results on WOD validation set.

4.6. Ablation Study

Components analysis of CPD. To evaluate the individual
contributions of our designs, we incrementally added each
component and assessed their impact on vehicle detection
using the WOD validation set. The results are shown in
Table 7. Our MFC method surpasses Single Frame Cluster-
ing (SFC) by 2.52% in AP, attributed to the more complete
point representation of objects across consecutive frames
compared to a single frame. The CBR further enhances per-
formance by 19.27% in AP, as it reduces size and location
errors in pseudo-labels. The CST contributes an 8.09% in-
crease in AP, demonstrating the effectiveness of geometric
features from CProto in detecting sparse objects.

Frame number of MFC. To examine the effect of frame
count on initial pseudo-label quality, we experimented with
different numbers of past and future point cloud frames on
the WOD validation set. The BEV results, shown in Fig. 8
(a)(b), indicate optimal performance with [-5, 5] frames
(five past, five future, and the current frame). Additional
frames did not significantly improve recall or precision.
Consequently, we used 11 frames for initial pseudo-label
generation in this study.

Component analysis of CSS Scoring. To assess the ef-
fectiveness of our scoring system, we calculated the BEV
AP of initial pseudo-labels with different scores. These
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Figure 9. Visualization comparison of different detection results on WOD validation set.

CBR Components BEV Recall BEV Precision
IoU0.5 IoU0.7 IoU0.5 IoU0.7

MFC 26.88 18.14 26.98 18.16
MFC+Re-size 30.79 21.54 29.43 21.33
MFC+Re-size+Re-localization 43.47 27.97 30.90 21.62

Table 9. CBR component analysis results on WOD validation set.

evaluations, reported in Table 8, show that incorporating all
components (distance, MLO, and SS) yields the highest AP.
The recall-precision curve, plotted in Fig. 8 (c), also sup-
ports this finding. These indicate the significance of each
component in accurately measuring pseudo-label quality.

Components analysis of CBR. To evaluate the im-
pact of re-sizing and re-localization in CBR, we conducted
experiments and analyzed pseudo-label performance. As
shown in Table 9, re-sizing results in a 3.91% and 3.4%
increase in BEV recall at the 0.5 and 0.7 IoU thresh-
olds, respectively; re-localization further enhances recall by
12.68% and 6.43% at these thresholds, while also increas-
ing precision. These results indicate the importance of both
components, which effectively refine pseudo-labels.

Components analysis of CST. To assess the effective-
ness of each component in CST, we established a base-
line using only CBR-generated pseudo-labels for training
a two-stage CenterPoint detector, then incrementally added
our loss components and evaluated vehicle detection per-
formance on the WOD validation set. As shown in Ta-
ble 10, all loss components contribute to performance im-
provement. Specifically, our Lcss

det mitigates the influence
of false pseudo-label using CSS weight, and improves the
3D AP L2 at IoU0.7 by 4.79%. Our Lcss

feat and Lcss
box im-

prove the 3D AP L2 at IoU0.7 by 0.75% and 2.55% respec-
tively, through leveraging geometric knowledge from dense
CProto for more effective sparse object detection.

4.7. Visualization Comparison

To provide a more intuitive understanding of how our
method improves detection performance, we visually com-
pare our results with those of MODEST [40] and OYS-
TER [41], as shown in Fig. 9. MODEST often misses

CST Components 3D AP L1 3D AP L2
IoU0.5 IoU0.7 IoU0.5 IoU0.7

CBR-only 48.26 28.01 41.69 24.04
CBR+Lcss

det 49.31 29.78 42.50 28.83
CBR+Lcss

det+Lcss
feat 52.01 32.17 44.12 29.58

CBR+Lcss
det+Lcss

feat+Lcss
box 57.79 37.40 50.18 32.13

Table 10. CST component analysis results on WOD validation set.

distant, sparse objects (Fig. 9(1.1)), while OYSTER de-
tects them but inaccurately reports their sizes and positions
(Fig. 9(2.1)). In contrast, CPD, using our CProto-based de-
sign, not only recognizes these objects but also accurately
predicts their sizes and positions (Fig. 9(3.1)). Furthermore,
since our CST reduces the influence of false pseudo-labels,
the false positives (Fig. 9(3.2)) are also much fewer than the
previous methods (Fig. 9(1.2)(2.2)).

5. Conclusion

This paper presents the CPD framework, a novel approach
for accurate unsupervised 3D object detection. First, we
develop an MFC method to generate initial pseudo-labels.
Then, a CProto set is constructed using CSS scoring. Next,
we introduce a CBR method to refine these pseudo-labels.
Lastly, a CST is designed to enhance detection accuracy for
sparse objects. Extensive experiments have verified the ef-
fectiveness of our design. Notably, for the first time, our un-
supervised CPD method surpasses some weakly supervised
methods, demonstrating the advancement of our approach.

Limitations. One notable limitation of our work is
the significantly lower Average Precision (AP) for minority
classes, such as cyclists (Table 1), compared to more preva-
lent classes like vehicles. This disparity is largely due to the
scarce instances of these minority classes within the dataset.
Future efforts to collect such objects could be a promising
avenue to tackle this issue.
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3.1 Multi-Frame Clustering & Filtering (MFCF) for Initial Pseudo Label Generation  
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Figure 10. The MFC consists of motion artifact removal, cluster-
ing (ground removal, points clustering, and box fitting), and post-
processing ( tracking, smoothing, and classifying).

