
ar
X

iv
:2

40
4.

16
56

2v
1

 [
cs

.C
C

]
 2

4
A

pr
 2

02
4

L 6= NP .

J. Andres Montoya

Universidad Nacional de Colombia, Bogota

Centro de Pensamiento Antonio Sanchez de

Cozar, San Gil, Colombia

April 26, 2024

Abstract

We prove that the class LOGSPACE (L, for short) is different from
the class NP.

We prove that L is different from NP . Let us sketch the proof strategy.
First, some definitions.

Definition 1 We use the symbol NRT to denote the class of quasi real time
languages. These are the languages in NP that are accepted by nondeterministic
Turing machines that run in real time [2]. We use the symbol RT to denote the
class of real time languages. This is the class of languages that are accepted by
deterministic Turing machines that run in real time.

The proof of the separation L 6= NP is based on the following four facts:

1. The class L is equal to the union of a strict hierarchy: the pebble hierarchy.
We discuss this fact in section two. We use the symbol REGn to denote
the n-th level of this hierarchy. Level REGn equals the set of languages
that are accepted by deterministic pebble (marker) automata provided
with n pebbles, see [6]. The containment REGn ⊆ REGn+1 holds.

2. The levels of the pebble hierarchy are closed under Mealy reductions (in-
verse images of generalized syntactic morphisms, see [4]). Or, in order to
be more exact:

Suppose that L belongs to REGn and suppose that T is Mealy reducible
to L, we have that T belongs to REGn+1 (see Theorem 12).

3. There exists a quasi real-time language LR that is hardest for NRT under
Mealy reductions [4].

4. The class NRT goes high in the pebble hierarchy. This means that there
does exist a sequence included in NRT , say sequence {Ln}n≥0 , such that
for all m ≥ 0 there exists n for which the relation Ln /∈ REGm does hold,
see Corollary ??.

1

http://arxiv.org/abs/2404.16562v1

Remark 2 We say that sequence {Ln}n≥0 is high in the pebble hierarchy.

Let us assume the above four facts. We can easily prove that NRT is not
contained in L. Suppose to the contrary thatNRT is contained in L. Greibach’s
hardest quasi real-time language LR gets included in some level of the pebble
hierarchy, say level kR. This implies that NRT is included in level kR+1. This
contradicts the fact that for all k ≥ 1 there exists a quasi real-time language
that does not belong to REGk.

It remains to ensure that the above four facts actually hold. Let us discuss
those four duties:

1. The first fact is a well established result, see [13], [9] and [10]. We discuss

this fact in section 2. We prove that L is equal to
⋃

k≥1

REGk.

2. The third fact is a fundamental result of Sheila Greibach. She proved that
the grammar class CFL and the class NRT each contain languages that
are hardest under Mealy reductions see [4].

Notation 3 We use the symbol CFL to denote the set of context-free
languages.

3. We prove that the pebble hierarchy is invariant under Mealy reductions,
see Theorem 12.

4. The highness of NRT could be obtained as an easy corollary of Theorem
1, page 76, in reference [6]. This theorem asserts that a certain sequence
of context-free languages, say sequence {Hn}n≥1 , is high in the pebble
hierarchy. This assertion implies that CFL (and hence NRT) is high
in the pebble hierarchy, and it also implies the strong separation L 6= P .
However, this theorem is false and its proof is wrong, see [11]. We prove
that NRT is high in the pebble hierarchy, see Theorem 19.

Organization of the work and contributions. This work is organized
into three sections besides this introduction. In section one we introduce Mealy
machines, Mealy reductions and we discuss Greibach’s argument. In section two
we study pebble automata and the related pebble hierarchy. In section three
we outline the proof of the main result of this paper, namely that L is different
from NP .

1 Mealy reductions and Complete problems

We study separations between complexity classes. We use a very weak type of
algorithmic reduction that comes from the theory of formal languages. We refer
to Mealy reductions.

2

Definition 4 A Mealy machine is a tuple

M = (Q, q0,Σ,Γ, δ, λ)

such that:

1. Q is a finite set of states.

2. q0 ∈ Q is the initial state.

3. Σ is the input alphabet.

4. Γ is the output alphabet.

5. δ : Q×Σ → Q is the transition function, which maps a state and an input
symbol to a state.

6. λ : Q × Σ → Γ∗ is the output function, which maps a state and an input
symbol to an output string.

The output of a Mealy machine M, on input w = w1 · · ·wn, is denoted with
the symbol OM (w) . This output is defined recursively as follows:

• For all q ∈ Q and for all a ∈ Σ the equality λ̂ (q, a) = λ (q, a) holds.

• For all w ∈ Σ∗ the equality

λ̂ (q, w) = λ (q, w [1]) λ̂ (δ (q, w [1]) , w [2, ..., n])

holds.

• OM (w) = λ̂ (q0, w) .

Definition 5 Let L ⊂ Σ∗ and T ⊂ Γ∗be two languages. We say that L is
Mealy-reducible to T if and only if there exists a Mealy machine M such that
L = O−1

M (T). We use the symbol L �M T to indicate that L is Mealy reducible
to T.

Let us introduce the corresponding notion of complete (hardest) problem.

Definition 6 Let C be a set of languages and let L be a language in C. We
say that L is C-hardest (or C-complete) if and only if any language in C is
Mealy-reducible to L.

Greibach proved two fundamental results [4], namely:

1. There exist context-free languages that are CFL-complete.

2. There exist quasi-real time languages that are NRT -complete.

Let us introduce some related terminology.

3

Definition 7 Let C be a set of languages.

1. We say that C is a complexity class if and only if C is closed under Mealy
reductions.

2. Suppose that C is a complexity class. We say that C is principal if and
only if there exists L ∈ C such that L is C-complete.

