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Abstract

Scour around bridge piers is a critical challenge for infrastructures around the world.
In the absence of analytical models and due to the complexity of the scour process, it
is difficult for current empirical methods to achieve accurate predictions. In this paper,
we exploit the power of deep learning algorithms to forecast the scour depth variations
around bridge piers based on historical sensor monitoring data, including riverbed eleva-
tion, flow elevation, and flow velocity. We investigated the performance of Long Short-
Term Memory (LSTM) and Convolutional Neural Network (CNN) models for real-time
scour forecasting using data collected from bridges in Alaska and Oregon from 2006 to
2021. The LSTM models achieved mean absolute error (MAE) ranging from 0.1m to
0.5m for predicting bed level variations a week in advance, showing a reasonable per-
formance. The Fully Convolutional Network (FCN) variant of CNN outperformed other
CNN configurations, showing a comparable performance to LSTMs with significantly
lower computational costs. We explored various innovative random-search heuristics for
hyperparameter tuning and model optimisation which resulted in reduced computational
cost compared to grid-search method. The impact of different combinations of sensor
features on scour prediction showed the significance of the historical time series of scour
for predicting upcoming events. Overall, this study provides a greater understanding of
the potential of Deep Learning algorithms for real-time scour prediction and early warn-
ing for bridges with distinct geology, geomorphology and flow characteristics.

Key words: Scour Prediction, Deep Learning, Time Series Forecasting,
Hyperparameter Tuning, Long-short Term Memory Network, Convolutional Neural
Network

1. Introduction

Bridge scour has been a major challenge for transportation systems around the world
due to the significant damage and operational disruptions it can cause, and more impor-
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tantly the risk to public safety. In the US, for example, scour accounts for a significant
number of bridge collapses, with more than 260,000 brides listed as vulnerable to scour
failure (1). It is difficult to reliably predict the maximum scour depth for a bridge pier due
to the complexity of the underlying causes of soil erosion in interaction with flow and
structure. Uncertainties in riverbed material, flow, and geomorphological conditions, as
well as climate change impacts, are the main challenges in the assessment of scour risk.
For the last couple of decades, several research studies (2; 3; 4; 5) have focused on de-
veloping empirical models to estimate scour depth based on laboratory experiments and
field observations. Most of these models often overestimate the depth of the scour (and
in some cases underestimate) due to insufficient generalization to various conditions of
the riverbed, flow, and structure (6).

Artificial Intelligence (AI) and Machine Learning (ML) for scour depth estimation
have been investigated by a range of algorithmic strategies, such as evolutionary comput-
ing, fuzzy logic, artificial neural networks, support vector machines, and decision trees
(see section 2). These proposed techniques have shown promising results in estimating
maximum scour depth, often outperforming traditional empirical equations. However,
the performance of these models is still limited by the availability and quality of training
data, which are often scarce and may not cover a wide range of geological, hydraulic and
geomorphological conditions. Furthermore, these models are typically trained to predict
a maximum scour depth for a given flow discharge and cannot be used for dynamic scour
prediction and real-time forecasting.

Yousefpour et al. (7; 8) pioneered the application of deep learning (DL) solutions,
using Long Short Term Memory (LSTM) networks (9) for real-time scour forecasting.
They leveraged the LSTM’s superiority in temporal pattern recognition and capturing the
underlying physics without direct feature extraction. They used historical scour moni-
toring data in Alaska to train DL models and predict future bed elevation variations and
upcoming scour events. Fig. 1 shows the process of local scour around a bridge pier;
scour happens when sediments are eroded and washed away by strong vortices in inter-
action with the bridge substructure, often accelerating during floods. Stage (flow/water
level) and sonar (bed elevation) sensors are commonly used sensors installed on the
bridge piers to monitor scour by collecting real-time flow and bed elevation data. The
variants of LSTM models developed in (8) showed promising performance in forecast-
ing the scour depth a week in advance, for case-study bridges in Alaska. However, there
remain research questions about the capability of these algorithms to be upscaled for
implementation in practice and deployment in different locations with variable meteoro-
logical, geological, geomorphological, and flow conditions.

In this study, we addressed fundamental research questions about the efficiency and
generalization of the LSTM scour forecast models in diverse spatio-temporal domains.
The LSTM models are compared against temporal CNN as an alternative deep learn-
ing solution, in terms of performance and computational cost. Random-Search (RS)
heuristics for hyperparameter (HP) tuning are evaluated (11) to explore alternate com-
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Fig. 1: An example of the bridge scour, adopted from (10).

putationally efficient methods to Grid-Search (GS) used in (8) for model optimisation.
We also investigated the impacts of monitored features (input parameters), including
stage, sonar, and velocity (discharge), on the performance of scour forecast models.

To summarise, four research questions were addressed in this study:
(RQ1) How do LSTM scour forecast models perform in predicting recent years of

scour (Alaska) and how well do these models perform in a totally different location
(Oregon)?

(RQ2) How do other competitor models, including CNN with vanilla and dilated
convolutions, compare to LSTMs for the prediction of scour?

(RQ3) What computationally efficient heuristics can be adopted to find optimal
model configurations to scour forecast DL models without sacrificing performance?

(RQ4) To what extent combinations of different sensor features can impact the per-
formance of scour forecast DL models, and what are the most optimum feature combi-
nations?

We carefully designed experiments and developed heuristics to investigate the afore-
mentioned research questions as discussed in the following sections. The DL models
were trained on the University of Melbourne’s Spartan high-performance computing
(GPU and CPU) cluster. The models were developed in Python using Tensorflow li-
brary (12).

2. Background

2.1. Maximum Scour Prediction

Since the 1940s, researchers have been using laboratory experiments and real-world
observations to formulate empirical equations to estimate maximum scour depth. The
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famous equations HEC-18 (10), FDOT (13), and CIRIA (14) equations were derived by
multivariate analysis, considering various factors that impact the scour process. These
equations have a large number of input and model parameters and measurement of the
inputs is complex. However, often small databases (a few dozen to a few hundred sam-
ples) are employed for model calibration (15). Also, these empirical equations follow
particular mathematical forms, such as linear, exponential, and hyperbolic terms, lim-
iting their flexibility in capturing scour as a nonlinear phenomenon. As a result, the
recommended equations often underperform in application to a broad range of scour
conditions.

