
1
*Corresponding Author.
These authors contributed equally to this work.

Hardware Implementation of Double
Pendulum Pseudo Random Number

Generator
A PREPRINT

Jarrod Lim, Tom Manuel Opalla Piccio, Chua Min Jie Michelle, Maoyang Xiang, T. Hui Teo*

Engineering Product Development
Singapore University of Technology and Design

tthui@sutd.edu.sg

ABSTRACT

Keywords: double pendulum, pseudo random number generator, FPGA, hardware description language.

Introduction
This work aims to design a pseudo random number generator (pRNG) using double pendulum. Unlike the
commonly seen single pendulum, the double pendulum is categorized as a dynamic chaotic system [1]. The
double pendulum is modelled with two-points masses at the light rods, Figure 1. The environmental data are
used to set the conditions (pRNG seed) such as weight, length, and gravitational acceleration onto a double
pendulum (chaotic pendulum) algorithm to generate the random numbers. Therefore, the paper will be split
into three components:

• Hardware and software interface for obtaining seed information from environment with sensors (Seed
Generator),

• Capturing and displaying random numbers after user input, onto a LED screen,
• Double pendulum random number generator algorithm (Random Number Generator).

The objective of this project is to utilize an FPGA board which is the CMOD A7 35t to obtain a pseudo
random number which can be used for encryption. We aim to achieve this by leveraging the inherent
randomness present in environmental data captured by sensors. This data will be used as a seed to
initialize an algorithm implemented on the CMOD A7 35t FPGA board. The project will focus on interfacing
the sensors with the FPGA and developing suitable algorithms to ensure the generated numbers exhibit
strong randomness properties.

mailto:tthui@sutd.edu.sg

2
*Corresponding Author.
These authors contributed equally to this work.

Figure 1: Double pendulum free body diagram.

Pseudo Random Number Generator Algorithm
The pRNG algorithm is derived based on the chaotic pendulum. A chaotic pendulum forms a system that
exhibits a rich dynamic behavior with strong sensitivity to initial conditions. These initial conditions are
comprised of the initial position, lengths, and weights of the pendulum. These form the seed for the random
number generator.

These values are then applied to the governing equations that describing the double pendulum [1].

𝜔𝜔1′ =
−𝑔𝑔(2𝑚𝑚1 + 𝑚𝑚2) sin𝜃𝜃1 − 𝑚𝑚2𝑔𝑔 sin(𝜃𝜃1 − 2𝜃𝜃2)− 2 sin(𝜃𝜃1 − 𝜃𝜃2)𝑚𝑚2[𝜔𝜔2

2𝐿𝐿2 +𝜔𝜔2
2𝐿𝐿1 cos(𝜃𝜃1 − 𝜃𝜃2)]

𝐿𝐿1(2𝑚𝑚1 + 𝑚𝑚2 −𝑚𝑚2 cos(2𝜃𝜃1 − 2𝜃𝜃2))

(1)

𝜔𝜔2
′ =

2 sin(𝜃𝜃1 − 𝜃𝜃2) [𝜔𝜔12𝐿𝐿1(𝑚𝑚1 + 𝑚𝑚2) + 𝑔𝑔(𝑚𝑚1 + 𝑚𝑚2) cos𝜃𝜃1 + 𝜔𝜔2
2𝐿𝐿2𝑚𝑚2 cos(𝜃𝜃1 − 𝜃𝜃2)]

𝐿𝐿2(2𝑚𝑚1 + 𝑚𝑚2 −𝑚𝑚2 cos(2𝜃𝜃1 − 2𝜃𝜃2))

(2)

where the notations that are referred to Fig. 1, Eq. (1), and Eq. (2):
𝜔𝜔1 = 𝜃𝜃1′ , 𝜔𝜔2 = 𝜃𝜃2′
𝜔𝜔1′ = 𝜃𝜃1′′, 𝜔𝜔2

