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Abstract. JOREK is an advanced non–linear simulation code for studying MHD

instabilities in magnetically confined fusion plasmas and their control and/or

mitigation. A free–boundary and resistive wall extension was introduced via coupling

to the STARWALL and CARIDDI codes, both able to provide dense response matrices

describing the electromagnetic interactions between plasma and conducting structures.

For detailed CAD representations of the conducting structures and high resolutions for

the plasma region, memory and computing time limitations restrict the possibility of

simulating the ITER tokamak. In the present work, the Singular Value Decomposition

provided by routines from the ScaLAPACK library has been successfully applied to

compress some of the dense response matrices and thus optimize memory usage. This

is demonstrated for simulations of Tearing Mode and Vertical Displacement Event

instabilities. An outlook to future applications on large production cases and further

extensions of the method are discussed.
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1. Introduction

The ability to perform realistic predictive simulations of large-scale plasma instabilities

in future magnetic confinement devices like ITER or DEMO is essential for their safe and

efficient operation. Towards this effort, it is necessary to develop powerful multi-physics

models, validate them against experiments in existing fusion devices, and optimize the

models algorithmically and numerically for predictive simulations with particularly high

resolutions. Only after reaching the capability to produce robust simulations of large

device sizes subject to challenging plasma conditions, actual predictions can be made

with sufficiently high fidelity. The present article describes efforts aiming to enable

simulations that were previously not feasible, by implementing and verifying matrix

compression techniques in the coupling of the JOREK non-linear MHD code [1–3] with

the resistive wall codes STARWALL [4, 5] and CARIDDI [6, 7].

Accounting for resistive wall effects is indispensable for capturing magnetic field

perturbations across the whole domain with full realism. Most notably, certain

dangerous classes of instabilities like vertical displacement events (VDEs) [8] or resistive

wall modes (RWMs) [9] would not be captured at all without these contributions. For

recent applications of the JOREK code including instabilities at the plasma boundary

and their control, major disruptions and their mitigation by shattered pellet injection,

runaway electrons, VDEs, divertor and scrape-off layer dynamics, turbulence, and more,

the reader is referred to the review article Ref. [10] and references therein. In the rest

of this section, we briefly describe the JOREK code, its coupling to the resistive wall

codes, and the aim of the work described in the rest of this article.

JOREK is a non-linear code for global simulations of instabilities in the realistic

geometry of magnetic confinement fusion devices. The available physics models include

reduced and full MHD fluid descriptions of the plasma with various extensions for two-

fluid effects, neoclassical physics, kinetic treatment for specific particle species, etc., a

variety of hybrid kinetic-fluid models, and (gyro)kinetic turbulence models. The spatial

discretization is based on Bezier finite elements of arbitrary order combined with a

toroidal Fourier expansion. The use of fully implicit time evolution methods avoids

overly restrictive time–stepping conditions. The code uses a hybrid MPI-OpenMP

parallelization.

Running JOREK standalone implies using an ideal wall boundary condition,

considering all magnetic perturbations vanish at the boundary. Nevertheless, finite

perturbations across the plasma boundary and the interaction of the plasma dynamics

with conducting structures can be highly relevant for capturing the processes of interest.

To achieve this, JOREK can leverage the calculations of external codes, STARWALL

or CARIDDI [11, 12], which describe non-axisymmetric conducting structures and their

interaction with the plasma. Those structures, including the walls and the coils, are

discretized using a thin wall approximation in STARWALL and a volumetric description

in CARIDDI, see Figure 1 for examples. JOREK does not discretize the region outside

its domain but, instead, uses a Green’s functions approach. Therefore, large dense
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matrices are calculated in the resistive wall codes, which allow JOREK to evolve

wall and coil currents in time while calculating the magnetic field at the boundary

of the computational domain self-consistently. Inside JOREK, those matrices and the

boundary condition calculation are distributed across MPI tasks over the available

CPUs [13]. However, simulations with highly resolved wall models or high resolutions

inside the plasma domain can be limited by memory consumption and computational

costs. The goal of the developments reported in this article is to address those

limitations.

