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ABSTRACT
We propose an end-to-end real-estate recommendation system,
RE-RecSys, which has been productionized in real-world industry
setting. We categorize any user into 4 categories based on available
historical data: i) cold-start users; ii) short-term users; iii) long-
term users; and iv) short-long term users. For cold-start users, we
propose a novel rule-based engine that is based on the popularity
of locality and user preferences. For short-term users, we propose
to use content-filtering model which recommends properties based
on recent interactions of users. For long-term and short-long term
users, we propose a novel combination of content and collabora-
tive filtering based approach which can be easily productionized
in the real-world scenario. Moreover, based on the conversion rate,
we have designed a novel weighing scheme for different impres-
sions done by users on the platform for the training of content
and collaborative models. Finally, we show the efficiency of the
proposed pipeline, RE-RecSys, on a real-world property and click
stream dataset collected from leading real-estate platform in India.
We show that the proposed pipeline is deployable in real-world
scenario with an average latency of <40 ms serving 1000 rpm.
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1 INTRODUCTION
Over the past few years, the demand for online real-estate tools
has increased drastically due to the ease of access to the Internet,
especially in developing countries like India. There are many online
real-estate platforms for owners, developers, and real-estate brokers
to post properties for buying and renting purposes. These platforms
have more than 3 million active customers per month and have
more than 1.1 million active properties. Considering the number of
users and properties, it makes it difficult for users to find relevant
properties from a large list of possibilities. Recommendation Sys-
tems (RS) are used to provide personalized recommendations based
on historical interactions with the platform. The development of an
efficient RS is critical from both the company’s and the customer’s
point of view. On the one hand, it helps customers to narrow down
their choices leading to higher customer satisfaction and retention.
On the other hand, it helps companies to increase their traffic, con-
versions, and click-through rates (CTRs). In this paper, we focus
on the real estate recommendation engines where housing selec-
tion (for both rent and purchase) is a complex decision-making
procedure because people purchase/rent properties infrequently
throughout their life. Typically, users come on an online platform
via web/mobile application and expresses their needs using search
criteria such as rent/purchase, location, price, locality, number of
rooms, etc. Moreover, they interact with the listed properties on
the platform by clicking the property details page (PDP), view-
ing images, playing property videos, filling customer requirement
forms (CRF), dropping leads, etc. All these interactions on the plat-
form contribute to user preferences and help RS capture the user
preferences for providing relevant recommendations.

In this work, we proposed an end-to-end pipeline for real-estate
recommendation system (called as RE-RecSys) which we have pro-
ductionized in real-world industry setting. Concretely, we classify
any user into 4 categories: i) cold-start users with no historical data;
ii) short-term users with recent 10 minutes of interactions on the
platform; iii) long-termwho have more than 10minutes of historical
data and interacted with at-least 5 properties on the platform; and
iv) short-long term users who have both historical data as well as
recent interactions on the platform. As we are in an industry setting,
it is very crucial to have low latency (< 40ms serving 1000 requests
per minute) to have a good customer experience on the platform.
Therefore, we propose to use a combination of rule-based, content,
and collaborative filtering for the real-estate recommendation sys-
tem. Specifically, for cold-start users, once users express their needs
in search criteria, we recommend those properties with the highest
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number of leads, user conversions, and property conversions in
the chosen locality of a particular city. For short-term users, we
propose to use content-based filtering [1, 8] which makes use of
existing contextual information about the users (e.g. location, price,
apartment type) and properties (e.g. apartment details) for a recom-
mendation. For long-term users, we used combination of content
and collaborative filtering [3] which relies on past interactions and
recommends properties to users based on the interactions done by
other similar users. For short-long term users, we used a combina-
tion of short-term and long-term models. We answer the following
research questions for real-estate recommendation engines:
(1) What should be the ideal amount of historical training data

required for rent and purchase purposes?
(2) What user impressions/interactions should be considered as

implicit feedback for both content and collaborative filtering?
(3) How to deploy the solution in a production environment keep-

ing the latency < 40 ms? 1

2 PROPOSED APPROACH
Purchasing/renting houses is a complex process as they are expen-
sive and people usually purchase/rent them infrequently. Moreover,
the behavior and preferences of customers change over time (due
to property visits, budget constraints, etc) which adds additional
temporal complexity to the housing recommendation problem state-
ment. It is important to consider the recent as well as past history
of a user while designing a recommendation engine for real estate.
Therefore, we propose to classify users based on the availability of
historical data: cold-start users, short-term users, long-term users,
and short-long term users. In the next subsections, we will explain
how we tackled each kind of user and built an end-to-end pipeline.

