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ABSTRACT

Multimodal recommendation aims to recommend user-preferred
candidates based on her/his historically interacted items and asso-
ciated multimodal information. Previous studies commonly employ
an embed-and-retrieve paradigm: learning user and item repre-
sentations in the same embedding space, then retrieving similar
candidate items for a user via embedding inner product. However,
this paradigm suffers from inference cost, interaction modeling, and
false-negative issues. Toward this end, we propose a new MMGRec
model to introduce a generative paradigm into multimodal recom-
mendation. Specifically, we first devise a hierarchical quantization
method Graph RQ-VAE to assign Rec-ID for each item from its mul-
timodal and CF information. Consisting of a tuple of semantically
meaningful tokens, Rec-ID serves as the unique identifier of each
item. Afterward, we train a Transformer-based recommender to
generate the Rec-IDs of user-preferred items based on historical
interaction sequences. The generative paradigm is qualified since
this model systematically predicts the tuple of tokens identifying
the recommended item in an autoregressive manner. Moreover, a
relation-aware self-attention mechanism is devised for the Trans-
former to handle non-sequential interaction sequences, which ex-
plores the element pairwise relation to replace absolute positional
encoding. Extensive experiments evaluate MMGRec’s effectiveness
compared with state-of-the-art methods.
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1 INTRODUCTION

With the popularity of multimedia-centric scenarios like social me-
dia and micro-video websites, multimodal recommendation systems
are gaining widespread attention and adoption. These systems gen-
erally follow the embed-and-retrieve paradigm. The paradigm
first incorporates multimodal information with collaborative filter-
ing (CF) [26] to learn representations for users and items in the
embedding stage, and then locates the preferred items for users by
measuring inner product similarity in the retrieval stage. Relevant
research primarily focuses on enhancing representation learning in
the embedding stage. For example, ACF [6] introduces a hierarchical
attention mechanism to select informative modality content, while
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MMGCN [37] incorporates Graph Convolution Network (GCN) to
achieve modal information aggregation and propagation.

Despite the remarkable performance, existing research overlooks
the inherent issues caused by similarity calculation in the retrieval
stage. First, similarity calculation becomes overwhelming. With
I items and U users, capturing the top similar K items for each
user incurs time complexity O(UID + UllogK), where D is the di-
mension of user/item representations. As users/items increase, the
time consumption significantly grows, affecting recommendation
efficiency. Secondly, linear inner product inadequately models user-
item interactions’ intricate structure [15]. Although some studies
model non-linear interaction with neural networks [15] and metric
learning [17], they sacrifice similarity calculation speed, exacerbat-
ing efficiency issues. Lastly, the paradigm assumes that interacted
items are inherently closer to user preference than uninteracted
ones [25], leading to a false-negative issue [34] since the absence
of interaction does not necessarily imply dislike [41].

To address the issues, recent work [24] inherits the Differentiable
Search Index algorithm [30] and presents a generative paradigm-
based recommendation method, which aims to directly generate
the list of user-preferred items without similarity calculation. To
achieve this goal, two components, including Semantic ID As-
signment and Semantic ID Generation, are designed to answer
the questions: how to represent an item with a semantic ID and how
to predict the semantic IDs of preferred items for a user. Initially,
the method assigns each item a unique semantic ID — a sequence
of semantic tokens learned from its textual description. Then, a
Transformer [31] model is trained as the recommendation agent
to predict the semantic ID of the next item based on the user’s
chronological interaction sequence. Each ID token is yielded with
autoregressive decoding, and multiple item IDs are generated with
beam search [29]. However, for multimodal recommendation, there
are still two technical challenges untouched in the two components:

e Semantic ID Assignment: Existing ID assignment approaches
employ unimodal semantic clustering, inevitably leading to ID
collision among similar items. Although random distinction [24,
30] is introduced to address this, such randomness information
in ID is difficult to learn with Transformer, negatively affecting
the performance of generative recommendation.

e Semantic ID Generation: The position and order information
in historical interaction sequences is important for Transformer



to understand user behavior and preference. However, this in-
formation often lacks explicit references (e.g., timestamp, rating)
and varies across different users. Therefore, it is challenging to
make the Transformer aware of each item’s position within the
historical interaction sequence.

To overcome the challenges, we design a new ID structure —
Rec-ID, and present a Multimodal Generative Recommendation
(MMGRec) framework for Rec-ID assignment and generation. Specif-
ically, Rec-ID comprises a sequence of semantic tokens followed by
a popularity token, leveraging the correlation between item popu-
larity and semantic information. For Rec-ID assignment, we devise
a Graph Residual-Quantized Variational AutoEncoder (Graph RQ-
VAE) to fuse item multimodal information with CF information and
quantize them into a sequence of semantic tokens. Then, we rank
the items with identical semantic tokens by popularity and use
their ranking index as the last token to avoid the collision problem.
After that, for Rec-ID generation, we train a Transformer-based
model to directly generate the preferred items’ Rec-IDs based on
users’ historical interactions. To capture item position information
in historical interaction sequences, we design a relation-aware self-
attention mechanism for Transformer. By extending the original
self-attention, this mechanism constructs user-specific relations
among items under the supervision of user parameters. We conduct
extensive experiments on three public datasets to demonstrate the
rationality and effectiveness of the proposed MMGRec.

