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Abstract

In a world increasingly awash with data, the need to extract meaningful insights from data has never
been more crucial. Functional Data Analysis (FDA) goes beyond traditional data points, treating data
as dynamic, continuous functions, capturing ever-changing phenomena nuances. This article introduces
FDA, merging statistics with real-world complexity, ideal for those with mathematical skills but no FDA
background.

1 Introduction

Nowadays, advancements in data collection technologies like sensors, computer vision, medical imaging,
IoT and wearables have generated vast volumes of high-frequency data across various fields. These data
are not just a collection of numbers and tables but a rich, dynamic tapestry of information that captures
the essence of change over a continuum. Functional Data Analysis (FDA) (Bosq, 2000; Ramsay and
Silverman, 2005; Ferraty and Vieu, 2006; Kokoszka and Reimherr, 2017) efficiently handles large-scale,
high-dimensional datasets, extracting valuable insights from data containing structured information.
Unlike traditional statistics dealing with discrete data points, FDA focuses on entire functions, curves or
shapes, providing insights into continuous changes. Whether analyzing time series, spatial data, growth
curves, or any structured dataset, FDA excels at capturing ongoing change. FDA’s applications span
various fields like medicine, biology, chemistry, economics, and environmental science, offering insights
beyond isolated measurements. It aids in patient health tracking, economic trend analysis, chemical or en-
vironmental management by modeling and understanding complex systems. In manufacturing, FDA can
be applied to monitor continuous processes, such as chemical reactions, quality control measurements, and
equipment performance. It helps detect deviations from the desired process behavior (Palumbo et al.,
2020). In computational biology, FDA involves studying complex biomolecular structures and under-
standing the relationship between organism shapes and functionality. FDA techniques are also applied to
analyze longitudinal patient data (Yao et al., 2005), which are common in clinical trials. This enables the
study of disease progression, treatment effectiveness, and personalized medicine. Furthermore, in biology,
in the omics data context, gene expression data comprise measurements of gene expression levels across
thousands of genes at multiple time points. By considering these data as a function of time, FDA (Leng
and Müller, 2006; Cremona et al., 2019) can help researchers to better understand the general features
and dynamics of gene expression, to identify key genes associated with specific diseases or biological
processes, and to identify differences or similarities between genes.
In economics, FDA is employed to analyze longitudinal data, such as stock prices, gross domestic product
trends, and inflation rates. It helps identify long-term patterns, cyclic behavior, and structural changes
(Horváth and Kokoszka, 2012). In environmental science, FDA is used to analyze temporal or space-time
environmental data, such as temperature records, precipitation patterns, and ocean currents. It aids
in understanding long-term climate trends and variability. FDA can be applied to study spatial data,
helping to identify pollution hotspots (Frévent et al., 2023), or study vegetation growth, and monitor
land use changes over time.
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In essence, FDA transcends traditional data analysis limitations by leveraging data with functionality,
providing valuable statistical tools for researchers and professionals seeking deeper insights and solutions
to complex problems. We explore FDA’s significance, mathematical foundations, practical applications,
and future prospects to unveil its transformative potential.

2 The Significance of Functional Data Analysis

In various fields, FDA provides a powerful set of methods to model, analyze, and interpret data that
exhibit continuous variation, allowing researchers and professionals to gain deeper insights, make more
accurate predictions, and informed decisions based on the inherent functional nature of the data. This
versatility makes FDA a valuable approach in a wide range of scientific and practical applications (Sil-
verman and Ramsay, 2002).
Employing mathematical domains like linear algebra, functional analysis, probability and statistics, FDA
manipulates and analyzes functions by representing data as observations of random variables in a function
space. This allows operations like differentiation, integration, and smoothing, facilitating exploration of
data structure and variations. By treating data as functions, FDA helps uncover hidden patterns, rela-
tionships, and trends that would be challenging to discern using traditional statistical methods, leading
to more informed decision-making and a deeper understanding of complex phenomena.

