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HIGH-ORDER REGULARITY FOR FULLY NONLINEAR
ELLIPTIC TRANSMISSION PROBLEMS UNDER WEAK

CONVEXITY ASSUMPTION

G. C. RICARTE, C. S. BARROSO, AND L. S. TAVARES

Abstract. This paper studies, in the spirit of [21], Schauder theory to
transmission problems modelled by fully nonlinear uniformly elliptic equa-
tions of second order. We focus on operators F that fails to be concave or
convex in the space of symmetric matrices. In a first scenario, it is consid-
ered that F enjoys a small ellipticity aperture. In our second case, we study
regularity results where the convexity of the superlevel (or sublevel) sets is
verified, implying that the operator F is quasiconcave (or quasiconvex).

1. Introduction

In the past few years there has been increasing interest in so called trans-
mission problems. These problems appear, for example, in thermal theory and
electromagnetic conductivity, composite materials. The transmission problems
were initially studied in the late 30’s by Picone [28] addressing the concept
within the realm of materials science. In general, problems of this type can be
described as follows. There are given two domains Ω+,Ω− ⊆ Rn, space which
have a portion Γ of their boundaries in common. A boundary value problem is
then posed for each domain with the boundary conditions on Γ and involving
the solutions of both problems. As a sample, let Ω+ and Ω− domains with
∂Ω+ and ∂Ω−, respectively. The problems consists in to consider qualitative
and quantitative aspects of a function that satisfy u that satisfy u+ = u∣

Ω+
,

u− = u∣
Ω−
, respectively, for which u+ν − u−ν = g on Γ. More precisely,

(1.1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∆u+ = f+(x) in Ω+

∆u− = f−(x) in Ω−

u+ν − u−ν = g(x) on Γ,

The main contribution in [28] lies in the uniqueness of solutions for a wide class
of transmission problems related to mathematical models in elasticity theory.
It is worth noting that the first rigorous contribution regarding existence results
traces back to Lions [16]. Furthermore, both contributions of Picone and Lions
have inspired subsequent developments, including the ones by Stampacchia [24],
Campanato [5, 6] and Schechter [19]. Additionally, we reference the work of
Borsuk [2], where an extensive list of significant contributions related to fixed
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transmission problems is provided alongside and a comprehensive exposition
of their mathematical theory and aspects.

In this paper we consider the following general transmission problem: Given
two functions f+, f−, to find functions u± ∈ C2,α such that

(1.2)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
F (D2u) = f+(x) in Ω+ = B1 ∩ {xn > ψ(x′)}
F (D2u) = f−(x) in Ω− = B1 ∩ {xn < ψ(x′)}
u+ν − u−ν = g(x) on Γ.

Here u ∈ C(B1) and u± = u∣
Ω±
. The interface Γ is given by the graph of a

function ψ ∶ Rn−1 → R with unit normal vector ν pointing towards Ω+, and u±ν
denote the ν-directional derivatives of u±. Let Sym(n) be the set of symmetric
matrices of size n × n. We assume that F ∶ Sym(n)→ R satisfies

(Unif. Ellip.) λ∥N∥ ≤ F (M +N) − F (M) ≤ Λ∥N∥
for every M,N ∈ Sym(n) with N ≥ 0. For simplicity, we assume F (0) = 0. As
usual, E(λ,Λ) denotes the class of all such operators. For 0 < λ ≤ Λ, set

E(λ,Λ) = {F ∶ Sym(n)→ R ∶ F satisfies (Unif. Ellip.)}
Transmission problems in the context of viscosity solutions have been stud-

ied recently by Soria-Carro and Stinga [21]. In their fine study, which includes
problems like (1.2), they achieved significant results, including the existence
of solutions through a Alexandrov-Bakelman-Pucci type maximum principle
(see [21, Section 2] for a more general statement), uniqueness of the solution,
a comparison principle, and regularity of solutions of flat interface transmis-
sion problems. As for regularity results, they obtained C0,α, C1,α, and C2,α

regularity of viscosity solutions up to the transmission surface for the case of
curved interfaces. An essential aspect to highlight is that they proved global
C2,α estimates for some α ∈ (0,1) under the convexity hypothesis on F , which
do not necessarily cover the whole of (0,1).

Inspired by [13, 21] and under a different approach, the goal of this paper is
twofold. The first one is to establish C2,α estimates with α running through-
out (0,1) for viscosity solutions of (1.2), complementing and improving [21,
Theorem 1.3]. More precisely, we explore the so-called geometric tangential
equation which is usually used to study approximation operators under Cordes-
Nirenberg’s conditions in several contexts of regularity. Here we will assume
that the ellipticity constants (λ,Λ) do not deviate significantly, that is, when
the quantity e∶ = 1 − λ

Λ
is sufficiently small (Theorem 2.8).