Overall, the main contributions of our work are three-fold:

e We propose MMGRec, a novel Transformer-based recommen-
dation framework that consists of Rec-ID assignment and gen-
eration. This is the first effort known to us to introduce the
generative paradigm into multimodal recommendation.

e Technically, we design a multimodal information quantization
algorithm Graph RQ-VAE for Rec-ID assignment, and a relation-
aware self-attention mechanism within Transformer for Rec-ID
generation.

o We conduct empirical studies on three real-world datasets. Exten-
sive results demonstrate that MMGRec achieves state-of-the-art
performance with promising inference efficiency.

2 PRELIMINARY

This work is inspired by TIGER (short for Transformer Index for
GEnerative Recommenders), a recent generative model for sequential
recommendation [24]. Its foundation lies in a novel semantic ID for
item identification, consisting of an ordered semantic token tuple:

(Cl, e $CM—1) = ¢(ft)s (l)

where f! is the item’s textual feature converted from descriptions
using Sentence-T5 [23]. #(-) indicates the vector quantization algo-
rithm [42] converting f? into a tuple of M — 1 semantic tokens.

To address the collision problem that items with similar textual
features tend to be assigned the same tokens, the method inserts
an extra token at the end of the semantic tokens to ensure the
uniqueness of IDs. Specifically, given K items with the same tokens
(1, -+ ,cpm—1), it randomly sorts the items and sets their corre-
sponding indices in the sorted order as the extra tokens:

(p1, P2, - » pK) = argsort, ;4 (itemy, itemy, - - - , itemg ), (2)

where argsort, ;,,;(+) is the random ranking function to sort K items.
pr € {1,2,---,K} denotes the index of the k-th item in the order.
Then, after concatenating them at the end of semantic tokens, the
semantic ID of item k can be obtained as:

Sk = (e, eM-1.Pk)- ®)

With the obtained semantic ID, a Transformer-based sequence-
to-sequence model is trained on the sequences of semantic IDs
associated with items from a user’s chronological interactions. The
objective is to predict the semantic ID of the next item after the
sequence. This model autoregressively decodes the tokens of seman-
tic ID identifying the next item, thereby qualifying as a generative
recommendation.

However, this method has notable limitations. The random token
lacks semantic meaning and is challenging to model using statistical
machine learning techniques like Transformer. Additionally, the
method struggles with the input of non-sequential interactions.

3 METHOD

In this section, we first elaborate on our designed MMGRec model
according to its two components — Rec-ID assignment and Rec-ID
generation. After that, we detail the model training and inference,
followed by the discussion regarding the time complexity.

3.1 Rec-ID Definition

As the foundation of generative recommendation, we define a new
item identifier Rec-ID equipped with two attributes: 1) Semantics,
where the Rec-ID condenses the semantic information of the item,
and 2) Uniqueness, where the Rec-ID is capable of distinguishing
each item from others.

Towards this end, Rec-ID is designed to consist of a sequence of
semantic tokens and an extra token based on the item’s popularity.
The motivation is that the popularity of an item is relevant to its
semantic information. Hence, during the autoregressive generation
phase, the last token (i.e., popularity token) can be predicted by
jointly analyzing the semantic tokens generated before.

3.2 Rec-ID Assignment

According to the design of Rec-ID, we detail the Rec-ID assignment
to describe how to allocate the semantic tokens and the popularity
token for each item.

3.2.1 Graph RQ-VAE. To learn the semantic tokens for items,
as shown in Figure 1, we devise a Graph RQ-VAE model to fuse
their multimodal information and further quantize into codewords.
Alongside multimodal (e.g., visual, acoustic, and textual) features,
historical user-item interactions are fed to this model. These inter-
actions not only aid in extracting relevant multimodal features for
recommendation [35] but also reveal behavioral signals related to
item popularity. In particular, a user-item bipartite graph is con-
structed, where nodes represent users and items, and edges denote
interactions. To fuse these heterogeneous inputs into a unified
representation, we initialize item i as follows:

h” = [ he], b = [ 60 ] W, *)

where h" € RP represents item i’s multimodal embedding learned
by concatenating its visual, acoustic, and textual features, i.e., fl.z’ €
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Figure 1: An illustration of Graph RQ-VAE model architec-
ture.

RD?, flfl € RP?, and fl.t e RD", D?, D4, and D! denote the dimen-
sions of these modality features. W € R(P“+D“+D)xD jg 5 param-
eter matrix that maps multimodal features to the D-dimensional
embedding space. Combining this multimodal embedding with

a randomly initialized CF embedding h{ € RP yields the item

representation hgo) € R?P. For performing graph convolution op-
erations on the bipartite graph, user representations are randomly
initialized, such as hl(lo) € R%D for user u.

