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Accurate information from gravitational wave signals from coalescing binary neutron stars provides essential
input to downstream interpretations, including inference of the neutron star population and equation of state.
However, even adopting the currently most accurate and physically motivated models available for parameter
estimation (PE) of BNSs, these models remain subject to waveform modeling uncertainty: differences between
these models may introduce biases in recovered source properties. In this work, we describe injection studies
investigating these systematic differences between the two best waveform models available for BNS currently,
NRHybSur3dq8Tidal and TEOBResumS. We demonstrate that for BNS sources observable by current second-
generation detectors, differences for low-amplitude signals are significant for certain sources.

I. INTRODUCTION

Since the discovery of gravitational waves from GW150914
[1], the Advanced Laser Interferometer Gravitational-Wave
Observatory (LIGO) [2] and Virgo [3, 4] detectors continue
to discover gravitational waves (GW) from coalescing binary
black holes (BBHs) and neutron stars. The properties of each
source are inferred by comparing each observation to some
estimate(s), commonly called an approximant, for the GWs
emitted when a BBH merges. As illustrated recently with
GW190521 [5, 6], GW190814 [7], GW190412 [8], and the
discussion in GWTC-3 [9], these approximations have enough
differences with respect to to each other to produce notice-
able differences in inferred posterior distributions, consistent
with prior work [10–12]. Despite ongoing generation of new
waveforms with increased accuracy [13–18], these previous
investigations suggest that waveform model systematics can
remain a limiting factor in inferences about individual events
[10] and populations [12, 19].

Waveform systematics could be particularly pernicious for
detailed analyses to infer the nuclear equation of state from
GW observations. For analyses not involving postmerger
physics, these approaches look for the subtle impact of matter
on the pre-merger inspiral radiation, due to tidal deformations
and altered inspiral rate [20–25]. Even though the GW sig-
nal from the early inspiral is well understood because tidal
effects are small and accumulate only at the very end of the
inspiral, they’re embedded deep within the most challenging
strong field component of the GW signal. One known limita-
tion of most previous investigations of waveform systematics
for BNS is the neglect of higher-order modes (HOM). Current
state-of-the-art BNS models TEOBResumS [26] and NRHyb-
Sur3dq8Tidal [27] incorporate higher-order-modes enabling
the exploration of these effects. For example, GW190412 [8],
which was a merger of two black holes that were highly asym-
metric in masses, 30M⊙ and 8M⊙, demonstrated the ex-
istence and importance of HOM in parameter inference of
GW from binary mergers [28]. Using models that incorpo-
rate HOM can significantly impact the inferred parameters
of sources identified with current-generation instruments for
GW170817 or GW170817-like signals, as demonstrated in
[29, 30]. Despite their expected significance to parameter

inference, most studies of BNS systematics omit them and
rarely perform large-scale parameter inference studies to fully
assess the impact of systematics, although a similar study
was done in [31]. For example, several mismatch studies
are mostly done for models having only leading-order (2,2)
mode [32–34]. A study done with fiducial BNS signals with
HOMs argued that biases in inferring the reduced tidal pa-
rameter could be larger than the statistical 90% only for very
high SNR signals ∼80 [35] in the LIGO-Virgo band. Recent
work by Narikawa [36] looked at the effects of multipoles by
comparing MultipoleTidal model to PNTidal and NRTidalv2
waveforms, showing that mismatches and phases do differ be-
tween them for systems with higher mass and large tidal de-
formabilities.

This paper is organized as follows. In Section II, we review
the use of RIFT for parameter inference; the waveform mod-
els used in this work; and the techniques used in [37] to assess
systematic error. We describe one fiducial ensembles of syn-
thetic sources, targeted at the most common (low) amplitude
sources. In Section III, we use two well-studied waveform
models to demonstrate the impact of contemporary model sys-
tematics. We show that model systematics will be important,
at a level which must impact population results and consis-
tency tests like PP plots. In Section IV, we summarize our
results and discuss their potential applications to future GW
sources and population inference.