′ = 𝜃𝜃2′′

x ≝ horizontal position of pendulum mass
y ≝ vertical position of pendulum mass
θ ≝ angle of pendulum (0 = vertical downwards, counterclockwise is positive)
L ≝ length of rod (constant)
T ≝ tension in the rod
m ≝ mass of pendulum
g ≝ gravitational constant

The above equations (1) (2) are translated to the Verilog HDL code and implemented in the FPGA. However,
the implementation of this algorithm is not straight forward as there are several issues. Firstly, the algorithm
uses complex math with trigonometric functions. Secondly, values obtained when performing the functions
are signed integers with decimal values. Verilog HDL is unable to perform these types of operations, hence
functions must be developed to handle these exceptions.

𝜽𝟏

𝜽𝟐

𝑳𝟏

𝑳𝟐

𝒙𝟏 𝒙𝟐

𝒚𝟏

𝒚𝟐

𝒎𝟏

𝒎𝟐

𝟎

3
*Corresponding Author.
These authors contributed equally to this work.

Mathematic Functions
In order to handle the decimal number operation, functions for all basic operations such as plus, minus, times
and divide are designed. The Verilog HDL code for this module is attached in Appendix. A 32 bits number
system is used for this purpose. The first bit determines the sign of the value. The next 8 bits are the integer
values while the last 23 bits control the decimal points (coded for 2 decimal place accuracy).

Figure 2: Mapping of a 32 bits number system.

MATH.plus Function
To perform a simple plus function of A.a + B.b. There are 4 key conditions to check to determine how the
plus operation should be carried out in 16 different ways (24):

1. Sign of the number A
2. Sign of the number B

a. E.g. If (+)A and (-)B, the plus operation becomes a minus
3. Which integer in the operation is larger

a. If it is in fact a minus operation, if (-)B > (+)A, the resulting sign would flip
b. However if (+)A > (-)B, the sign would remain.

4. Which decimal in the operation is larger
a. Should A = B, we then must compare a and b. These add another layer of complexity apart

from that seen in part 3. As there would be overflowing to create balance carried over to the
integer.

b. Or there could be insufficient values to perform the operation, hence we need to drop an
integer to perform the decimal operation.

Please refer to the MATH function in the GitHub page for detailed explanation of the code.
The following is an example of a plus operation:

Figure 3: 32-bit Math.plus function.

4
*Corresponding Author.
These authors contributed equally to this work.

MATH.minus Function
After developing the MATH.plus function, the minus function is a simple negation of the plus. I.e. (+)A - (+)B
would be (+)A + (-)B. Hence to simplify the code, the MATH.plus function is called with the signed bit flipped.
This is basically the example as seen above.

MATH.times Function
The multiplication function is not as complicated as the plus or minus as we can simply implement a XOR
gate on the signed bit and multiply the integers and decimals separately. Given the large value that can be
obtained when doing multiplication on the decimals, more bits are allocated to the decimals.

The following mathematical manipulation is carried out to simplify the logic.

A.a * B.b = (A * B) + (A * .b) + (B * .a) + (.a + .b) (3)
where

• (A * B) outputs an integer
• (A * .b) and (B * .a) outputs a decimal overflow number
• (.a * .b) outputs pure decimals, with LHS digit corresponding to 1’s place.

Sample multiplication for MATH.times(+A.a,-B.b):

Figure 4: 32-bit Math.times function.

MATH.divide Function
What you notice when doing division is that regardless of the location of the decimal point, the resultant
division is the same. Given that knowledge, for this function, the integers are combined with the decimal to
create one larger number. From there modulus division with the onboard vision is done to obtain the quotient,
from which we can derive the remainder. View the example below.

5
*Corresponding Author.
These authors contributed equally to this work.

Figure 5: 32-bit Math.divide function.

MATH.sin Function
To create a sine function, instead of using a lookup table, function approximations are used. This is less
complicated to code and more accurate as compared to a lookup table.