3. Suppose that C is equal to
⋃

i≥1

Ci. We say that
⋃

i≥1

Ci is an infinite hierarchy

if and only if the following conditions hold:

• For all i there exists j > i such that Ci ⊂ Cj.

• There exists a constant d such that given given T ∈ Ci and given
L �M T the language L belongs to Ci+d.

4. We say that class C is stratified if and only if C is equal to the union of
an infinite hierarchy.

5. Let C =
⋃

i≥1

Ci be a stratified class and let D be a complexity class. We say

that D is high in
⋃

i≥1

Ci if and only if for all n ≥ 1 there exists L ∈ D−Cn.

We have

Theorem 8 Let C,D be two complexity classes. Suppose that C =
⋃

i≥1

Ci is

stratified, suppose that D is principal and suppose that D is high in C. We get
that D is not contained in C.

Proof. Suppose that D is contained in C. Let L0 be D-complete. Let k be a
positive integer such that L0 ∈ Ck. We get that there exists d such that D is
contained in Ck+d. This contradicts the fact that D is high in C. The theorem
is proved.

We can use the previous theorem, that we call Greibach’s argument, to prove
separations between complexity classes. We use this argument to prove that L
is different from NP . To this end we prove that L is stratified and we prove that
NRT is high in L. We get that NRT is not contained in L since the former
class is principal, see [4]. Note that NRT is contained in NP . We obtain as a
corollary the separation L 6= NP .

2 The Pebble Hierarchy

Pebble automata are two-way automata provided with a bounded amount of
pebbles, each of which can be distinguished from one another. Let us introduce
the formal definition that we use in this work.

4

Definition 9 Let k ≥ 0, a deterministic k-pebble automaton is a tuple

M = (Q, q0,Σ, H,A, δ)

such that:

1. Q is a finite set of states.

2. q0 ∈ Q is the initial state.

3. H ⊂ Q is the set of halting states.

4. A ⊂ H is the set of accepting states.

5. Σ is the input alphabet.

6. The transition function

δ : Q× Σ× (P ({0, ..., k}))2 → Q× (P ({0, ..., k}))2 × {−1, 0, 1}

is deterministic.

Let M be a k-pebble automaton. Automaton M is a two-way deterministic
finite state automaton provided with k pebbles. This automaton has the following
capabilities:

• It can place any one of its pebbles on the tape.

• It can sense the pebbles that lie on the current cell.

• It can pick specific pebbles from this cell when required.

Let (q, a, A,B) be a tuple such that A,B are disjoint subsets of {1, ..., k} .
Suppose that M is processing the input w. Suppose that:

• q is the the inner state reached by M at time t.

• a is the character being scanned.

• A is the set of pebbles that are placed on the current cell.

• B is the set of available pebbles.

Suppose that δ (q, a, A,B) = (p, C,D, ε) . We get that A∪B = C∪D, and we
get that M has to change its inner state from q to p, it has to place the pebbles
belonging to C (and only these pebbles) on the current cell, and it has to move
its input head in the direction indicated by ε.

We use the symbol REGk to denote the set of languages that are accepted
by deterministic automata provided with k pebbles. We have.

Theorem 10 The equality L =
⋃

k≥1

REGk holds.

5

Proof. Notice that a single pebble can be easily tracked using a binary tape
of logarithmic size. This means that given a k-pebble automaton M, one can
construct a Turing machine N provided with k work tapes of logarithmic size

and which simulates M. We get that
⋃

k≥1

REGk is included in L.

Let us prove that L is included in
⋃

k≥1

REGk. Let L be a language in L.

There exists k ≥ 0 and there exists a Turing machine M such that:

• M accepts L.

• M is provided with a read-only input tape and k binary tapes of logarith-
mic size.

Let us prove that each one of those binary tapes can be simulated using
three pebbles. Let w ∈ Σn be the input of M. Let us focus on the i-th tape and
let us consider the configuration reached by this tape at instant t. We represent

this configuration as a pair (1nL, nR1) ∈
(
{0, 1}∗

)2
. This pair tells us that

nLnR is the work tape content, and it also tells us that the head assigned to
this tape is located on cell |nL| . Let (nR1)

R
be the reverse of nR1. Note that

1nL and (nR1)
R
are binary strings whose lengths are bounded above by log (n) .

These binary strings encode two positive integers mL and mR that belong to
the interval {1, ..., n}. We use this to represent configuration (1nL, nR1) using
pebbles. To this end we place one pebble on the mL-th cell of the input tape,
and we place a second pebble on the mR-th cell of this tape. We can use
these pebbles to simulate the changes that occur on tape i. Let us suppose, for
instance, that the transition function of M forces the head (of tape i) to move
one cell to the left, after replacing with 0 the character 1 that was written on
the current cell (which is cell |nL|). Let (1n∗

L, n
∗
R1) be the configuration reached

at time t+ 1. Let m∗
L and m∗

R be the corresponding integers. Notice that

m∗
L =

mL − 1

2
and m∗

R = 2mR

This means that we have to move the aforementioned two pebbles to the cells
mL−1

2 and 2mR. This can be done with the help of a third pebble. This means
that we can simulate this transition using three pebbles. Notice that we can
simulate any other transition of the i-th tape using the same three pebbles.
This means that we can replace tape i with three pebbles. This also means
that we can replace all the k tapes of M with 3k + 1 pebbles (observe that
2k + 2 is enough). If we do the latter we obtain a (3k + 1)-pebble automaton
that accepts L. We get that L ∈ REG3k+1. We conclude that L is included in⋃

k≥1

REGk. The theorem is proved.

