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Abstract

In this paper, we consider a time-dependent discrete network model with highly varying connectivity.
The approximation by time is performed using an implicit scheme. We propose the coarse scale approx-
imation construction of network models based on the Generalized Multiscale Finite Element Method.
An accurate coarse-scale approximation is generated by solving local spectral problems in sub-networks.
Convergence analysis of the proposed method is presented for semi-discrete and discrete network mod-
els. We establish the stability of the multiscale discrete network. Numerical results are presented for
structured and random heterogeneous networks.

1 Introduction

Multiphysics models on large networks are used in many applications, for example, pore network models in
reservoir simulation, epidemiological models of disease spread, ecological models on multispecies interaction,
medical applications such as multiscale multidimensional simulations of blood flow, fibrous materials, electric
power systems, and many others [1]. In porous media flow simulation, instead of direct numerical simulation
of the flow in the exact pore geometry-based Navier-Stokes flow models, one can be approximated by a
simplified network model of throats and pores [2]. This technique reduces the computational complexity and
allows for simulation using larger computational domains. In simulations of the class of insulation materials
that are composed of a large number of fibers, the network models are used to represent the high-conductive
fibrous [3, 4] The application of the discrete network model to river network simulations is presented in [5].
The implementation of the model is based on the PETSc library for high-performance computing systems
(HPC). The application of the network models to transient hydraulic simulations is considered in [6, 7]
and performed for problems such as water distribution in urban distribution systems, oil distribution, and
hydraulic generation. In [8], the authors present a graph-based computational framework that facilitates the
construction and analysis of large-scale optimization and simulation applications of coupled infrastructure
networks. The dynamic optimal electric power flow is simulated using network models in [9, 10]. In [11],
traffic flows are considered in complex networks, where the model is based on a graph or network of streets in
which vehicles can move. The application of the spatial networks for disease transmission in epidemiological
models is considered in [12]. In [13], a cerebral blood flow is modeled as fluid flow driven through a network
of resistors by pressure gradients. The authors introduce a vascular graph modeling framework based on
these principles to compute blood pressure, flow, and scalar transport in realistic vascular networks. The
simulation of blood flow in microvascular networks and the surrounding tissue is considered in [14]. To
reduce the computational complexity of this issue, the network structures are modeled by a one-dimensional
graph whose location in space is determined by the centerlines of the three-dimensional vessels. Despite
eliminating a significant portion of complexity through this approach, efficiently solving the resulting model
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remains a common challenge. Homogenization and multiscale methods are commonly used techniques for
implementing upscaling to manage the extensive computational complexity associated with large network
models.

Multiscale problems arise in many areas of science and engineering and typically involve multiple spacial
length scales. Traditional numerical methods, such as finite element or finite volume methods, can become
prohibitively expensive when the number of degrees of freedom required to capture all relevant scales becomes
large. To address this issue, multiscale and homogenization methods have been developed that seek to
efficiently capture the essential features of the problem at each length scale. In homogenization methods,
the fine-scale problem is replaced by an equivalent coarse-scale problem that captures the essential features
of the original problem at a lower computational cost [15, 16, 17, 18]. The effective properties for the coarse
grid approximation are computed by analyzing the behavior of unit cells. The most common homogenization
method is based on periodicity, which assumes that the fine-scale problem can be represented as a periodic
array of repeating unit cells. Compared to the homogenization techniques, a multiscale methods form a
broader class of numerical techniques, for example, the Multiscale Finite Element Method [19, 20], the
Heterogeneous Multiscale Method [21], the Local Orthogonal Decomposition method [22], the Variational
Multiscale Method [23], the Generalized Multiscale Finite Element Method [24, 25], the Multiscale Finite
Volume Method [26, 27] and many others. Most multiscale methods are based on constructing the multiscale
basis functions in the local domains to capture fine-scale behavior.

There are various applications of multiscale and upscaling methods for network problems that have
been studied extensively. Upscaling traffic flows in complex networks is considered in [11]. The problem
is considered in two-dimensional regions whose size (macroscale) is much greater than the characteristic
size of the network arcs (microscale). The numerical upscaling method is presented in [28], where a finite
element approximation with a localized orthogonal decomposition method represents the macroscale model.
Moreover, the application to a two-dimensional network model of paper-based materials in the form of
fiber networks is considered [4, 29]. In [1], the nodal displacement in a fiber network model is analyzed
using a multiscale method based on the LOD. In [30, 31], the heterogeneous multiscale method (HMM)
is proposed to couple a network model on the microscale with a continuum scale over the same physical
domain. The coarsening procedures for graph Laplacian problems written in a mixed saddle point form
were presented in [32, 33]. The numerical methods for computing the effective heat conductivity of fibrous
insulation materials are presented in [3]. The fast algorithm is constructed based on the upscaling procedure.
It contains the solution of the auxiliary boundary value problems of the steady-state heat equation in a
representative elementary volume occupied by fibers and air. The presented approach ignores air and is
further simplified by taking advantage of the slender shape of the fibers and assuming that they form a
network. A multiscale method for networks representing flows in a porous medium is presented in [30, 31].
In [34], the mortar coupling is presented to couple pore-scale network models to additional pore-scale or
continuum-scale models using mortars. Mortars are finite-element spaces in two dimensions connecting
distinct subdomains by ensuring pressure and flux continuity at their shared interfaces. In [13], a cerebral
blood flow is modeled as fluid flow in a complex network. The authors construct an upscaling algorithm that
significantly reduces the computational cost. Furthermore, the upscaled model no longer requires extensive
information regarding the topology of the capillary bed. The reduction of the computational complexity of
the simulation of blood flow in microvascular networks and the surrounding tissue is considered in [14]. The
authors employ homogenization to the microvascular network’s fine-scale structures in the study, leading to
a new hybrid approach. This approach models the fine-scale structures as a heterogeneous porous medium,
while the larger vessels’ flow is modeled using one-dimensional flow equations.