Treating them as node embeddings at the 0-th layer, item i’s
representation at the n-th GCN layer is obtained as:

hgn) = LeakyReLU(hl(n_l)Wl + L Z h,S"_l)Wz), (5)

INil &5,

where N is the neighborhood set of item i (i.e., users whom item i
directly interacted with), and LeakyReLU is the activation function.
Analogously, the representation hl(,n) for user u is obtained by in-
formation propagation from its neighbor items. After stacked GCN
layers, final representations are denoted as hy, € RP and h; € RP.
Note that we utilize the concise graph convolution operation [10],
leaving complicated choices [21] for further exploration.

Based on the final item representations, we employ Residual-
Quantized Variational AutoEncoder (RQ-VAE) [42] to generate se-
mantic tokens of Rec-IDs. As a multi-stage vector quantizer, RQ-
VAE can produce a tuple of codewords by quantizing residuals
across hierarchical levels. As illustrated in Figure 1, we input the
learned item representation into an encoder model:

Zj = S(hi), (6)

where z; is the output latent vector and & is the encoder, comprising
a two-layer Multi-Layer Perceptron (MLP). At the first level, the
initial residual is r; 1 = z;. A codebook B; = {bl}{;1 is employed,
where b; denotes the parameter embedding and L represents the
codebook size. Then, r; is quantized by mapping it to the closest
embedding from this codebook:

ci,1 = argminy||r;; — bl||§, (7)

where ¢; 1 is the index of the closest embedding, i.e., the first code-
word. Recursively, for subsequent level m, the residual is defined as
Tim = Tim-1—be;,,_, and the codeword ¢; , is similarly computed
using the level-specific codebook B,. By iteratively performing
M — 1 operations, a sequence of codewords is generated as follows:

(ci1,- -+ cim-1) = RQ-VAE(h;), ®

where c; ;, denotes the m-th codeword used as the m-th semantic
token in Rec-ID of item i. Notably, the recursive approach approxi-
mates the input in a coarse-to-fine manner. Since each codeword
is sourced from a distinct codebook, the capacity of Rec-IDs to
uniquely represent items equals the product of all codebook sizes.

Upon the codewords, we use a two-layer MLP decoder D to
reconstruct the input h; as follows:

M-1
hi = D(zi +5g(@ — 7)), 7= ), bey ©)
m=1

where ﬁ,— denotes the decoder output, and z; is the quantized repre-
sentation of z;. sg(+) represents the stop-gradient operation. The
loss function for training Graph RQ-VAE is as follows:

L= -Cbpr + -ervae, prr = Z —In O'(huh;r - huh}—),
(u,i,j)eR

1 M-1
quvae :Z ||hl - hi||2 + Z ||Sg(ri,m) - bCi,m||2
i=1 m=1

+ BlIrim — sg(be,,)I%.
(10)

Here Ly, is the pairwise BPR [25] loss to learn user and item
representations. R = {(w, i, j)|(u, i) € R*, (u, j) € R™}, where R*
indicates the observed interactions, and R~ indicates the unob-
served interactions. o(+) is the Sigmoid function. The loss function
Liqvae facilitates the simultaneous training of the encoder-decoder
and codebooks in RQ-VAE. I denotes the number of items. We alter-
natively optimize one of two sub-losses to learn model parameters.

3.22 Handling Collisions. To handle the collision problem, we
expand a popularity token at the end of the semantic tokens to
ensure Rec-IDs’ uniqueness. In particular, given K items with the
same tokens (c1,- -+, cp—1), we sort the items according to their
popularity, i.e., the total number of interactions with users. The cor-
responding indices in the sorted order are used as their popularity
tokens, formally,

(p1,p2," -+ »PK) = argsortpap(iteml,itemg, .- itemg),  (11)

where argsort,,, p(') is the popularity ranking function to sort K
items. pg € {1,2,---,K} denotes the index of the k-th item in the
order. Then, after concatenating them at the end of semantic tokens,
the Rec-ID of item k can be obtained as:

Ri = (c1, - em—1,Pk)- (12)

3.3 Rec-ID Generation

3.3.1 Transformer Input Embedding. To implement genera-
tive recommendation, a sequence-to-sequence Transformer model
is exploited as a recommender. As shown in Figure 2, the model
consists of stacked encoder and decoder layers. To adopt the model
in recommendation tasks, we organize historically interacted items
of each user as a sequence of tokens and feed them into the encoder.
Taking user u as an example, we gather her/his interacted items’
atomic IDs together as the Transformer’s input, and utilize the
learned item representations for input embedding, formally,

[el,-~ . ,eN] = [hil,“ . :hiN] N (13)
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Figure 2: Schematic illustration of Transformer encoder-
decoder setup for building our generative recommendation
model.

where e; € RP denotes the embedding of the corresponding item
in the sequence. It is worth noting that the input sequence length
is uniformly set to N, filling the missing positions with padding
token 0.

