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Abstract—This paper focuses on the Bregman divergence de-
fined by the reciprocal function, called the inverse divergence. For
the loss function defined by the monotonically increasing function
f and inverse divergence, the conditions for the statistical model
and function f under which the estimating equation is unbiased
are clarified. Specifically, we characterize two types of statistical
models, an inverse Gaussian type and a mixture of generalized
inverse Gaussian type distributions, to show that the conditions
for the function f are different for each model. We also define
Bregman divergence as a linear sum over the dimensions of the

inverse divergence and extend the results to the multi-dimensional
case.

I. INTRODUCTION

The maximum likelihood estimation (MLE) is a standard

method in parametric estimation although it is vulnerable to

outliers. In robust statistics, the methods studied to overcome

the adverse effects of outliers [1], [2] include M-estimation,

which is a well-known robust estimation method. In M-

estimation, the assumed model in the MLE is changed to

another with heavy tails. The well-known minimum divergence

method changes the Kullback–Leibler divergence correspond-

ing to the MLE to a more robust divergence for estimation

[3], [4]. The M-estimation and minimum divergence methods

obtain estimators as solutions to estimating equations, which

are mainly of two types: non-normalized and normalized.

Bregman divergence and its special cases [5]–[9] correspond to

the non-normalized estimating equation, whereas γ-divergence

[10] corresponds to the normalized estimating equation. No-

tably, the normalized estimating equation has the distinctive

feature of bringing the latent bias close to zero, even in

cases heavily contaminated by outliers [11]. However, the

analytically intractable integrals involved in these estimating

equations limit the choice of models and weight functions that

can be used. Recent studies on the minimization of divergence

have adopted the stochastic optimization framework to avoid

these intractable integrals [12], [13].

The f -separable distortion measure [14] was proposed as

an extension of the average and maximum distortions that are

commonly used in information theory. Recently, we proposed

a parameter estimation method that minimizes the f -separable

distortion using Bregman divergence as a base distortion

measure [15]. This method is a type of M-estimation method.

The property of the estimator is determined by the shape of

the monotonically increasing function f , exhibiting robustness

against outliers when f is concave. However, extending the

loss function using function f does not always guarantee

an unbiased estimating equation, which is a necessary con-

dition for the consistency of the estimator. To satisfy the

unbiased estimating equation, a bias correction term involving

an analytically intractable integral is required. Consequently,

to avoid this problem, combinations of the statistical model,

Bregman divergence, and function f that satisfy the unbiased

estimating equation without a bias correction term have been

investigated [16]. It has been suggested that the necessity of

a bias correction term depends on the type of Bregman diver-

gence utilized in the estimation [16]. When a bias correction

term is not required, the Bregman divergence describes the

corresponding statistical model used for estimation, and the

available functions f are characterized by the boundedness of

a specific simple integral. In rare cases, the bias correction

term disappears; however, the combinations generating this

condition are unknown.

This paper focuses on the Bregman divergence defined by

the reciprocal function, called the inverse divergence. We

clarify combinations of the statistical model and function f
that eliminate the bias correction term when using inverse

divergence for estimation. Furthermore, we extend the result to

a multi-dimensional case by expressing the inverse divergence

as a linear sum in multiple dimensions.

II. f -SEPARABLE BREGMAN DISTORTION MEASURES

A. Problem setting and loss function

In estimating the parameter θ ∈ Θ ⊆ R
d of a sta-

tistical model p(x|θ) based on the given data xn =

{x1, · · · ,xn}, xi = (x
(1)
i , · · · , x(d)

i )T ∈ χ ⊆ R
d, we assume

that the true distribution can be realized by p(x|θ∗). When the

expected value exists for the statistical model, we assume that

θ = E[X] =
∫

xp(x|θ)dx. The loss function is defined as

L(θ) =
1

n

n
∑

i=1

f(dφ(xi, θ)), (1)

using differentiable and continuous monotonically increasing

function f : R+ → R and the Bregman divergence dφ(x, θ) :
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TABLE I
COMBINATION OF BREGMAN DIVERGENCE, STATISTICAL MODEL, AND FUNCTION f WHEN THE BIAS CORRECTION TERM VANISHES