FDA versus Multivariate statistics

Is it worthwhile to employ continuous representations, or are we unnecessarily adding complexity to our
tasks? Given that discrete data are often needed for computational purposes, what are the benefits
of utilizing continuous representations in our analyses? While discrete data may offer computational
convenience, the advantages of working with continuous representations are numerous. By viewing objects
as functions, curves, or surfaces, scientists can unlock more powerful analysis techniques, yielding better
practical results and more natural solutions. Grenander’s principle of discretizing as late as possible
underscores the importance of retaining continuous representations for as long as feasible, highlighting
their inherent value in data analysis workflows. With this in mind, let us consider how continuous
representations enhance our understanding and analysis of data.
If data are sampled from an underlying function (e.g., Figure 1 (a)), and time points are synchronized
across observations, focusing solely on heights, then analysis can be conducted using the vector x =
(x1, x2, . . . , xL)

⊤. If the time points hold significance as well, then it is necessary to retain them alongside
the height data: ((t1, x1), (t2, x2), . . . , (tL, xL))

⊤. With continuous functions one can interpolate and
resample at arbitrary points (e.g., Figure 1 (b)) and compare easily observations with different time
points, as elements of a function space.
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Figure 1: Example of discrete data from a function f

In traditional data analysis, one might work with data points in a table where each row represents an
observation (e.g., x) and each column represents a variable. In FDA, the data are treated as functions,
where each observation is considered as a function (e.g., in Figure 2 (a)) that maps a continuous variable
(often time, frequency, wavelength or a spatial dimension) to a measured value. These functions represent
how the data change over the continuum.
Understanding functions necessitates a profound grasp of the structures lying beneath them. Analyz-
ing these structures requires a solid foundation of mathematical representations. The FDA approach
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empowers researchers to investigate various models extensively, thus expanding the comprehension of
data characterized by functional structures across diverse fields of science and engineering. Examples of
functional data are illustrated in Figure 2.

(a) (b) (c) (d)

Figure 2: Examples of functional data. Panel (a) represents the most common case of functional data
over time with the growth dataset from the R package fda, panel (b) represents the horizontal (X) and
vertical (Y ) positions of a pen while writing the word “fda” with the handwrit dataset from the R package
fda, panel (c) represents categorical functional data with the care trajectories of patients over time (care
dataset from the R package fda) and panel (d) represents functional data in the case of images, here
functional magnetic resonance imaging measurements for a human brain with the brain dataset from the
R package gamair.

3 Mathematical Foundations of FDA

FDA involves a variety of specialized statistical techniques for handling functional data (Ramsay and
Silverman, 2005), including methods for function smoothing, visualization (e.g., plotting entire functions
as curves or surfaces), dimension reduction (e.g., functional principal component analysis), functional
regression, and clustering. These techniques account for the continuous nature of the data and are
designed to capture underlying patterns and structures in functions. As said before, analyzing these
functions involves mathematical representations.
Let (Ω,A,P) be a probability space, F a function space (e.g., a separable Banach space or a Hilbert
space). A functional random variable is a variable

X = {X(t), t ∈ T } : Ω → F ,

taking values in F (of eventually infinite dimension). A functional data is then an observation of the
functional random variable X.

If T ⊆ R then X is a curve while an image may be considered as a functional data in the case where
T ⊆ R2. If T ⊆ Rd (d > 2), X has a more complex structure.
Let us consider in the following the commonly used functional Hilbert space L2(T ,R), the space of p-
dimensional vector-valued square-integrable functions on T , and give the main background to analyse
functional data. First, consider the inner product on that Hilbert space: for f, g ∈ L2(T ,R), ⟨f, g⟩ =∫
T f(t) g(t) dt. The mean and the covariance functions of the random variable X ∈ L2(T ,R), assumed
as smooth functions, are respectively

µX(t) = E[X(t)] ∈ R

and
CX(s, t) = Cov(Xs, Xt) = E{[X(t)− µX(t)][X(s)− µX(s)]} ∈ R.

The latter is viewed as the kernel of the linear Hilbert-Schmidt operator ΓX on F = L2(T ,R): ΓX : F →
F , ΓXf(t) =

∫
T CX(t, s)f(s) ds. Note that ΓX admits the spectral decomposition ΓX =

∑
j≥1 λjfj ⊗ fj

where (f ⊗ g)(x) = ⟨f, x⟩g, x ∈ F , {fj}j is a complete orthonormal system in L2(T ,R) and {λj}j is a
decreasing sequence of positive real numbers such that

∑
j≥1 λj < ∞.

Let X1, . . . , Xn be an independent and identically distributed (i.i.d.) sample of X.
The usual estimator of µX is the method of moments estimator given by µ̂X(t) = 1

n

∑n
i=1 Xi(t).
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In this i.i.d. framework, there are several theoretical guarantees regarding the convergence of µ̂X to µX

(such as the law of large numbers, the central limit theorem, and concentration inequalities of the Bern-
stein type, see Chapter 2 of Bosq (2000)). For instance, for the Hilbert space F equipped with a norm
∥.∥F , if E [∥X1∥F ] < ∞ then µ̂X → µX almost surely as n → ∞. If E[∥X1∥2F ] < ∞, µ̂X is asymptotically
normally distributed:

√
n (µ̂X − µX) converges in distribution to N (0,CX).