The rest of the manuscript is organized as follows. In section 2, details of

the implementation for the matrix compression will be given, describing the chosen

techniques, the terminology adopted for expressing compression and memory savings,

and the present status of the work. Then, in section 3, the results of the simulations

validate the correct implementation of the methods and prove the first demonstrations

for the application of the matrix compression techniques to two different relevant kinds

of plasma instabilities. Finally, in section 4, the implementation and verification are

summarized and an outlook to future work is given.

2. Implementation

2.1. Matrix Compression

In the Linear Algebra literature, there are methods for obtaining matrix compression

and controlling the accuracy of the result, with different assumptions on the structure

and the features of the matrix itself. One of the less restrictive methods is based on the

Singular Value Decomposition (SVD) (see e.g. ref. [14]). This factorization technique

allows one to write a given matrix, A, with m rows and n columns, as

A = U · Σ · V T , (1)

being U and V T the left and right orthogonal matrices, respectively, and Σ the

diagonal matrix of the singular values. Although the representation of (1) is not unique,

one always exists with the diagonal elements of Σ in decreasing order. Denoting by kA

the rank of Σ, i.e. the number of non–zero singular values, it is then clear that U would

have m rows and kA columns, while V T would have kA rows and n columns, and that

kA ≤ min(m,n). (2)

Then, instead of storing the matrix A in memory, one could store the two matrices

given by (U · Σ) and V T , corresponding to a total of (n +m) · kA numbers instead of

m · n. Selecting one value k < kA, thus neglecting the (kA− k) smallest singular values,

leads to compressing the required memory for storing the matrix A when

(m+ n)k < mn. (3)
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(a)

(b)

Figure 1: Examples of geometrical models for the ASDEX Upgrade (AUG) Tokamak, adopted in

the couplings of JOREK with the two resistive wall codes considered here: panel 1a shows the 3D

thin resistive wall approximation from STARWALL; panel 1b shows the 3D volumetric modeling from

CARIDDI
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In other words, indicating with rr the chosen rate of retained singular values, such

that

k = rr min(m,n), (4)

using (4) in (3), memory is saved provided

rr <
max(m,n)

m+ n
. (5)

The compressed SVD representation of matrix A with a rank k < kA is often called

the truncated SVD.

Additionally, it is useful to define a rate of memory gain, rmg, of a given compressed

matrix to measure the efficiency of compression in applications. Computing the

percentual relative difference between the dimension of the original matrix and the

compressed one, rmg reads

rmg =

(

1.0−
(m+ n)rr
max(m,n)

)

∗ 100%. (6)

Of course, rmg can be negative, which is expected when the condition (5) is not

verified. For example, when rr = 1.0, the matrix is not compressed but only factorized,

therefore rmg < 0.

In terms of accuracy, finally, the Eckart–Young theorem proves that the truncated

SVD is an optimal approximation of a given matrix at fixed rank when computing the

error via the Frobenius norm (see [15] for a review and [16] for the original reference).

2.2. Matrices chosen for the implementation

The coupling of JOREK to STARWALL or CARIDDI introduced in section 1 adopts the

virtual casing principle to express the interaction between the plasma and eddy currents

in the wall by a set of static matrices. The reader is referred to Appendix C of [17] for

a general description of all the geometrical matrices involved in the calculations.

In the present study, the matrices Mey and Mye of ref. [11, 12] were chosen,

which describe the mutual interactions between the wall and the plasma contained

in it. Without entering into formal definitions, it is worth recalling the physical

meaning of those matrices. On the one hand, the matrix Mye relates the magnetic flux

variations at the JOREK boundary to current variations in the external conductors. On

the other, the matrix Mey provides information on the tangent magnetic field to the

JOREK boundary produced by the external currents when a superconducting shell at

the JOREK boundary is considered.