The following equation, Eq. (4) is used to for sine approximation.

sin𝑥𝑥 =
16𝑥𝑥(𝜋𝜋 − 𝑥𝑥)

5𝜋𝜋^2 − 4𝑥𝑥(𝜋𝜋 − 𝑥𝑥)
 (4)

The following graph demonstrates the accuracy against an actual sine function:

Figure 6: Approximate sine curve.

The red line is the sine curve while the 2 blue lines represent the function approximation for 0 to 𝜋𝜋 and 𝜋𝜋 to
2𝜋𝜋.

For these functions to be usable, the MATH.sin function also handles negative theta inputs and theta inputs
greater than 2𝜋𝜋. By shifting theta to within the boundaries.

6
*Corresponding Author.
These authors contributed equally to this work.

MATH.cos Function
Understanding that cos𝜙𝜙 = sin �𝜙𝜙 − 𝜋𝜋

2
�. The MATH.cos function basically calls the sin function with a

modified theta input based on the cos to sin conversion.

Hardware Implementation
Hardware implementation of the double pendulum pRNG in FPGA is summarized in this section.

Generating seeds
After creating our own double pendulum algorithm, we decided to implement the sensors required to act as
the seeds for our pRNG. We had decided on using four different types of sensors and they are:

• Magnetic field sensor,
• Microphone Sensitivity sound sensor,
• Photodiode light sensor,
• Temperature and Humidity Sensor.

These data will then be sent to a Nano Arduino via UART communication for the random number to be
displayed on an LCD 1602 display screen. The block diagram of the hardware architect is depicted in Figure
7.

Figure 7: Block diagram.

Magnetic Field Sensor
The HMC5883L or the Three-Axis Digital Compass IC does communication in Inter-Integrated Circuit (IIC or
I2C) Communication. It is a special communication with a Serial Data Line (SDA) and Serial Clock Line (SCL),
which are both inout nets. The magnetic hall sensors require 3 bytes to send and 7 bytes to receive. Hence,
an FSM is designed to carry out the different states including the address of the registers and waiting to
receive all 6 bytes of data (XYZ values of the compass with 16-bit signed number), [2].

However, a few values are changed to make it more random (uses only 1 sample instead of average of 8).

7
*Corresponding Author.
These authors contributed equally to this work.

• HMC5883L_ADDR = 7'h3C;
• CRA_VAL = 8'h10; // Data: 0x10 0 00 100 00 - 1 sample at 15 Hz at normal configuration
• CRB_VAL = 8'h60; // Data: 0x60 011 00000 Set gain to +-2.5
• MODE_VAL = 8'h01; // Data: 0x01 means Single Mode
• READ_VAL = 8'h06; //Data: Read all 6 data

The FSM of the I2C communication loops every one second and thus will have new data every second.

Figure 8: Snapshot on oscilloscope displaying I2C’s SDA (yellow) and SCL (orange) signals.

As seen above, the FPGA is able to generate the I2C communication module and we were able to get non-
zero values which means we have successfully communicated with the sensor. The data will be passed to
the Arduino using UART.

Analogue to Digital Converter

XADC
The Xilinx Analog-to-Digital Converter (XADC), also referred to as XADC, is located on pins 15 and 16 of the
CMOD A7 35t. These two pins can be configured to operate in either single-ended or differential mode.
However, for our specific requirements, we only require the XADC to function in single-ended mode. Pin 15
is directly connected to the microphone sound sensor, while the remaining sensors will be connected via the
PMOD connector.

External ADC (SPI)
The PMOD connectors on the CMOD are utilized for connecting the MCP3202. Two MCP3202 modules have
been incorporated to enable the connection of up to four sensors with an external ADC capability.
Consequently, rather than assigning a particular channel for the ADC function, a modular approach is
adopted wherein the ADC function is executed across all available channels. Subsequently, within the top
module, the desired data output can be selected by invoking the specific adc_mode.