Divergence Support Model PDF Bounded condition

Mahalanobis

dAM(x,θ) = (x− θ)TA(x− θ)
R

d Elliptical [17]
|A|

1
2

C
g
(

dAM(x,θ)
) ∫∞

0
g(t)f ′(t)t

d−1

2 dt

1D Bregman1

dφ(x, θ)
(a, b) Continuous Bregman [16] 1

Cφ(θ)
φ′(x)−φ′(θ)

x−θ
g (dφ(x, θ))

∫ ζ

0
g(t)f ′(t)dt

Inverse

(7)
R++

Inverse Gaussian type

(IGT) [18]
(8) (10) [This paper]

Multivariate inverse

(18)
R

d
++

Multivariate IGT

(MIGT) [This paper]
(19) (21) [This paper]

1The one-dimensional Bregman divergence that satisfies the following condition:

∀θ ∈ Θ, limx→a dφ(x, θ) = limx→b dφ(x, θ) = ζ ∈ R++ ∪ {∞}, where R++ is the set of positive real numbers.

TABLE II
SPECIAL CASE OF CONTINUOUS BREGMAN DISTRIBUTION AND CORRESPONDING BREGMAN DIVERGENCE

φ(x) Divergence Support Generator Model PDF

x2

σ2

Squared

(x−θ)2

σ2

R
g(t) 1D elliptical [17] 1

Cσ
g( (x−θ)2

σ2 )

exp(− t
2
) Gaussian 1√

2πσ2
exp(− (x−θ)2

2σ2 )

−k log x
Itakura–Saito (IS)

dkIS(x, θ) = k(x
θ
− log x

θ
− 1)

R++
g(t) IS [16] 1

C(k)
1
x
g(dkIS(x, θ))

exp(−t) Gamma
(

k
θ

)k xk−1

Γ(k)
exp(− k

θ
x)

λ
x

Inverse

(7)
R++

g(t) GIGT mixture [This paper] (14)

exp(− t
2
) GIG mixture [This paper] (15)

Abbreviations: GIGT, Generalized inverse Gaussian type; GIG, Generalized inverse Gaussian.

χ×Θ → R+, where R+ is the set of nonnegative real numbers

[14]–[16]. The Bregman divergence is defined as

dφ(x, θ) = φ(x)− φ(θ)− 〈∇φ(θ),x− θ〉,
where φ : χ → R is a differentiable strictly convex function

with gradient vector ∇φ and 〈·, ·〉 denotes the inner product.

The property of the estimator depends on the shape of the

function f . When the function f is concave, the estimator

is robust against outliers. Furthermore, when the function f
is linear, the estimation problem reduces to the MLE for the

expected value parameter in a regular exponential family:

p(x|θ) = rφ(x) exp(−dφ(x, θ)), (2)

where the strictly convex function φ uniquely determines

rφ(x) [19].

B. Conditions for unbiased estimating equation

The estimator θ̂ is the solution to the stationary point,

obtained by differentiating the loss function (1) with respect

to the parameter θ and setting it to 0, in solving the estimating

equation:

1

n

n
∑

i=1

f ′(dφ(xi, θ))(xi − θ) = 0, (3)

where f ′ is the derivative of f . However, this estimating
equation is generally biased. This is because the left-hand side

of the estimating equation (3) does not necessarily converge
asymptotically to 0. In the limiting value, bias should be pre-
corrected to satisfy the unbiased estimating equation. Two
main types of unbiased estimating equations are known: non-
normalized (4) and normalized (5). The latter is particularly
noted for its ability to reduce latent biases to 0, even in
situations with a high proportion of outliers:

1

n

n
∑

i=1

f
′(dφ(xi,θ))(xi − θ) = Ep(x|θ)

[

f
′(dφ(X ,θ))(X − θ)

]

,

(4)
∑n

i=1 f
′(dφ(xi,θ))(xi − θ)

∑n

j=1 f
′(dφ(xj , θ))

=
Ep(x|θ) [f

′(dφ(X ,θ))(X − θ)]

Ep(x|θ) [f ′(dφ(X ,θ))]
,

(5)

[11], [16]. The bias correction term on the right hand side of

each estimating equation is generally difficult to integrate an-

alytically. However, if the following condition holds, the bias

correction terms on the right sides of both the non-normalized

(4) and normalized (5) estimating equations vanish, resulting

in the same problem expressed by the estimating equation (3):

Ep(x|θ) [f
′(dφ(X, θ))(X − θ)] = 0. (6)

In other words, if (6) is satisfied, (3) is the unbiased estimating

equation not requiring a bias correction term. Additionally, as

it can be interpreted as the normalized estimating equation

(5), the latent bias can be approximately reduced to 0, even

in situations with a high proportion of outliers.



C. Existing results

Table I shows the combinations of Bregman divergence,

statistical model, and function f for which the bias correction

term vanishes, and (6) is satisfied. Previous research has

clarified the conditions for the statistical model, function f cor-

responding to the Mahalanobis distance, and one-dimensional

Bregman divergence1 [16]. The Mahalanobis distance and

one-dimensional Bregman divergence correspond to elliptical

and continuous Bregman distributions, respectively. Elliptical

distributions are a family of distributions defined by the

generating function and the Mahalanobis distance [17]. They

include the well-known Gaussian, Laplace, and t- distributions

as special cases. Whereas, continuous Bregman distributions

are a distribution family defined by the generating function

g and a strictly convex function φ. The special cases of this

family are the one-dimensional elliptical distribution and the

Itakura–Saito (IS) distribution, which generalizes the gamma

distribution (Table II).

The loss function (1) is an extension of the negative log-

likelihood function under the regular exponential family (2),

enhanced by the function f . Therefore, it is preferable that

statistical models that satisfy the unbiased estimating equation

(6) correspond to the regular exponential family. However,

apart from the Gaussian and gamma distributions, no special

cases of the regular exponential family have been identified as

satisfying the unbiased estimating equation (6). The following

sections clarify that for estimations using inverse divergence,

the statistical model satisfying the unbiased estimating equa-

tion (6) corresponds to the inverse Gaussian distribution (and

its generalized distribution family), which is a special case of

the regular exponential family.

III. MODELS AND CONDITIONS UNDER INVERSE

DIVERGENCE

This section discusses the Bregman divergence specified by

the strictly convex function φ(x) = λ/x, (x > 0, λ > 0)
which is called the inverse divergence [20, p.102], where λ is

a nuisance parameter. The inverse divergence, defined as

dλInv(x, θ) ,
λ(x− θ)2

θ2x
, (7)

is known to correspond to the inverse Gaussian distribution

[19], [21, Chapter 2] and is also a particular case of the

β-divergence [22]. In the following subsections, we discuss

the two types of statistical models satisfying the unbiased

estimating equation (6) when using inverse divergence for

estimation and show that the conditions for the function f
differ for each model.

A. Inverse Gaussian type (IGT) distribution

Definition 1 (IGT distribution [18]): For x ∈ R++, the

parameters θ ∈ Θ = R++ and λ ∈ R++, and a nonnegative

generating function g : R+ → R+, the IGT distribution is

defined as follows:

p(x|θ, λ) = 1

CIGT

√

λ

x3
g(dλInv(x, θ)), (8)

CIGT =

∫ ∞

0

1√
t
g(t)dt, (9)

if the normalization constant CIGT exists.