We use the term pebble hierarchy to designate the hierarchy

REG1 ⊆ REG2 ⊆ REG3 ⊆ · · ·

6

It can be proved that this hierarchy is strict. We owe the first proof attempt
to Hsia and Yeh, see [6]. Unfortunately their proof is incorrect. Hsia and Yeh
construct a sequence of context-free languages, say {Hn}n≥1 , and they present
an incorrect proof that this sequence is high in the pebble hierarchy [6]. If Hsia-
Yeh’s claim were correct we would obtain as a corollary that L is different from
P . This follows easily from Greibach’s argument:

Suppose that {Hn}n≥1 is high in the pebble hierarchy. The class CFL is
principal. We get that CFL is not contained L. We have, on the other hand,
that CFL is contained in P .

Let us show that the pebble hierarchy has infinite many levels. Monien
proved that the head hierarchy is strict, see Theorem 3, page 81 in reference
[9]. This means that there exists a sequence of languages, say {Mn}n≥1 , such
that Mn is accepted by a multihead automaton provided with n heads but such
that this same language cannot be accepted with n − 1 heads. Let us observe
that the head hierarchy and the pebble hierarchy are interleaved: k heads can
be simulated with k pebbles, while k pebbles can be simulated with k+1 heads,
see [10]. Let k ≥ 2, we get that language Mk belongs to REGk −REGk−2.

Remark 11 The sequence {Mk}k≥2 is not contained in CFL.

It can be proved that the pebble hierarchy is invariant under Mealy reduc-
tions.

Theorem 12 The pebble hierarchy is invariant under Mealy reductions.

Proof. Let us prove that L can be accepted with k + 1 pebbles.
Let M be a k-pebble automaton that accepts T ⊂ Γ∗, and let

N = (Q, q0,Σ,Γ, δ, λ)

be a Mealy machine that reduces L in T. We construct a (k + 1)-pebble automa-
ton S that receives as input w ∈ Σ∗ and simulates the computation of M on
input ON (w) . Notice that ON (w) is equal to the concatenation of the strings

λ (q0, w [1]) , λ (δ (q0, w [1]) , w [2]) , ..., λ
(
δ̂ (q0, w [1, ..., |w| − 1]) , w [|w|]

)

Let
N = max {|λ (q, a)| : q ∈ Q and a ∈ Σ}

The simulation works as follows:
Suppose that M is in state q, the input head is located on the r-th character

of the factor
λ
(
δ̂ (q0, w [1, ..., i− 1]) , w [i]

)
,

and B ⊂ {1, ..., k} is the set of available pebbles. Suppose also that the simula-
tion has worked well up this point. The latter means that:

7

1. S keeps in its inner memory the state δ̂ (q0, w [1, ..., i]) and the integer
r ≤ N. Remember that r denotes the position of the input head of M
within the factor

λ
(
δ̂ (q0, w [1, ..., i− 1]) , w [i]

)

2. The head of S is located on cell i.

3. B ∪ {k + 1} is the set of available pebbles for S.

4. Let p ∈ {1, ..., k}, let l ∈ {1, ..., N} and suppose that p-th pebble of M is
located on the l-th character of the factor

λ
(
δ̂ (q0, w [1, ..., j − 1]) , w [j]

)

Then, the p-th pebble of S is located on cell j, and the pair (p, l) is kept
safe in the finite state memory of S. This pair indicates to S that the p-th
pebble is on the l-th character of the factor where it is currently located.

Automaton S can use its finite state memory to compute:

• The string

λ
(
δ̂ (q0, w [1, ..., i− 1]) , w [i]

)

• The location of the input head of M within this short string. Notice that
the length of this string is not greater than N.

• The configuration of pebbles that lie within this factor.

Automaton S can use its finite state memory to simulate the computation
of M from this point until the following condition is met:

Either the input head of M leaves the factor going to the right, or it leaves
the factor going to left or it halts within the factor.

Suppose that M leaves the factor going to the right. In this case automaton
S moves its input head one position to the right and updates its inner memory.
Now suppose that M has to leave the factor going to the left. Automaton S
has to use, in this case, pebble k + 1. This is so because S has to reconstruct
the value of

λ
(
δ̂N (q0, w [1, ..., i− 2]) , w [i− 1]

)

Let us see how the simulation proceeds in this case:

• Automaton S places pebble k + 1 on cell i − 1.

• S moves its input head until the left end of the tape.

• S begins to move rightward searching for pebble k+1 while simultaneously
computing the transduction λ.

8

• S computes

λ
(
δ̂N (q0, w [1, ..., i− 2]) , w [i− 1]

)

and updates its inner memory.

The theorem is proved.
We get the following corollary.

Corollary 13 The class L is stratified.

3 L is different from NP

We want to use Greibach’s argument to prove the separation L 6= NP . We
know that NRT is principal and we know that L is stratified. It only remains
to prove tat NRT is high in the pebble hierarchy. We prove this in this section.

Definition 14 Let w1, ..., wn be n strings in Σ∗ and let # be a fresh character
not in Σ. We use the symbol s (w) to denote the string w1# · · ·#wn. We say
that w1# · · ·#wn is a sequence over the alphabet Σ and we say that the strings
w1, ..., wn are the factors of s (w) . We assign to sequence s (w) the binary string

εLs(w) = εL (w1) · · · ε
L (wn) ,

where given u ∈ Σ∗ the bit εL (u) is equal to 1 if and only if u ∈ L.

Definition 15 Let {0, 1} ⊂ Σ and let u ∈ Σ∗. We use the symbol ‖u‖ to denote
the Hamming weight of u, i.e.

‖u‖ = |{i ≤ n : u [i] = 1}|

We define Ham (L) as the language

Ham (L) =



s (w)##T 0|s(w)|−T :

∑

i≤n

εL (wi) ‖wi‖ 6= T





Remark 16 Let s (w)##T 0K be an instance of Ham (L) . We assume, without
loss of generality, that the equality K = |s (w)| − T holds. We emphasize this
assumption using the notation s (w)##T 0KT

We have.

Proposition 17 Let L ∈ RT , the language Ham (L) also belongs to RT .