With the surge of data-driven methodologies, more sophisticated approaches from
machine learning have been implemented for scour depth estimation, including Support
Vector Machines (SVM) (16; 17; 18), Genetic Algorithms (19; 20), Decision Trees (21;
22), Artificial Neural Networks (ANNs) (23; 24), and CNNs (25). The results show that
machine learning-based methods are usually more accurate than traditional equations
in maximum scour depth prediction. However, these ML models face limitations when
encountering unseen cases outside the convex hull of the training data, which can lead
to poor generalization.

2.2. Real-time Scour Monitoring and Forecast

Although the worst-case scenario (usually a 1-in-100-year flood) is considered for
estimating maximum scour depth in bridge design, many uncertainty factors could still
lead to scour-related bridge failures: Larger flood events can occur due to extreme
weather conditions and climate change; complexities in the scour process, particularly
river sediment material interaction with flow which can result in larger scour depth; older
bridges could fall behind the best recommended practices for scour estimation (26; 27).
Considering all these factors, the transport authorities in the past two decades have been
resorting to regular monitoring to manage scour, including regular inspections and sur-
veys as well as advanced remote sensing.

In recent years, real-time scour monitoring sensors have become a prominent solu-
tion installed on many large-scale and critical bridges (28; 29; 30; 31). With the devel-
opment of monitoring approaches, the sensors can facilitate data collection in real-time
concerning bed elevation and other flow-related information. Compared to traditional
databases (15), the sensor data collected is richer and more granular. Therefore, the mon-
itoring data can also be utilized for scour depth prediction and providing early-warning
information.

Yousefpour et al. (7; 8) pioneered the idea of incorporating real-time scour mon-
itoring data to develop real-time scour forecast models using LSTMs. They incorpo-
rated monitoring data in Alaska (2006 to 2017) collected by the US Geological Survey
(USGS) in partnership with the Departments of Transport (DOTs) in the United States.
Specifically, historical time series of flow depth and bed elevation were used to train
the LSTM models to predict future bed elevation and upcoming scour depth. The pro-
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posed model showed promising results in forecasting bed-elevation changes for at least
seven days in advance. Compared to traditional empirical equations, these time series
forecasting models yielded more reliable predictions of the upcoming scour trends and
maximum depth of scour.

Chang et al. (32) presented a real-time monitoring system, using micro-cameras
mounted on bridge piers, in conjunction with image processing and pattern recognition
methodologies, to monitor variations in bed levels. This approach was validated through
rigorous laboratory experiments, illustrating that the image data can be transformed to
capture the progressive alterations in scour depth. Typically, monitoring sensors are
installed on bridges deemed high risk.

To leverage limited data to better estimate scour risks across a bridge network, Ma-
roni et al. (33) propose a scour hazard model tailored for road and railway bridges. By
using a Bayesian network, the model decreases uncertainty in scour depth assessments at
unmonitored bridges. This approach was demonstrated in a case study involving several
Scottish road bridges.

Lin et al. (34) developed an early scour warning system installed at Da-Chia Bridge
in Taiwan. They used R-CNN (a residual CNN) to read the real-time water level through
CCTV images, and dedicated vibration-based arrayed sensors to obtain real-time local
bed elevation of the target pier. These two data sources were incorporated to simulate
upcoming hydrodynamic flows in fluvial rivers with hydraulic structures (e.g., bridge
piers). The general scour is derived from a numerical model, and the local scour is
estimated by empirical equations.

3. Scour Monitoring Data

We considered two scour monitoring databases for Alaska and Oregon provided by
USGS to develop real-time scour forecast models:

• Alaska dataset: This includes previously collected sensor readings data from 2006
to 2017 from bridges over Sheridan River, Knik River, and Chilkat River with IDs
230, 539, and 742, respectively. Readers are referred to (8) for full data descrip-
tion. In addition, in this study we incorporated new data collected for 2018 to 2021
(for 742 bridge, 2019 and 2020 data are not available). An example of processed
versus raw data for Alaska 539 bridge is provided in Fig. 2.

• Oregon dataset: This includes sensor readings from 2018 to 2021 for two bridges
over the Trask and Luckiamute rivers (see Fig. 3).

For both datasets, each observation corresponds to an hourly recorded reading of the
available sensors. We followed the same methodology as (7) to denoise, synchronize,
and filter the raw monitoring data provided by USGS.
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Fig. 2: Raw vs. Processed data - Alaska 539 bridge.

A strong negative correlation between stage and sonar can be observed for Alaska
bridges. This is expected as higher flow velocity and depth result in increased scour
depth, for most riverbed sedimentation. In addition, Alaskan bridges show consistent
seasonal scour and filling patterns throughout a year, which is a key characteristic of
Live-Bed scouring; each year, major scour followed by filling episodes are observed due
to high flows (floods) happening around July/August and September/October. However,
the scour patterns for the two bridges in Oregon are fundamentally different. Trask is a
tidal river where bed material follows the tide cycles: scouring during outgoing tides and
filling occurs during high tides. Also, the Luckiamute bridge shows a positive correlation
trend between stage and sonar, contrary to expectations. Oregon USGS relates this to the
presence of bed forms, which are structures such as sand dunes formed by the movement
of bed material following the flow direction.

4. Approach

4.1. Problem Definition

Given the historical sensor readings, i.e., water level: Stage, riverbed elevation:
Sonar, and flow discharge: Discharge over time, we define the scour forecast task as
a multivariate time-series prediction problem. Following is the mathematical definition
of the scour forecast task.

Definition 1. Assume a series of past values {xt−win+1, xt−win+2, . . . , xt} for N sensors
(features) with the historical window win where xi ∈ R

N and 1 < win ≤ t. The scour fore-
casting task is to predict a series of future values, {xt+1, xt+2, . . . , xt+wout } for the Sonar
with the forecast window wout where wout ≤ t.
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Fig. 3: Raw vs. Processed data - Oregon Luckiamute Bridge.