Here, R++ = R+ \ {0}. Note that the normalization constant

CIGT is the same as that for the one-dimensional elliptical

distribution [17], [18]. When the generating function is g(t) =
exp(−t/2), the IGT distribution (8) reduces to the inverse

Gaussian distribution [23]–[25] as follows:

p(x|θ, λ) =
√

λ

2πx3
exp

(

−λ(x− θ)2

2θ2x

)

.

The expected value of the IGT distribution, E[X ] = θ, is

independent of the generating function g [18]. This fact can

also be derived from the following Corollary 1, which is

derived below.

Assumption 1: There exists an IGT distribution (8) cor-

responding to the nonnegative generating function g, i.e.,

CIGT < ∞.

Theorem 1: Under Assumption 1, the estimating equation

without a bias correction term equivalently, (6) holds if and

only if
∫ ∞

0

g(t)f ′(t)
1√
t+ 1

dt < ∞ (10)

holds for the combination of the function f and the statistical

model (8).

Proof : Substituting the inverse divergence (7) and IGT

distribution (8) into the left-hand side of (6), we have

Ep(x|θ,λ)

[

f ′(dλInv(X, θ))(X − θ)
]

=

∫ ∞

0

1

CIGT

√

λ

x3
g(dλInv(x, θ))f

′(dλInv(x, θ))(x − θ)dx

∝
∫ θ

0

1√
x3

g(dλInv(x, θ))f
′(dλInv(x, θ))(x − θ)dx

+

∫ ∞

θ

1√
x3

g(dλInv(x, θ))f
′(dλInv(x, θ))(x − θ)dx (11)

=
θ√
λ

∫ ∞

0

g(t)f ′(t)





1
√

t+ 4λ
θ

− 1
√

t+ 4λ
θ



 dt = 0.

We used integration by substitution, t = dλInv(x, θ). The details

of the substitution integration from (11) to the next line are

provided in Appendix A. Therefore, if the following integral

exists for any a > 0, the unbiased estimating equation (6)

holds without a bias correction term:

I(a) ,

∫ ∞

0

g(t)f ′(t)
1√
t+ a

dt < ∞. (12)

Conversely, the above discussion also shows that

Ep(x|θ,λ)

[∣

∣f ′(dλInv(X, θ))(X − θ)
∣

∣

]

∝ 2θ
√
λ
−1

I(4λθ−1). In

other words, I(a) < ∞ is also a necessary condition.



However, since this integral includes the parameter a =
4λ/θ > 0, rewriting it in a form that does not depend on

a is desirable. The integrand of (12) is a strictly monotoni-

cally decreasing and continuous function with respect to a.

Therefore, the I(a) obtained through integration is also a

strictly monotonically decreasing and continuous function with

respect to a. We assume that I(a†) < ∞ for ∃a† ∈ (0,∞).
The strict monotonic decrease of I(a) ensures that ∀ε >
0, I(a†+ ε) < ∞ holds. Furthermore, owing to the continuity

of I(a), ∀ε ∈ (0, a†), I(a† − ε) < ∞ holds. Therefore, if

I(a) is bounded at some point a† ∈ (0,∞), it is bounded

for any a ∈ (0,∞). Thus, we set a = 1. Based on the

above discussion, (10) is a necessary and sufficient condition

for the unbiased estimating equation to hold without the bias

correction term. �

The condition
∫∞

0
g(t)

√
t+ 1

−1
dt < ∞ for the existence

of the expected value of the IGT distribution is obtained from

Theorem 1 by substituting f ′(t) = 1. As this condition is

the lower bound of the normalization constant (9) of the IGT

distribution, the following corollary is obtained.

Corollary 1: The expected value of the IGT distribution (8)

always exists, independent of the generating function g, and

satisfies E[X ] = θ.