3.3.2 Relation-Aware Self-Attention. Following input embed-
ding, positional encoding in Transformer is crucial for providing
order information of the input sequence. Unlike sequential recom-
mendation tasks, the input interacted item sequence is not well-
ordered in our case, and its actual order implicitly and dynamically
changes with different users. Thus, traditional absolute positional
encoding is ineffective in this context. To overcome the problem, we
develop a relation-aware self-attention mechanism for the Trans-
former. This mechanism explicitly models user-specific pairwise
relations among input items based on user preferences, thereby en-
coding relative position information within interaction sequences.

Specifically, as shown in Figure 3, we extend the self-attention
sublayer by incorporating user-specific parameters. First, we intro-
duce the user-specific position encoder, which aims to encode the
position information of each item from different users’ perspectives:

Py =Wy, (14)
where WX represents the parameter matrix of user u’s position
encoder and p? is the encoded vector of item j.

After obtaining the encoded vectors, we conduct the multi-head
attention operations on the input sequence. In each head, we map
the input element embeddings [el, s e N] into query, key, and
value spaces, and compute their new embeddings [X], cee ,XN]
where x; € RD:

N
X = Z a,-j(ejWV + pl;), (15)
=

where WV is the matrix mapping the elements to the value space.
a;; is the weight coefficient computed with the Softmax function:
_ exp(é€ij)

2N explen)
wherein ¢;; is calculated through a compatibility function that

compares two input elements and considers their pairwise relation
in the context of user u:

(eiWQ) (e, WK)T + (e;WT) (e, WK)T
€ij = ,
! VD

(16)

aij

17)
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Figure 3: An illustration of relation-aware self-attention and
its corresponding multi-head attention. Therein, Q = EW<,
Qu = Ewg , and the remaining parameters are computed
analogically.

where W9 and WK are parameter matrices mapping elements to
the query and key spaces, respectively. Moreover, elements are also
mapped into user-specific query and key spaces to compute the
relation between each item pair. Wg and WK denote two user-
specific parameter matrices for this space transition.

Considering the user number, adopting independent parameter
matrices for each user will result in the issue of model parameter
overload. Hence, we alternatively leverage user information to fine-
tune a series of foundational parameters. Taking W, as an example,
its acquisition is as follows:

WY = MLP(h,) - UY, (18)
where hy, is the personal representation of user u learned in Graph
RQ-VAE. It is projected through MLP into a scalar, measuring the
bias introduced by user u on the foundational matrix parameter
U e RP*D_ This strategy allows regulating the number of model
parameters while maintaining user-specificity. Wg and WK can
be obtained in the same way.

Notably, the relation-aware self-attention can be efficiently com-
puted using the scaled dot product:

(WOWK ™ + WoWKT)ET
)

The parameter matrices W, WK WV e RPXD gre unique to each
attention head, contributing sufficient expressive capacity. While
the user-specific parameters Wg , W{f , WL/ € RP*D can be shared
across all attention heads. To form the sublayer output, the out-
comes from each head are concatenated, and a linear transformation
is applied.

Overall, we use the relation-aware self-attention sublayer fol-
lowed by a feed-forward sublayer as the Transformer encoder layer.
Residual connections surround each sublayer, followed by layer
normalization. As for the Transformer decoder, we maintain the de-
fault decoder layers and positional encoding, as the Transformer’s
output sequence is inherently ordered.

E
X = Softmax( JEWY +WY). (19)

3.4 Training & Inference

During model training, each observed interaction (u, i) forms a train-
ing sample. We input the atomic ID-based interaction sequence of



user u into the Transformer encoder. To ensure generative recom-
mendation, we deliberately exclude the ground-truth item i from
the input sequence. Model parameters are learned by optimizing
cross-entropy loss between Transformer decoder output and item
i’s Rec-ID. This loss function is commonly used for Transformer,
and the indices of Graph RQ-VAE codebooks serve as vocabulary.
In inference with a well-trained Transformer, results are output
step by step, where each step’s conditional probability distribution
depends on the already generated results. To maximize the product
of conditional probabilities for the entire output, we incorporate
beam search [29] to preserve K sequences with the currently highest
probabilities at each time step. The beam number is configured to
K for top-K recommendation. Through M steps of autoregressive
decoding, beam search can ultimately generate K complete Rec-IDs.
To prevent generating invalid Rec-IDs, we use constrained beam
search [7] to limit the current token range based on prefixes.

3.5 Discussion

Moreover, we discuss the inference time complexity of MMGRec
compared with the most efficient method of traditional paradigm,
i.e.,, Matrix Factorization (MF) [19]. Assuming the existence of T
items, each represented by D-dimensional embeddings, MF requires
a time complexity of O(ID) to complete all inner product compu-
tations and O (IlogK) to identify the top-K recommendation for a
single user. In contrast, MMGRec utilizes autoregressive decoding
and beam search for inference. A unit decoding process with H-
layer MMGRec requires O(H(M?D + MD?)) in time complexity,
where M represents the length of the output sequence (Rec-ID).
Consequently, performing autoregressive decoding M times with
K sequences incurs a time complexity of O(KH(M3D + M?D?)).
Additionally, a beam search with M steps introduces a time com-
plexity of O(MKLlogK), with L denoting the vocabulary size. For
ease of comparison, we can express the overall complexities as
O(KH (M3 +M?D)D) and O(MKLlogK). Upon closer examination,
it suggests that the generative paradigm may reduce the inference
time in case I > KH(M> + M?D) > MKL.