This paper introduces the novel approach for upscaling the complex network model based on the General-
ized Multiscale Finite Element Method [24, 25]. The GMsFEM has a significant advantage in incorporating
small-scale features from heterogeneities into coarse-grid basis functions. The multiscale basis functions are
constructed by solving local eigenvalue problems. The online solutions can be calculated for any suitable
boundary condition or forcing by these greatly reduced-dimension multiscale basis functions. In this work,
we present the construction of the reduced-order model for complex, highly heterogeneous networks. The
network model represents the fine-scale model. In contrast, the coarse-scale approximation is represented
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by a much coarser finite element mesh than the fine-scale network. We design multiscale basis functions
to account for the networks’ microscale features by solving the local spectral problems in the primary local
network cluster. The constructed multiscale approximation can handle highly varying connectivity and ran-
dom network structure with a huge system size reduction. Convergence analysis of the proposed method is
presented for semi-discrete and discrete network models. We establish the stability of the multiscale discrete
network for implicit approximation. Numerical implementation of the network model is performed based on
the DMNetwork framework. DMNetwork is a part of PETSc library [35] for high-resolution multiphysics
simulations on the large-scale complex network [6, 7]. DMNetwork provides data and topology management,
parallelization for multiphysics systems over a network, and hierarchical solvers. We present the main com-
ponents of the multiscale method for constructing the coarse-scale system. To test the presented upscaling
approach, we consider regular cubic lattice networks with and without random elimination processes and
random networks [36, 37]. We show that the multiscale method can provide an accurate solution with a
huge system size reduction with fine-scale solution reconstruction.

The paper is organized as follows. In Section 2, we consider the fine-scale model of the complex network
in semi-discrete and discrete forms with stability analysis. In Section 3, we present the construction of the
coarse-scale model using the multiscale method and provide a priory estimate. The numerical results are
presented in Section 4 for structured and random heterogeneous three-dimensional network models. The
conclusion and future works discussion are given in Section 5.

2 Problem formulation

We consider network represented as a undirected graph G = (P,E), where P = {v1, v2, ..., vNv
} is a set

of vertices (nodes vi ∈ Rd, d = 2, 3) and E is a set of two-elements subsets of P (connections or edges
eij = {vi, vj} that connect vertices vi (head) and vj(tail) and i ̸= j). Here Nv is the total number of
vertices/nodes, and Ne is the total number of edges/connections [38]. We suppose that the graph is connected
and weighted. Furthermore, we assume that the network is embedded into the rectangular cuboid

Ω = [0, L1]× ...× [0, Ld].

In Figures 1, we illustrate the two and three-dimensional networks embedded into the square and cube. For
network generation, we use OpenPNM library [36]. We note that the method can be constructed for a general
case without embedding it into a hyper-rectangle. However, it will affect the coarse-grid construction, and
a more general way should be considered based on the graph partitioning.

We assign a heterogeneous property ci for each vertex vi that can be associated with the volume in the
pore-network model [39]. Then, we associate a weight wij to each edge proportional to the area of the
edge and inversely proportional to the distance between nodes [36] (Figure 2). Additionally, we label nodes
associated with the top and bottom boundaries (Γ ⊂ ∂Ω) to set Dirichlet boundary conditions.

Let D(G) be a degree matrix, W = {wij}Nv
i,j=1 be a symmetric weight matrix (wij ≥ 0, wii = 0 and

wij > 0 if eij is an edge) and L(G) = D(G)−W be a graph Laplacian of G, where D(G) = diag(d1, . . . , dNv
)

with di =
∑Nv

j=1 wij [38]. Note that we will write L instead of L(G) for simplicity.

For all u ∈ RNv , we have

(Lu)i =
∑
j∼i

wij(ui − uj),

where we write j ∼ i if nodes xi and xj are connected.
We suppose that wij are bounded weights (0 < w ≤ wij ≤ w <∞) then

uTLu = uTDu− uTWu =

Nv∑
i=1

diu
2
i −

Nv∑
i,j=1

wijuiuj

=
1

2

 Nv∑
i=1

diu
2
i − 2

Nv∑
i,j=1

wijuiuj +

Nv∑
i=1

diu
2
i

 =
1

2

Nv∑
i,j=1

wij(ui − uj)
2 ≥ 0,
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(a) 2D (b) 3D

Figure 1: Illustration of two and three-dimensional networks embedded into the cube

Figure 2: Nodes and connections (edges)

and operator L is positive semidefinite.
Furthermore, we can write the following representation of the graph Laplacian L

L = BMBT ,

where matrixM = {mij}Ne
i,j=1 is the diagonal matrix filled with the edge weights and B = {bij} is the vertex-

edge incident matrix with size Nv ×Ne and element bij = 1 if vi is a head of edge ej , bij = −1 if vi is a tail

of edge ej and zero otherwise. Them, we have (Lu, u) = uTLu = (BTu)TM(BTu) = 1
2

∑Nv

i,j=1 wij(ui −uj)
2.
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2.1 Semi-discrete network model

On the weighted undirected graph G, we consider the following time-dependent problem

ci
∂ui
∂t

+
∑
j

wij(ui − uj) = fi, ∀i ∈ N , 0 < t ≤ T, (1)

where N = {1, . . . , Nv} is the set of indexes, ui is defined on on the node xi, fi is the given nodal source
term and ci is the bounded coefficient, 0 < c ≤ ci ≤ c <∞.