II. METHODS

A. RIFT review

A coalescing compact binary in a quasi-circular orbit can
be completely characterized by its intrinsic and extrinsic pa-
rameters. By intrinsic parameters, we refer to the binary’s
detector-frame masses mi, spins χi, and any quantities char-
acterizing matter in the system, Λi. By extrinsic parameters,
we refer to the seven numbers needed to characterize its space-
time location and orientation; luminosity distance (dL), right
ascension (α), declination (δ), inclination (ι), polarization (ψ),
coalescence phase (ϕc), and time (tc). We will express masses
in solar mass units and dimensionless nonprecessing spins in
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terms of cartesian components aligned with the orbital angu-
lar momentum χi,z , as we use waveform models that do not
account for precession. We will use λ, θ to refer to intrinsic
and extrinsic parameters, respectively.

λ : (M, q, χ1,z, χ2,z,Λ1,Λ2)

θ : (dL, α, δ, ι, ψ, ϕc, tc)

RIFT [38, 39] consists of a two-stage iterative process to in-
terpret gravitational wave data d via comparison to predicted
gravitational wave signals h(λ, θ). In one stage, for each λβ
from some proposed “grid” β = 1, 2, . . . N of candidate pa-
rameters, RIFT computes a marginal likelihood

Lmarg ≡
∫

L(λ, θ)p(θ)dθ (1)

from the likelihood L(λ, θ) of the gravitational wave sig-
nal in the multi-detector network, accounting for detector re-
sponse; see the RIFT paper for a more detailed specifica-
tion [38, 39]. In the second stage, RIFT performs two tasks.
First, it generates an approximation to L(λ) based on its ac-
cumulated archived knowledge of marginal likelihood eval-
uations (λβ ,Lβ). This approximation can be generated by
Gaussian processes, random forests, or other suitable approx-
imation techniques. Second, using this approximation, it gen-
erates the (detector-frame) posterior distribution

ppost =
Lmarg(λ)p(λ)∫
dλLmarg(λ)p(λ)

. (2)

where prior p(λ) is prior on intrinsic parameters like mass and
spin. The posterior is produced by performing a Monte Carlo
integral: the evaluation points and weights in that integral
are weighted posterior samples, which are fairly resampled
to generate conventional independent, identically distributed
“posterior samples.” For further details on RIFT’s technical
underpinnings and performance, see [38–41].

B. Waveform models

The tidal waveform models used in this study are IM-
RPHENOMD NRTIDALV2, NRHybSur3dq8Tidal, and TEO-
BResumS. NRTidalv2 models [42] are improved versions of
NRTidal [43] models, which are closed-form tidal approxi-
mants for binary neutron star coalescence and have been an-
alytically added to selected binary black hole GW model to
obtain a binary neutron star waveform, either in the time
or in the frequency domain. The NRHybSur3dq8Tidal [27]
tidal model is based on the binary black hole hybrid model
NRHybSur3dq8, which is constructed via an interpolation of
NR waveforms. It includes all modes ℓ ≤ 4, (5,±5) but not
(4,±1) and (4,0) and models tidal effect up to Λ1,2 < 5000.
This model combines the accuracy of surrogate waveforms
with the efficiency of PN models. TEOBResumS [26] is an-
other but unique time-domain EOB formalism that includes
tidal effects for all modes ℓ ≤ 4, but no m = 0 and models
tidal effect up to Λ1,2 < 5000 and for spins up to 0.5.

C. Fiducial synthetic sources and PP tests

We consider one universe of 100 synthetic signals for a 3-
detector network (HLV), with masses drawn uniformly in mi

in the region bounded by M/M⊙ ∈ [1.2, 1.4], η ∈ [0.2, 0.25]
and Λ for each object uniformly distributed up to 1000. These
bounds are expressed in terms of M = (m1m2)

3/5/(m1 +
m2)

1/5 and η = m1m2/(m1 + m2)
2, and encompass the

detector-frame parameters of neutron stars observed till date
[44–46]. The extrinsic parameters are drawn uniformly in sky
position and isotropically in Euler angles, with source lumi-
nosity distances drawn proportional to d2L between 90Mpc
and 240Mpc for low SNR injections. All our sources have
non-precessing spins, with each component assumed to be
uniform between [−0.05, 0.05], this is due to limitations of
the NRHybSur3dq8Tidal model.