4 EXPERIMENTAL SETUP
4.1 Datasets & Evaluation Metrics

To evaluate the effectiveness of our proposed model, we conduct
extensive experiments on three benchmark datasets: MovieLens!,
TikTok?, and Kwai®, which are widely used in multimodal recom-
mendation study. The dataset statistics are summarized in Table 1.

e MovieLens: This dataset was created for research by MMGCN
authors. They collected movie trailers and descriptions based
on the original dataset. Visual, acoustic, and textual features
are extracted from frames, audio tracks, and descriptions using
pre-trained models [1, 12, 16], respectively.

o TikTok: This dataset was released by the short-video sharing
platform TikTok, including user-item interactions and multi-
modal features (visual, acoustic, textual) of items. According to
the publisher’s statement, the multimodal features are extracted
from the raw data of short videos.

!https://movielens.org/.

Zhttps://www.tiktok.com/.
3https://www.kwai.com/.

Table 1: Statistics of the evaluation datasets. (DY, D%, and
D! denote the dimensions of visual, acoustic, and textual
modality feature data, respectively.)

Dataset ‘ #Users ‘ #Items ‘ #Inter. ‘ D? ‘ D4 ‘ D!
MovieLens | 55,485 5,986 | 1,239,508 | 2048 | 128 | 100
TikTok 36,656 | 76,085 726,065 128 128 | 128
Kwai 7,010 86,483 298,492 2048 - 128

o Kwai: The dataset was released by the short-video sharing plat-
form Kwai, comprising user behavioral records and short videos’
multimodal features (excluding acoustic features). Likewise, the
multimodal features are obtained by pre-trained extractors.

For each dataset, we randomly select 80% of the historical inter-
actions per user to constitute the training set, 10% for validation,
and the remaining 10% for testing. The validation and testing sets
are used for hyper-parameter tuning and performance evaluation,
respectively. We adopt Recall (R@K) and Normalized Discounted
Cumulative Gain (N@K) as evaluation metrics for top-K recom-
mendation and preference ranking. Defaulting K = 10, we report
the average metric value for all users in the testing set.

4.2 Baselines

To demonstrate the effectiveness, we compare our method with the
following state-of-the-art baselines, briefly divided into CF-based
(i.e., GraphSAGE, NGCF, GAT, and LightGCN) and multimodal (i.e.,
VBPR, MMGCN, GRCN, LATTICE, InvRL, and LightGT).

e GraphSAGE [10] passes information along the graph structure
and aggregates them to update each node’s representation.
NGCEF [33] encodes CF signals into representation learning by
exploiting high-order connectivity from user-item interactions.
GAT [32] automatically learns weights for each node’s neighbors
and alleviates noisy information to improve GCN performance.
e LightGCN [14] simplifies GCN components, utilizing a weighted
sum aggregator as the graph convolution operation.

VBPR [13] incorporates multimodal information with MF frame-
work to predict the interactions between users and items.

e MMGCN [37] allocates an independent GCN for each modal-
ity, which learns modality-specific user preferences and item
representations via the propagation of modality information.
GRCN [36] adaptively adjusts the interaction graph’s structure
according to the model training status, then applies graph con-
volution layers to distill informative signals on user preference.
LATTICE [43] discovers item relationships via multimodal fea-
tures to learn a graph structure. Graph convolutions aggregate
high-order affinities along the structure for recommendation.
InvRL [8] eliminates spurious correlations via heterogeneous
environments to learn consistent invariant item representations
across diverse settings, improving predictions of interactions.
LightGT [35] is a state-of-the-art Transformer-based model. It
designs modal-specific embedding and layer-wise position en-
coding for effective feature distillation, learning superior user
preference on item content for interaction prediction.

To ensure consistency, we adopt the publicly available imple-
mentations of the baselines. Note that we did not select the existing
generative recommendation model TIGER [24] as baseline, since it
only works with sequential recommendation rather than our task.



4.3 Parameter Settings

We implement our MMGRec using Pytorch?* and Pytorch Geomet-
ric’. Model parameters are initialized with Xavier approach [9] and
optimized using the SGD optimizer [3] with a batch size selected
from {500, 1,000, 2,000, 3,000}. Hyper-parameters are tuned through
grid search based on the results from the validation set. The opti-
mal learning rate is searched from {0.0001, 0.0005, 0.001, 0.005} and
ultimately set to 0.001. The L normalization coefficient is searched
within {10_6, 1075, ..., 1071, 1}, with the optimal value set to 1075,
Moreover, early stopping is adopted if Recall@10 on the validation
set does not rise for 20 successive epochs. Without specification,
user/item representations default to a size of 64 in all methods for
fairness. As for the Graph RQ-VAE model, we adopt three-stage
quantization to assign a three-tuple Rec-ID for each item. To avoid
Rec-ID collision, we add a popularity token as the fourth. The size
of each level codebook is tuned in {64, 128, 256}. When computing
the loss Lrqyae, we set = 0.25.