We consider equations (1) with initial conditions

ui = ui,0, ∀i ∈ N , t = 0,

and boundary conditions
ui = gi, i ∈ ND, 0 < t ≤ T,

where ND is the set of node corresponded to the boundary [28].
Let u = (u1, . . . , uNv )

T ∈ RNv be the vector defined on the set of nodes, f = (f1, . . . , fNv )
T ∈ RNv

be the given source term vector, and C be the diagonal matrix, C = diag(c1, . . . , cNv ). Then we can write
problem (2) in the following matrix form

C
∂u

∂t
+ Lu = f, 0 < t ≤ T. (2)

with initial conditions u = u0 for t = 0. Note that, in this formulation, the matrices and right-hand side
vector are modified to incorporate boundary conditions. For instance, to have a symmetric matrix, we do
not include boundary nodes and impose boundary conditions by setting flux on the nodes connected to the
boundary.

Let V ⊂ RNv be the subspace of real-valued functions defined on the set of nodes satisfying Dirichlet
boundary conditions [40]. Then we can write problem formulation in the following equivalent form: find
u ∈ V such that (

C
∂u

∂t
, v

)
+ (Lu, v) = (f, v), ∀v ∈ V, 0 < t ≤ T, (3)

where (u, v) = uT v and (Lu, v) = uTLv is scalar products.
Next, we introduce the following two norms ||u|| =

√
(u, u) and ||u||L =

√
(Lu, u) and show a stability

estimate for a semi-discrete fine-scale scheme (3) [41, 42, 43, 44].

Lemma 1. The solution of the problem (3) satisfies the following a priory estimate

||u(t)||2L ⪯ ||u0||2L +

∫ t

0

||f ||2C−1ds. (4)

Proof. Let v = du
dt in (3) then we have(

C
du

dt
,
du

dt

)
+

(
Lu,

du

dt

)
=

(
f,
du

dt

)
.

Using Young’s inequality and 1
2

d
dt (Lu, u) =

(
Lu, dudt

)
, we obtain the following estimate∥∥∥∥dudt

∥∥∥∥2
C

+
1

2

d

dt
(Lu, u) =

(
f,
du

dt

)
≤
∥∥∥∥dudt

∥∥∥∥2
C

+
1

4
∥f∥2C−1 ,

or
d

dt
∥u∥2L ≤ 1

2
∥f∥2C−1 .

Finally, after integration by time, we obtain inequality (4) .
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2.2 Time-approximation and discrete network model

Let un = u(tn) and un−1 = u(tn−1), where tn = nτ , n = 1, 2, ... and τ > 0 be the uniform time step size.
For approximation by time, we use backward Euler’s to obtain an implicit fully discrete scheme: find un ∈ V
such that (

C
un − un−1

τ
, v

)
+ (Lun, v) = (fn, v), ∀v ∈ V, n = 1, 2, ... (5)

with initial conditions u0 = u0. Similarly to the semi-discrete problem (3), we have the following stability
estimate [41, 42].

Lemma 2. The solution of the problem (5) is unconditionally stable and satisfies the following estimate

||un||2L ⪯ ||u0||2L + τ

n∑
k=1

||fk||2
(C+ τ

2L)
−1 . (6)

Proof. The equation (5) can be written as follows(
C
un − un−1

τ
, v

)
+ (Lun, v) =

((
C +

τ

2
L
) un − un−1

τ
, v

)
+

1

2
(L(un + un−1), v) = (fn, v).

Let v = un−un−1

τ then we have((
C +

τ

2
L
) un − un−1

τ
,
un − un−1

τ

)
+

1

2

(
L(un + un−1),

un − un−1

τ

)
=

(
fn,

un − un−1

τ

)
.

Using the following inequality for the right-hand side(
fn,

un − un−1

τ

)
≤
∥∥∥∥un − un−1

τ

∥∥∥∥2
(C+ τ

2L)
+

1

4
∥fn∥2(C+ τ

2L)
−1 ,

we obtain the following estimate for L = LT

1

2τ

(
L(un + un−1), (un − un−1)

)
=

1

2τ
(Lun, un) +

1

2τ
(Lun−1, un−1) ≤ 1

4
∥fn∥2(C+ τ

2L)
−1 ,

or
||un||2L ≤ ||un−1||2L +

τ

2
∥fn∥2(C+ τ

2L)
−1 .

We note that the presented discrete network model with implicit approximation by time leads to solving
the large system of equations on each time step. To reduce the size of the system, we use a homogenization
approach and construct a coarse-scale approximation by introducing local spectral multiscale basis functions.

3 Multiscale model order reduction

Multiscale methods form a broad class of numerical techniques where most multiscale methods are based on
constructing the multiscale basis functions in the local domains to capture fine-scale behavior. In this work,
we construct a local spectral multiscale basis function for the network model described above and follow the
procedure defined in the Generalized Multiscale Finite Element Method (GMsFEM) [45, 25, 46].