Proof. Let L be a language in RT and let M be a deterministic real time
machine that accepts L. Let N be the deterministic real time machine that
works, on input s (w)##T 0KT , as follows.

9

1. Let us suppose that the equality

s (w) = w1# · · ·#wn

holds. In the first phase of the computation the machine N scans the
prefix s (w) while simulating, in real time, the computations of M, on
each one of the strings w1, ..., wn. When the input head of N reaches the
right end of wi#, machine N knows whether the string wi belongs to L.
Depending on this machine N marks the current cell, which is precisely
the right end of wi#.

2. The first phase ends when N scans for the first time the pattern ##.
When this occurs machine N has read s (w) and it has marked the right
end of the factors in s (w) that belong to L. The second phase begins.
N has to compare two quantities, namely: the total number of 1’s that
occur in the marked factors that lie on the left of the current cell, and the
number of #’s that lie on the right of this cell. Notice that the current
cell is the central location of the input string. This latter fact is ensured
by the equality |s (w)| = T + KT . This fact ensures that the remaining
computation can be done in real time. To do this we use two additional
heads. The first of those heads moves leftward looking for the marked
1’s. The second head moves rightward, over the block #T , counting the
marked 1’s that are scanned by its companion head. The computation
ends when the first of these heads reaches the left end of the input string
and, simultaneously, the input head of N reaches the right end of the
input string. This implies that N is a real time machine.

We can use the real time machine N to accept the language Ham (L) , the
proposition is proved.

Let us introduce a sequence of quasi-real time languages that goes high in
the pebble hierarchy.

Definition 18 Let {Lk}k≥0 be the sequence of quasi real-time languages that is
defined as follows:

• L0 = EQ, where
EQ =

{
1i0j1i : i, j ≥ 1

}

Note that EQ belongs to RT .

• Let k ≥ 0. Set Σk = {0, 1,#1, ...,#k} . Suppose Lk ⊂ {0, 1,#1, ...,#k}
∗ .

Let #k+1 be a fresh symbol not in Σk. Set Lk+1 = Ham (Lk) .

Note that {Ln}n≥0 is included in RT . This follows from the previous propo-
sition. Moreover, we have.

Theorem 19 Sequence {Ln}n≥1 is high in the pebble hierarchy.

Remark 20 The above theorem implies that RT is high in L. This does not
imply that RT is not contained in L. It happens since RT does not have
complete problems. This is consequence of the class RT being stratified, see
[1].

10

3.1 Proving that Sequence {L
n
}
n≥1

is High

We discuss, in the remainder of this extended abstract, the proof of Theorem
19.

Let M be a k-pebble automaton that accepts L. Let w ∈ Σl be an input of
M. The configurations that are accessed by M, on input w, are (k + 2)-tuples

in the set Q× {0, 1, ..., l}k+1 . Let

Dt = (q,m, p1, ..., pk)

be one of those tuples, say the configuration reached by M at instant t. We
have:

• The symbol q denotes the inner state of the machine at instant t.

• The small positive integers m, p1, ..., pk denote the locations, at time t, of
the input head and the k pebbles of M. Suppose that the i-th pebble is
available. We assume that the equality pi = m holds, (we assume that the
input head carries with it the available pebbles).

Definition 21 Let Dt be as above. Let Ct = (p1, ..., pk) . We say that Ct is the
pebble configuration reached by M at instant t.

Definition 22 Let X be a random variable distributed over the set {1, ..., l} .
The Shannon entropy of X, (or just the entropy of X), is defined as

H (X) = −
∑

i≤l

Pr [X = i] log (Pr [X = i])

The maximum entropy is achieved by the random variables that are uni-
formly distributed [12]. Thus, given l ≥ 0 and given Xl, a random variable that
is distributed over {1, ..., l} , the inequality H (Xl) ≤ log (l) holds. Let us sup-
pose that we are confronted with a random variable X that is distributed over
an unknown set A. Suppose that there exists γ < 1

2k such that the inequality

H (X) > (1− γ) k log (l)

holds. We can conclude that the inequality |A| ≥ lk−
1

2 holds. We can use this
elementary fact as a method for proving lower bounds. We call this method The
Entropy Method [8].

Example 23 Let M be a pebble automaton and let p (M) be the number of its

pebbles. Let l > 0 and let Al ⊂ {0, ..., l}p(M) be the set of pebble configurations
that are visited by M, at least once, when this automaton processes inputs of
length l. Let Xl be a random variable that is distributed over the set Al. Suppose
that there exists γ < 1

2k such that the inequality

H (Xl) > (1− γ) k log (l)

holds for all l large enough. We obtain that p (M) is greater than k − 1.

11

Definition 24 Let G be a pebble automaton that accepts the language L ⊂ Σ∗.
Let S ⊂ Σ∗ be an infinite set. Let l > 0, suppose S ∩ Σl 6= ∅ and let XG (S, l)
be the random variable that is defined as follows:

1. Choose uniformly at random w ∈ S ∩ Σl.

2. Choose uniformly at random one of the pebble configurations visited by G
during the processing of w.

3. Let C be the configuration chosen in the previous step. Set XG (S, l) = C.

Definition 25 Let XG (S, l) be as above. We say that H (XG (S, l)) is the en-
tropy of G over the set S ∩ Σl.

Next proposition is an easy application of The Entropy Method.

Proposition 26 Suppose that there exists an infinite set S ⊂ Σ∗ such that for
all G that accepts L and for all γ > 0 the inequality

H (XG (S, l)) > (1− γ) k log (l)

holds asymptotically. Language L cannot be accepted with k − 1 pebbles.