Classic empirical estimators of the covariance operator ΓX and covariance function CX are Γ̂X =
1
n

∑n
i=1(Xi− µ̂X)⊗ (Xi− µ̂X) and ĈX(s, t) = 1

n

∑n
i=1[Xi(t)− µ̂X(t)][Xi(s)− µ̂X(s)]. Several asymptotic

results on Γ̂X are given in Chapter 4 of Bosq (2000). More theoretical details are given in this last
reference, as well as in Hall et al. (2006) and Xiao (2020).

From raw data to functional data: Note that, in practice, we observe raw data (e.g., the average
daily temperature in spatial locations described by the first panel of Figure 4: the temperature in each
location is measured every day from 1960 to 1994) of the form

xi,ti,li
, ti,li ∈ T , i = 1, . . . , n li = 1 . . . , Li.

It should be noted that the observation times ti,li can vary in number and value depending on the
individual i.
Following Zhang and Wang (2016), we should distinguish the case of sparse and dense functional data.
Dense functional data are characterized by the fact that all Li are larger than some order of n. In this
case, it is possible to use a smoothing technique on the raw data xi,ti,li

to recover the original curves.
It is common in FDA to assume that the Li observations {xi,ti,1 , . . . , xi,ti,Li

} are noisy observations of
the smooth latent curve Xi(.). Namely, we have xi,ti,li

= Xi(ti,li) + εi,ti,li , where the error terms εi,ti,li
are zero mean and i.i.d. In the early stages of FDA, this smoothing is typically conducted as an initial
step by kernel smoothing, local polynomial smoothing, Fourier, spline or penalized spline approaches.
The classic smoothing approach is basis expansion by assuming that Xi, 1 ≤ i ≤ n can be expressed as a
finite combination of the first K functions of a basis functions {ϕ1, . . . ϕK , . . . } of L2(T ,R):

Xi(t) =

K∑
k=1

ai,kϕk(t).

This is equivalent to write Xi(t) = ϕ(t)ai where ϕ(t) = (ϕ1(t), · · · , ϕK(t)) and ai = (ai,1, . . . , ai,K)⊤.
Then the estimators of the mean and covariance functions of X can be defined respectively on T by

µ̂X(t) =
1

n

n∑
i=1

Xi(t) =
1

n
ϕ(t)

n∑
i=1

ai, and ĈX(s, t) =
1

n
ϕ(t)A⊤Aϕ(s)⊤

where A is the n×K matrix whose ith row Ai is equal to
(
ai − 1

n

∑n
k=1 ak

)⊤
. Depending on the nature

of the data, various choices for the ϕk are possible. In the case of periodic data, a Fourier basis is ap-
propriate, whereas for non-periodic data, possible choices are polynomial basis or splines basis. Figure
3 shows a transition from raw data to functional data using a cubic B-splines basis. This process is not
applicable for sparse functional data due to the very limited quantity of information available for each
curve. Sparse data require more sophisticated approaches not discuss here. For more details concerning
basis options, please see Ramsay and Silverman (2005) and for other smoothing techniques or more de-
tails on the sampling design of functional data, see Zhang and Wang (2016).

With the growing popularity of functional data analysis, numerous statistical methods have been extended
and adapted to this context. In the following discussion, we explore some of the most valuable and widely
used ones (principal component analysis, clustering, linear and non-linear regressions). It should be noted
that we only consider the case of univariate functional data, i.e., for all t ∈ T , X(t) ∈ R. The structure of
multivariate functional data (X(t) ∈ Rp, p ≥ 2) is more complex, please refer to Koner and Staicu (2023)
for more details.