In the above discussion, we showed that for estimation

using the inverse divergence (7), the statistical model satisfying

the unbiased estimating equation (6) corresponds to the IGT

distribution. The inverse Gaussian distribution, a special case

of the IGT distribution, is also a special case of the regular

exponential family of distributions. On the other hand, contin-

uous Bregman distributions correspond to the one-dimensional

Bregman divergence. Thus, the inverse divergence also corre-

sponds to continuous Bregman distributions generated by the

reciprocal function. In the following, we show that generalized

inverse Gaussian type (GIGT) mixture distributions, which

are special cases of continuous Bregman distributions, can be

generated and correspond to the inverse divergence.

B. Generalized IGT (GIGT) mixture distribution

Definition 2 (GIGT distribution): For x ∈ R++, the param-

eters θ ∈ Θ = R++, λ ∈ R++, ν ∈ R, and a nonnegative

generating function g : R+ → R+, the GIGT distribution is

defined as follows:

q(x|θ, λ, ν) = 1

CGIGT(θ, λ, ν)
xν−1g(dλInv(x, θ)), (13)

CGIGT(θ, λ, ν) =

∫ ∞

0

tν−1g(dλInv(t, θ))dt,

if the normalization constant CGIGT exists.

When ν = −1/2, the GIGT distribution (13) reduces to

the IGT distribution (8). In continuous Bregman distributions,

when the strictly convex function is set as φ(x) = λ/x, (x >
0, λ > 0), the corresponding statistical model is defined by a

two-component mixture of GIGT distribution (13) as

p(x|θ, λ) = wq(x|θ, λ, 0) + (1 − w)q(x|θ, λ,−1), (14)

w =
CGIGT(θ, λ, 0)

CGIGT(θ, λ, 0) + θCGIGT(θ, λ,−1)
.

Specifically, when the generating function is g(t) =
exp(−t/2), the GIGT distribution (13) reduces to the gener-

alized inverse Gaussian (GIG) distribution (16) [26, p.6], and

the GIGT mixture distribution (14) becomes the GIG mixture

distribution (15):

p(x|θ, λ) = wp(x|α, θ, 0) + (1− w)p(x|α, θ,−1), (15)

p(x|α, η, ν) = η−νxν−1

2Kν(α)
exp

(

−α

2

(

x

η
+

η

x

))

, (16)

w =
K0 (α)

K0 (α) +K−1 (α)
, α =

λ

θ
,

where Kν(·) represents the modified Bessel function of the

third kind with index λ.

The combination of the one-dimensional Bregman diver-

gence and continuous Bregman distribution has been shown

to satisfy the unbiased estimating equation without a bias

correction term. Therefore, the following corollary can be

obtained from [16, Theorem 3].

Assumption 2: There exists a GIGT mixture distribution (14)

corresponding to the nonnegative generating function g, i.e.,

CGIGT(θ, λ, 0) < ∞ and CGIGT(θ, λ,−1) < ∞.

Corollary 2: Under Assumption 2, the estimating equation

without a bias correction term equivalently, (6) holds if and

only if

∫ ∞

0

g(t)f ′(t)dt < ∞ (17)

holds for the combination of the function f and the statistical

model (14).

C. Discussion

In this section, we showed that when using inverse diver-

gence for estimation, two types of statistical models satisfy

the unbiased estimating equation: the IGT (8) and GIGT

mixture (14) distributions, each with different conditions for

the function f . Comparing conditions (10) and (17), clearly,

the factor 1/
√
t+ 1 applied to the integrand differs. This

implies that with a fixed generating function g, the functions

f available for estimation differ. When fixing f ′(t) = 1, the

IGT distribution always has an expected value independent

of the generating function g. In contrast, the existence of

the expected value in the GIGT mixture distribution depends

on the generating function g. More generally, the same can

be concluded when comparing the IGT distribution with the

continuous Bregman distributions, which generalize the GIGT

mixture distribution. For distributions such as continuous

Bregman, elliptical, and IS distributions that are generalized

by the generating function g, the existence of the expected

value depends on the generating function g. For example, the

Cauchy distribution, a particular case of elliptical distributions,

does not have an expected value. This highlights that the

IGT distribution is somewhat unique within the family of

distributions generalized by the generating function g.