Proof. Suppose to the contrary that there exists a (k − 1)-pebble automaton
H that accepts L. We have that for all infinite set S ⊆ Σ∗ and for all l the
inequality

H (XH (S, l)) ≤ (k − 1) log (l)

holds. We have, on the other hand, that there exists a positive integer KH such
that for all l ≥ KH the inequality

H (XH (S, l)) >

(
1−

1

2k + 1

)
k log (l) >

(
k −

1

2

)
log (l)

holds. We get a contradiction and the proposition is proved.
We use this proposition in the proof of Theorem 19. It remains to prove

that for all k ≥ 0 there exists a set Sk ⊂ Σ∗
k that behaves, with respect to the

language Lk, exactly as in the statement of the previous theorem.

Definition 27 Let k ≥ 0 and let Sk ⊂ Σ∗
k be an infinite set. Let l ≥ 1 and let

Xl be a random variable that is uniformly distributed over the set Sk ∩ Σl
k 6= ∅.

We say that Sk is a H-set for Lk if and only if for all γ > 0 the inequality

H (‖Xl‖) > (1− γ) log (l)

holds asymptotically.

Notation 28 Let Sk be a H-set for Lk and let l > 0. We use the symbol Sk (l)
to denote the set Sk ∩Σl

k.

12

Let L∗
k be the language

{
εLk

s(w)#k+1w1#k+1 · · ·#k+1wn#k+1u : u /∈ Lk

}

Let us suppose that Sk is a H-set for Lk. Let r, l ≥ 1 and let S∗
k,r,l be the set

{
εLk

s(w)#k+1w1#k+1 · · ·#k+1wn#k+1u : n = logr (l)− 1 and

w1, ..., wn, u ∈ Sk (l)

}

Remark 29 Recall that εLk

s(w) denotes the Lk-characteristic function of the se-
quence

s (w) = w1#k+1 · · ·#k+1wn

Definition 30 Let G∗ be a pebble automaton. We say that G∗ is a promise au-

tomaton for the pair


L∗

k,
⋃

l≥1

S∗
k,r,l


 if and only if the following two conditions

hold:

1. G∗ accepts the strings in


⋃

l≥1

S∗
k,r,l


 ∩ L∗

k.

2. G∗ rejects the strings in


⋃

l≥1

S∗
k,r,l


 ∩ co-L∗

k, where co-L∗
k denotes the

complement of L∗
k.

Notation 31 We use the symbol S∗
k,r to denote the set

⋃

l≥1

S∗
k,r,l. We use the

symbol Kl to denote the length of the strings that belong to S∗
k,r,l. Note that Kl

equals (l + 1) logr (l) + logr (l) − 1. We use the symbol XG∗

(
S∗
k,r,l

)
to denote

the random variable XG∗

(
S∗
k,r ,Kl

)
.

Proposition 32 Let G be a pebble automaton that accepts Lk. Let r ≥ 0. There

exists a promise automaton G∗ for the pair
(
Lk,S∗

k,r

)
such that the inequality

H
(
XG∗

(
S∗
k,r,l

))
≤ H (XG (Sk, l))

holds.

Proof. Let G∗ be the pebble automaton that simulates, on input

ε1 · · · εn#k+1w1#k+1 · · ·#k+1wn#k+1u,

the computation of G, on input u. Automaton G∗ is a promise automaton for

the pair
(
L∗
k,S

∗
k,r

)
and the inequality

H
(
XG∗

(
S∗
k,r,l

))
≤ H (XG (Sk, l))

holds.

13

Remark 33 We want to show that the automata that accept Lk have high en-
tropy over the set Sk. It suffices if we prove that there exists r ≥ 0 such that

the promise automata for the pair
(
L∗
k,S

∗
k,r

)
all have high entropy over the set

S∗
k,r.

Let G∗ be a promise automaton for the pair
(
L∗
k,S

∗
k,r

)
. Let l ≥ 2 and let

Wl = ε1 · · · εn#k+1w1#k+1 · · ·#k+1wn#k+1u

be an input of G∗. Let us suppose n = logr (l)− 1 and let us suppose that Wl is
uniformly distributed over the set S∗

k,r,l. Let us assume, against our own interest,
that G∗ has preprocessing capabilities that help it to reduce the number of pebble
configurations that are visited during the processing of u. Let us assume that
G∗ can process the honest prefix

ε1 · · · εn#k+1w1#k+1 · · ·#k+1wn,

and compute some advice using zero pebbles for this purpose. What is the
advice (statistics) that G∗ is allowed to compute in this preprocessing phase?
We let G∗ to run, with zero cost, a mining algorithm M for the language L∗

k.

Definition 34 Let Wl be as above and let

s (Wl) = w1#k+1 · · ·#k+1wn

A mining algorithm for L∗
k is an algorithm M that has restricted access to Wl.

Algorithm M has access to the sequence s (Wl) and computes, on this input
string, sets

SM1
(Wl) , ..., SMtM

(Wl) ⊆ {1, ..., n}

whose number (i.e. the quantity tM) does not depend on s (Wl). The output of
M, on input s (Wl) , is the tuple

(
SM1

(Wl) , ..., SMtM
(Wl) ,Φ

M
1 (Wl) , ...,Φ

M
tM

(Wl)
)

where given j ≤ tM the symbol ΦM
j (Wl) denotes the sum

∑

j∈SMj

‖wj‖

We use the symbol M (Wl) to denote the output of M.

Remark 35 Note that a mining algorithm like M fulfills two constraints, namely:
M does not have access to u, the restricted form of the output.

We assume, against our own interest, that:

14

1. G∗ can run a (optimal) mining algorithm for L∗
k using zero pebbles for this

purpose. We use the symbol M to denote this algorithm. Algorithm M
computes (the best possible) advice from s (Wl) .

2. G∗ can save the tuple
(
SM1

(Wl) , ..., SMtM
(Wl) ,Φ

M
1 (Wl) , ...,Φ

M
tM

(Wl)
)

using zero pebbles for this purpose. We use the symbol M (Wl) to denote
this tuple.