Denoting by nw the degrees of freedom of the wall and by nbd the degrees of freedom

at the boundary of the plasma region, Mey is of dimension (nbd × nw), while Mye is of

dimension (nw × nbd) (see ref. [11] for the details). As can be seen, both matrices have

nw ·nbd entries. In many cases, these matrices dominate the memory consumption when
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very detailed wall models are used in the simulations. Following the geometrical finite

elements representation adopted in JOREK and recalled in section 1, one can write

nbd = nBnF = nB(1 + 2kF ), (7)

being nB the degrees of freedom of the poloidal Bezier elements, nF the toroidal

Fourier harmonics, where sine and cosine components are counted separately (as in the

JOREK code), and kF the Fourier mode number. Therefore, one immediate way of

changing the dimension nbd of the chosen matrices, would be to increase the number of

toroidal harmonics to be considered, as reported in section 2.1, even without varying

nw. This gives a fast way to test the implementation with different sizes of the matrices.

2.3. Code Development and Optimization

The SVD is performed with the Scalable Linear Algebra PACKage (ScaLAPACK,

see ref.s [18, 19]), through the subroutine pdgesvd. As the matrices are static, the

compression is only required once before the start of the JOREK simulation. The

compression is performed by the newly developed compress_response program. In

detail, the compress_response program should be executed after the production

of response matrices from STARWALL or CARIDDI and before the simulation to

be performed with JOREK. A simple sketch of this implementation is reported in

algorithm 1. Here, after the singular values are determined by pdgesvd, the smallest

values are eliminated based on the rr of the user, and the truncated SVD is thus obtained.

Algorithm 1 compress_response

Input: response file, selection of matrices to be compressed, value rr for each matrix

to be compressed

A ← read response file

if A to be compressed then
(

U,Σ, V T
)

← call pdgesvd with A ⊲ SVD

nΣ ← size(Σ)

n
compr
Σ

← (nΣ · rr)

Σcompr ← Σ (1 . . . ncompr
Σ

) ⊲ compression

keep
(

(U · Σcompr) , V T
)

else if A not to be compressed then

A unchanged

end if

write output

Output: new response file

For debugging purposes, it is also possible to print out re–combined versions of the

factorized matrices, to print out the SVD analysis details, and to compress only the

non–axisymmetric part of the matrix.
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The isolation of the compression in a separate program allowed limiting the

number of modifications to the original JOREK code. Nevertheless, the JOREK

code had to be adapted to work with the chosen matrices in a factorized format. In

references [11, 12, 17], it can be seen that both Mey and Mye of section 2.2 are used

in algebraic computations involving matrix–vector products. Those operations were

adopted to calculate the derived response matrices temporarily stored in the memory.

Eliminating such derived response matrices and implementing a new generalized matrix–

vector product instead save additional Random Access Memory during the code

execution.

It is worth trying and estimating how much the computational cost is modified

when considering factorized matrices. In particular, the matrices Mey and Mye are

used to update the wall currents and to compute the vacuum boundary integral for

obtaining the magnetic field terms (see Section 3.2 of [11]). There are 5 to 7 matrix–

vector products per time iteration, depending on whether the previously used time–

step is kept or changed. Therefore, estimating the computational cost of such a single

calculation can give a general idea of the overall number of operations. Here, in general,

one finds that the number of scalar multiplications is

costaggr = mA · nA, (8)

when the matrix A is aggregated. However, when considering the factorization of

(1) with a truncated SVD retaining k singular values as in (4), then the overall cost is

costcompr = (mA · k) + (k · nA) . (9)

The direct comparison of the two costs provides the condition on the number of

retained singular values to have computational cost savings:

k <
mA · nA

(mA + nA)
. (10)

Given that those operations happen at each time iteration, it was crucial to be

sure that the factorization of the matrix does not deteriorate the overall performance.