Let TH be a coarse mesh in Ω

TH =

Nc⋃
i=1

Ki,
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(a) 2D (b) 3D

Figure 3: Illustration of coarse grid TH and local domain ωi with sub-network Gωi

where Ki is the coarse cell, and Nc is the number of coarse cells. We denote {yi}Ni=1 the nodes of the coarse
mesh TH , where N is the number of coarse grid nodes [47]. We define ωi as a neighborhood of the node yi

ωi =
⋃

{Kj ∈ TH : yi ∈ K̄j},

and ωKj as a the neighborhood of the element Kj

ωKj =
⋃

{ωi : Kj ∈ ωi}.

In this work we suppose that Ω = [0, L1] × ... × [0, Ld], where d = 2, 3 is the dimension. Furthermore, we
consider a uniform mesh with square and cubic cells for simplicity

Ki = [yi, yi +He1]× ...× [yi, yi +Hed],

where H is the coarse grid size.
Next, we associate a sub-network Gωi to each ωi. In Figure 3, we depict a coarse 5 × 5 mesh for 2D

network and 5× 5× 5 coarse grid for 3D network with local domain ωi and corresponded sub-network Gωi .
Note that in implementing the sub-network extraction, we ensure that any node from the global graph G is
contained on exactly one coarse element.

The objective of this paper is to develop and analyze a multiscale finite element method for discrete
network models defined above. The main idea of the multiscale method is in construction of the coarse-scale
approximation of the network by construction of the accurate multiscale basis functions {ψms

r,i }
Mi
r=1 in each

local domain Gωi (sub-network), where Mi is the number of local basis functions. In the multiscale method,
we define offline and online stages:

• Offline stage:

– Coarse grid (TH) and local domains construction (sub-network, Gωi).
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– Multiscale space construction by the solution of the local eigenvalue in each Gωi

Vms = span{ψms
r,i : 1 ≤ i ≤ N, 1 ≤ r ≤Mi}.

• Online stage:

– Solution of the coarse-scale problem (Galerkin approximation): find u ∈ Vms such that(
C
∂ums

∂t
, vms

)
+ (Lums, vms) = (f, vms), ∀vms ∈ Vms. (7)

We use a same-time approximation as for fine-scale problem with unms = ums(tn), where tn = nτ ,
n = 1, 2, ... and τ > 0. By backward Euler’s scheme, we obtain a fully discrete scheme: find unms ∈ Vms such
that (

C
unms − un−1

ms

τ
, vms

)
+ (Lunms, vms) = (fn, vms), ∀vms ∈ Vms, n = 1, 2, ... (8)

Next, we discuss details of the multiscale space construction and coarse-scale model generation with some
implementation aspects.

3.1 Multiscale basis functions and algorithm

In this work, we use the OpenPNM [36] to construct a network and assign properties. The constructed net-
work is saved in the text files with the corresponding properties. To implement the numerical solution of the
fine-scale discrete network model, we use a PETSc library with DMNetwork framework [6, 7]. DMNetwork
provides data and topology management, parallelization for multiphysics systems over a large network, and
hierarchical solvers.

For the local network Gωi , we have

L(ωi) = D(ωi)−W (ωi), D(ωi) = diag(d1, . . . , dNωi
v
), di =

N
ωi
v∑

j=1

wij ,

where W (ωi) is the local weight matrix and Nωi
v is the number of nodes of local network Gωi associated

with the local domain ωi.
For the sub-network Gωi , the local matrix Lωi is positive semidefinite for wij > 0. Therefore (1) the

eigenvalues 0 = λωi
1 ≤ λωi

2 ≤ . . . ≤ λωi

N
ωi
v

of Lωi are real and nonnegative, and there is an orthonormal basis

of eigenvectors of Lωi ; and (2) the smallest eigenvalue λωi
1 = 0 and corresponded eigenvector is one [38].

Therefore the dimension of the nullspace of Lωi (dimension of the multiplicity of the eigenvalue 0) is equal to
the number of connected components C1, . . . , CC (clusters) of the local network Gωi . Therefore the vectors
fl (fl = (fl,1, . . . , fl,Nωi

v
) such that fl,j = 1 if xj ∈ Cl and fj = 0 otherwise, l = 1, . . . , C) are form a basis

of the nullspace. In the numerical implementation of the eigenvalue problem solution, we use the SLEPc
library [48]. We preprocess the local network Gωi by extracting the primary cluster on which we solve a local
eigenvalue problem. We suppose that the size of the primary cluster is much larger than the others. In order
to incorporate disconnected clusters into the local multiscale space, we use indicator vectors fl. Note that we
can solve an eigenvalue problem in each sufficiently big cluster to incorporate local fine-scale behavior and
construct an accurate approximation for the general case. For network preprocessing, we use existing tools
from the OpenPNM library [36]. Then, we suppose that Gωi has no isolated vertices, and therefore the local
degree matrix Dωi contains positive entities and is invertible. Then similarly to the GMsFEM for standard
finite element-based definition, we use a generalized eigenvalue problem that gives a good approximation
space [25, 47].

To construct a multiscale basis functions in each sub-network Gωi , we solve a local generalized eigenvalue
problem

Lωiϕωi
r = λωi

r D
ωiϕωi

r (9)
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Figure 4: Illustration of steps in the multiscale method

where Lωi = L(ωi) and D
ωi = D(ωi) are the matrices defined on the sub-network Gωi .