IV. EXTENSION TO MULTI-DIMENSIONAL CASE

In this section, we extend the problem to cases of multi-

dimensional data points. In the following, to simplify the

notation, the j-th dimension variable is represented by a

subscript j. Let the Bregman divergence be given as a linear

sum over the dimensions of the inverse divergence:

dλMInv(x, θ) ,
d

∑

j=1

d
λj

Inv(xj , θj). (18)

The corresponding strictly convex function is given by φ(x) =
∑d

j=1 λj/xj .

Definition 3 (Multivariate IGT (MIGT) distribution): For

x ∈ R
d
++, the parameters θ ∈ Θ = R

d
++, λ ∈ R

d
++, and

a nonnegative generating function g : R+ → R+, the MIGT

distribution is defined as follows if the normalization constant

CMIGT exists:

p(x|θ,λ) = 1

CMIGT

d
∏

j=1

[√

λj

x3
j

]

g(dλMInv(x, θ)), (19)

CMIGT =
π

d
2

Γ(d2 )

∫ ∞

0

g(t)t
d−2

2 dt, (20)

where Γ(·) represents the gamma function.

The MIGT distribution has the same normalization constant

CMIGT as elliptical distributions [17] and extends the IGT

distribution to multiple dimensions. Setting the generating

function as g(t) = exp(−t/2), we obtain the simultaneous

distribution of d independent inverse Gaussian distributions.

As shown in Corollary 3, the expected value of the MIGT

distribution exists independent of the generating function g,

and E[X] = θ holds.

Assumption 3: There exists a MIGT distribution (19) cor-

responding to the nonnegative generating function g, i.e.,

CMIGT < ∞.

Theorem 2: Let us assume d ≥ 2. Under Assumption

3, the estimating equation without a bias correction term

equivalently, (6) holds if and only if

∫ ∞

0

∫ ∞

0

g(t+ s)f ′(t+ s)
t
d−3

2

√
s+ 1

dtds < ∞ (21)

holds for the combination of the function f and the statistical

model (19).

The proof of Theorem 2 is provided in Appendix B.

Corollary 3: The expected value of a MIGT distribution (19)

exists, independent of the generating function g, and satisfies

E[X] = θ.

Proof : From Theorem 2, by setting f ′(t) = 1, we

immediately obtain the following relationship:

∫

R
2
+

g(t+ s)
t
d−3

2

√
s+ 1

dtds < ∞ ⇐⇒ Ep(x|θ,λ)[X] = θ < ∞.

(22)

We consider the upper bound of left condition of (22):
∫

R
2
+

g(t+ s)
t
d−3

2

√
s+ 1

dtds <

∫

R
2
+

g(t+ s)
t
d−3

2

√
s
dtds

=

√
πΓ(d−1

2 )

Γ(d2 )

∫ ∞

0

g(t)t
d−2

2 dt

≤ π
d
2

Γ(d2 )

∫ ∞

0

g(t)t
d−2

2 dt. (23)

The first inequality is derived from a simple comparison of

the integrand. The second line is obtained by setting m = 2,

α1 = 1/2, α2 = (d − 1)/2, u(t) = g(t) and applying

Lemma 1 in Appendix C to the first line. Equation (23)

is the normalization constant (20) of the MIGT distribution.

Therefore, the expected value of the MIGT distribution exists

independent of the generating function g, and E[X] = θ holds.

�

V. CONCLUSION

In this paper, we discussed the conditions under which the

unbiased estimating equation holds without the bias correc-

tion term for loss functions composed of a monotonically

increasing function f and Bregman divergence. In the case

of inverse divergence, this scenario was satisfied by the IGT

and GIGT mixture distributions (the latter is a particular case

of the continuous Bregman distribution), each with different

conditions of the function f . In estimating the IGT distribution

based on robust divergence, the bias correction terms, which

are analytically intractable integrals, do not vanish. By defining

the Bregman divergence as a linear sum over the dimensions

of inverse divergence, we extended the discussion to multi-

dimensional cases. The corresponding statistical model in this

case (the MIGT distribution) was newly defined in this paper.