6. More Details of Method
More details of MFC. In our main paper section 3.1, we in-
troduced the Multi-Frame Clustering (MFC) for initial label
generation. For a more intuitive understanding, we provide
a framework illustration in Fig. 10. Here we present more
details of post-processing. As mentioned in our main paper,
we pre-defined a set of class-specific size thresholds based
on human commonsense to classify pseudo labels into dif-
ferent categories. Taking the WOD as an example, we pre-
define five categories: ‘Discard Small’, ‘Pedestrian’, ‘Cy-
clist’, ‘Vehicle’, and ‘Discard Large’. Formally, for a clus-
ter box bj , we determine the class identity β by sequentially
matching from the thresholds:

β =


DisSmall h ≤ 0.8,
V ehicle 1 < h ≤ 3, 0.5 < w ≤ 3, 0.5 < l ≤ 8,
P edestrian 0.8 < h ≤ 2.3, 0.2 < w ≤ 1., 0.2 < l ≤ 1.,
Cyclist 1.4 < h ≤ 2., 0.5 < w ≤ 1., 1. < l ≤ 2.5,
DisLarge others.

(8)

Where l, w, h refers to the length, width, and height of bj ,
respectively. The ‘Discard Large’ boxes mostly with trees
and buildings are directly removed. The ‘Discard Small’
boxes contain both potential foreground objects and back-
ground objects. We then apply class-agnostic tracking to
associate the small background objects with foreground tra-
jectories, and enhance the consistency of objects’ sizes by

3.2 Completeness and Shape Scoring (CSS) for C-Proto Construction

Fig5：object completeness
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Figure 11. The comparison of different scoring methods.

using temporal coherency.
More details of CSS scoring. In our main paper sec-

tion 3.2, we presented the CSS scoring. To better under-
stand how the CSS scoring approximates the IoU score, we
present the IoU-score carve in Fig. 11, where we show three
methods: density scoring (sden), distance scoring (sdis) and
our CSS scoring (scss). Intuitively, good scoring should
keep consistent with IoU scoring. In other words, with the
increase of score, the selected pseudo labels should have
larger IoUs with the ground truth. We found that our CSS
scoring keeps the most consistent increase along with the
IoU increase. Here we also provide the length, width and
height of the template box for calculating the Size Similar-
ity in the main paper Eq. 3:

{
’Vehicle’: [5.06, 1.86, 1.49],
’Pedestrian’: [1.0, 1.0, 2.0],
’Cyclist’: [1.9, 0.85, 1.8]
}

7. More Experimental Results
More visualization results. To better understand how our
method improves detection results, here we present more
visualization results. From Fig. 12, we observe that both
the recognition and localization performance of our method
(3.1-3.4) are much better than previous methods(1.1-1.4,
2.1-2.4), thanks to our CProto-based design.

BEV AP and 3D APH results on WOD validation set.
Some fully supervised methods also reported the BEV AP
L2 and 3D APH performance. Here we presented the results
in Table 11 and Table 12, respectively. Our CPD outper-
forms the previous MODEST and OYSTER in both BEV
AP L2 and APH L2 by a large margin, further demonstrat-
ing the effectiveness of our method.
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Figure 12. The visualization results predicted by different unsupervised detectors.

Method
Vehicle Pedestrian Cyclist

3D AP L2 BEV AP L2 3D AP L2 BEV AP L2 3D AP L2 BEV AP L2
IoU0.5 IoU0.7 IoU0.5 IoU0.7 IoU0.3 IoU0.5 IoU0.3 IoU0.5 IoU0.3 IoU0.5 IoU0.3 IoU0.5

DBSCAN 1.94 0.25 3.97 1.44 0.19 0 2.07 0 0.2 0 0.25 0.06
DBSCAN+init-train 14.87 2.29 20.6 11.95 1.35 0 6.49 0.1 0.43 0.2 0.73 0.24
MODEST 15.83 5.48 19.63 13.31 8.96 0.1 14.06 0.13 1.17 1.01 2.38 1.07
OYSTER 26.21 14.6 32.31 25.04 3.52 0.14 11.76 0.3 1.24 0.32 1.65 0.33
Proto-vanilla 31.58 18.36 34.91 28.88 14.62 8.59 17.94 15.9 3.8 3.31 4.05 3.48
CPD(Ours) 50.67 32.13 52.66 47.48 20.01 15.22 20.21 17.26 5.61 4.87 5.68 5.22

Table 11. 3D AP L2 and BEV AP L2 results on WOD validation set.

Method
Vehicle 3D APH Pedestrian 3D APH Cyclist 3D APH

L1 L2 L1 L2 L1 L2
IoU0.5 IoU0.7 IoU0.5 IoU0.7 IoU0.3 IoU0.5 IoU0.3 IoU0.5 IoU0.3 IoU0.5 IoU0.3 IoU0.5

MODEST 16.43 4.25 14.04 3.63 5.59 0.11 4.18 0.05 1.07 0.82 0.45 0.07
OYSTER 28.56 12.87 25.01 12.54 3.12 0.12 2.03 0.06 0.87 0.24 0.82 0.21
Proto-vanilla 32.34 19.2 29.71 16.23 9.12 6.3 8.12 5.26 2.84 2.51 2.73 2.42
CPD(Ours) 54.19 34.97 46.99 30.09 12.01 9.24 10.06 7.68 3.68 3.26 3.55 3.14

Table 12. 3D APH results on WOD validation set.
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