4.2. Feature Engineering
In this study, we explored adding Discharge (Xdischarge) in addition to Stage (Xstage)

and Sonar (Xsonar), incorporated in our previous study (8) for Alaskan bridges 1. Dis-
charge represents the water volume passing the river cross section per unit of time.
Xdischarge which is obtained from the mean flow velocity measured by velocimeter sen-
sors multiplied by the river channel cross-section area measured at the bridge location
(35; 36).

We also engineered another feature, the equivalent velocity XeVelocity, which is di-
rectly proportional to the flow velocity (V) following Equations. 1 to 4. By assuming a
constant channel equivalent cross-sectional width α, the channel cross section area can
be estimated by α x d, where d is the flow depth at a bridge pier equal to the difference
between Sonar and Stage elevations (Equation 1).

d = Xsonar − Xstage (1)

Xdischarge = αdV (2)

XeVelocity = αV (3)

XeVelocity = Xdischarge/(Xsonar − Xstage) (4)

The previous study showed that time features did not improve the performance of
the LSTM models for Alaskan bridges. However, to enrich the periodicity information
in Oregon’s scour data, time features, namely year-sin and year-cos are incorporated in
this study. These features are calculated by applying sin(·) and cos(·) transformations to
the recorded timestep using Equation 5 and Equation 6, respectively.

1for Oregon bridges, this sensor data was not available
7



year-sin = sin(TS.2π/year) (5)

year-cos = cos(TS.2π/year) (6)

The features Sonar, Stage, Discharge and eVelocity are denoted as sN, sT, dC and
dV, respectively. Time features are denoted as y. The impact of various features and their
combinations are discussed in Section 5.4.

4.3. Deep Learning For Scour Forecast
4.3.1. LSTM Models

Long Short Term Memory (9) is a specialised recurrent neural network (RNN) that
is capable of modelling very large input and output sequences and does not suffer from
the gradient vanishing problem - a typical problem in RNNs (37; 38). The principle
analogy of LSTM is to remember the relevant short and long-standing information and
discard the irrelevant information. Three different gates, i.e., Forget gate (Γ f ), Input gate
(Γi) and Output gate (Γo), enable the LSTM model to achieve this goal as shown in Fig.
4 (a). In these gates, the degree of relevance of information is quantified using a sigmoid
(σ) function with a value between 0 and 1. The larger the value, the higher the relevance.
Equations (7 - 12) show how the hidden unit output (at) and LSTM memory cell output
(ct) are recurrently computed using these gates. W and b represent the weight and bias
matrices.

Γ f = σ(W f [at−1, xt] + b f ) (7)

Γi = σ(Wi[at−1, xt] + bi) (8)

Γo = σ(Wo[at−1, xt] + bo) (9)

c̃t = tanh(Wc[at−1, xt] + bc) (10)

ct = Γ
ic̃t + Γ

f ct−1 (11)

at = Γ
o tanh(ct) (12)

Fig. 5 shows the architecture of the LSTM models for the multivariate time series
forecasting of scour. The following three variants introduced in (8) are also implemented
in this study:

1. Single-Shot (ss): In this model, one LSTM layer has been followed by one Dense
and one Reshape layer. This model outputs the predictions for all the timesteps
over the forecast window at once, as shown in Fig. 4(b).

2. Two-Layer, Single-Shot (ss2): Two LSTM layers are stacked together in this vari-
ant. The rest of the setting remains the same as Single-Shot.

8



(a)

(b)

(c)
Fig. 4: (a) LSTM memory unit, (b) Single-Shot and (c) Feedback variants

3. Feedback (fb): In this variation, we hypothesize that the model’s prediction ac-
curacy would get improved, if we input the predicted value (as opposed to the
actual value) of each timestep for the prediction of the next timestep. Therefore,
in this variant, LSTM predicts one timestep ahead across the entire forecast win-
dow. Fig. 4 (c) illustrates the feedback process. The feedback variant also has one
LSTM layer, similar to the Single-Shot model.

Model configuration nomenclature for an LSTM model is encoded as follows:

[model] − [win,wout] − [units] − [dropout]

where, model is the LSTM variant, win and wout are the length of model inputs and
outputs, units is the number of LSTM units, and dropout denotes the dropout rate applied
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Fig. 5: Multivariate time series modelling using LSTM model

to the model.

4.3.2. CNN Models
CNN models proposed in (39) are widely used in computer vision for tasks like

image classification (40) and object detection (41). They offer excellent performance
with lower computational requirements. CNNs also excel in time series modelling tasks
(42; 43; 44). We investigated three CNN variants for multi-variate time-series scour
forecasting with an architecture as shown in Fig. 6).

Fig. 6: Multivariate time series modelling using CNN model

In time-series forecast, a pivotal element of the CNN model is the convolution pro-
cess—a filter sliding over input time-sequence for feature extraction as depicted in Fig.
7. Equation 13 defines the standard convolution operation (Cvanilla) as a dot product
between a filter (F) and a time-sequence (S ) of lengths k and l respectively. Because
of the weight-sharing property of a CNN model, the entire time sequence is repeatedly
convolved by the same filter. Fig. 7 (a) illustrates this vanilla convolution using a 3-step
filter on a 9-step sequence with a stride of 1. Convolution results in a reduced-length se-
quence of 7 steps (l− k+ 1 = 9− 3+ 1 = 7), which leads to information loss. To prevent
this loss, padded convolution (Cpadded) operates on an extended sequence S ′, created by
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padding zeros to the edges of S [see Equation 14 and Fig. 7 (b)]. This ensures the input
and convolved time sequences have the same length.

Cvanilla := F.S t:t+k | ∀t ∈ [1, l − k] (13)

Cpadded := F.S ′t:t+k | ∀t ∈ [0, l − k + 1] (14)

Ccasual := F.S ′t−k+1:t | ∀t ∈ [1, l] (15)

Cdilated−casual := F′.S ′t−(k+d−1)+1:t | ∀t ∈ [1, l] (16)

(a) (b)

(c) (d)

Fig. 7: Illustration of different types of CNN convolutions for a 9-length time-series: (a) standard (vanilla)
convolution process by a 3-length filter, (b) padded convolution, (c) casual convolution and (d) dilated-
causal convolution by a 2-length filter.