Similar to the IGT distribution, we clarified that if a prob-

ability density function exists, an expected value, satisfying

E[X] = θ exists as well. Furthermore, we showed that the

conditions for the function f that can be used for estimation

are provided by a double integral.

When the statistical model is the regular exponential family,

the Bregman divergences ensuring the unbiased estimating

equation are the squared and IS distances reported in previous

studies and the inverse divergence reported in this study, which

are special cases of β-divergence [22]. Although this paper did

not delve into the details of robust estimation, by combining

discussions from existing research, it was proven that latent

biases can be reduced to approximately zero, even in the

presence of outliers, and that the consistency of the estimator

can be established [16].
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APPENDIX A

DETAILED PROOF OF THEOREM 1

Here, we set

t = dλInv(x, θ) (24)

and perform substitution integration, which requires that the

integration interval for x be divided. The integration intervals

for x from 0 to θ and from θ to ∞ are transformed into the

integration intervals for t from ∞ to 0 and from 0 to ∞,

respectively. The factor of the integral transform is given by

dx =
λ−1θ2x2

(x− θ)(x + θ)
dt. (25)

In addition, expanding (24) with respect to x, we obtain

λx2 − θ(θt+ 2λ)x+ λθ2 = 0.

From the quadratic formula, we obtain

x =
θ

2λ

(

(θt+ 2λ)±
√

θt(θt+ 4λ)
)

.

For any θ, let us denote the range of x<θ as (0, θ) and the

range of x≥θ as [θ,∞). Then, x<θ and x≥θ can be expressed

as the inverse function of t in (24) as follows:

x<θ(t) =
θ

2λ

(

(θt+ 2λ)−
√

θt(θt+ 4λ)
)

, (26)

x≥θ(t) =
θ

2λ

(

(θt+ 2λ) +
√

θt(θt+ 4λ)
)

. (27)

Although these are functions of t, in the following discussion,

t may occasionally be omitted for simplicity. Let us define the

following function:

h(x) =

√
x

x+ θ
.

Substituting (26) and (27) into this function, we obtain

h(x<θ(t)) = h(x≥θ(t)) =

√
λ

θ

1
√

t+ 4λ
θ

. (28)

Using the previous equations (24), (25), and (28), the substi-

tution integral of (11) is calculated as

∫ 0

∞

1
√

x3
<θ

g(t)f ′(t)(x<θ − θ)
λ−1θ2x2

<θ

(x<θ − θ)(x<θ + θ)
dt

+

∫ ∞

0

1
√

x3
≥θ

g(t)f ′(t)(x≥θ − θ)
λ−1θ2x2

≥θ

(x≥θ − θ)(x≥θ + θ)
dt

=
θ2

λ

∫ ∞

0

g(t)f ′(t) [h(x≥θ(t))− h(x<θ(t))] dt

=
θ√
λ

∫ ∞

0

g(t)f ′(t)





1
√

t+ 4λ
θ

− 1
√

t+ 4λ
θ



 dt = 0.

APPENDIX B

PROOF OF THEOREM 2

Substituting the multivariate inverse divergence (18) and
MIGT distribution (19) into the left-hand side of (6), we have

Ep(x|θ,λ)

[

f
′(dλMInv(X ,θ))(X − θ)

]

∝
∫

Rd
+

d
∏

j=1





1
√

x3
j



 g(dλMInv(x,θ))f
′(dλMInv(x,θ))(x− θ)dx.