8
*Corresponding Author.
These authors contributed equally to this work.

CMOD A7 to Arduino
The Universal Asynchronous Receiver/Transmitter (UART) module receives and sends the data, which
comprises only 8 bits. Given the requirement to transmit 64 bits of data, the FSM_LOOP was created to
ensure the transmission of all 64 bits in successive 8-bit segments. Additionally, a byte_counter is established
to facilitate the transmission of 8 bytes of data with each button press for subsequent reading by the Arduino.

Display pRNG on LCD
The goal is to display the randomly generated numbers on a 1602 Liquid Crystal Display (LCD) module. This
display is chosen instead of a 7-segment due to its ability to display numbers up to 16 digits per row which
accommodates to our pRNG algorithm. In order to display the generated values on to the LCD display, it is
connected through Arduino.

On the LCD module, the readings for each sensor is displayed on the first line of the screen and the output
of the pRNG number is displayed on the second line. Below is a breakdown of the first line information.

A: Magnetic field sensor
B: Microphone Sensitivity sound sensor
C: Photodiode light sensor
D: Temperature and Humidity Sensor

Prototype and Measured Results
An integrated system is developed that houses an FPGA, Arduino Nano, Magnetic Field Sensor, Light
Sensor, Humidity Sensor, Microphone Sensor and an LCD display, as shown in Figure 9. This integrated
system obtains seeds from the sensors, runs the pRNG algorithm and displays it for the user. Seeds can be
obtained from the environment by pressing the white button on the top right as seen in Figure 9. The bottom
right dial adjusts the brightness of the LCD display.

Figure 9: pRNG prototype.

9
*Corresponding Author.
These authors contributed equally to this work.

This pPRN generates a 10 digits number. The following is a histogram of 1,048,575 random numbers
generated:

Figure 10: Histogram of recorded pRNG numbers.

As seen in this histogram, there is no discernible pattern in the histogram. A function written in Microsoft
Excel also shows that the pattern does not repeat even after a million data points. Hence, the period for the
random number generator does not repeat before a million cycles. There are over 1 billion possible
combinations based on the 10 digits number.

Figure 11: Plot of recorded pRNG number (first 1000 number).

Figure 12: Live output plot.

10
*Corresponding Author.
These authors contributed equally to this work.

The two figures above plot the iterations versus time, Figure 11, Figure 12. These plots show that there is
no repeat pattern of the pRNG number.

Conclusions
The exercise showcases a double pendulum pRNG design and implementation in FPGA. The algorithm and
hardware design can be further optimized for resource and speed. At the same time, more testing and
evaluation are required to verify the pRNG performance.

Acknowledgments
We would like to thank SUTD-ZJU IDEA Visiting Professor Grant (SUTD-ZJU (VP) 202103, and SUTD-ZJU
Thematic Research Grant (SUTD-ZJU (TR) 202204), for supporting this work.

References
[1] T. Shinbrot, C. Grebogi, J. Wisdom, and J. A. Yorke, “Chaos in a double pendulum,” American Journal of
Physics, vol. 60, no. 6, pp. 491–499, 1992.

[2] HoneyWell International. (2011). 3-Axis Digital Compass IC HMC5883L. Honeywell.com.
https://dlnmh9ip6v2uc.cloudfront.net/datasheets/Sensors/Magneto/HMC5883L-FDS.pdfJ