5 EXPERIMENTAL RESULTS

We conduct extensive quantitative and qualitative experiments to
answer the following research questions:

e RQ1: How does MMGRec perform on the multimodal recom-
mendation task compared with state-of-the-art baselines?

o RQ2: Is the technical choice of each component (i.e., item rep-
resentations, Graph RQ-VAE, and relation-aware self-attention)
effective for MMGRec?

o RQ3: How do hyper-parameter settings (e.g., depth of layer and
number of heads) affect MMGRec?

e RQ4: How does MMGRec compare with traditional paradigm
methods regarding inference efficiency?

5.1 Performance Comparison (RQ1)

Table 2 presents the results of MMGRec and baselines over three
experimental datasets. Besides, it reports the improvements and sta-
tistical significance test, which are calculated between our method
and the strongest baseline (highlighted with underline). From the
results, the main observations are as follows:

o MMGRec consistently achieves the best performance in all cases.
In particular, improvements over the strongest competitor w.r.z.
NDCG@10 are 7.17%, 6.79%, and 6.58% in MovieLens, TikTok, and
Kwali, respectively. Additionally, we conduct one-sample t-tests,
which reveal that the improvements of MMGRec are statisti-
cally significant (p-value < 0.05). The primary difference between
MMGRec and baselines lies in whether the recommendation
paradigm is generative or traditional. Hence, we attribute the
significant improvements to introducing a Transformer-based
generative paradigm in multimodal recommendation.

o MMGRec and the strongest baseline LightGT outperform other
baselines by a large margin. This phenomenon validates that
the Transformer is applicable to the multimodal recommenda-
tion. Nevertheless, LightGT focuses on improving representation

“https://pytorch.org/.
Shttps://pytorch-geometric.readthedocs.io/en/latest/.

Table 2: Overall performance comparison between our model
and the baselines on three datasets.

MovieLens TikTok Kwai
R@10 N@10 | R@10 N@10 | R@10 N@10
GraphSAGE | 0.2129 0.1388 | 0.0778 0.0476 | 0.0424 0.0344

Methods

NGCF 0.2340 0.1383 | 0.0906 0.0547 | 0.0427 0.0363
GAT 0.2342 0.1589 | 0.0945 0.0575 | 0.0441 0.0369
LightGCN | 0.2381 0.1592 | 0.0988 0.0603 | 0.0502 0.0411
VBPR 0.1927 0.1207 | 0.0600 0.0397 | 0.0302 0.0221
MMGCN 0.2453 0.1523 | 0.0645 0.0579 | 0.0456 0.0374
GRCN 0.2520 0.1683 | 0.0952 0.0584 | 0.0473 0.0403
LATTICE 0.2520 0.1680 | 0.0984 0.0611 | 0.0483 0.0400

InvRL 0.2518 0.1666 | 0.1002 0.0612 | 0.0486 0.0402
LightGT 0.2650 0.1771 | 0.1213 0.0751 | 0.0546 0.0441
MMGRec |0.2804 0.1898 | 0.1269 0.0802 | 0.0567 0.0470

% Improv. 5.81% 7.17% | 4.62% 6.79% | 3.85% 6.58%
p-value 8.15e-4 2.36e-4 | 3.83e-2 3.14e-3 | 5.70e-3 1.27e-2

Table 3: Performance comparison between our model and
the variants without item representations.

MovieLens TikTok Kwai
R@10 N@10 | R@10 N@10 | R@10 N@10
ID w/o 0.1934 0.1238 | 0.0811 0.0516 | 0.0417 0.0361

Emb w/o | 0.2780 0.1890 | 0.1206 0.0792 | 0.0553 0.0460
Ours 0.2804 0.1898 | 0.1269 0.0802 | 0.0567 0.0470

Methods

learning by only utilizing the Transformer encoder. In compari-
son, our model exploits the generative capability of the complete
Transformer, thus achieving superior performance.

o Comparing the performance of MMGRec on two evaluation met-
rics, we find larger improvements in terms of NDCG. Namely,
MMGRec’s recommendation result is more accurate with respect
to preference ranking. This illustrates that the generative para-
digm is especially good at inferring the user’s favorite items.