Casual convolution (Ccasual) is often a preferable algorithm in time-series forecasting
to avoid information leakage from the future (45). It precedes the input sequence with
k-1 zeroes before convolution, as illustrated in Fig. 7 (c). Casual convolution would
require a large filter or a deep network when it needs to examine a large number of past
observations. Dilated Convolution overcomes this drawback by introducing a dilation
factor d into the filter so that convolution can be applied on an input area larger than the
original filter size, i.e., capturing larger contextual information. The modified filter F

′

is
obtained by dilating the original filter with (d− 1) zeros as shown in Fig. 7 (d). Dilation
is performed using d = 2. The positions of zero correspond to the skipped timesteps in
the input sequence. Both the casual (in Equation 15) and dilated casual convolutions
(Cdilated−casual) in Equation 16 output a sequence with the same length of the input. In
the following, we introduce three CNN model configurations to perform the multivariate
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scour forecast:
1) Vanilla Convolutional Network (VCN): The convolution block of the VCN model

comprises one layer of standard convolution (from Equation 13) and one layer of non-
linear activation function, i.e., Rectified Liner Unit (ReLU). Two identical convolution
blocks are stacked together as a feature extractor that precedes a flattened layer, a drop-
out layer, and a fully connected dense layer. Finally, a reshape layer is added to ensure
that the predicted time sequence contains the same number of sensor variables as input.

2) Fully Convolutional Network (FCN): A FCN ensures that the length of the con-
volved sequence is the same as the input. Here, the zero-padded convolution from Equa-
tion 14 with a stride value of 1 is used. We followed the structure adopted by Shelhamer
et al. (46) for the FCN in this study, where the main block consists of one convolution
layer, one batch normalization (BN) layer, and one ReLU layer. BN layer (47) ensures
fast convergence and improves generalisation performance. The rest of the setup remains
the same as the VCN.

3) Dilated Causal Network (DCN): As shown in Equation 16 and Fig. 7 (d), dilation
factors of 1 and 2 are applied in two convolution layers. This enables the CNN model to
perform causal convolution at a fine-grained level on the input sequence and a coarse-
grained level on the convolved sequence (from the lower layer). Each convolution layer
is followed by one BN layer and one ReLU layer. Model configuration nomenclatures
for a temporal CNN are encoded as follows (with k and F being the filter size and no. of
filters of the layers, respectively):

[model] − [k1] − [F1] − [k2] − [F2] − [dropout]

where the model is different CNN variants introduced, k1 and k2 are the kernel size,
F1 and F2 are the hidden size of the dense layer, and dropout is the dropout rate applied
to the model.

4.4. Model Evaluation Criteria

We used Mean Square Error (MSE) on the Sonar readings to train the scour forecast
model. For S no. of samples in a batch (32) with xi,t and x̂i,t representing the actual and
predicted values of Sonar feature Xsonar at timestep t for the ith sample, the training loss
is computed as follows.

MS E =
1

S ∗ wout

S∑
i=1

wout∑
t=1

(xi,t − x̂i,t)2, xi,t ∈ Xsonar (17)

We evaluated the scour prediction performance of a model using the metric MAE on the
Sonar readings. For S number of samples in a batch with xi,t and x̂i,t representing the
actual and predicted values of Sonar feature Xsonar at timestep t for the ith sample, the
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performance metric, MAE is computed as follows.

MAE =
1

S ∗ wout

S∑
i=1

wout∑
t=1

|xi,t − x̂i,t|, xi,t ∈ Xsonar (18)

We used the hold-out method (48; 49) for evaluating the performance of the models.
In the same unit as sensor readings, MAEs are reported in foot elevation throughout.

4.5. Hyperparameter Tuning
DL model optimisation and HP tuning using grid-search is computationally expen-

sive (37). Following the grid-search approach in (8), the performance of all possible
HP combinations was analysed by running each configuration for a large number of it-
erations. To explore a more computationally efficient alternative to this approach, we
investigated a random-search strategy based on the following three possible policies to
select the best model configurations. In this approach, a sample of HP combinations
with 50%, 35%, and 67% sample size(s) out of all possible combinations are randomly
selected in a number of trials (t = 20).

The grid-search results were used as a benchmark for the ”true” performance of each
configuration and to evaluate the outcome of these random search strategies.

1. meanMAE Policy: Model configurations are ranked based on the average MAE
values across random trials. Lower average MAE values lead to higher rankings;
this is irrespective of the number of times a model configuration appears across all
trials (= f ).

2. medianMAE Policy: Model configurations are ranked by taking the median of the
MAE values across the trials. Models with smaller median MAE would receive
a higher rank than the model with larger median values; similar to mean MAE
policy, this is irrespective of the number of times a configuration appears across
all trials.

3. Bagging (Bootstrap Aggregation) Policy (50): In this policy, top k configurations
with the lowest MAE values are selected on each trial. Considering ftopk as the
number of times a particular configuration is ranked as top-k across t trials, k mod-
els (out of possible k ∗ t models) are finally selected based on ftopk; model con-
figurations with more frequent appearances in the top-k (i.e., larger ftopk) receive
higher ranks.

Finally, to observe how well the trained models generalize on unseen data, we gen-
erated prediction plots on the test datasets for the top-5 models. These top-5 models
were selected after careful observations of the mean and standard deviation of MAE
scores from both the random and grid-search policies. The prediction plots evaluate the
performance of DL models in recognizing the scour (and filling) trends across time.
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4.6. Experiments

Table 1 provides a summary of experiments we conducted to address the research
questions outlined in Section 1. For all experiments except for Feature Combination
Analysis, sN and sT are used as input features.

Table 1: Description of the experiments and their corresponding datasets, hyperparameters, and tunning
values.