3. G∗ can use M (Wl) as an oracle in order to reduce the entropy that oc-
curs during the processing of u. Notice that M (Wl) is a random variable
distributed over the set

P ({1, ..., n})tM × {0, ..., nl}tM

We encode the above three assumptions by focusing on the conditional en-
tropy

H
(
XG∗

(
S∗
k,r,l

)
| M (Wl)

)
,

see reference [3].

Definition 36 Let Sk be a H-set for Lk. We say that Sk is a high entropy set
for Lk if and only if for all r > 0, for all promise automaton G∗ for the pair(
L∗
k,S

∗
k,r

)
, for all mining algorithm M for L∗

k and for all γ > 0 the inequality

H
(
XG∗

(
S∗
k,r,l

)
| M (Wl)

)
≥ (1− γ) k log (l)

holds asymptotically.

We have.

Theorem 37 Suppose that Sk is a high entropy set for language Lk. Then, for
all pebble automaton G that accepts Lk and for all γ > 0 the inequality

H (XG (Sk, l)) ≥ (1− γ) k log (l)

holds asymptotically.

Proof. Let G be an automaton that accepts the language Lk and let r ≥ 1.

There exists a promise automaton G∗ for the pair
(
Lr
k,S

∗
k,r

)
and such that for

all l ≥ 1 the inequality

H
(
XG∗

(
S∗
k,r,l

))
≤ H (XG (Sk, l))

holds. Let M be a mining algorithm for L∗
k. Conditioning a random variable

can only reduce its entropy. We get that for all γ > 0 the inequalities

(1− γ) k log (l) ≤ H
(
XG∗

(
S∗
k,r,l

)
| M (Wl)

)

≤ H
(
XG∗

(
S∗
k,r,l

))
≤ H (XG (Sk, l))

15

hold, the first of these inequalities holds asymptotically. The theorem is proved.

Let us construct a sequence {Sk ⊂ Σ∗
k : k ≥ 0} such that Sk is a high entropy

set for Lk. We proceed by induction. The construction goes as follows.

1. Let us first consider the case k = 0. Set S+
0 equal to EQ and set

S−
0 =

{
1i−10l−2i1i+1 : l ≥ 1 and 2i < l

}

Then, set S0 = S+
0 ∪ S−

0 . Observe that:

• S0 is infinite.

• For all i <
⌊
l
2

⌋
there exists exactly one string in S+

0 ∩ {0, 1}l and

exactly one string in S−
0 ∩ {0, 1}l whose Hamming weights are equal

to 2i. This ensures that the condition imposed in Definition 27 holds
for S0.

• The condition imposed in Definition 36 trivially holds for k = 0.

2. Let us assume that there exists a high entropy set for Lk, say the set
Sk ⊂ Σ∗

k. We construct a high entropy set for the language Lk+1 ⊂ Σ∗
k+1.

We proceed as follows:

Let l ≥ 1. Recall that we use the symbol Sk (l) to denote the set Sk ∩Σl
k.

Suppose Sk (l) 6= ∅. Let Sk+1

(
2 (l + 1) log2 (l)

)
be equal to the set





s (w)#k+1#
T
k+10

KT :
s (w) = w1#k+1 · · ·#k+1wlog2(l) and

w1, ..., wlog2(l) ∈ Sk (l) and

T ∈
{
0, ..., l log2 (l)

}





Set
Sk+1 =

⋃

l≥2

Sk+1 (l)

We prove that Sk+1 is a high entropy set for Lk+1.With this we finish the
proof of the separation L 6= NP . Let us first prove that Sk+1 is a H-set.

Lemma 38 Let l > 0 and let X l
1,, X

l
log2(l)

be random variables i.i.d over

the set Sk (l) . Let X l
Σ be equal to

∑

i≤log2(l)

X l
i . Suppose that for all γ > 0 the

inequality
H

(
X l

1

)
> (1− γ) log (l)

holds asymptotically. Then, for all γ > 0 the inequality

H
(
X l

Σ

)
> (1− γ) log

(
2 (l + 1) log2 (l)

)

holds asymptotically.

16

Proof. Let n ≥ 1, and let X l
1, ..., X

l
n be random variables i.i.d over the set

Sk (l) . Set X l
Σ (n) =

∑

i≤n

X l
i . Let us invoke Shannon entropy power inequality

[12]. This inequality states that givenm random variables Y1, ..., Ym the relation

e

2H







∑

i≤m

Yi







≥
∑

i≤m

e2H(Yi)

holds. Then, if the Y ’s are random variables i.i.d we get the inequality

e

2H







∑

i≤m

Yi







≥ me2H(Y1),

and hence we get

H


∑

i≤m

Yi


 ≥ H (Y1) +

ln (m)

2

Let γ > 0, we have

H
(
X l

Σ (n)
)

≥ H
(
X l

1

)
+

log (n)

2 ln (e)

> (1− γ) log (l) +
log (n)

2 log (e)
,

where the strict inequality holds asymptotically. Notice thatX l
Σ = X l

(
log2 (l)

)
.

We get that

H
(
X l

Σ

)
> (1− γ) log (l) +

log (log (l))

log (e)

And we also get that for all γ > 0 the inequality

H
(
X l

Σ

)
> (1− γ)

(
log

(
2 (l + 1) log2 (l)

))

holds asymptotically. The lemma is proved.
We get the following corollary.

Corollary 39 Let l > 0, let X l
1,, X

l
log2(l)

be random variables i.i.d over the

set Sk (l) and let ε1, ..., εlog2(l) be random variables i.i.d. distributed over the set
{0, 1} according to the distribution

Pr (ε) =

{
1

l log2(l)
, if ε = 0

1− 1
l log2(l)

, if ε = 1

Let X l
Σ be equal to

∑

i≤log2(l)

εiX
l
i . Suppose that for all γ > 0 the inequality

H
(
X l

1

)
> (1− γ) log (l)

17

holds asymptotically. Then, for all γ > 0 the inequality

H
(
X l

Σ

)
> (1− γ) log

(
2 (l + 1) log2 (l)

)

holds asymptotically.