For complete reproducibility, we use NRHybSur3dq8Tidal,
TEOBResumS and IMRPHENOMD NRTIDALV2, starting
the signal evolution and likelihood integration at 30Hz, per-
forming all analysis with 4096Hz time series in Gaussian
noise with known advanced LIGO design PSDs [47]. The
BNS signal is generated for 300 seconds but analysis was
performed only on 128 seconds of data. For each syn-
thetic event and interferometer, we use the same noise real-
ization for all waveform approximations. Therefore, the dif-
ferences between them arise solely due to waveform system-
atics. The NRHybSur3dq8Tidal model is utilized with two
settings: a) ℓ = 5 and b) ℓ = 2, which includes only the
dominant quadrupole mode. TEOBResumS and IMRPHE-
NOMD NRTIDALV2 approximants are used with ℓ = 4 and
ℓ = 2 settings respectively.

Fig. 1 shows the cumulative SNR distribution (under a
“zero-noise” assumption) of the specific synthetic population
generated from this distribution. Compared to GW170817’s
confident detection, which was a BNS merger that occurred
at 40Mpc detected by LIGO-Virgo with a SNR of 32.4, the
majority of the signals in this fiducial population have SNRs
below or near the typical detection criteria for a BNS merger,
with some having high enough amplitudes.

By using a very modest-amplitude population to assess the
impact of waveform systematics, we demonstrate their im-
mediate impact on the kinds of analyses currently being per-
formed on real observations, let alone future studies.

One way to assess the performance of parameter infer-
ence is a probability-probability plots (usually denoted PP-
plot) [48]. Using RIFT on each source k, with true parame-
ters λk, we estimate the fraction of the posterior distributions
which is below the true source value λk,β [P̂k,β(< λk,β)] for
each intrinsic parameter β. After reindexing the sources so
P̂k,β(λk,β) increases with k for some fixed β, the panels of
Figure 5 for example, show a plot of k/N versus P̂k(λk,β) for
all binary parameters for different scenarios.
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Injection model Recovery model
NRHybSur3dq8Tidal(ℓ = 5) NRHybSur3dq8Tidal(ℓ = 5)
NRHybSur3dq8Tidal(ℓ = 5) NRHybSur3dq8Tidal(ℓ = 2)
NRHybSur3dq8Tidal(ℓ = 5) TEOBResumS(ℓ = 4)
NRHybSur3dq8Tidal(ℓ = 5) IMRPhenomD NRTidalv2
NRHybSur3dq8Tidal(ℓ = 5) IMRPhenomD

TEOBResumS(ℓ = 4) TEOBResumS(ℓ = 4)
TEOBResumS(ℓ = 4) NRHybSur3dq8Tidal(ℓ = 5)
TEOBResumS(ℓ = 4) IMRPhenomD NRTidalv2
TEOBResumS(ℓ = 4) IMRPhenomD

TABLE I: List of runs for low-amplitude signals
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FIG. 1: Cumulative SNR distribution for a synthetic population of
100 events each drawn from the fiducial BNS populations described
in Sec. II C. To avoid ambiguity, this figure shows the expected SNR
(i.e., the SNR evaluated using a zero-noise realization).

D. JS test

To more sharply identify subtle differences introduced by
waveform systematics, we will directly compare pairs of in-
ferred posterior probability distributions deduced with differ-
ent waveforms but from the same set of data to each other.
Many pairwise error diagnostics have been used in the litera-
ture in general and with RIFT, in particular, [39]. In this study,
motivated by previous work [49], we use the one-dimensional
Jensen-Shannon (JS) divergence J(p, q) = (D(q|m) +
D(p|m)) whereD(a|b) =

∫
dxa(x) log2 a(x)/b(x) andm =

(a + b)/2. The JS divergence is symmetric, ranges between
0 (for identical distributions) and 1. For the multidimensional
problems described here, we adopt the median JS divergence
over all parameters. Analyses of O3 using multiple wave-
forms suggest that binary black holes analyzed with different
contemporary waveforms will produce answers differing by
O(0.02) [50–52].