Experiment Dataset HPs Tuning Values
1. HP Alaska 742 (win, wout) {(168, 168), (336, 168), (720,168)}
Tunning Strategy units {32, 64, 128}

models {ss}
dropouts {0.0, 0.2}

2. LSTM Alaska 230,539, 742 (win, wout) {(168, 168), (336, 168), (720,168)}
Evaluation units {32, 64, 128, 256}

Oregon Trask, Luckiamute models {ss, ss2, fb}
dropouts {0, 0.2}

Alaska 230, 539, 742
Oregon Trask, Luckiamute

(win, wout) {(168, 168), (336, 168), (720,168)}
layer-1 filter length: k1 {3, 5, 7}

3. CNN layer-2 filter length: k2 {5, 7, 11}
Evaluations layer-1 filters: F1 {64, 128, 256}

layer-2 filters: F2 {128, 512, 1024}
models {vcn, dcn, fcn}
dropout {0.0, 0.2}

4. Feature Alaska 230, 539 features {sN, sT, dV, dC, sNsT, sNdC, sNdV,
Combinations Oregon Luckiamute sTdV, sTdC, sNsTdV, sNsTdC}

5. Results

5.1. Evaluation of Random Policies for HP Tuning (Experiment 1)

We evaluated the HP selection policies on Alaska 742 bridge, using the single-shot
LSTM scour forecast models. Given the past 1, 2, 3 weeks (168, 336, 720 hrs) observa-
tions (win), we forecast hourly flow and bed elevation variation, aiming to predict scour
for the upcoming week (wout). Here, the full search space comprises 18 distinct HP con-
figurations as per Table 1. TALOS’s uniform mersenne strategy (51) is used for random
selection of HPs.

Fig. 8 demonstrates the results of HP tunning using grid-search and random-search
policies for the 18 scour forecast models. Top-3 models with the smallest average MAE
from grid-search (GS) served as benchmarks when evaluating random-search (RS) poli-
cies. Since the distribution of MAE values is not heavily skewed as observed in the
boxplots, the mean values are used to rank the models in Fig. 8 (a). It is noted that
higher ranked models (top-5) would remain the same with median criteria. Note that all
the reported MAE values throughout the paper are in m (of elevation).

The meanMAE and medianMAE random-search policies show similar trends in
lower sample sizes (35% and 50%), but as expected, they deviate by increasing the
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(a) (b)

(c)

(d) (e)

Fig. 8: Comparison of random-search (RS) policies with grid-search (GS) for HP tuning: Ranked LSTM
model configurations based on grid-search (a), showing all possible HP combinations for 18 models (b),
frequency, top-k frequency, mean MAE and median MAE of HP configurations appearing in random-search
iterations for (c) 35%, (d) 50%, (e) 67% sample size (top-3 models picked based on each policy are shown
at top.
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sample size. With a growing sample size, the mean-MAE estimations seem to converge
towards grid-search estimates. The bagging policy also fails to find the top-ranked mod-
els when using small sampling sizes; however, with increasing sample size (67%), this
method shows to be comparatively more robust and less sensitive to the poor-performing
models compared to the meanMAE and medianMAE policies (e.g. models 12 to 18 show
low ranking based on bagging but rank high in mean and median policies). Furthermore,
the meanMAE and bagging policies seem to agree with 2 out of 3 top selected configura-
tions, whereas the medianMAE policy fails to identify any of the top-performing models
[Fig. 8 (e)].

5.2. LSTM Evaluation (Experiment 2)

The three variants of scour forecast LSTM models were evaluated to explore perfor-
mance on 1) the recent years of collected sensor data from Alaska case study bridges,
230, 539, and 742 and 2) Oregon case study bridges, Trask and Luckiamute, with dras-
tically different scour behaviour. Alaska and Oregon LSTM models were trained using
the hold-out method, by partitioning the data into training, validation, and test subsets,
with a splitting ratio (%) of 70-20-10 and 60-20-20, respectively.

Table 2: Top-5 LSTM models selected by random-search meanMAE policy for Alaska bridge 230, 539 and
742 and two Oregon bridges, Trask and Luckiamute.

Bridge Rank Models meanMAE

23
0

1 ss-(336,168)-128-0 0.078
2 ss2-(336,168)-32-0 0.083
3 ss-(336,168)-32-0.2 0.083
4 ss-(720,168)-64-0.2 0.083
5 ss-(336,168)-32-0 0.083

53
9

1 ss2-(720,168)-128-0 0.243
2 ss-(720,168)-64-0 0.253
3 ss-(168,168)-128-0 0.259
4 ss2-(168,168)-64-0 0.266
5 ss2-(720,168)-32-0 0.27

74
2

1 ss-(168,168)-128-0 0.41
2 ss-(336,168)-64-0.2 0.413
3 ss-(336,168)-128-0 0.419
4 ss-(336,168)-32-0 0.424
5 ss-(720,168)-32-0.2 0.431

Tr
as

k

1 ss-(168,168)-32-0 1.573
2 ss-(168,168)-64-0.2 1.615
3 ss-(168,168)-32-0.2 1.62
4 ss-(168,168)-64-0 1.638
5 ss-(336,168)-32-0.2 1.648

L
uc

ki
am

ut
e 1 ss-(720,168)-32-0 0.249

2 ss-(720,168)-64-0 0.251
3 ss-(720,168)-32-0.2 0.253
4 ss-(720,168)-128-0 0.257
5 ss2-(720,168)-32-0.2 0.261

The HP configurations (see Table 1) are optimized based on random-search method
with meanMAE policy using %67 sample size. The top-5 LSTM model configurations
for each bridge are presented in Table 2. The best-performing models achieve mean
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MAE values ranging from 0.078 to 0.410 ft (0.12 m) for Alaska bridges and 0.249 to
1.573 ft (0.48m) for Oregon bridges.

The Single-Shot (ss) variant shows consistently better performance than Feedback
(fb) variant for all bridges. Models with larger number of past observations, e.g., win =

720, obtain smaller mean errors and appear as higher rank models. An input width 2 or
3 times the output/target width (forecast window) seems to yield the most accurate scour
predictions.

5.2.1. Scour Forecast for Alaska Bridges
Fig. 9 and Fig. 10 present the predicted values of Sonar (bed elevation) and Stage

(water elevation) by the top-5 models for bridge 230 and 539 across the test dataset,
between July-2021 to Sep-2021. The performance of models is assessed based on bed
elevation (scour depth) predictions.

The models show reasonable prediction accuracy and are able to capture the scour
and filling trends a week in advance throughout the test (unseen) period of the data.

Fig. 9: Stage (top) and Sonar (bottom) predictions of top-5 LSTM models selected by the random-search
(meanMAE policy), mean and 95% confidence intervals over the test dataset - Alaska bridge 230.