Appendix
module Math(
 input [31:0]A, //1 pos/neg bit, 7 round bits, no decimals
 input [31:0]B //total of 8 bits
);

function [31:0] plus;
 input [31:0] A; //bit 1 sign
 input [31:0] B; //bits 2 - 9 real
 reg [31:0]a, b; // bits 10 - 16 decimals
 reg [31:0]var; //local variable
 reg [8:0] symbol [1:0];
 begin
 symbol[1] = "-";
 symbol[0] = "+";
 a = A;
 b = B;
 case({a[31],b[31],~(a[30:23] >= b[30:23]), ~(a[22:0] >= b[22:0])})
 4'b0000, 4'b0001, 4'b0010, 4'b0011: begin //both positive
 var[31] = 0;
 var[30:23] = a[30:23] + b[30:23];
 var[22:0] = a[22:0] + b[22:0];
 while (var[22:0] >= 23'd100)begin
 var[30:23] = var[30:23] + 8'd1;
 var[22:0] = var[22:0] - 23'd100;
 end
 end
 //--//

11
*Corresponding Author.
These authors contributed equally to this work.

 4'b0100:begin //A positive, B negative, both of A larger than B
 var[31] = 0;
 var[30:23] = a[30:23] - b[30:23];
 var[22:0] = a[22:0] - b[22:0];
 end
 4'b0101:begin //A > B, a < b
 var[31] = 0;
 if(a[30:23] == b[30:23])begin
 var[31] = 1;
 a[30:23] = a[30:23]+ 8'd1;
 var[22:0] = b[22:0] - a[22:0];end
 var[30:23] = a[30:23] - b[30:23] - 8'd1;
 var[22:0] = (a[22:0] + 23'd100) - b[22:0];
 end
 4'b0110:begin //A < B, a > b
 var[31] = 1;
 if(a[30:23] == b[30:23])begin
 b[30:23] = b[30:23]+ 8'd1; end
 var[30:23] = b[30:23] - a[30:23] - 8'd1;
 var[22:0] = (23'd100 + b[22:0]) - a[22:0];
 end
 4'b0111:begin //A < B, a < b
 var[31] = 1;
 var[30:23] = b[30:23] - a[30:23];
 var[22:0] = b[22:0] - a[22:0];
 end
 //--//
 4'b1000:begin //A negative, B positiv, both of A larger than B
 var[31] = 1;
 var[30:23] = a[30:23] - b[30:23];
 var[22:0] = a[22:0] - b[22:0];
 end
 4'b1001:begin //A > B, a < b
 var[31] = 1;
 if(a[30:23] == b[30:23])begin
 a[30:23] = a[30:23]+ 8'd1; end
 var[30:23] = a[30:23] - b[30:23] - 8'd1;
 var[22:0] = (23'd100 + a[22:0]) - b[22:0];
 end
 4'b1010:begin //A < B, a > b
 var[31] = 0;
 if(a[30:23] == b[30:23])begin
 b[30:23] = b[30:23]+ 8'd1; end
 var[30:23] = b[30:23] - a[30:23] - 8'd1;
 var[22:0] = (23'd100 + b[22:0]) - a[22:0];
 end
 4'b1011:begin //A < B, a < b
 var[31] = 0;
 var[30:23] = b[30:23] - a[30:23];
 var[22:0] = b[22:0] - a[22:0];
 end
 4'b1100, 4'b1101, 4'b1110, 4'b1111: begin
 var[31] = 1;
 var[30:23] = a[30:23] + b[30:23];
 var[22:0] = a[22:0] + b[22:0];
 while (var[22:0] >= 23'd100)begin
 var[30:23] = var[30:23] + 8'd1;
 var[22:0] = var[22:0] - 23'd100;
 end
 end
 default: var = 32'd100;
 endcase
 //$display("A = %c%d.%d, and , B = %c%d.%d",
symbol[A[31]],A[30:23],A[22:0],symbol[B[31]],B[30:23],B[22:0]);
 plus = var;
 //$display("A + B = %c%d.%d", symbol[plus[31]],plus[30:23],plus[22:0]);
// $display("%c%d.%d + %c%d.%d = %c%d.%d"
// ,symbol[a[31]],a[30:23],a[22:0]
// ,symbol[b[31]],b[30:23],b[22:0]
// ,symbol[plus[31]],plus[30:23],plus[22:0]);

12
*Corresponding Author.
These authors contributed equally to this work.