Next, we choose firstMi eigenvectors corresponded to the smallest eigenvalues, ϕωi
r , r = 1, . . . ,Mi in each

Gωi with i = 1, . . . , N . In order to form a continuous space, we multiply eigenvalues to the linear partition
of unity functions and form a multiscale space

Vms = span{ψms
r,i : 1 ≤ i ≤ N, 1 ≤ r ≤Mi}.

where ψms
r,i = χiϕ

ωi
r and χi is the projection of the linear partition of unity functions in ωi to the nodes of

corresponded sub-network Gωi .
We implement the presented multiscale algorithm based on the algebraic way by forming the projection

matrix
R = [ψms

1,1 , . . . , ψ
ms
M1,1, . . . , ψ

ms
1,N , . . . , ψ

ms
MN ,N ]T .

To define a coarse grid approximation, we use a projection matrix and form a coarse-scale matrix and
right-hand side vector

CH = RCRT , LH = RLRT , FH = RF.

Finally, we solve a coarse-scale system each time tn

CH
unH − un−1

H

τ
+ LHu

n
H = FH ,

and reconstruction of the fine-scale solution unms = RTunH . The illustration of the main steps of the algorithm
is depicted in Figure 4. We note that all offline calculations are independent for each local domain ωi and
can be done entirely parallelly. All coupling is done on the coarse level and generally does not require
parallelization. However, for large systems, the size of the coarse-scale approximation can still lead to the
large system, and further parallelization of the linear system solution at time tn can be done based on the
PETSc implementation of the parallel linear or nonlinear solvers (KSP and SNES classes). Furthermore, the
more advanced models can be upscaled similarly with advanced time-stepping techniques available in the
TS framework of PETSc. We will consider such advanced coupling in future works.

3.2 Convergence analysis

In this part of the work, we present a priory error estimate of the multiscale method for network models.
We note that the analysis presented below is closely related to the analysis in [24, 47, 49, 50, 51]. We start
with the definition of global norms used in the presented analysis.
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Let d(u, u) = (Du, u) = uTDu and A = D−1L then

d(u, u) = ||u||2D,
d(Au, u) = (Au)TDu = uTATDu = uT (D−1L)TDu = uTLu = a(u, u) = ||u||2L,
d(Au,Au) = (Au)TD(Au) = uT (D−1L)TD(D−1L)u = uT (LTD−1L)u = ||Au||2D,

for D = DT and L = LT [47].
For each ωi (i = 1, . . . , N) we define the local projection

Pωi

Mi
v =

Mi∑
r=1

(vTDωiϕωi
r )ϕωi

r , (10)

for v ∈ V and given Mi in the local eigenvalue problem (9).
For Pωi

Mi
the following inequalities holds [47, 50]

||v − Pωi

Mi
v||2Dωi ≤ 1

λωi

Mi+1

||v − Pωi

Mi
v||2Lωi ≤ 1

λωi

Mi+1

||v||2Lωi ,

||v − Pωi

Mi
v||2Dωi ≤ 1

(λωi

Mi+1)
2
||A(v − Pωi

Mi
v)||2Dωi ≤ 1

(λωi

Mi+1)
2
||Av||2Dωi ,

||v − Pωi

Mi
v||2Lωi ≤ 1

λωi

Mi+1

||A(v − Pωi

Mi
v)||2Dωi ≤ 1

λωi

Mi+1

||Av||2Dωi .

(11)

Next, we define the coarse projection Π : V → Vms by

Πv =

N∑
l=1

χl(P
ωl

Ml
v). (12)

and v −Πv =
∑N

l=1 χl(v − Pωl

Ml
v).

Lemma 3. Assume that u ∈ V is the fine scale solution of (3) then the following estimate holds

||u−Πu||2D ≤ 1

λ2M+1

||Au||2D

where λM+1 = minK λK,M+1 and λK,M+1 = minyl∈K λωl

Ml+1.

Proof. Using that χl ≤ 1 we have

||u−Πu||2DK ≤
∑
yl∈K

||χl(v − Pωl

Ml
u)||2DK ≤

∑
yl∈K

||u− Pωl

Ml
u||2Dωl .

By combing with estimate (11), we obtain the result.

Lemma 4. Assume that u ∈ V is the fine scale solution of (3) then the following estimate holds

||u−Πu||2L ≤
(

1

H2λ2M+1

+
1

λM+1

)
||Au||2D

where λM+1 = minK λK,M+1 and λK,M+1 = minyl∈K λωl

Ml+1.
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Proof. For z = {zj}Nv
j=1 with zj = χl,jvj , we have

||z||2Lωl = zTLωlz =
1

2

N
ωl
v∑

i,j=1

wij(zi − zj)
2 =

1

2

N
ωl
v∑

i,j=1

wij(χl,ivi − χl,jvj)
2

=
1

2

N
ωl
v∑

i,j=1

wij(χl,i(vi − vj)− vj(χl,j − χl,i))
2 ≤ 1

2

N
ωl
v∑

i,j=1

wijχ
2
l,i(vi − vj)

2 +
1

2

N
ωl
v∑

i,j=1

wijv
2
j (χl,i − χl,j)

2.

Then for z = χl(v − Pωl

Ml
v) using properties of partition of unity function [52], we have

||u−Πu||2LK ≤
∑
yl∈K

||χl(v − Pωl

Ml
u)||2Lωl ≤

∑
yl∈K

1

H2
||u− Pωl

Ml
u||2Dωl +

∑
yl∈K

||u− Pωl

Ml
u||2Lωl .