For bridge 230, during the peak time of scour (August), the maximum error between
the predicted and the actual value of scour is around 2ft (0.6m), whereas for the 539
bridge, it is around 1ft (0.3m). The inverse relation of the scour trend with the stage-
water is well captured by the LSTM models with negotiable lags for all bridges.

5.2.2. Scour Forecast for Oregon Bridges
Stage and Sonar prediction of top-5 models over the test dataset is presented in Fig.

11 and Fig. 12 for Luckiamute and Trask bridges, respectively. The test data is se-
17



Fig. 10: Stage (top) and Sonar (bottom) predictions of top-5 LSTM models selected by the random-search
(bagging policy), mean and 95% confidence intervals over the test dataset - Alaska bridge 539.

Fig. 11: Stage (top) and Sonar (bottom) predictions of top-5 models selected by the meanMAE policy,
showing the mean and 95% confidence interval over the test dataset - Luckiamute bridge.
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Fig. 12: Stage (top) and Sonar (bottom) predictions of top-5 models selected by the meanMAE policy,
showing mean and 95% confidence interval over the test dataset - Trask bridge.

lected for the period between April-2021 to July-2021 and August-2021 to Nov-2021,
for Luckiamute and Trask, where significant scour and fillings are observed.

For Oregon Luckiamute, some of the large spikes in bed elevation seem to be due to
errors in reading, which were not picked up by pre-processing techniques (verified with
Oregon USGS). Yet, LSTM models are able to identify the realistic trend of bed elevation
variation. For Trask which is a tidal river showing frequent daily fluctuations due to low
and high tides no significant scour/filling is observed with less than 2ft (0.6m) change
in bed level. The mean predictions fail to capture these frequent fluctuations, resulting
in an underestimation of scour depth. However, the lower-bound values seem to capture
maximum scour depths with some lag. Nevertheless, the Trask bed elevation variation
is less than a meter and does not show significant scouring.

Overall, the LSTM models perform better in capturing peak values of scour and
fill episodes for Alaska bridges compared to Oregon in our case studies. This can be
attributed to the distinct scour process for the two Oregon bridges. Both Oregon bridges
are over coastal rivers with soft slit sediments and bedforms (dunes). Sonar and Stage
do not show the typical reverse correlation as in Alaskan bridge with riverine flows and
consistent seasonal patterns (52; 10). In addition, the data availability in these locations
is significantly less than in Alaska (3 years of historical data for Oregon versus 15 years
for Alaska).
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5.2.3. Sequential Training on Oregon Data
The hold-out training method is sufficient for the LSTM models to learn the underly-

ing patterns of scour/flow characteristics at coastal rivers such as Trask and Luckimaute,
leading to poor generalization. Cross-validation (48; 49) could be an alternative, how-
ever it is computationally expensive. Therefore, motivated by transfer learning (53), we
implemented a “Sequential Training” technique as shown in Fig. 13 to improve the fore-
cast accuracy for Oregon bridges. For this experiment, we used the top-3 LSTM model
configurations from Section 5.2.2.

Fig. 13: Illustration of 3-fold sequential training and validation.

The major part (90%) of the data is repeatedly split into 3 Folds and 5 Folds, with
a small portion (10%) set aside for the final evaluation. Each of the folds is further
divided into three parts: train, validation, and test. The model is trained using the folds
in a sequential manner, i.e., the model trained (with its learned weights and biases) in a
fold is going to be fine-tuned using the newer train data from the next fold. There is no
overlap across the training data between two adjacent folds. This data division and the
transfer of “learning” between folds saves significantly on training time and expected to
improve the performance of DL models.

Table 3 presents the MAE values on Sonar, and Fig. 14 shows the time-series fore-
cast over the final-test data using the 3-Fold and 5-Fold sequentially-trained LSTM mod-
els for Trask bridge. It is observed that the prediction error is reduced using the Sequen-
tial Training method.

Fig. 14: Bed elevation (Sonar) predictions using top LSTM models with 5-Fold and 3-Fold sequential
training method for Oregon Trask bridge.
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Table 3: MAE of 3-Fold and 5-Fold sequentially-trained LSTM models - Trask bridge.
model-1 model-2 model-3

ss-(168,168)-32-0 ss-(168,168)-64-0.2 ss-(168,168)-32-0.2
SQ fold val test final test val test final test val test final test

Hold-out N/A 1.57 N/A 0.66 1.62 N/A 0.72 1.62 N/A 0.71

3-Fold
0 0.79 0.91 0.88 0.87 1.03 0.89 0.67 0.95 0.76
1 0.45 0.74 0.59 0.47 0.82 0.53 0.51 0.81 0.56
2 2.35 0.36 0.61 2.21 0.38 0.57 2.49 0.31 0.62

5-Fold

0 0.42 0.63 0.66 0.42 0.69 0.79 0.37 0.67 0.84
1 0.95 0.62 0.66 1.01 0.69 0.76 1.17 0.60 0.71
2 0.38 0.35 0.53 0.60 0.34 0.60 0.64 0.35 0.62
3 1.15 2.81 0.64 1.21 3.17 0.59 1.25 2.90 0.64
4 0.36 0.14 0.40 0.60 0.21 0.42 0.50 0.14 0.38

5.3. CNN Evaluation (Experiment 3)

Three different variations of CNN models, i.e., VCN, DCN, and FCN as described
in Section 4.3.2 are trained for bridge 230 and 539 in Alaska and Luckiamute bridge
in Oregon. Stage and Sonar are considered as both the input and target features in
these models. Table 1 provides the tuning range for the relevant hyperparameters. Grid-
search is used to tune the hyperparameters of CNN models. The splitting ratios (train-
validation-test) are considered as 60%-30%-10% and 60%-20%-20% for the Alaska and
Oregon bridges.

Table 4: Top-5 CNN models (scour prediction) on validation sets derived by meanMAE policy.
Bridge Vanilla Convolutional avg. Dilated Causal avg. Fully Convolutional avg.