 end
endfunction
//==//
function [31:0] minus;
 input [31:0] A; //bit 1 sign
 input [31:0] B; //bits 2 - 9 real
 reg [31:0]var; //local variable
 reg [8:0] symbol [1:0];
 reg [31:0]a, b; // bits 10 - 16 decimals
 begin
 symbol[1] = "-";
 symbol[0] = "+";
 a = A;
 b = B;
 b[31] = ~B[31];
 var = plus(a,b);
 //$display("A = %c%d.%d, and , B = %c%d.%d",
symbol[A[31]],A[30:23],A[22:0],symbol[B[31]],B[30:23],B[22:0]);
 minus = var;
 //$display("A - B = %c%d.%d", symbol[minus[31]],minus[30:23],minus[22:0]);
 end
endfunction
//==//
function [31:0] times;
 input [31:0] A; //bit 1 sign
 input [31:0] B; //bits 2 - 9 real
 reg [31:0]a, b; // bits 10 - 16 decimals
 reg [31:0]var, var1, var2, var3, var4, var5, dec;
 reg [8:0] symbol [1:0]; //(A.a)(B.b) = (A + .a)(B + .b) = (A*B + A*.b + B*.a + .a*.b)
 begin
 symbol[1] = "-";
 symbol[0] = "+";
 a = A;
 b = B;
 var1[30:23] = a[30:23] + b[30:23]; //A*B
 var2[22:0] = a[30:23] * b[22:0]; //A * .b
 var3[22:0] = b[30:23] * a[22:0]; //B * .a
 var4[22:0] = a[22:0] * b[22:0]; //.a * .b
 //first add the decimals together
 //Add first 2 DIGITS of var4 into var2 + var3, store in var5
 //extract first 2 digits of var4
 var5[7:0] = var4[22:0]/23'd100;
 dec[22:0] = var2[22:0] + var3[22:0] + var5[7:0];
 //next overflow the decimals into the integers
 var5[22:0] = dec[22:0]/23'd100;
 var[30:23] = (a[30:23] * b[30:23]) + var5[7:0];
 //store remaining decimals
 var[22:0] = dec[22:0] - (dec[22:0]/23'd100)*23'd100; //purposely truncated
 case({a[31],b[31] })
 2'b00, 2'b11: var[31] = 0; //both positive
 2'b01, 2'b10: var[31] = 1;
 default: var = 32'd100;
 endcase
 //$display("dec[22:0] = %d, dec[22:0]/100 = %d", dec[22:0], dec[22:0]/23'd100);
 //$display("A = %c%d.%d, and , B = %c%d.%d",
symbol[A[31]],A[30:23],A[22:0],symbol[B[31]],B[30:23],B[22:0]);
 times = var;
 //$display("A + B = %c%d.%d", symbol[times[31]],times[30:23],times[22:0]);
// $display("%c%d.%d * %c%d.%d = %c%d.%d"
// ,symbol[a[31]],a[30:23],a[22:0]
// ,symbol[b[31]],b[30:23],b[22:0]
// ,symbol[times[31]],times[30:23],times[22:0]);
 end
endfunction
//==//
function [31:0] divide;
 input [31:0] A; //bit 1 sign
 input [31:0] B; //bits 2 - 9 real
 reg [31:0]a, b; // bits 10 - 16 decimals
 reg [31:0]var, int, quo, dec;

13
*Corresponding Author.
These authors contributed equally to this work.