By combing with estimate (11), we obtain

||u−Πu||2LK ≤

(
1

H2λ2K,M+1

+
1

λK,M+1

) ∑
yl∈K

||Au||2Dωl

with λK,M+1 = minyl∈K λωl

Ml+1.
Then, we have

||u−Πu||2L =
∑

K∈TH

||u−Πu||2LK ≤
∑

K∈TH

(
1

H2λ2K,M+1

+
1

λK,M+1

) ∑
yl∈K

||A(u− Pωl

Ml
u)||2Dωl

≤
(

1

H2λ2M+1

+
1

λM+1

) ∑
yl∈K

||Au||2Dωl ,

with λM+1 = minK λK,M+1.

3.2.1 Multiscale semi-discrete network

In this subsection, we consider semi-discrete network (7) and give a priory estimates for multiscale approxi-
mation.

Stability estimate derivation is similar to 4. We let vms =
dums

dt = (ums)t in (7) then we have

(C(ums)t, (ums)t) + (Lums, (ums)t) = (f, (ums)t) .

Then by Young’s inequality, we obtain the following estimate

∥(ums)t∥2C +
1

2

d

dt
(Lums, ums) ≤ ∥(ums)t∥2C +

1

4
∥f∥2C−1 .

Then after integration by time, we obtain the following lemma.

Lemma 5. The solution of the problem (7) satisfies the following a priory estimate

||ums(t)||2L ≤ ||ums(0)||2L +
1

2

∫ t

0

||f ||2C−1ds. (13)

Next, we can obtain the error estimate of the GMsFEM for the semi-discrete network model.
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Theorem 1. Assume that u ∈ V is the fine scale solution of (3) and ums ∈ Vms is the multiscale solution
of (7) then the following error estimate holds

||(u− ums)(t)||2C +

∫ t

0

||u− ums||2Lds ⪯ ||(w − ums)(0)||2C +
1

λ2M+1

||Au||2D

+

∫ t

0

((
1

H2λ2M+1

+
1

λM+1

)
||Au||2D +

1

λ2M+1

||(Au)t||2D
)
ds

Proof. Subtracting (3) from (7) , we have

(C(u− ums)t, v) + (L(u− ums), v) = 0 ∀v ∈ Vms.

We write u − ums = (u − w) + (w − ums) with w = Πu and since w ∈ Vms we take v = w − ums and
obtain

(C(w − ums)t, w − ums) + (L(w − ums), w − ums) = (C(w − u)t, w − ums) + (L(w − u), w − ums). (14)

For the left part of (14), we have

(C(w − ums)t, w − ums) =
1

2

d

dt
||w − ums||2C , (L(w − ums), w − ums) = ||w − ums||2L.

For the right part of (14) by Young’s inequality, we obtain

(C(w − u)t, w − ums) ≤
1

4δ1
||(w − u)t||2C + δ1||w − ums||2C ,

and

(L(w − u), w − ums) ≤
1

4δ2
||w − u||2L + δ2||w − ums||2L.

Combing estimates for right and left parts of (14) with δ1 = δ2 = 1/2, we can obtain

d

dt
||w − ums||2C + ||w − ums||2L ≤ ||(w − u)t||2C + ||w − ums||2C + ||w − u||2L.

By the Gronwall Lemma we obtain

||(w − ums)(t)||2C +

∫ t

0

||w − ums||2Lds ≤ ||(w − ums)(0)||2C +

∫ t

0

(
||(w − u)t||2C + ||w − u||2L

)
ds.

Then using triangle inequality we have

||(u− ums)(t)||2C +

∫ t

0

||u− ums||2Lds ≤ ||(w − ums)(0)||2C + ||(w − u)(t)||2C

+

∫ t

0

(
||(w − u)t||2C + ||w − u||2L

)
ds

Finally with ||u− v||2C ⪯ ||u− v||2D and using Lemmas 3 and 4, we obtain the result.

Note that, we have Au = D−1Lu = D−1(f − Cut) then

||Au||2D = ||f − Cut||2D−1 . (15)
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Therefore the error estimate in Theorem 1 can be written as follows

||(u− ums)(t)||2C +

∫ t

0

||u− ums||2Lds ⪯ ||(w − ums)(0)||2C +
1

λ2M+1

||f − Cut||2D−1

+

∫ t

0

((
1

H2λ2M+1

+
1

λM+1

)
||f − Cut||2D−1 +

1

λ2M+1

||(f − Cut)t||2D−1

)
ds

(16)

If we map the local eigenvalue problem to size one domain [47], then the eigenvalues scale with H−2 and we
obtain

||(u− ums)(t)||2C +

∫ t

0

||u− ums||2Lds ⪯ H2λ−1
M+1 (17)

with accurate choose of ums(0).

3.2.2 Multiscale discrete network

Finally, we present a priory estimate for a fully discrete problem (8).
Stability estimate derivation is similar to Lemma 18. We let vms = (unms − un−1

ms )/τ then(
C
unms − un−1

ms

τ
,
unms − un−1

ms

τ

)
+ (Lunms,

unms − un−1
ms

τ
)

=

((
C +

τ

2
L
) unms − un−1

ms

τ
,
unms − un−1

ms

τ

)
+

1

2

(
L(unms + un−1

ms ),
unms − un−1

ms

τ

)
=

(
fn,

unms − un−1
ms

τ

)
≤
∥∥∥∥unms − un−1

ms

τ

∥∥∥∥2
(C+ τ

2L)
+

1

4
∥fn∥2(C+ τ

2L)
−1 ,

Then we have

1

2τ

(
L(unms + un−1

ms ), (unms − un−1
ms )

)
=

1

2τ
(Lunms, u

n
ms) +

1

2τ
(Lun−1

ms , u
n−1
ms ) ≤ 1

4
∥fn∥2(C+ τ

2L)
−1 ,

or
||unms||2L ≤ ||un−1

ms ||2L +
τ

2
∥fn∥2(C+ τ

2L)
−1 .