Netwrok (VCN) MAE Network (DCN) MAE Network (FCN) MAE

230

vcn-5-64-9-128-0 0.090 dcn-9-64-9-128-0 0.107 fcn-5-64-7-64-0 0.086
vcn-7-64-9-128-0 0.091 dcn-5-64-5-128-0 0.107 fcn-3-64-5-128-0 0.086
vcn-7-128-9-256-0 0.092 dcn-7-64-7-128-0 0.108 fcn-9-64-7-128-0 0.086

vcn-7-128-9-256-0.2 0.093 dcn-3-64-3-64-0 0.109 fcn-3-128-5-128-0 0.087
vcn-7-64-9-128-0 0.093 dcn-3-128-5-64-0 0.109 fcn-5-64-7-128-0 0.088

539

vcn-9-128-9-64-0.2 0.382 dcn-5-128-5-64-0 0.323 fcn-3-256-5-128-0 0.315
vcn-9-128-7-64-0 0.384 dcn-5-64-3-64-0 0.327 fcn-7-256-7-128-0.2 0.317
vcn-9-64-9-64-0.2 0.389 dcn-7-128-5-64-0.2 0.328 fcn-5-128-7-256-0 0.318
vcn-9-64-9-64-0 0.389 dcn-5-256-7-256-0 0.329 fcn-9-64-7-128-0 0.319
vcn-9-64-7-64-0 0.391 dcn-7-64-7-128-0 0.330 fcn-9-128-7-64-0.2 0.319

Luckiamute

vcn-3-64-3-64-0.2 0.525 dcn-5-256-3-256-0.2 0.305 fcn-5-128-5-256-0.0 0.278
vcn-5-128-5-64-0.0 0.549 dcn-3-128-5-256-0.2 0.308 fcn-5-256-5-256-0.0 0.282
vcn-5-64-5-64-0.2 0.583 dcn-5-256-5-256-0.2 0.309 fcn-5-256-5-256-0.2 0.283
vcn-5-64-7-128-0.2 0.606 dcn-3-256-3-256-0.2 0.309 fcn-3-128-5-256-0.0 0.285
vcn-5-64-7-64-0.2 0.610 dcn-5-128-5-256-0.0 0.310 fcn-5-256-3-256-0.0 0.286

Table 4 summarizes the performance of the CNN models for scour prediction (Sonar).
The FCN variant yields the best performances, as evidenced by the lower MAE scores
in Table 4, in comparison with the VCN and DCN models for both Alaska and Ore-
gon bridges. The best-performing CNN models achieve competitive accuracy for both
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Alaska and Oregon bridges, compared with LSTM.

Fig. 15: Stage (top) and Sonar (bottom) predictions of top-5 FCN models selected by the meanMAE policy,
mean and 95% confidence intervals over the test dataset - Alaska 230 bridge.

Fig. 16: Stage (top) and Sonar (bottom) predictions of top-5 FCN models selected by the meanMAE policy,
mean and 95% confidence intervals over the test dataset - Alaska 539 bridge.
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5.3.1. Scour Forecast for Alaska Bridges
Fig. 15 and Fig. 16 demonstrate the time-series prediction of Sonar and Stage by the

top-5 FCN models across the test dataset. The CNN models demonstrate a reasonable
performance, comparable with LSTM models, capturing the trend of scour and filing a
week in advance.

The CNN model with full convolution from Equation 14 shows that it outperforms
other convolutional strategies in generalization and captures both Sonar and Stage trends.
Particularly, DCN models fail to capture the scour and filling trends as compared to the
VCN and FCN. This implies that skipping the intermediate observations by the dilated
convolutions from Equation 16 did not result in higher accuracy. One reason behind
the superior performance by FCN can be the inclusion of the edging values while mak-
ing batch-to-batch transitions via the 0-padded convolution. This ensures no loss of
information while learning the underlying scour patterns.

5.3.2. Scour Forecast for Oregon Results
Fig. 17 illustrates the performance of top-5 FCN models over the test dataset, be-

tween April 2021 and July 2021. Similar to the LSTM models, the CNN models perform
less accurately for Oregon data compared with Alaska, particularly in capturing the scour
and fill trends. The error of mean Sonar prediction varies between 1.5 to 2.5ft (0.5 to
0.75m).

Fig. 17: Stage (top) and Sonar (bottom) predictions of top-5 FCN models. The mean and 95% confidence
intervals are considered on the test dataset - Oregon Luckiamute bridge.
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5.4. Feature Combination Analysis (Experiment 4)

Different combinations of features are considered as input to LSTM models to eval-
uate their impact in scour prediction (wrapper method). The best Single-Shot LSTM
configurations were trained for this purpose over two Alaska and Oregon bridges as
shown in Figs. 18 and 19. Note that for Oregon bridges, the discharge data was not;
therefore, dC dV are not included in the impact analysis.

The first term in model configuration nomenclatures indicates the feature combina-
tion, e.g. sNsTdV, indicates {Sonar, Stage, Discharge} input feature combination (refer
to Section 4.2 for features notations).

(a) Alaska 539 (b) Alaska 230

Fig. 18: Feature impact evaluation - Alaska. The first term in model configurations indicates the feature
combination.

These plots show that the input feature sets containing sN (Sonar) consistently out-
perform the feature sets without sN for all bridges. The models with sN as the only input
feature shows the best performance for all bridges. The groups sNdV and sNdV show
the second smallest error for all bridges, showing comparable performance as sN alone.
As expected, Discharge and eVelocity have an equivalent impact on prediction perfor-
mance as sNdC and sNdV models show consistently similar error ranges. Also, Stage
seems to have a similar impact on prediction as Discharge and eVelocity, as observed in
very close error ranges among sNsT and sNdC, and sNdV . Therefore, adding velocity
features to DL models in Alaska does not seem to improve significantly scour forecast-
ing as initially expected. This further fortifies the results reported in (8) about stage
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(a) Oregon Luckiamute (b) Oregon Trask

Fig. 19: Feature impact evaluation - Oregon. The first term in model configurations indicates the feature
combination.

time series having a high correlation with discharge time series, therefore embodying
velocity characteristics required for LSTMs to learn the scour patterns.

For the Oregon bridges, the scour models do not obtain higher accuracy by including
the time features denoted as y, similar to Alaska case studies in (8). Input feature sets:
sN and sNsT obtain similar accuracy in predicting scour. Similar to Alaska bridges,
LSTM models show poor performance when the input feature set does not contain the
Sonar values.