To this end, hybrid MPI/OpenMP parallelization was exploited, factorized matrices were

distributed across MPI ranks, and the nested loops involving them have been adapted.

Those optimizations allowed retaining the same computational time when adopting

factorized but not compressed matrices or their original aggregated version.

To conclude the present section, an insight into the practical meaning of equations

(8), (9), and (10) is provided by the spectral analysis reported in figure 2. Given that

the normalized singular values of matrix Mye are slightly smaller than the ones of Mey,

in the adopted discretized geometrical model, the former is expected to show better

compressibility than the latter.
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Figure 2: Spectral analysis of the matrices for the Tearing Mode (TM) and Vertical Displacement

Event (VDE) test cases, respectively presented in sections 3.1 and 3.2. The line styles and colors (in

the online version) are explained in the legend

3. Verification and Testing

The JOREK code can simulate various kinds of plasma instability that may occur in a

magnetically confined plasma [1, 10]. To test the implementation presented in section 2,

two such scenarios were selected, namely the Tearing Mode (TM) instability and the

Vertical Displacement Event (VDE). The simulation setups and results of compression

tests are shown in the following sections. Note that we used comparably small test

cases here. In the future, computationally more expensive production simulations will

be done after the modifications have been merged into the main code version.

3.1. Tearing Mode Instability

The Tearing Mode (TM) instability is a well–known phenomenon in the field of MHD

(see for example [20] for a classical review on this topic). Despite its theoretical

conception being initially driven by astrophysical argumentations, the relative scenario

was recovered and deeply studied in the experimental tokamak plasma physics field.

This instability modifies the magnetic topology by reconnecting magnetic field lines

such that the so–called magnetic islands are formed. Under certain circumstances,

TMs can grow to significantly large amplitude and cause major disruptions, during

which the confinement of the plasma is lost in an abrupt way causing large heat and

electromagnetic loads for the device.

The test case considered here is linearly unstable to a tearing mode with dominant

toroidal mode number 1 and the vacuum response matrices are calculated by the

CARIDDI code. The geometrical structure adopted is similar to what is shown in
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Table 1: Details of TM instabilities simulations performed for this work. The left column indicates

the rate of retained singular value adopted; here a “−” character refers to the case of the original

aggregated matrix. The central column reports s, the resulting size in GiB of the matrix M ey or Mye.

The right column reports the rate of memory gain defined in (6).

rr s [GiB] rmg [%]

− 0.121 0.0

1.0 0.126 −4.13

0.75 0.0944 21.98

0.5 0.0629 48.02

0.25 0.0315 73.9

0.2 0.0252 79.17

0.15 0.0189 84.38

0.1 0.0126 89.59

0.05 0.00629 94.80

0.025 0.00315 97.40

figure 1b. The axisymmetric component of the magnetic field (with mode number 0)

is not included in the response matrices, such that an ideal wall boundary condition

is applied for the axisymmetric component. This avoids dealing with vertical plasma

instabilities, which are addressed separately in the following section. The variation

of the linear growth rate of the TM as a function of the wall resistivity is reported

in figure 3. The nominal wall resistivity used in further studies below has a value of

0.72× 10−6 [Ω ·m].

Before looking into the compression efficiency, the correctness of the implementation

is tested. For this purpose, a case with nw = 20322, nB = 160, nF = 5 is simulated both

with the uncompressed matrices and with the factorized matrices without compression

(rr = 1). The comparison of the magnetic and kinetic energies in the different toroidal

harmonics shown in Figure 4 shows perfect agreement.

The efficiency of the compression is now tested using different retention rates in

the factorized matrices. In table 1, the values adopted for rr are reported together with

the size s of the corresponding truncated SVD matrices and the relative memory usage

reduction rmg given by (6), computed based on the original size. It is worth noting

that the first line corresponds to the same simulation performed with aggregated and

uncompressed matrices and should give matching results with rr = 1.0 for validation.