2.0.1 Rule-Based engine for Cold-Start Users. On real-estate
platforms, approximately 25% of users are cold-start users and
we have no available historical data for model training. As users’
short/long history is not available on the platform therefore content
and collaborative filtering based methods would not be applicable
[9]. Therefore, we propose to use a rule engine to handle cold
start users on the platform and keep the latency of the model in
acceptable limits for the production scenarios.

Firstly, for each locality in the city, we build cohorts (in other
words, groups), based on locality name, apartment type (e.g. 2 BHK,
3, BHK, etc), profile type (broker and owner), price per square feet
bins (bins are created with a gap of 500K and 10k Rupees for pur-
chase and rent respectively) and area bins (created with a gap of 500
sq feet area). Due to this, we are able to narrow down the search
space for a particular search query based on filters. Then, we cal-
culate the score for each cohort based on the summation of the
following 4 metrics: number of flats (indicative of density); total
leads (indicative of popularity); percentage of property conversions (
another indicative of popularity); and percentage of user conversions
(indicative of user preference). Please note that the last 2 metrics
inherently take care of scenarios where the number of properties
in a particular cohort may not be high. Finally, the top-N matching
cohorts are extracted based on search filters for any user, then we

1Demo Video is available at https://www.youtube.com/watch?v=On2JGxACnag

return the randomly chosen top 2 properties from each cohort. Intu-
itively, the random selection of properties from each cohort helps us
to overcome the challenge of cold-start problem for new properties.
Each new property will fall under some cohort, randomly choosing
properties from each cohort allow us to increase the reach for them
which will lead to better customer satisfaction. Moreover, it helps to
have better learning for content and collaborative filtering models.

2.0.2 Content Filtering for Short-term Users. Approximately
20% of users fall under the category of short-term users where
we have recent 10 minutes of interaction data on the platform.
Therefore, it is important to personalize the experience for this
category of users which can lead to better conversions and CTRs.
One possible solution is to use collaborative filtering which relies on
past interactions and recommend properties based on interactions
done by other similar users. However, given the number of users
and properties, it would not be possible to re-train the collaborative
filtering model at the regular interval of 10 minutes [2, 4]. Thus,
we propose to use content-based filtering approach for short-term
users in order to have a better personalization experience in real-
time scenario. We calculate the similarity scores between the user
and properties using a cosine similarity measure where users and
properties are represented in the same feature space. Then, we rank
the properties based on the calculated similarity scores to return
the results for a particular search query filter.

For the property vector, we have considered multiple categorical
(apartment type and furnishing type) and numerical (price, built-up
area, age, floor number and image count) features based on the
property description. We convert each feature into a categorical
feature and create a binary vector for the property vector. For area,
age, floor number, and image count, we created bins with a distance
of 500 sq feet, 3 years of age, 2 floors, and 3 images, respectively. For
the price, we created bins with a gap of 500k and 10k for purchase
and rent properties respectively. The apartment type (2 BHK, 3
BHK, etc.) and furnishing type (fully furnished, unfurnished, and
semi-furnished) are categorical variables kept in their original form.

Users on the platform have different levels of behavior such as
clicking, viewing the property details page, dropping a lead using
CRF forms, viewing images, etc. It is important that different behav-
iors should receive different weights in the user profile vector. We
have divided different activities into 4 categories based on actions:
i) “conversion” which take into account all the activities where user
is planning to submit a lead by filling customer requirement form
(CRF); ii) “detail page” where user is viewing the details for a partic-
ular property after opening product detail page; iii) “impressions”
where the user is exploring property by looking into its miscella-
neous details; and iv) “other” activities where user is just scrolling
the page and spending some time on rating and other details. For
any user activity, we calculated the conversion rates from that activ-
ity till submitting the CRF form. Based on the conversion rates, we
have assigned weights to each action as shown in Table 1. We have
assigned the highest weight to the activity which has the highest
conversion rate and maximum business impact. Then, we calculate
the user profile vector similar to the property vector by converting
each feature into the categorical feature as explained previously.
For the user profile vector, we calculate the weighted sum of all the
activities done by the user over various properties instead of binary

https://www.youtube.com/watch?v=On2JGxACnag
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Table 1: AssignedWeightages for different actions performed
by the user for both purchase and rent

Category Actions Conversion
(Purchase)

Conversion
(Rent) Weight

Conversion Submitted CRF 100 100 10
Conversion One time Password 83.5 83.1 8
Conversion Open or Filled CRF 36.8 36.9 6

Detail Page recommendation,
image/video views 26.1 27.7 4

Impressions locality info, amenities
check, price/floor plan 16.8 14.7 2

Other Rating Check,
open PDP & scrolling 23.8 19.6 1

encoding. This allows us to capture the user’s inclination towards a
particular attribute. Based on the last 10 minutes of interactions for
any user, we calculate the user profile vector and compare it with
property vectors in a given locality using cosine similarity. Finally,
we return the top-N most similar properties to the user based on
similarity scores.