The strong dependency among the recent and past values of the sonar readings is
evidenced by the lower MAE of the scour model with Sonar as the only feature and the
high autocorrelation coefficient of sonar readings. However, Stage is shown to be more
impactful for scour prediction in the case of the Luckimaute bridge. This can be related
to a lack of consistent periodic scour and filing patterns as opposed to Alaska bridges
and Trask bridges with tidal river bed fluctuations. Nevertheless, it is evident from this
experiment that flow-related times series on their own, i.e., stage, discharge and velocity,
are inadequate for reliable scour prediction.

6. Conclusions

This paper investigated prominent Deep Learning (DL) algorithms for scour fore-
casting based on historic sensor monitoring data, including three variants of LSTM and
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CNN, for case-study bridges in Alaska and Oregon. The primary focus was to address
the challenges of DL models for real-time scour prediction, including 1) performance
optimization of algorithms and hyperparameter tuning, 2) generalisation to diverse loca-
tions with distinct geological/geomorphological and hydraulic/flow characteristics, and
3) impact of various combinations of sensor features relevant to scour.

The top-performing LSTM models achieved mean absolute error (MAE) ranging
from 0.1m (in Alaska) to 0.5m (in Oregon). The best CNN model, the FCN variant,
showed similar error ranges (0.1m to 0.75m). Both DL algorithms showed promising
performance in forecasting scour for bridges in Alaska, with CNN models, particularly
the FCN variant, achieving slightly lower prediction errors. However, CNN was trained
with significantly lower computational costs running on the same GPU clusters. Higher
errors were observed for Oregon bridges compared to Alaska, especially in capturing
peaks of scour and filling episodes. This was related to the fundamentally different
scour process in Oregon bridges, such as tidal flows and the presence of coastal bed
forms, and the lack of substantial historical data. In addition, Oregon bridges did not
show consistent periodical and seasonal flow and scour patterns as observed in Alaskan
bridges.

To improve the accuracy of DL models for Oregon, we implemented a sequential
training approach integrated with transfer learning. This training approach proved effec-
tive in improving the performance, while reducing the computational time.

For LSTM models, the single-shot model consistently outperformed the two-layer
single-shot and feedback variants. Regarding the CNN, the FCN achieved lower MAE
values on all bridges compared to the Vanilla Convolutional Network and Dilated Causal
Network. Additionally, our feature impact analysis using the wrapper method showed
adding Discharge, and Velocity time series to Stage and Sonar did not improve the
performance of DL models in Alaska. An interesting observation consistent across all
bridges in Oregon and Alaska was that the models without Sonar (bed elevation) time
series showed significantly higher errors. In fact, models with Sonar as the only input
feature obtained similar (and in some cases slightly better) scour prediction accuracy
compared with benchmark models with the Sonar plus Stage feature set. For Oregon
bridges, the time features did not improve the performance of DL models similar to
what was observed previously for Alaska.

The random-search method with mean MAE and Bagging heuristics introduced in
this study proved to be efficient alternatives to grid-search for hyperparameter tunning.
The top LSTM configurations identified by the random-search with higher sample sizes
(%67) resulted in finding the most optimal configurations, while saving significantly on
computational cost.

In conclusion, this study highlights the potential of deep learning models, particu-
larly LSTM and CNN variants, for accurate scour forecasting in diverse bridge locations.
However, challenges remain in adapting these models to fundamentally different scour
processes and limited historical data, as observed in the Oregon bridges. Future research
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should focus on developing more robust and adaptable models that can handle varying
scour characteristics and data limitations. Additionally, integrating domain knowledge
and physics-based modelling approaches with data-driven techniques could further im-
prove the interpretability and generalization of scour prediction models. Finally, the
exploration of advanced hyperparameter optimization techniques and transfer learning
strategies may help reduce computational costs and improve the efficiency of model de-
velopment for scour forecasting applications.

7. Acknowledgement

The funding for this research was provided by The University of Melbourne and
Arup Global Research. We would like to express our gratitude to Greg Lind from USGS
and Kira Glover-Cutter from Oregon DOT for providing the data and insights throughout
this research. We also extend our thanks to Dr Bo Wang for his help in preparing this
manuscript.

References

[1] N. Yousefpour, Z. Medina-Cetina, J.-L. Briaud, Evaluation of unknown foundations of bridges sub-
jected to scour: Physically driven artificial neural network approach, Transportation Research Record
2433 (1) (2014) 27–38. doi:10.3141/2433-04.
URL ttps://doi.org/10.3141/2433-04

[2] D. M. Sheppard, B. Melville, H. Demir, Evaluation of Existing Equations for Local Scour at Bridge
Piers, Journal of Hydraulic Engineering 140 (1) (2014) 14–23.

[3] D. S. Mueller, C. R. Wagner, Field observations and evaluations of streambed scour at bridges, Tech.
rep., United States. Federal Highway Administration. Office of Research. (2005).

[4] B. Liang, S. Du, X. Pan, L. Zhang, Local scour for vertical piles in steady currents: Review of
mechanisms, influencing factors and empirical equations, Journal of Marine Science and Engineering
8 (1) (2019) 4.

[5] A. Pizarro, S. Manfreda, E. Tubaldi, The science behind scour at bridge foundations: A review, Water
12 (2) (2020) 374.

[6] A. Sharafati, M. Haghbin, D. Motta, Z. Yaseen, The application of soft computing models and empir-
ical formulations for hydraulic structure scouring depth simulation: A comprehensive review, assess-
ment and possible future research direction, Archives of Computational Methods in Engineering 28
(11 2019).

[7] N. Yousefpour, S. Downie, S. Walker, N. Perkins, H. Dikanski, Machine learning solutions for bridge
scour forecast based on monitoring data, Transportation Research Record 2675 (10) (2021) 745–763.

[8] N. Yousefpour, O. Correa, Towards an ai-based early warning system for bridge scour, Georisk: As-
sessment and Management of Risk for Engineered Systems and Geohazards (2023) 1–27.

[9] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural computation 9 (8) (1997) 1735–1780.
[10] L. Arneson, Evaluating scour at bridges, Tech. rep., United States. Federal Highway Administration

(2013).
[11] J. Bergstra, Y. Bengio, Random search for hyper-parameter optimization, Journal of Machine Learn-

ing Research 13 (2012) 281–305.
[12] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,

M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
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