In the tests performed, accurate results could be obtained with retention rates down

to rr = 0.15 as shown in Figure 5. With smaller values of rr the results were instead

inaccurate.

As a general statement, it is worth noting that the efficiency of the compression of
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Figure 3: Dependence of the linear growth rate of the TM instability on the wall resistivity for the

test case of section 3.1. The scan covers the whole range from the ideal wall limit to the no-wall limit
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Figure 4: Comparison of the time evolution of the Fourier harmonics of magnetic (panel 4a) and

kinetic (panel 4b) energy in the simulations of the TM instability. Solid curves stand for kF = 0

harmonic, dashed for kF = 1, and dotted for kF = 2. Black curves refer to the results from the

original aggregated version of the matrices. Orange curves refer to the results from the factorized but

uncompressed matrices (rr = 1.0)

a matrix is expected to grow with increasing dimensions of the matrix itself. Therefore,

a series of tests with varying resolutions of the boundaries on the wall (nw) and the

poloidal section of the plasma (nB) has been performed, keeping fixed nF = 5. These

scans are performed with the STARWALL instead of the CARIDDI code for simplicity,
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Figure 5: Comparison of the time evolution of the kF = 1 (panel 5a) and kF = 2 (panel 5b) mode

numbers of the magnetic and kinetic energy, for the TM instability simulations, up to the non–linear

saturation. The magnetic energy is depicted with solid curves and kinetic energy with dashed curves.

The black color is used for rr = 1.00, red for rr = 0.20, and green for rr = 0.15

thus adopting a geometrical structure like what is shown in figure 1a, starting from a

base resolution of nw = 20449, nbd = 400 and increasing either the resolution of the

wall or the plasma independently. The results shown in figure 6 indeed show better

compressibility for larger problem sizes. However, it is also worth noting that the

maximum compressibility obtainable via truncated SVD is limited by the minimum

between the number of rows and columns of the matrix, as understandable from

equations (1) and (2). In the studied cases, this limit is always given by the number of

boundary elements on the plasma side.

3.2. Vertical Displacement Event (VDE)

VDE refers to a loss of control of the vertical positioning of the magnetically confined

plasma inside a tokamak (see [21] and reference therein for a recent report of simulations

of this instability with the ITER geometry). The following loss of thermal and magnetic

energy can reduce the machine’s lifetime, therefore it is crucial to understand its

dynamics with the help of numerical simulations.

In references [22, 23], it is possible to see how such a phenomenon can be effectively

set up with the STARWALL code and the AUG geometry, to be simulated with the

JOREK code, taking into account initial perturbation on the coil current. Moreover,

reference [24] reports VDE simulations to benchmark comparison between the codes

M3D-C1, NIMROD, and JOREK, with a simplified geometry. In addition, reference [12]

contains results of simulations of VDE where the response was computed adopting

CARIDDI. The VDE simulations of the present section closely follow the setup adopted
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Figure 6: Memory occupation of matrices in [GiB] against the rate of retained singular values for

TM instability simulations with different wall (nw) and plasma (nbd) resolutions, plotted in double

logarithmic scale. On each line, the following convention is used: the solid style indicates a region

where accurate results were obtained; the dashed style indicates inaccurate results; markers locate

tested values of rr; a filled star locates the minimum value of rr for which accurate results were obtained,

therefore the maximum compression reachable. The black curve corresponds to the resolution of the

first set of tests relative to table 1, where the response file was produced using the CARIDDI code.

Other colors (in the online version) correspond to results from response files produced with STARWALL,

varying the number of boundary elements as indicated in the legend.

in already published work, described in [22], [12]. It consists of the following steps:

1. a 2D axisymmetric phase, taking into account only nF = 0 harmonic until the

magnetic axis reaches the vertical position Z = -0.1 m;

2. a full 3D restart taking into account all the chosen nF harmonics;

3. restart at the Thermal Quench (TQ) phase with constant perpendicular

diffusivities, no particle source, and decreasing the time–step; those settings

simplified the simulations, allowing their continuation, and alleviating overly

restrictive limitations on the time–steps during TQ.