We also get the following corollary

Corollary 40 Sk+1 is a H-set for Lk+1.

Let us now prove that Sk+1 is a high entropy set for Lk+1. This is the
statement of next lemma. We assume that Sk is a high entropy set for Lk

Lemma 41 Let k, r ≥ 0 and let G∗ be a promise automaton for the pair(
L∗
k+1,S

∗
k+1,r

)
. Let M be a mining algorithm for L∗

k+1. Given l ≥ 2 we use

the symbol Wl to denote a random variable that is uniformly distributed over
the set S∗

k+1,r,l. For all γ > 0 the inequality

H
(
XG∗

(
S∗
k+1,r,l

)
| M (Wl)

)
≥ (1− γ) (k + 1) log (l)

holds asymptotically with respect to l.

Proof. Let r > 0. Let G∗ be a promise automaton for the pair
(
L∗
k+1,S

∗
k+1,r

)
.

Let M be a mining algorithm for L∗
k+1. Let

Wl = ε1 · · · εn#k+2w1#k+2 · · ·#k+1wn#k+2u

be a random variable uniformly distributed over the set S∗
k+1,r,l. Let i ≤ n =

logr (l)− 1. Let us suppose that wi is equal to

vi1#k+1 · · ·#k+1v
i
log2(l)#k+1#

Ti

k+10
KTi

and let us suppose that u is equal to

v1#k+1 · · ·#k+1vlog2(l)#k+1#
T
k+10

KT ,

We observe that the random variables

v11 , ..., v
1
log2(l), ..., v

n
1 , ..., v

n
log2(l), v1, ..., vlog2(l)

are independently and uniformly distributed over the set Sk (l) . We also ob-
serve that the random variables T1, ..., Tn, T are independently and uniformly
distributed over the set

{
1, ..., l log2 (l)

}
. Finally, we observe that the random

variables vji , vt, Th and T are independent.
We assume that the computation of the promise automaton G∗, on input

Wl, reduces to check whether u /∈ Ham (Lk) . This means that G∗ has to check
whether the equality ∑

j≤log2(l)

εLk (vj) ‖vj‖ = T

18

holds. This forces G∗ to check all the factors v1, ..., vlog2(l), and sum up the
Hamming weights of those belonging to Lk. Let us choose uniformly at random
one of the configurations visited by G∗ during the processing of u. We use the

symbol XG∗

(
S∗
k+1,r,l

)
to denote this random variable. We can assume that G∗

is checking whether some factor vi belongs to Lk. Let us now choose, uniformly
at random, one of the configurations visited by G∗ during the processing of
factor vlog2(l), and let us assume that vlog2(l) is the last factor checked by G∗.

We use the symbol ZG∗

(
S∗
k+1,r,l

)
to denote this random variable. The entropy

of ZG∗

(
S∗
k+1,r,l

)
is bounded above by the entropy of XG∗

(
S∗
k+1,r,l

)
. Then, we

can assume, without loss of generality, that G∗ is checking the factor vlog2(l).
The processing of slog2(l) compels G∗ to simulate, on this factor, a pebble

automaton G that accepts Lk, possibly utilizing advice from the string

ε1 · · · εn#k+2w1#k+2 · · ·#k+2wn

Let us use the symbol YG

(
S∗
k+1,r,l

)
to denote the configuration of G that is

being simulated by G∗, and set

Φ (Wl) =
∑

t<log2(l)

‖vt‖ ε
Lk (vt)

Consider the jointly distributed random variable
(
YG

(
S∗
k+1,r,l

)
,Φ (Wl)

)
. The

inequality

H
(
XG∗

(
S∗
k+1,r,l

)
| M (Wl)

)
≥ H

(
YG

(
S∗
k+1,r,l

)
,Φ (Wl) | M (Wl)

)

holds since H
(
YG

(
S∗
k+1,r,l

)
,Φ (Wl) | XG∗

(
S∗
k+1,r,l

))
equals zero. We prove

that for all γ > 0 the inequality

H
(
YG

(
S∗
k+1,r,l

)
,Φ (Wl) | M (Wl)

)
≥ (1− γ) (k + 1) log (l)

holds asymptotically. The chain rule for Shannon entropy (see [3]) entails the
equality

H
(
YG

(
S∗
k+1,r,l

)
,Φ (Wl) | M (Wl)

)

= H
(
YG

(
S∗
k+1,r,l

)
| Φ (Wl) ,M (Wl)

)
+H (Φ (Wl) | M (Wl))

Let us analyze the two terms that occur at the right hand side of this equality.
For all γ > 0 the inequality

H (Φ (Wl) | M (Wl)) ≥ (1− γ) log (l)

holds asymptotically. This is a consequence of the following two facts:

1. For all γ > 0 the inequality H (Φ (Wl)) ≥ (1− γ) log (l) holds asymptoti-
cally since Sk+1 is a H-set.

19

2. The random variables

v11 , ..., v
1
log2(l), ..., v

n
1 , ..., v

n
log2(l), v1, ..., vlog2(l)

are independently and uniformly distributed over the set Sk (l) .