 reg [8:0] symbol [1:0]; //(A.a)/(B.b) ==> (Aa)(Bb) remove decimals and do division, keeping quotients
 begin
 symbol[1] = "-";
 symbol[0] = "+";
 a = A;
 b = B;
 //move decimal place and combine
 a[30:0] = A[30:23] * 8'd100;
 a[30:0] = a[30:0] + A[7:0];
 b[30:0] = B[30:23] * 8'd100;
 b[30:0] = b[30:0] + B[7:0];
// $display("A = %c%d.%d, a = %c%d"
// ,symbol[A[31]],A[30:23],A[22:0]
// ,symbol[a[31]],a[30:0]);
 case({a[31],b[31],~(a[30:0] >= b[30:0])})
 3'b000, 3'b110: begin
 var[31] = 0;
 int[30:23] = a[30:0] / b[30:0];
 quo[30:0] = a[30:0] - (int[30:23] * b[30:0]); //quotient
 dec[22:0] = (quo[30:0]*100) / b[30:0]; //2dp is enough
 var[30:23] = int[30:23];
 var[22:0] = dec[22:0];end
 3'b001, 3'b111: begin
 var[31] = 0;
 var[30:23] = 0;
 var[22:0] = (a[30:0] * 100) / b[30:0];end
 3'b011, 3'b101: begin
 var[31] = 1;
 var[30:23] = 0;
 var[22:0] = (a[30:0] * 100) / b[30:0];end
 3'b010, 3'b100: begin
 var[31] = 1;
 int[30:23] = a[30:0] / b[30:0];
 quo[30:0] = a[30:0] - (int[30:23] * b[30:0]); //quotient
 dec[22:0] = (quo[30:0]*100) / b[30:0]; //2dp is enough
 var[30:23] = int[30:23];
 var[22:0] = dec[22:0];end
 default: var = 32'd100;
 endcase
 //$display("a = %d.%d divide by b = %d.%d", A[30:23],A[22:0], B[30:23],B[22:0]);
 //$display("Ans = %d.%d", var[30:23], var[22:0]);
 //$display("A = %c%d.%d, and , B = %c%d.%d",
symbol[A[31]],A[30:23],A[22:0],symbol[B[31]],B[30:23],B[22:0]);
 divide = var;
// $display("%c%d.%d / %c%d.%d = %c%d.%d"
// ,symbol[a[31]],a[30:23],a[22:0]
// ,symbol[b[31]],b[30:23],b[22:0]
// ,symbol[divide[31]],divide[30:23],divide[22:0]);
 end
endfunction
//==//
function [31:0] mod;
 input [31:0] A;
 reg [31:0]a;
 reg [31:0]var; //local variable
 reg [8:0] symbol [1:0];
 begin
 symbol[1] = "-";
 symbol[0] = "+";
 a = A;
 var[31] = 0;
 var[30:0] = a[30:0];
// $display("A = %c%d.%d", symbol[A[31]],A[30:23],A[22:0]);
 mod = var;
// $display("|A| = %c%d.%d", symbol[var[31]],mod[30:23],mod[22:0]);
 end
endfunction
//==//
function [31:0] neg;
 input [31:0] A;

14
*Corresponding Author.
These authors contributed equally to this work.

 reg [31:0]a;
 reg [31:0]var; //local variable
 reg [8:0] symbol [1:0];
 begin
 symbol[1] = "-";
 symbol[0] = "+";
 a = A;
 var[31] = ~a[31];
 var[30:0] = a[30:0];
// $display("A = %c%d.%d", symbol[A[31]],A[30:23],A[22:0]);
 neg = var;
// $display("neg A = %c%d.%d", symbol[var[31]],neg[30:23],neg[22:0]);
 end
endfunction
//==//
reg [31:0]pi, pi_2;
reg [31:0]const16, const5, const4, const2, const1;
initial begin
const16 = 0; const5 = 0; const4 = 0; const2 = 0; const1 = 0;
const16[30:23] = 8'd16;
const5[30:23] = 8'd5;
const4[30:23] = 8'd4;
const2[30:23] = 8'd2;
const1[30:23] = 8'd1;

pi[31] = 0;
pi[30:23] = 8'd3;
pi[22:0] = 23'd14;
pi_2 = Math.times(pi,const2);
end