The VDE tests of the present paper were performed by adopting the AUG geometry

inside CARIDDI (refer to the geometrical structure of figure 1b) with nw = 20322,

nB = 180, and different values of nF (namely 1, 9, and 19), to evaluate the effect of the

compression of the chosen matrices on the accuracy of the toroidal Fourier harmonics

representation. Moreover, several values of rr were initially taken into account, for both

the Mey and Mye introduced in section 2.2. The details of the memory sizes involved

in those VDE simulations are reported in table 2. As expected, going from the top row

to the bottom one, it is possible to see that compressing the matrices at higher rates

allows for saving more memory.
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Table 2: Details of VDE simulations performed for this work, regarding the memory required by

matrix M ey or Mye, indicated with s, and the rate of memory saving, rmg, for each choice of nF and

each value of rr chosen for compression

rr snF=1 [GiB] rnF=1

mg [%] snF=9 [GiB] rnF=9

mg [%] snF=19 [GiB] rnF=19

mg [%]

− 0.0273 0.0 0.245 0.0 0.518 0.0

1.0 0.0275 −7.32 0.265 −8.1 0.605 −16.79

0.75 0.0206 24.54 0.199 18.77 0.454 12.35

0.5 0.0137 49.81 0.132 46.12 0.302 41.7

0.4 0.0110 59.7 0.106 56.73 0.242 53.28

0.3 0.00825 69.78 0.0795 67.55 0.181 65.06

0.25 0.00687 74.84 0.0662 72.98 0.151 70.85

In all the simulated cases, the matrices factorized with rr = 1.0 reproduced exactly

the results of the original version of the matrix, thus verifying the implementation, see

figure 7, where the time evolution of the vertical axis position is compared between the

original and factorized but uncompressed matrices.
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0.0

Z
[m

]

(a)
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−0.1

0.0

Z
[m

]

(b)

Figure 7: Test for the verification of the implementation. Time evolution of the Z–coordinate of the

magnetic axis. In panel 7a, nF = 9 toroidal harmonics were used. In panel 7b, nF = 19 toroidal

harmonics were used. A dashed horizontal black line indicates the start of the 3D phase in the

simulations. In the online version, the black solid curves depict the result from the original aggregated

version of the matrices, while the dashed orange curves are for the factorized but uncompressed ones

On the other hand, all the simulations adopting rr < 1.0 failed to produce accurate
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results, when compressing both the Mey and Mye response matrices. Although that

preliminary outcome might indicate incompressibility of the matrices in the VDE test

case, also the single Mye compression was attempted with rr = 0.4, 0.6, and 0.8 while

leaving Mey factorized with rr = 1.0.
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Figure 8: Time evolution of the Z position of the magnetic axis (figure 8a) and the total thermal energy

of the plasma (figure 8b) for the simulations adopting nF = 19. Different line styles (with different

colors in the online version) represent different rates of retained singular values for the compression, as

shown by the legend. The highlighted vertical orange region locates the 3D phase, while the TQ phase

is depicted with a vertical violet band, and its duration coincides with the one of the steep drop in the

total thermal energy

Figures 8 and 9 show the time traces of the vertical position of the magnetic axis, the

thermal energy content of the plasma, and the magnetic energies for selected harmonics

when adopting nF = 19. The curves (colored in the online version) are obtained from

uncompressed (indicated by standard) or compressed Mye. The time considered in such

plots spans from slightly before starting the 3D phase and up and beyond the TQ phase.

In particular, figure 8 shows that the results for the Z–coordinate of the magnetic axis

and the total thermal energy obtained without compression are almost exactly matched

by the ones obtained compressing the matrix Mye, up to the rapid drop in the total

thermal energy, happening during the TQ phase. Indeed, during the highly non-linear

TQ, the Z position of the magnetic axis shown in figure 8a becomes less regular. In this

phase, the compressed simulations cannot accurately describe the evolution anymore.