5.2 Ablation Study (RQ2)

5.2.1 Effect of Item Representation. To verify the necessity of
item representations for MMGRec, we adopt two variants:
ID w/o: Without (w/o0) item representation, the variant concate-
nates multimodal features as the input of RQ-VAE to assign Rec-ID.
Emb w/o: The variant replaces item representations in the Trans-
former encoder’s input embedding with parameter embeddings.
Table 3 displays the performance comparison between MMGRec
and its variants, and we have the following observations:

e The poor performance of ID w/o suggests that heterogeneous
multimodal features cannot be directly used for Rec-ID assign-
ment. The likely reason is the complexity of semantic relations
among different modalities, necessitating prior integration through
multimodal fusion. This aligns with the prior study about the
importance of multimodal fusion in semantic comprehension [2].

o Despite parameterizing input embedding, Emb w/o underper-
forms and is inferior to utilizing well-trained item representations.
Hence, we infer that the Transformer struggles to learn suitable
input embeddings directly from the generative recommenda-
tion task without pre-training. This is consistent with many



Table 4: Performance comparison among different Rec-ID
assignment approaches.

Table 5: Performance comparison among different positional
encoding approaches.

Methods MovieLens TikTok Kwai Methods MovieLens TikTok Kwai
R@10 N@10 | R@10 N@10 | R@10 N@10 R@10 N@10 | R@10 N@10 | R@10 N@10
HK-Means | 0.2520 0.1683 | 0.1137 0.0742 | 0.0469 0.0402 w/o PE 0.2696 0.1850 | 0.1152 0.0765 | 0.0517 0.0427

Random 0.2762 0.1872 | 0.1199 0.0785 | 0.0544 0.0452
Ours 0.2804 0.1898 | 0.1269 0.0802 | 0.0567 0.0470

Default PE | 0.2732 0.1853 | 0.1180 0.0778 | 0.0545 0.0441
Ours 0.2804 0.1898 | 0.1269 0.0802 | 0.0567 0.0470

Transformer-based NLP models that benefit from pre-trained
word embedding like Word2Vec and Glove.

5.2.2 Effect of Graph RQ-VAE. To study the importance of
Graph RQ-VAE, we compare it with Hierarchical K-Means Clus-
tering (HK-Means) [5] in Rec-ID assignment. HK-Means aims at
establishing a cluster hierarchy, employing a top-down method-
ology that initiates with a single cluster including all items, then
iteratively divides it into smaller clusters according to item repre-
sentations. The hierarchical cluster indices of an item can be con-
catenated as the Rec-ID. Experimentally, we adjust the clustering
number to obtain optimal performance and comparable cardinality.

e Table 4 shows the performance comparison between employing
Graph RQ-VAE and HK-Means. Graph RQ-VAE consistently out-
performs HK-Means, illustrating the advantageous quantization
ability. To explore the reason, we find that more ID collisions
exist in HK-Means due to the clustering characteristic. This illus-
trates that collisions negatively affect performance and should
be handled reasonably.

o Therefore, we also compare our collision solution with the previ-
ous method (denoted by Random) that randomly extends one
token to make Rec-ID unique. As the results recorded in Table 4,
it is obvious that such a random method is consistently infe-
rior to our solution. This verifies that the Transformer cannot
accurately generate the last random token, while our method
relatively circumvents this weakness.

5.2.3 Effect of Relation-Aware Self-Attention. To investigate
whether MMGRec can benefit from relation-aware self-attention,
we consider two variants of our model:

Default PE: This variant preserves the default sinusoid-based
positional encoding of Transformer.

w/o PE: This variant entirely discards positional encoding.

Note that our investigation of positional encoding is limited to
the Transformer’s encoder, while the decoder’s requires no changes.
Table 5 exhibits MMGRec’s performance with different position
encoding approaches. We find that:

e The variant without any positional encoding achieves poor per-
formance. Even using absolute positions of input elements for po-
sitional encoding can improve the performance. This indicates the
importance of positional information for the Transformer [27].

e Compared to default positional encoding, relation-aware self-
attention yields remarkable improvements, suggesting the ef-
fectiveness of leveraging pairwise item relations as positional
information. This also validates the necessity of utilizing user
information to model user-specific pairwise item relations, dis-
tinguishing our design from a standard self-attention head.
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Figure 4: Effect of layer and head numbers.

5.3 Hyper-Parameter Analysis (RQ3)

To investigate the impact of Transformer layers on our model,
we vary the layer number in the range of {1, 2, 3, 4} when fixing
the self-attention head number to optimal. As a comparison, we
test the LightGT with the same setting. Left of Figure 4 plots the
results w.r.t. Recall@10 on three datasets, we observe that: First,
MMGRec outperforms LightGT as varying layer numbers across
all datasets. This validates the stable superiority derived from the
generative recommendation. Second, MMGRec can achieve quite
good performance with fewer layers. This indicates that our gen-
erative model can be effective in a fundamental setting, while the
embedding-based method needs stacking Transformer layers to
guarantee performance.

Moreover, we investigate the impact of multi-head attention on
our model by comparing 1-head, 2-head, 4-head, and 8-head self-
attention blocks with LightGT. As shown in the right of Figure 4,
we observe that MMGRec consistently outperforms LightGT. As
the head number increases, the performance of MMGRec tends to
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Figure 5: Inference time on different-scale Kwai datasets. The
unit of time is milliseconds (ms).

stabilize after rising. In comparison, the performance of LightGT
shows a continued downward trend. Theoretically, one head of self-
attention models the relation among elements in a single aspect.
Therefore, we infer that the generative model can handle more
kinds of relations than the embedding-based method.