III. RESULTS

Our investigations corroborate our central expectation: in-
ferences computed with different waveforms are frequently
substantially different, even for BNS and even for near-

FIG. 2: Corner plot showing recovered 1D distributions of M, q,
χeff and Λ̃ for a low-amplitude NRHybSur3dq8Tidal-lmax5 injec-
tion (cross-hairs indicate true value) analysed with various waveform
models listed in the legend. The JS-divergence value associated with
this event is 0.027.

threshold events. The most extreme contrast appeared be-
tween TEOBResumS and other waveform models, where for
our near-threshold synthetic events we found ubiquitous qual-
itatively different inferences.

A. Anecdotal examples

As an illustrative example of the systematics explored more
comprehensively in the population studies below, Figure 2
shows the results of parameter inference using multiple re-
covery waveforms applied to the same synthetic data source,
here a low-amplitude NRHybSur3dq8Tidal-lmax5 injection.
Despite its low signal amplitude, this example shows that pos-
terior distributions derived from the same synthetic data will
differ, depending on the GW signal model used to interpret it.

B. JS divergences: Demonstrating and quantifying waveform
systematics

Figure 3 shows the cumulative distribution of combined JS
divergences of parameters M, q, χeff and Λ̃, between analy-
ses performed with NRHybSur3dq8Tidal ℓmax = 5 low am-
plitude injections. Specifically, the JS divergence is calcu-
lated between an analysis performed using precisely the same
model used for injections on the one hand, and the alternative
model listed in the legend on the other. Inferences performed
with all state-of-the-art models that include tidal physics often
produce qualitatively similar inferences, with JS divergences
typically less than 10−2. Some relatively modest disagree-
ment expected between (a) different waveform models and (b)
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FIG. 3: JS divergence values of parameters M, q, χeff and Λ̃ distri-
bution for analysis on different recovery waveform models with low-
amplitude NRHybSur3dq8Tidal-lmax5 injections. Top panel: Each
JS divergence used in the CDF is performed between PE constructed
with the indicated model and reference PE constructed with NRHyb-
Sur3dq8. Bottom panel: As above, but using TEOBReumS for refer-
ence PE.

the expected modest impact of higher-order modes for low-
mass sources. By contrast, more than 10% of inferences have
JS divergences larger than 10−1 (mean over all parameters), in
all cases when using models that include similar mode content
(but a different waveform model). These calculations suggest
that frequently, both waveform systematics and higher order
modes produce noticably different results.

The green line in Figure 3 shows that tides must be included
to avoid significantly biasing the interpretation of a typical
low-amplitude source. This JS divergence corresponds to in-
ferences that neglect tides entirely (via a point-particle IMR-
PhenomD model), even though the true full model includes
tides. In this case, the JS divergence is frequently larger than
0.1, indicating substantial disagreement with the best possible
interpretation.

To investigate the impact of waveform systematics specifi-
cally, we computed mismatches between the injected and in-
ference waveforms’ (2,2) modes. Mismatch is a simple inner-
product-based estimate of waveform similarity between two
model predictions [12, 53–58] h1(λ) and h2(λ) at identical

model parameters λ:

M(λ) = 1−max
tc,ϕc

|
〈
h1|ei(2πftc+ϕc)h2

〉
|

|h1||h2|
(3)

In this expression, the inner product ⟨a|b⟩k ≡∫∞
−∞ 2dfã(f)∗b̃(f)/Sh,k(|f |) is implied by the kth detector’s

noise power spectrum Sh,k(f), which for the purposes of
waveform similarity is assumed to be the advanced LIGO
instrument, H1. In practice, we adopt a low-frequency cutoff
fmin so all inner products are modified to

⟨a|b⟩k ≡ 2

∫
|f |>fmin

df
[ã(f)]∗b̃(f)

Sh,k(|f |)
. (4)

The left panel of Figure 4 shows the results for NRHyb-
Sur3dq8Tidal injections recovered with TEOBResumS, with
the mismatch shown as a color scale on top of the injected
source SNR and cumulative JS divergence (summed over four
one-dimensional JS divergences for parameters M, q, χeff

and Λ̃). While the mismatches are within the waveform ac-
curacy requirements [59] for most of the injections(> 10−2),
higher mismatches don’t correlate well with extreme JS diver-
gences. Rather, below some modest SNR, the random noise
realization seems to interact adversely with these large mis-
matches to produce nearly unconstrained posteriors, such that
the similarity between inferences becomes stochastic and di-
verges at low amplitude. The right panel of Figure 4 shows
qualitatively similar behavior, using comparisons of NRHyb-
Sur3dq8Tidal and IMRPHENOMD NRTIDALV2.