Figure 8b confirms a similar observation in terms of the thermal energy content of the

plasma: cases with compressed Mye reproduce the dynamics of the original case up to

the TQ phase, during which the accuracy has deteriorated. For the same cases, Figure 9

compares the evolution of magnetic energies of selected toroidal components. Also here,

the initially excellent agreement deteriorates during the TQ. It is worth noting, that the
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agreement in the higher harmonics is better than in the low harmonics.

The errors occurring during the TQ when adopting compression are likely due to

the development of strong dynamical instabilities, usually able to break the magnetic

confinement surfaces (see e.g. [8]). Furthermore, through numerical experiments,

we found that the plasma evolution appears particularly sensitive to any possible

asymmetry in the conducting structures around the walls, during the TQ. Addressing

such loss of accuracy during the evolution at advanced times, when strong dynamics are

active requires careful treatment of the compression method from the point of view of

the modeled geometry. Of course, such a task is of interest for future developments and

deserves detailed additional explorations.

Moreover, understanding the reason why, compressing only Mye in VDE simulations

produced accurate results while compressing Mey, as well, produced inaccurate results

could be related to the particular nature of the instability itself but requires further

investigation and goes beyond the scope of the present work.

4. Conclusion and Outlook

In this article we explain, verify, and demonstrate a technique for compressing the dense

“vacuum response matrices” provided by STARWALL or CARIDDI, which allow JOREK

to self-consistently take into account the interaction of the plasma with conducting

structures. The two matrices Mey and Mye that describe the mutual interaction between

plasma and conducting structures are addressed, which typically dominate the memory
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Figure 9: Time evolution of the kF = 1, 2, 4, and 8 of the magnetic energy for the VDE test adopting

nF = 19. In the online color version, different colors depict different choices for the compression of

Mye, as shown in the legend at the top. The colored regions are the same as figure 8
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consumption. The tests focus on two representative cases with moderate resolutions.

In the simulation of a slowly growing TM instability, the axisymmetric component is

kept fixed such that the response matrices only affect the non-axisymmetric components

of the plasma evolution. Here, a strong reduction of the memory consumption can

be obtained and an increasing compressibility is seen for both higher wall or plasma

resolutions.

The simulation of a more challenging 3D VDE behaves differently. Only the Mye

matrix could be compressed, while Mey compression was unsuccessful. Furthermore,

even at moderate compression levels, the initially excellent agreement deteriorates

during the highly non-linear thermal quench phase. The reason for this can likely be

attributed to the strong coupling between the different toroidal harmonics producing a

very significant burst of the mode activity at the TQ phase.

The overall test results are considered promising and will be the basis for future

large–scale production applications that go beyond the scope of this article.

Presently observed limitations provide insights regarding the future directions of

this work. At first, a plain SVD application limits the compression by the smallest

matrix dimension, as understandable from equation (4) and visible from figure 6.

The largest dimension of the matrices is clearly given by the degrees of freedom in

the considered device’s wall and grows significantly when increasing the resolution.

Adopting more complex methods (see [25] and references therein for some examples)

might allow higher compression even when adopting more detailed wall geometries. The

limitations in the case of strong dynamical instabilities suggest that geometrical aspects

should be taken into account in future work. Finally, the JOREK-STARWALL and

JOREK-CARIDDI couplings are now restricted to reduced MHD and do not account for

halo currents flowing directly between conducting structures and the plasma domain. A

full MHD treatment presently under development will give rise to new response matrices

that can be compressed with the techniques described in the present paper and their

successors.

Despite the limitations mentioned above, the novel implementation of the response

matrices compression technique via SVD presented in this manuscript provided useful

results that are already applicable while paving the way toward further improvements.
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