Functional principal component analysis: Kleffe (1973) has expanded upon the conventional and
widely employed statistical approach known as Principal Component Analysis (PCA) to accommodate
variables with values in a separable Hilbert space. Then PCA has been extended to accommodate
specifically univariate functional data (see for example Locantore et al. (1999) and Ramsay and Silver-
man (2005)). This technique is particularly useful for reducing the dimensions of the data, extracting
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Figure 3: Example of transition from raw data (grey connected points) to functional data (black curve)
using a cubic B-splines basis (colored curves) on the gait dataset from the R package fda. The colored
points correspond to the B-splines coefficients (with the same color as the splines).

their main features, providing an indication of their complexity and gaining insights into the underlying
patterns and structures. The subsequent paragraph discusses the functional PCA method within the
context of univariate functional data, noting that the case of multivariate functional data has also been
investigated in the literature (Ramsay and Silverman, 2005; Berrendero et al., 2011).
The above spectral decomposition of ΓX is linked to the PCA on the Xi. In fact, functional PCA aims to
represent the i.i.d. curves Xi using a few (P ) principal orthogonal eigenfunctions fj ∈ L2(T ,R) so that

Xi(t) ≈ µX(t) +

P∑
j=1

ci,jfj(t).

This is an approximation of the Kosambi-Karhunen-Loève (Kosambi, 1943; Loève, 1945; Karhunen, 1947)
expansion that states that

Xi(t) = µX(t) +
∑
j≥1

ci,jfj(t),

where {fj}j≥1 and λ1 ≥ λ2 ≥ · · · ≥ 0 are the eigenfunctions and eigenvalues of ΓX . The ci,j =
⟨Xi − µX , fj⟩ are called the scores, they extract the main features of Xi and are centered pairwise
uncorrelated random variables.
Note that the Kosambi-Karhunen-Loève expansion is related to Mercer’s theorem (Mercer, 1909), that
states

CX(s, t) =
∑
j≥1

λjfj(t)fj(s).

Since the mean and covariance functions are unknown, in the early stage of FDA, applying a functional
PCA is in practice equivalent to find estimated orthogonal eigenfunctions f̂j so that

∀t,
∫
T
ĈX(s, t)f̂j(s) ds = λ̂j f̂j(t).

Hence, assuming that f̂j can be expressed as f̂j(t) = ϕ(t)bj , the task is to find λ̂j ∈ R and bj ∈ RK so
that

1

n
A⊤A

∫
T
ϕ(s)⊤ϕ(s) ds bj = λ̂jbj .

By defining W =
∫
T ϕ(s)⊤ϕ(s) ds and uj = b⊤j W

1/2, and then multiplying the previous equation on the

left by W 1/2⊤, we arrive at the classic PCA formula (where Z = AW 1/2):

1

n
Z⊤Zu⊤

j = λ̂ju
⊤
j .

Subsequently, it becomes straightforward to ascertain the values of uj and λ̂j . Additionally, the deter-

mination of bj (and consequently f̂j) can be inferred through the following relationships:

bj = (ujW
−1/2)⊤, f̂j(t) = ϕ(t)bj .
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Ultimately, the estimated scores ĉi,j are given by ĉi,j = ⟨Xi − µ̂X , f̂j⟩ = AiWbj . It should be noted that,
although not discussed here, other approaches for functional PCA have been proposed in the literature.
A more complete review can be found in Shang (2014).

Functional linear regression: Numerous studies have explored regression modeling within the context
of functional data (Cuevas et al., 2002; James, 2002; Morris, 2015). In the following, we focus on presenting
generalized functional linear models, which are designed to model a continuous response variable as a
function of functional covariates.
In this framework, we consider a real-valued response variable Y and a functional covariate {X(t), t ∈
T } ∈ L2(T ,R). Throughout the section, we assume that X has been centered and that we have a sample
(Yi, {Xi(t), t ∈ T })i=1,...,n of n i.i.d. replications of (Y, {X(t), t ∈ T }).
Generalized functional linear regression posits that the relationship between the response variable and
the functional covariate is defined as follows:

E[Y |{X(t), t ∈ T }] = g−1(η), Var[Y |{X(t), t ∈ T }] = V (g−1(η)),

where g is a monotonic “link function”, V is a positive “variance function” and β ∈ L2(T ,R), η is a

linear predictor defined by η = α+

∫
T
X(t) β(t) dt.

The model finds practical applications in various scenarios, such as establishing associations between the
incidence of respiratory diseases (e.g., asthma, lung cancer) and air pollution levels in the months or
years leading up to the study. In such cases, a generalized functional linear Poisson regression model is
often employed, where the link function g is the logarithm, and V is the identity function.
The simplest and most popular model is the so-called functional linear model, where g is the identity
function, and V is a constant function:

Yi = α+

∫
T
Xi(t) β(t) dt+ εi.

The random variables εi are assumed i.i.d., scalar variables with a mean of zero and a constant variance.
Sometimes, an additional assumption of normality is made.
More generally, this linear model may encompass both functional (Xi) and non-functional (Zi ∈ Rd,
d ≥ 1) covariates, so that:

Yi = α+ Z⊤
i θ +

∫
T
Xi(t) β(t) dt+ εi,

with θ ∈ Rd.