2.0.3 Collaborative Filtering for Long-term Users. On real-
estate platforms, approximately 35% of users have historical data
of more than 10 minutes and have interactions with at least 5 prop-
erties on the platform. For this kind of users, we propose to use
collaborative filtering which recommends properties based on the
preferences of other similar users. Since, in the case of real-estate
recommendation problem, user-property matrix is highly sparse
and it is important to recommend less popular properties as well as
well-known properties. Therefore, we propose to use the matrix fac-
torization technique which factorizes a user-property matrix into
two low-ranked matrices, the user-factor matrix and the item-factor
matrix that can predict new items for a particular user [6, 7]. For
each user-property pair in the matrix, we will compute the score
based on the interaction done by a user for a particular property as
defined in Table 1. For e.g. for a particular property if a user has
submitted the CRF form then we fill the score with value of 10 or if
user have just scrolled the property page then we fill the score with
the value of 1. This allows us to capture the user preferences at the
interaction level and provide more personalized experience. For
matrix factorization, we use Alternating Least Square algorithm[5]
which is implemented in Apache Spark ML and built for large-
scale collaborative filtering problems. The training time for ALS
is approximately 30 minutes for 3 million and 1.1 million users
and properties respectively. Therefore, it is possible to re-train the
collaborative model at regular intervals of 1-2 hours. However, for
collaborative filtering, there would not be any significant perfor-
mance improvement with 1-2 hours of additional data. Therefore,
we propose to re-train the collaborative filtering model once a day
and use content filtering for users who have interacted with more
than five properties but were not included in the previous ALS
re-training. Please note that the content model for long-term users
is updated at regular intervals of 2 hours. Compared to the content
model for short-term users (updated at every 10 minutes intervals),
long-term content model have bigger time complexity due to large
number of interactions for long-term users. In production, we have
deployed a content+collaborative model for long-term users.

2.0.4 Hybrid approach for Short-long term Users. In recom-
mendation engine pipelines, it is common to have users with both

recent as well as past history on the platform. On real-estate plat-
forms, approximately 20% of users fall under this category. One
solution is to use long-term collaborative filtering model to recom-
mend properties to users. However, long-termmodels are re-trained
with a gap of regular intervals of 24 hours and don’t take into ac-
count the recent history of the user. Therefore, we propose to use a
hybrid approach which is a weighted combination of content and
collaborative filtering models. For any user, we take the average of
scores from both models and return the top properties accordingly.

2.0.5 RE-RecSys Pipeline. As shown in figure 1, for any new
user, the first 10 minutes are served using the cold-start rule-based
engine. If the user is active for 2 hours and have interacted with
more than 5 flats, then the user will be served with content (re-
trained every 2 hours)+collaborative model (re-trained every 24
hours) model. If the user is active for 2−4 hours, then hybrid model
(long-term and short-term models) will return the results to take
into account the recent history of user. In case of user inactivity for
more than 28 days then the user will be served using only cold-start
model.

Figure 1: An End-to-End architecture diagram for RE-RecSys

3 EXPERIMENTAL RESULTS AND DEMO
3.0.1 Dataset. We have collected the real-world dataset from our
platform which is a leading real-estate online platform in India. The
platform has an average of 3 million active users per month and
1.1 million active properties. Moreover, users view 3.57 pages per
visit on average indicating high engagement and interest in the
platform. For the real-estate recommendation system, we need 2
set of information: i) property-related data and; ii) user interaction
events on the platform. For the property dataset, we used an internal
relational database to collect the information related to properties
such as location, price, area of the apartment, property type, etc.
We use Google Analytics to track the user interaction events (1+
billion clicks per month) on our platform. For our analysis, we have
collected the 6 months of property and event datasets from 1st
January to 30th June 2022.

3.0.2 Life Cycle of Buy and Rent Users. As we are in a real-
world scenario where users rent/purchase houses infrequently. So,
it is important to understand the time taken by the user to make a
final decision on the platform. Moreover, from a machine learning
point of view, this analysis is crucial for setting up the training
and testing pipelines. From the collected dataset, we analyzed the
user persistence in terms of days for both type of users. From our
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experiments, we validated that 85% of rent and buy users persist
for approximately 3 months (95 days) and 6 months (190 days) on
the platform. Therefore, we used the latest 3 and 6 months of data
for rent and buy users respectively for re-training our models.