In the following, we set ḡ(t) = g(t)f ′(t) and focus our
discussion on the k-th dimension:

∫

R
d
+

d
∏

j=1





1
√

x3
j



 ḡ(dλMInv(x,θ))(xk − θk)dx

=

∫

R
d−1

+

∫ θk

0

1
√

x3
k

ḡ(dλMInv(x,θ))(xk − θk)dxk

d
∏

j 6=k

1
√

x3
j

dxj

+

∫

R
d−1

+

∫ ∞

θk

1
√

x3
k

ḡ(dλMInv(x,θ))(xk − θk)dxk

d
∏

j 6=k

1
√

x3
j

dxj

=
θk√
λk

∫

Rd
+

ḡ



tk +

d
∑

j 6=k

d
λj

Inv(xj , θj)





·





1
√

tk + 4λk

θk

− 1
√

tk + 4λk

θk



 dtk

d
∏

j 6=k

1
√

x3
j

dxj = 0. (29)

The transformation from the first equality to the second

involves setting tk = dλk

Inv(xk, θk) and applying substitution
integration, similar to the proof in Theorem 1. For (29) to be
zero, the following expression must be bounded:

∫

Rd
+

ḡ



tk +

d
∑

j 6=k

d
λj

Inv(xj , θj)





1
√

tk + 4λk

θk

dtk

d
∏

j 6=k

1
√

x3
j

dxj .

Iteratively integrating the above expression, we obtain

d
∏

j 6=k

[

1
√

λj

]

∫

Rd
+

ḡ

(

d
∑

j=1

tj

)

1
√

tk + 4λk

θk

dtk

d
∏

j 6=k

1√
tj
dtj

=

d
∏

j 6=k

[

1
√

λj

]

π
d−1

2

Γ( d−1
2

)

∫ ∞

0

∫ ∞

0

ḡ(t+ tk)
t
d−3

2

√

tk + 4λk

θk

dtdtk.

The transformation of the equation involves setting m = d−
1 and u(t) = ḡ(t + tk), and using Lemma 2 in Appendix

C. For the same reasons as in the proof of Theorem 1, the

parameters λk and θk can be eliminated from the integrand.

Note that although the proof focuses on the k-th dimension, the

bounded condition of the integral that must to be satisfied in

each dimension is the same and independent of the dimension.

Therefore, if (21) exists, the unbiased estimating

equation (6) holds without a bias correction term.

Conversely, the above discussion also shows that

Ep(x|θ,λ)

[∣

∣f ′(dλMInv(X, θ))(Xk − θk)
∣

∣

]

∝ 2 × (21). In

other words, (21) is also a necessary condition. �



APPENDIX C

LEMMAS

Lemma 1: Given a positive integer m ≥ 1 and αj > 0,

where (j = 1, · · · ,m), for a nonnegative function u, the

following relation [17, pp.21–23] holds:

∫

R
m
+

u





m
∑

j=1

tj





m
∏

j=1

t
αj−1
j dtj

=

∏m

j=1 Γ(αj)

Γ(
∑m

j=1 αj)

∫ ∞

0

u(t)t
∑

m
j=1

αj−1dt.

In Lemma 1, by setting αj = 1/2, (j = 1, · · · ,m), we

obtain the following lemma.

Lemma 2: For a positive integer m ≥ 1 and a nonnegative

function u, the following relation holds:

∫

R
m
+

u





m
∑

j=1

tj





m
∏

j=1

1√
tj
dtj

=
π

m
2

Γ(m2 )

∫ ∞

0

u(t)t
m
2
−1dt.


	Introduction
	f-separable Bregman distortion measures
	Problem setting and loss function
	Conditions for unbiased estimating equation
	Existing results

	Models and conditions under inverse divergence
	Inverse Gaussian type (IGT) distribution
	Generalized IGT (GIGT) mixture distribution
	Discussion

	Extension to multi-dimensional case
	Conclusion
	References
	Appendix A: Detailed proof of Theorem 1
	Appendix B: Proof of Theorem 2
	Appendix C: Lemmas