C. PP plots

The differences between waveforms are significant enough
that their imprint can even impact bulk diagnostics such as a
PP plots [37], which average the impact of waveform system-
atics over a large population of randomly chosen events.

Figures 5 and 6 provide another representation of the
analyses presented above in the context of JS divergence:
synthetic sources generated with the NRHybSur3dq8Tidal
ℓmax = 5 and TEOBResumS (ℓmax = 4) models. In each
panel, colored dots show the empirical cumulative distribu-
tion of the posterior quantiles of the injections – the PP plot
for each parameter, with colors corresponding to the param-
eters indicated in the legend. Fig. 5 in which the same
model was used for both injection and recovery for a particu-
lar panel, we see PP plots for every parameter are consistent
with P (< p) = p, as expected. However, Fig. 6 where anal-
yses used IMRPHENOMD for recovery, shows that omitting
tidal physics entirely can bring in distinct inconsistencies with
P = p for injections where tides are significant and important.

IV. CONCLUSIONS

In this paper, we demonstrated that the interpretation of
typical low-amplitude BNS sources will frequently exhibit
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FIG. 4: Left panel: Zero-noise SNR v/s JS divergence (cumulative of M, q, χeff and Λ̃) between NRHybSur3dq8Tidal (ℓmax = 5) and TEO-
BResumS (ℓmax = 4) for the NRHybSur3dq8Tidal low-amplitude injections. Color scale shows the mismatch between NRHybSur3dq8Tidal
and TEOBResumS. Right panel: As left panel, except for NRHybSur3dq8Tidal and IMRPHENOMD NRTIDALV2. Note the mismatches are
calculated for the dominant 22-mode only.
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FIG. 5: PP-plot of low-amplitude injections with NRHybSur3dq8Tidal with all higher-order-modes(ℓmax = 5) on the left and TEOBResumS
with all higher-order-modes(ℓmax = 4) on the right recovered with the same model as the injection. Both sets have the same injection
parameters. The dashed line indicates the 90% credible interval expected for a cumulative distribution drawn from 100 uniformly-distributed
samples.

noteworthy differences, depending on the adopted model for
analysis. Specifically, we showed that a JS divergence be-
tween inferences constructed between two different state-of-
the-art waveforms would be larger than 10−1 for a significant
population of mergers. These large differences persist even
though the mismatch between the dominant (2,±2) mode of
this state-of-the-art waveforms are small, and even though the
SNR of our test sources is low. Additionally, corroborating
previous work [36, 60], we demonstrate that tidal effects
are essential to include even in interpreting our population of
modest-SNR sources. Specifically, we showed that neglecting
tidal physics in parameter inference causes a PP plot to deviate
significantly from the expected diagonal behavior, indicating
a biased recovery of mass and/or spin parameters.

Our study stands in contrast with the expectations of several
previous studies, which have argued that the effects of wave-

form systematics for these low-mass, low-amplitude sources
will be small. For example, investigations done in [35] sug-
gest that systematic differences will supersede statistical dif-
ferences for sources only for high SNR for the current GW
detectors.

Our investigation only demonstrated notable differences in
the conclusions derived from different waveform models. Fur-
ther study is required to assess to what extent these differ-
ences propagate into conclusions derived from a population
of sources or if they average out over the population.
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FIG. 6: PP-plot of low-amplitude injections with NRHybSur3dq8Tidal with all higher-order-modes(ℓmax = 5) on the left and TEOBResumS
with all higher-order-modes(ℓmax = 4) on the right recovered with IMRPHENOMD. Both sets have the same injection parameters. The dashed
line indicates the 90% credible interval expected for a cumulative distribution drawn from 100 uniformly-distributed samples.
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