Let us finish with the proof. It remains to prove that for all γ > 0 the
inequality

H
(
YG

(
S∗
k+1,r,l

)
| ΦN (Wl) ,M (Wl)

)
≥ (1− γ) k log (l)

holds asymptotically.
Let UWl

be equal to the string

εLk
(
v11
)
· · · εLk

(
v1log2(l)

)
· · · εLk (vn1) · · · ε

Lk

(
vnlog2(l)

)

εLk (v
1
) · · · εLk

(
vlog2(l)−1

)
#k+1

v11#k+1 · · ·#k+1v
1
log2(l)#k+1 · · ·#k+1v

n
1#k+1 · · ·#k+1v

n
log2(l)#k+1

v1#k+1 · · ·#k+1vlog2(l)−1

Let us observe that UWl
#k+1vlog2(l) is uniformly distributed over the set S∗

k,r+2,l

(recall that the equality n = logr (l)−1 holds). Thus, we have that UWl
#k+1vlog2(l)

is a typical instance of any promise automaton for the pair
(
L∗
k,S

∗
k,r+2

)
. Let

i ≤ n, and set

w∗
i = vi1#k+1 · · ·#k+1v

i
log2(l)#k+1#

T∗
i

k+10
KT∗

i ,

where T ∗
i =

∑

j≤log2(l)

∥∥vij
∥∥ εLk

(
vij
)
. Set

s (W ∗
l) = w∗

1#k+2 · · ·#k+2w
∗
n

Notice that s (W ∗
l) can be easily computed from UWl

. Let K be a mining algo-
rithm for L∗

k that works, on input s (UWl
), as follows:

1. Computes the set

SWl
=

{
i < log2 (n) : εLk (vi) = 1

}

2. Computes the sum

ΦK (UWl
) =

∑

i∈SWl

‖vi‖

3. Computes s (W ∗
l) .

20

4. Simulates the computation of M, on input s (W ∗
l) , and outputs the tuple

(
SWl

, SM1
(W ∗

l) , ..., SMtM
(W ∗

l) ,

ΦK (UWl
) ,ΦM

1 (W ∗
l) , ...,Φ

M
tM

(W ∗
l)

)

We use the symbol
(
ΦK (UWl

) ,M (W ∗
l)
)
to denote this tuple.

The inequality

H
(
XG

(
S∗
k,r+2,l

)
| K (UWl

)
)

= H
(
XG

(
S∗
k,r+2,l

)
| ΦK (UWl

) ,M (W ∗
l)
)

≤ H
(
YG

(
S∗
k+1,r,l

)
| Φ (Wl) ,M (Wl)

)

holds asymptotically, (the equality holds from the definition of K (UWl
)). This

follows from the following facts:

1. ΦK (UWl
) = Φ (Wl) .

2. Suppose εi = 0. We get

Ti = T ∗
i =

∑

j≤log2(l)

∥∥∥vji
∥∥∥ εLk

(
vji

)

Suppose εi = 1. Recall that Ti is a random integer uniformly distributed
over the set

{
0, ..., l log2 (l)

}
. Recall that the random variables Ti and

vlog2(l) are independent. This implies that the condition

Ti 6=
∑

j≤log2(l)

∥∥∥vji
∥∥∥ εLk

(
vji

)

conveys null information about the random variable YG

(
S∗
k,r+2,l

)
. Then,

we can ignore Ti and replace it by T ∗
i . Observe that this is the way we

construct s (W ∗
l) from s (UWl

) .

Let us invoke at this point the inductive hypothesis regarding the set Sk

(S∗
k,r+2,l). We get that for all γ > 0 the inequality

H
(
XG

(
S∗
k,r+2,l

)
| K (UWl

)
)
≥ (1− γ) k log (l)

holds asymptotically. We conclude that for all r ≥ 1, for all promise automaton

G∗ for the pair
(
L∗
k+1,S

∗
k+1,r

)
, for all mining algorithm M for L∗

k+1 and for all

γ > 0 the inequality

H
(
XG∗

(
S∗
k+1,r,l

)
| M (Wl)

)
≥ (1− γ) (k + 1) log (l)

holds asymptotically. The lemma is proved.
We get as corollaries of the above results the following facts:

21

1. For all k ≥ 1 the set Sk is a high entropy set for Lk.

2. The language Lk cannot be accepted with k − 1 pebbles.

3. The sequence {Lk}k≥1 is high in the pebble hierarchy.

4. The separation L 6= NP holds.

References

[1] Aanderaa, S.: On k-Tape Versus (k − 1)-tape Real Time Computation. In
proceedings of SIAM-AMS 7 (1974) 75-96

[2] Book, R. and Greibach, S.: Quasi-realtime languages, Math. Systems The-
ory 4 (1970) 97-111

[3] Cover, T.: Elements of Information Theory. Wiley, 1991.

[4] Greibach, S.: The Hardest Context-Free Language. SIAM Journal on Com-
puting 2(4) (1973) 304-310

[5] Greibach, S.: Jump PDA’s and Hierarchies of Deterministic Context-Free
Languages. SIAM Journal on Computing 3(2) (1974) 111-127

[6] Hsia, P and Yeh, R.: Marker Automata. Information Sciences 8(1) (1975)
71-88

[7] Mealy, G.: A Method for Synthesizing Sequential Circuits. Bell System
Technical Journal 34(5) (1955) 1045-1079

[8] Mitzenmacher, M. and Upfal, E.: Probability and Computing. Cambridge
University Press

[9] Monien, B.: Two-way multihead automata over a one-letter alphabet. In-
formatique Théorique et Applications 14 (1980) 67-82

[10] Petersen, H.: The Equivalence of Pebbles and Sensing Heads for Finite
Automata. In Proceedings of FCT (1997) 400-410

[11] Petersen, H.: A Census Technique for Simple Computing Devices. Unpub-
lished Manuscript

[12] Shannon, C.: A Mathematical Theory of Communication”. Bell Systems
Technical Journal. 27(3) (1948) 379-423

[13] Sudborough, I.: On Tape-Bounded Complexity Classes and Multihead Fi-
nite Automata. Journal of Comp and Syst Sci 10(1) (1975) 62-76

22

	Mealy reductions and Complete problems
	The Pebble Hierarchy
	L is different from NP
	Proving that Sequence { Ln} n1 is High