Lemma 6. The solution of the problem (8) is unconditionally stable and satisfies the following estimate

||unms||2L ⪯ ||u0ms||2L + τ

n∑
k=1

||fk||2
(C+ τ

2L)
−1 . (18)

Next, we present the error estimate of the multiscale method for the discrete network model.

Theorem 2. Assume that un ∈ V is the fine scale solution of (5) and unms ∈ Vms is the multiscale solution
of (8) then the following error estimate holds

||un − unms||2C + τ

n∑
k=1

||uk − ukms||2L ⪯ ||u0 − u0ms||2C

+

n∑
k=1

(
τ

(
1

H2λ2M+1

+
1

λM+1

)
||Auk||2D +

1

λ2M+1

||Auk||2D
)
.
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Proof. Subtracting (5) from (8) , we have(
C
(un − unms)

τ
, v

)
−
(
C
(un−1 − un−1

ms )

τ
, v

)
+ (L(un − unms), v) = 0 ∀v ∈ Vms.

For un − unms = (wn − unms) + (un − wn) with wn = Πun and v = wn − unms, we have(
C
(wn − unms)

τ
, wn − unms

)
+ (L(wn − unms), w

n − unms)

=

(
C
(wn − un)

τ
, wn − unms

)
+

(
C
(un−1 − un−1

ms )

τ
, wn − unms

)
+ (L(wn − un), wn − unms).

(19)

For the left part of (19), we have

(C(wn − unms), w
n − unms) = ||wn − unms||2C , (L(wn − unms), w

n − unms) = ||wn − unms||2L.

For the right part of (19) by Young’s inequality, we have

(C(wn − un), wn − unms) ≤
1

4δ1
||wn − un||2C + δ1||wn − unms||2C ,

(
C(un−1 − un−1

ms ), wn − unms

)
≤ 1

4δ2
||un−1 − un−1

ms ||2C + δ2||wn − unms||2C ,

and

(L(wn − un), wn − unms) ≤
1

4δ3
||wn − un||2L + δ3||wn − unms||2L.

Then with δ1 = δ2 = 1/4 and δ3 = 1/2, we obtain

||wn − unms||2C + τ ||wn − unms||2L ⪯ ||un−1 − un−1
ms ||2C + ||wn − un||2C + τ ||wn − un||2L.

Using triangle inequality we have

||un − unms||2C + τ ||un − unms||2L ⪯ ||un−1 − un−1
ms ||2C + ||wn − un||2C + τ ||wn − un||2L.

Therefore

||un − unms||2C + τ

n∑
k=1

||un − unms||2L ⪯ ||u0 − u0ms||2C +

n∑
k=1

(
||wn − un||2C + τ ||wn − un||2L

)
.

Finally using Lemmas 3 and 4, we obtain the result.

4 Numerical results

In this section, we present numerical results for the proposed multiscale method.
To test our approach, we consider three networks:

• Network-1 : Structured network with 15625 nodes and 45000 edges. This network is related to the
finite volume approximation in the heterogeneous domain on the 25× 25× 25 structured grid.

• Network-2 : Structured network with dropping out of 12765 nodes and 24718 edges. This network
is related to the previous 25 × 25 × 25 structured grid with an additional dropout procedure, where
we randomly remove approximately 20% of nodes and connections with the additional removal of
disconnected pores and broken connections to make a ’healthy’ network.
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• Network-3 : Unstructured network with 15625 nodes and 119713 edges. This random network is formed
by the Delaunay tessellation of arbitrary base points implemented in openpnm.

In OpenPNM, we use a Cubic with and without throats, nodes dropping, and random structures (from
left to right in Figure 5). Random elimination is applied for some nodes and throats in the second network.
After that, the isolated elements and clusters are removed to prevent numerical problems in simulating flow
within the network [37]. Next, to generate a heterogeneous property, we randomly assign node volumes, and
throat area, find the length of each throat, and calculate the connectivity coefficient based on the area and
length of the throat. Additionally, we set labels for nodes on the top and bottom boundaries.

(a) Network-1: Structured (FVM
in heterogeneous domain)

(b) Network-2: Structured with
dropout (c) Network-3: Unstructured

Figure 5: Computational domains: Network-1, Network-2, and Network-3

The first network is related to the convenient finite volume approximation of the parabolic equation in the
heterogeneous domain. In this network, we assign a heterogeneous diffusion coefficient to each node (cell) and
calculate connection weight as a harmonic average of the cell’s coefficients that it connect. For the Network-1,
we have kmin = 3.49 and kmax = 148.41 as minimum and maximum for the diffusion coefficient. We have
cmin = 0.05 and cmax = 0.2 as minimum and maximum values for the time derivative coefficient. To set
heterogeneous properties on the second and third networks, we randomly assign node (pore) size diameters,
assign edge (throat) diameters based on the pores it connects, and calculate connection weight based on
the throat diameter and distance between pores. This algorithm is convenient in pore-scale simulations
using pore network models. For the Network-2, we have kmin = 0.0055 and kmax = 0.116 as minimum
and maximum for the connection’s coefficients. For the time derivative coefficient, we have cmin = 0.0027
and cmax = 0.03 as a minimum and maximum for the node’s coefficients. For the Network-3, we have
kmin = 0.00029 and kmax = 1.45 as minimum and maximum for the connection’s coefficients. For the time
derivative coefficient, we have cmin = 0.0027 and cmax = 0.03 as a minimum and maximum for the node’s
coefficients.