The primary challenge in FDA lies in dealing with the infinite dimension of the functional variable. A
frequently adopted solution is to approximate Xi as a finite combination of orthogonal basis functions (as
mentioned earlier), as well as β. However, in practice, finding such a basis is not always straightforward.
An orthonormal basis can be derived through functional PCA:

Xi(t) ≈
P∑

j=1

ci,jfj(t)

where the fj are the orthonormal eigenfunctions. By assuming that β can also be written as β(t) ≈∑P
j=1 djfj(t), we then obtain the following truncated linear regression model: Yi = α+Z⊤

i θ+
∑P

j=1 ci,j dj+
εi. Beyond the linear model, this truncation procedure leads to a classic generalized linear model with
covariates ci,j and Zi.

Functional data clustering: Clustering is the process of organizing observations into clusters, where
observations within each cluster share similar characteristics, while the characteristics of each cluster
are distinct from those of others. Clustering methods can be broadly categorized into hierarchical,
partitional, and model-based approaches. Researchers have explored adaptations of these categories to
the functional data framework. In the case of hierarchical methods, a significant challenge arises in
devising an appropriate similarity measure for functional observations. One approach to addressing this
challenge was presented by Hitchcock et al. (2007). Among partitional methods, the most well-known
technique is the K-means algorithm. It starts by randomly selecting K points as the initial centers of
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K groups and then assigns each observation to the group with the closest centroid. The centroids of
the K groups are then recalculated, and the observations are reassigned to the groups iteratively until
convergence.
Then, the K-means algorithm relies on measuring the distance between observations, typically using the
Euclidean distance for non-functional data. However, when dealing with functional data, this distance
metric needs to be adapted. Garćıa et al. (2015) conducted a study where they compared various ap-
proaches for modifying the K-means algorithm in the context of functional data.
Model-based clustering based on mixture of distributions have also been proposed. The interested reader
may refer to Zhang and Parnell (2023) for a detailed examination of clustering approaches specific to
functional data.
For more comprehensive details, methodologies, and applications, please refer to the reviews provided by
Horváth and Kokoszka (2012); Wang et al. (2016); Koner and Staicu (2023).

4 Applications and Future Directions

A multitude of methods for handling functional data have been introduced, with many others yet to
be discovered. In this section, we highlight the potential of functional data through an illustration of
clustering using the well-known Canadian Weather dataset from the R package fda. We focus on the
average daily temperature recorded every day from 1960 to 1994 in 35 spatial locations in Canada.
As said above, in practical applications, functional data are typically observed at discrete points, such as
the 365 days of the year. However, it is possible to reconstruct the underlying functions by representing
them in a basis of functions. The initial step of this process is depicted in Figure 4, where a B-splines
basis has been employed.

Figure 4: Observed average daily temperature (left panel) and reconstructed functions (using a B-splines
basis) for the average daily temperature (right panel) every day from 1960 to 1994 in 35 spatial locations
in Canada

To distinguish groups of Canadian cities based on their temperature patterns, we applied the K-means
algorithm proposed by Sangalli et al. (2010) and implemented in the R package fdacluster. The op-
timal number of groups was determined using the optimal average silhouette index and the resulting
clustering results are depicted in Figure 5. We can observe that two distinct groups of Canadian cities
emerge from the analysis: the first group (in green) corresponds to cities with consistently lower tem-
peratures throughout the year, while the second group (in red) represents cities with consistently higher
temperatures.
In addition to the functional aspect of the data, the spatial dimension is becoming increasingly relevant,
particularly in the context of environmental data. Thus, the literature has seen the emergence of numerous
methods specifically tailored to the analysis of spatial functional data. Recently, several spatial cluster
detection methods have been introduced in this context. These methods can be used, for instance, to
identify environmental hotspots characterized by elevated levels of certain pollutants.
In the following example, we will demonstrate a cluster detection approach that incorporates both the
spatial and the functional nature of the data. This approach is the distribution-free functional spatial
scan statistic (DFFSS) proposed by Frévent et al. (2021), which has been implemented in the R package
HDSpatialScan. The data used in this example are sourced from the National Air Quality Forecasting
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Figure 5: Results of the K-means algorithm on the Canadian Weather dataset (temperature data) of the
R package fda

Platform (www.prevair.org) and are available within the package. They comprise the daily average
concentration of the pollutant NO2 recorded from May 1 to June 25, 2020, in northern France. Figures
6 and 7 present the raw data, their functional reconstruction using a B-splines basis, and their spatial
distribution, respectively.