3.0.3 Train-Test Split. For collected 6 months of data, we have
randomly sampled click event data consisting of 20, 000 users for
each kind of task (cold-start, short-term, long-term and short-long
users) separately for rent and purchase use cases. In total, we col-
lected 160, 000 user data. Each user’s history is split into train and
test data based on random checkpoints. By doing this, we are able to
test our models on various kinds of users having different amounts
of historical data, preferences, and interactions with the platform.
Therefore, all the models (content or collaborative) are trained with
20, 000 of training data and are tested with 20, 000 of test data sep-
arately for rent and buy. As followed in literature [1, 6], we used
MAP@K (Mean Average Precision at K) and NDCG (Normalized
Discounted Cumulative Gain) as our evaluation metrics.

3.0.4 Experimental Results. Firstly, we evaluated the perfor-
mance of the content-filtering model on short-term users. Here our
objective is to analyze the amount of data required for training
the model. In table 2, we present the results for different iterations
of the latest training data i.e. 5, 10, 20, and 30 minutes. It means
we train the model with the last 𝑥 minutes of data and test it on
the next 𝑥 minutes. From the table, we can deduce that the best
results are achieved when we train the model with last 5 minutes
of data. However, in the production environment, for training the
content model, we need to extract the real-time click event data
from Google Analytics, pre-process and compute the features. This
is a time taking process and could not be finished within 5 minutes
given the number of users on the platform. Therefore, in production,
we used the latest 10minutes of data for training the content model
for short-term users. Moreover, the average inference latency of
content model for short-term user is 23.1 ms (1000 requests per
minute) which is in acceptable limit in production.
Table 2: Results for content filtering on short-term users

Experiment Buy Rent
Train & Test Sets MAP@6 NDCG MAP@6 NDCG
latest & next 30 min 0.853 0.662 0.839 0.625
latest & next 20 min 0.856 0.664 0.845 0.629
latest & next 10 min 0.866 0.673 0.856 0.636
latest & next 5 min 0.881 0.69 0.873 0.646

Secondly, we have validated the proposed collaborative-filtering
model for long-term users trained using the alternating least square
algorithm [5]. We have compared the proposed approach (linear
weighing of click events) with two other approaches:
• Exponential Decay:Weuse half-life exponential decay for event
weights at regular intervals of 3 days. Here, we give more weight
to activities that are recent as compared to old impressions.

• TF-IDF Weighing: We multiply the event weight with inverse
property frequency defined as log( total interactions

interacations on property ). We
give more weightage to less popular properties in the corpus.

From results in table 3, we can deduce that linear weighing performs
best in terms of NDCG for buy and in terms of MAP@6 for rent.
For other cases, it is second best compared to baselines. In the

production environment, the average inference latency for linear
weighing collaborative model is 19.29ms (1000 requests per minute).
Finally, for short-long term users, we use a hybrid approach where
we take the average of scores from both models (long-term and
short-term) and return the top properties accordingly. Moreover,
we have evaluated the inference latency for this model and it is
within our acceptable limits i.e. 29.3 ms (1000 requests per minute).
Table 3: Results for collaborative filtering for long-term users

Experiment Buy Rent
MAP@6 NDCG MAP@6 NDCG

TF-IDF weighting 0.713 0.655 0.614 0.691
Exponential decay 0.865 0.662 0.65 0.596
Linear weighting 0.823 0.685 0.804 0.646

3.0.5 REST API and Integration with UI. RE-RecSys system
is developed in Python and released as REST API. In figure 2, we
present an example of internal API call along with a JSON response.
Finally, the results (property ids and corresponding scores) obtained
from the API are integrated with various front-end widgets on
mobile application, as shown in the figure 3. 2

Figure 2: Demo of internal RE-RecSys call Panel

Figure 3: RE-RecSys integrated with Housing.com App

4 CONCLUSION
We propose an end-to-end pipeline, RE-RecSys, for recommending
properties to real-estate users. We designed an architecture which
can handle different kind of users (cold-start, short-term, long-term,
and short-long term users) keeping a balance of infrastructure
costs and near real-time personalized recommendations (< 40ms
serving 1000 rpm). We have evaluated the performance of proposed
algorithms on a sub-sample of data consisting of interactions from
160, 000 users and compared it with baselines.
2Demo Video is available at https://www.youtube.com/watch?v=On2JGxACnag
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