5.4 Efficiency Study (RQ4)

Instead of computing and ranking similarity, MMGRec employs
autoregressive decoding to directly generate Rec-IDs identifying
items during inference. To assess the efficiency of the two inference
approaches, we conduct comparative experiments using identical
computing configurations and record their inference time. Figure 5
presents an efficiency comparison between MMGRec and MF re-
garding average inference time per user across different-scale Kwai
datasets. 1/8 Kwai denotes randomly selecting one in eight items
from the complete dataset. The main observations are as follows:
In scenarios where the item count is low (e.g., 1/16 ~ 1/4 Kwai),
MMGRec exhibits inefficiency, primarily due to the basic computa-
tional demands of autoregressive decoding. However, as the number
of items increases (e.g., 1/4 ~ 1 Kwai), the inference time of MF ex-
periences a significant rise. This escalation is attributed to the fact
that item count linearly impacts the time complexity of inner prod-
uct computation and sorting. In contrast, MMGRec demonstrates
enhanced efficiency as its inference time remains relatively stable.
This stability arises from the unchanged number of autoregressive
decoding steps, even with an increase in the number of items. These
findings suggest that the generative paradigm holds the potential
to deliver more efficient inference for large-scale recommendation.

6 RELATED WORK
6.1 Multimodal Recommendation

Research on multimodal recommendation aims to enhance recom-
mender systems by leveraging multimodal information. Existing
methodologies typically employ a combination of CF and content-
based recommendation techniques [21]. Early studies aim to inte-
grate multimodal content for more rational representation learning.
For example, the pioneering work VBPR [13] maps visual infor-
mation to the representation space and concatenates it with CF
representations. Subsequent work like ACF [6] and UVCAN [22]
adaptively select multimodal features using different levels of at-
tention mechanisms to learn representations of users and items. In
recent years, the research trend turns to exploring the relationship
between modal information and users/items. For instance, the rep-
resentative work MMGCN [37] introduces a modality-aware GCN
into multimodal recommendation tasks to aggregate and propagate

multimodal information on the user-item graph. HHFAN [4] utilizes
amodality-aware heterogeneous information graph to explore more
complex relationships among users, micro-videos, and multimodal
information, thereby improving recommendation performance.
Despite their effectiveness, existing methods suffer from inherent
limitations, such as overwhelming inference cost, insufficient in-
teraction modeling, and false-negative issues, stemming from their
embed-and-retrieve paradigm. To address these limitations, this
study proposes a generative multimodal recommendation method.

6.2 Transformer-Based Recommendation Model

Since its inception, Transformer has demonstrated outstanding
performance across various domains, such as natural language pro-
cessing [38] and computer vision [11], yielding remarkable results.
Owing to its proficiency in modeling contextual information, Trans-
former has emerged as a central focus in recommendation research.
Researchers have developed Transformer-based recommendation
models to capture item relationships and user behavior patterns
in historical interactions [39, 40]. PEAR [20] leverages the Trans-
former to capture interaction and contextual information from the
history of clicked items. LightGT [35] lightens the Transformer
and combines it with GCN to enhance user preference modeling by
considering item multimodal correlations. Recently, Transformer
has emerged as a significant contributor to the development of
generative recommendation. DSI [30] signifies a pivotal transition
in information retrieval towards a generative paradigm, being the
first successful end-to-end Transformer application for retrieval
tasks. Relying on a novel semantic ID representation, TIGER [24]
implements a Transformer-based sequence-to-sequence model ca-
pable of directly predicting the semantic ID of the next item to
achieve generative recommendation.

Existing Transformer-based approaches are primarily limited to
traditional representation learning or sequential generative recom-
mendation. This study firstly introduces the Transformer with a
generative paradigm to the field of multimodal recommendation.

7 CONCLUSION

In this work, we propose MMGRec, a novel Transformer-based
model for multimodal recommendation. MMGRec explores the gen-
erative paradigm to address limitations inherent in the traditional
paradigm, consisting of two essential components — Rec-ID assign-
ment and Rec-ID generation. In Rec-ID assignment, we integrate
item multimodal data with CF information and develop a Graph
RQ-VAE to quantize them into Rec-ID for each item. In Rec-ID
generation, a Transformer model is trained to directly predict item
Rec-IDs for recommendation based on a user’s interaction sequence.
Experimental results demonstrate that MMGRec achieves state-
of-the-art performance while maintaining conditionally efficient
inference.

For future work, we plan to enhance MMGRec’s performance by
developing a more effective vector quantization method to mitigate
Rec-ID assignment collisions. Additionally, we intend to explore
the integration of large models [18], such as ChatGPT, to improve
user and item representations. Furthermore, we are interested in
leveraging MMGRec’s generative capability to tackle the cold-start
problem in recommendation [28].
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