Figure 6: Observed daily average concentration (left panel) and re-
constructed functions (using a B-splines basis) for the daily average
concentration (right panel) of NO2 from May 1 to June 25, 2020 in
northern France

Figure 7: Spatial distribution of
average NO2 concentration over
the period May 1 to June 25, 2020
in northern France

Figure 8: Visualization of the detected cluster with the DFFSS method as well as the concentration
curves of NO2 (in µg/m3) inside (in red) and outside (in grey) the cluster

Figure 8 (left panel) displays the statistically significant cluster detected by the DFFSS (highlighted in
red) in this air pollution dataset. The right panel compares the NO2 concentration over the time within
this cluster (in red) with that outside the cluster (in grey), revealing higher concentrations of NO2 within
the identified cluster. This information can be valuable for authorities in conducting local investigations

8
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and implementing policies to mitigate pollution.

FDA’s significance has grown significantly owing to its relevance across diverse domains and the advance-
ments in data collection technology (please refer to Koner and Staicu (2023) for further insights). The role
of FDA in comprehending, analyzing, and harnessing these datasets is poised to expand further. FDA’s
utilization in burgeoning fields will influence the trajectory of data-driven innovation, decision-making,
and issue resolution. Here is a glimpse of FDA’s potential past and forthcoming contributions in these
areas:

• Healthcare and Personalized Medicine: FDA can analyze patient data as continuous functions,
allowing for personalized treatment plans based on individual health profiles. Real-time monitor-
ing through wearables and FDA can aid in disease prediction and the optimization of treatment
strategies.

• Artificial Intelligence (AI) and Machine Learning (ML): FDA provides a nuanced representation
of data, improving AI and ML models’ performance in various applications. In speech recognition,
it enhances accuracy by capturing the continuous nature of speech signals.

• Climate Science: In high-resolution climate data analysis, FDA identifies subtle patterns and trends,
aiding in modeling, prediction, and mitigation strategies. Continuous data analysis contributes to
precise climate projections and monitoring environmental changes.

• Digital Marketing and User Behavior : In the digital realm, FDA uncovers intricate user behav-
ior patterns, optimizing marketing, user experience, and product recommendations. It analyzes
continuous data streams from digital platforms for deeper insights.

• Brain-Computer Interfaces (BCIs): FDA enhances BCIs by interpreting continuous brain activity
data for prosthetics, neurorehabilitation, and cognitive augmentation. It enables precise control of
assistive devices and cognitive enhancements.

• Smart Cities: In smart cities, FDA optimizes urban planning, transportation systems, and energy
consumption by analyzing continuous IoT and sensor data. It helps design sustainable and efficient
cities through traffic analysis and energy usage trends.

• Biotechnology and Synthetic Biology : In biotechnology, FDA models complex biological systems,
facilitating the design of custom organisms and pharmaceuticals. It analyzes longitudinal data to
engineer organisms for specific tasks.

Softwares: The Task View Functional Data Analysis on CRAN (https://cran.r-project.org/web/
views/FunctionalData.html) lists the available R packages in the field of FDA, covering general func-
tional data analysis, unsupervised learning (PCA, clustering, . . . ), supervised learning (regression, classi-
fication), visualization and exploratory data analysis, registration, and alignment. Python and MATLAB
also offer a few alternatives such as fdasrsf and scikit-fda (for Python), and fda or fdasrvf (for MATLAB).

5 Conclusion

Functional Data Analysis (FDA) understands and extracts meaningful insights from data that continu-
ously vary over a continuum. While FDA may be particularly intriguing for those with a mathematical
inclination, it invites everyone to explore the process of transforming numbers into valuable insights and
offers a statistical approach that allows us to gain a deeper understanding of the world and actively
contribute to shaping the future.
Indeed, over time, the methods and frequency of data collection will evolve, and computing and storage
capacities will increase. The development of functional analysis methods is therefore essential, and their
applications will improve decision-making in a variety of fields, providing biologists, economists, and
policymakers with accurate information to make informed choices.
FDA is therefore a powerful field for understanding, analyzing, and using complex datasets. Thus, next
time you see a graph, don’t just see points and lines, but look for the continuous story it tells, the hidden
patterns it holds, and the insights it offers. Remember what you just read: this is the realm of functional
data analysis, where numbers transform into narratives waiting to be discovered.
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