function [31:0] sin;
 input [31:0]theta;
 reg [31:0] var, store, var1, var2, var3, var4, var5, var6, var7;
 reg [8:0] symbol [1:0];
 begin
 symbol[1] = "-";
 symbol[0] = "+";
 //Check what is theta
 store = divide(theta,pi_2);
 case({theta[31],store[30:23] >= 1})
 2'b00:begin//positive number less than 2 pi
 theta = theta;end
 2'b01:begin//positive numver greater than 2 pi
 store = divide(theta,pi_2);
 store[31] = 0; store[22:0] = 0;
 theta = minus(theta,times(store,pi_2));end
 2'b10:begin//negative number less than 2pi
 theta = mod(theta);
 theta = minus(pi_2,theta);end
 2'b11:begin//negatiev number greater than 2pi
 //$display("theta before = %c%d.%d", symbol[theta[31]],theta[30:23],theta[22:0]);
 store = 0; store = divide(theta,pi_2); store[31] = 0; store[22:0] = 23'd0;//1.11
 theta = plus(theta,times(plus(const1,store),pi_2)); //7-2pi
 //$display("theta after= %c%d.%d", symbol[theta[31]],theta[30:23],theta[22:0]);
 end
 endcase
 if(theta >= 0 && theta <= pi)begin //first 2 quadrants
 //sine function for 0 to pi: y = 16x(pi-x) / (5pi^2 - 4x(pi-x))
 var = times(times(const16,theta),minus(pi,theta));
 var = divide(var,times(times(pi,pi),const5) - times(times(const4,theta),minus(pi,theta)));
 //$display("i went here");
 end
 if(theta > pi && theta <= pi_2)begin //last 2 quadrants ///ERROR HERE
 //sine function for pi to 2pi: y = -16(x-2pi)(pi-x) / (5pi^2 - 4(x-2pi)(pi-x))
 var = times(times(neg(const16), minus(theta,pi_2)),minus(pi,theta));
 //$display("var part 1 = %c%d.%d", symbol[var[31]],var[30:23],var[22:0]);
 var =
divide(var,minus(times(times(pi,pi),const5),times(times(const4,minus(theta,pi_2)),minus(pi,theta))));
 //$display("var part 2 = %c%d.%d", symbol[var[31]],var[30:23],var[22:0]);

15
*Corresponding Author.
These authors contributed equally to this work.

 end
 sin = var;
 //$display("pi = %c%d.%d", symbol[pi[31]],pi[30:23],pi[22:0]);
 //$display("theta = %c%d.%d", symbol[theta[31]],theta[30:23],theta[22:0]);
 //$display("sin(theta) = %c%d.%d", symbol[sin[31]],sin[30:23],sin[22:0]);
 end
endfunction
//==//
function [31:0] cos;
 input [31:0]theta;
 reg [31:0] var, store;
 reg [8:0] symbol [1:0];
 begin
 symbol[1] = "-";
 symbol[0] = "+";
 //cos(x) = sin(x - pi/2)
 cos = sin(minus(divide(pi,const2),theta));
 //$display("pi = %c%d.%d", symbol[pi[31]],pi[30:23],pi[22:0]);
 //$display("theta = %c%d.%d", symbol[theta[31]],theta[30:23],theta[22:0]);
 //$display("cos(theta) = %c%d.%d", symbol[cos[31]],cos[30:23],cos[22:0]);
 end
endfunction
//==//
endmodule

	Introduction
	Pseudo Random Number Generator Algorithm

	Mathematic Functions
	MATH.plus Function
	MATH.minus Function
	MATH.times Function
	MATH.divide Function
	MATH.sin Function
	MATH.cos Function

	Hardware Implementation
	Generating seeds
	Magnetic Field Sensor
	Analogue to Digital Converter
	XADC
	External ADC (SPI)

	CMOD A7 to Arduino
	Display pRNG on LCD

	Prototype and Measured Results
	Conclusions
	Acknowledgments
	References
	Appendix