We apply the presented multiscale method for each network and investigate accuracy for different number
numbers of basis functions. The networks are embedded into domain (Ω = [0, 1]× [0, 1]× [0, 1]. We set zero
source terms and set Dirichlet boundary conditions on top and bottom boundaries with one and zero values,
respectively. The time used in simulation was T = 0.5 (Network-1) and T = 50 (Network-2 and 3) with 50
time steps. The coarse grid is 5×5×5. In Figure 6, we represent eigenvectors corresponding to the first eight
smallest eigenvalues for each network. Numerical implementation of the network model is performed based
on the PETSc DMNetwork framework [35, 7, 5]. The basis functions are constructed using a generalized
eigenvalue solver from SLEPc [48].

To compare the accuracy of the presented multiscale method, we use the relative L2 error in percentage.
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(a) Local domain and Network-1 (b) Local domain and Network-2 (c) Local domain and Network-3

(d) Local eigenvectors for
Network-1

(e) Local eigenvectors for
Network-2

(f) Local eigenvectors for
Network-3

Figure 6: Illustration of the local domains with first eight eigenvectors.

(a) Fine-scale solution: u5, u20 and u50

(b) Multiscale solution: u5
ms, u

20
ms and u50

ms

Figure 7: Numerical solution for Network-1.
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(a) Fine-scale solution: u5, u20 and u50

(b) Multiscale solution: u5
ms, u

20
ms and u50

ms

Figure 8: Numerical solution for Network-2.

Nodes M Network-1 Network-2 Network-3
216 1 3.071 16.102 4.329
432 2 1.628 12.880 4.278
864 4 1.023 7.996 4.066
1728 8 0.410 3.688 2.868
2592 12 0.349 2.064 2.376
3456 16 0.207 1.479 1.976

Table 1: Numerical results. The number of unknowns on the fine-scale model is 15625 for Network 1, 12765
for Network-2, and 15625 for Network-3

The errors are calculated using the following formula on the fine grid:

en =
||un − unms||L2

||un||L2

× 100%,

where n is the time layer, un are the reference (fine grid) solution and unms are the solution using the
multiscale method. We use the corresponding fine-grid solution for each test problem as a reference solution.

In Figures 7,8, and 9, we depict the reference (fine grid) and multiscale solution for Network-1, Network-
2, and Network-3, respectively. The simulation results are presented for three time layers t5, t20 and t50
(from left to right). The reference solution is presented on the first row, and a multiscale solution using 16
multiscale basis functions on the second row. From the fine-scale solution, we observe a significant influence of
the heterogeneity properties and network structure on the solution. The fine-scale network model leads to the
system of equations with DOFh = 15625 for Network-1, DOFh = 12765 for Network-2 and DOFh = 15625
for Network-3. By the multiscale method, we reduce the size of the system to DOFH = 1728 for eight
multiscale basis functions with 0.4 %, 2.06 %, and 2.8 % of errors for Network-1, Network-2, and Network-3.
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(a) Fine-scale solution: u5, u20 and u50

(b) Multiscale solution: u5
ms, u

20
ms and u50

ms

Figure 9: Numerical solution for Network-3.

(a) Network-1 (b) Network-2 (c) Network-3

Figure 10: Dynamic of error for Network-1, Network-2 and Network-3

We have DOFH = 3456 for 16 multiscale basis functions with 0.2 %, 1.4 % and 1.9 % of errors for Network-1,
Network-2 and Network-3.

In Table 1, we present errors at the final time for Network-1, Network-2, and Network-3. We have good
accuracy for the multiscale method with a sufficient number of multiscale basis functions. For example, we
have 3.07 %, 16.1 %, and 4.3 % of relative error for one basis function per local domain for Network-1,
Network-2, and Network-3, respectively. When we use eight multiscale basis functions, errors reduce to
0.4 %, 2.06 %, and 2.8 %. We observe a significant influence of the network structure on the multiscale
method solution, where for the first structure network, we obtain a better accuracy for a multiscale method
using a smaller number of basis functions. Unstructured networks give a more significant error using one
basis function, but accurate approximation can be performed with a larger number of basis functions. The
dynamic of the errors is presented in Figure 10 for Network-1, Network-2, and Network-3. We observe that
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the errors reduce over time and give an accurate solution for structured and unstructured networks.

5 Conclusion

We considered a time-dependent model on structured and random networks. The time approximation was
performed using an implicit scheme. The stability of the semi-discrete and discrete networks was presented.
The multiscale method for the network model was developed and analyzed for network models. The proposed
approach is based on the generalized multiscale finite element method. To find a multiscale basis function, we
solve local eigenvalue problems in sub-networks. Convergence analysis of the proposed method was presented
for semi-discrete and discrete network models with stability estimates. Numerical results were presented for
structured and random heterogeneous networks to confirm the theory.
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