Of particular interest, we point out that our approach covers the class of
Isaac’s type equations

(1.3)

⎧⎪⎪⎨⎪⎪⎩
sup
β∈B

inf
γ∈A
(Lγβu − hγβ(x)) = f±(x) in Ω±

u+ν − u−ν = g(x) on Γ,

where hγβ ∶ B1 → R and f± ∶ Ω± → R are Hölder continuous and Lγβu∶ =
a
ij
γβ(x)∂iju is a family of elliptic operators. This class of operators appears

naturally in stochastic control and in differential games theory, for example,
two-player and zero-sum differential games (see [17] and [18]). Note that this
is an example of a non-convex/non-concave equation; hence, Theorem 1.3 in



FULLY NONLINEAR ELLIPTIC TRANSMISSION PROBLEMS 3

[21] does not cover (1.3) (see e.g. Corollary 6.3) for C2,α estimates. However,
the best result obtained in [21] provides C1,α estimates.

In our second goal, we consider scenarios where the convexity of the super-
level (or sublevel) sets is verified, implying that the operator F is quasiconcave
(or quasiconvex). Alternatively, we also impose certain asymptotic concavity
properties, such as e.g. the condition that F = F (M) behaves as a concave
(or convex, or “close to linear”) function when M becomes large. In light of
these considerations, we establish Theorem 2.11 that furnishes C2,α estimates
for α ∈ (0, α0), where α0 ∈ (0,1)is as in (2.3).

A family of operators for which our second result (Theorem 2.11) applies
concerns the special Lagrangian equation which has the form

(1.4) F (D2u) = n∑
j=1

arctg(λj) = Θ,
where λj are the eigenvalues of Hessian matrix D2u. Equation (1.4) originates
in the special Lagrangian geometry by Harvey-Lawson. The Lagrangian graph(x,Du(x)) ⊆ Rn × Rn is called spacial when the argument of the complex
number (1 + iλ1) ⋅ . . . ⋅ (1 + iλn) or the phase is constant Θ, and it is special
if and only if (x,Du(x)) is a minimal surface in Rn × Rn. Therefore, using
our Schauder type results Theorem 2.11, we deduce that solutions of special
Lagrangian equations under the Yuan’s assumption ∣f±(x)∣ ≥ π

2
(n−2) are C2,α

for any dimension.
It is worth mentioning that in our results we only deal with constant coef-

ficients. However, similar estimates can be derived for equations with Hölder
continuous coefficients (see Section 6 for more details).

1.1. Historic overview and further motivations. In the 50s H. Cordes
and L. Nirenberg, independently, established several results on linear elliptic
problems in non-divergence form. Roughly speaking, based on perturbation
arguments, they showed for a bounded solution of the problem

(1.5) aij(x)∂iju = f(X) in B1

with (aij(x)) a symmetric matrix and uniformly elliptic, and a given δ > 0,
that there exist 0 < α(n,λ,Λ, δ) < 1 such that if ∣aij(x) − aij(x0)∣ < δ then the

solutions of (1.5) are C1,α
loc (B1).

Let’s recall that in the context of classical solutions for

(1.6) F (D2u) = 0 in B1

where F is only assumed to be either uniformly elliptic or parabolic, viscosity
solutions may fail to be smooth and the best known regularity under these
sole assumptions is C1,α regularity. For example, Nadirashvilli and Vladut [25]
showed the existence of nonclassical viscosity solutions to fully nonlinear elliptic
equations in dimension 12. In fact, such solutions are not even C1,1 [26] and
[27]. Thus, a relevant problem in the theory is to determine some structural
conditions on F other than the uniform ellipticity (between concavity and
convexity, and without further hypotheses) that guarantee higher order C2,α-
regularity. With this issue in mind, another reasonable question is:
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Which assumptions on F guarantee that solutions of F (D2u) = f(x) in B1,

for f in a suitable function space, are classical?

The first relevant regularity result for (1.6) is due to L. Nirenberg [22] who
derived a priori C2,α estimates in dimension 2. Through the journey of find-
ing C2-solutions for fully nonlinear equations, under concavity or convexity as-
sumption, the C2,α-regularity result (α ∈ (0,1)) of Evans [12] and Krylov [14] is
groundbreaking. The second major chapter in the theory regards Armstrong’s,
Silvestre and Smart’s estimates in [1], where they proved under smoothness
on F that solutions of (1.6) are partially regular, that is, there exist a closed
set Σ ⊆ B1 and a universal constant ε > 0 such that u ∈ C2,α(B1/Σ) withHn−ε(Σ) = 0. Important results in this direction can be found in [31], where
Cordes-Landis ellipticity type conditions are assumed. More precisely, fixed
any α ∈ (0,1), there exist a δ > 0 such that, if λ

Λ
− 1 < δ and f ∈ Cα(0) then

u ∈ C2,α(0). We also mention the work of Goffi [9] where uniform elliptic-
ity is combined with convexity of the superlevel (sublevel) sets to reach C2,α

regularity.
In the context of regularity theory for transmission problems, the recent lit-

erature concerning the problem (1.2) also includes contribution of Cafarelli,
Soria-Carro, and Stinga [4]. Their research focuses on attaining C1,α regularity
up to the transmission surface for distributional solutions of the Dirichlet prob-
lem associated with (1.1), under the assumption that the transmission surface
possesses C1,α regularity. Their notable achievements were made possible via
the development of a novel geometric stability argument based in the mean
value property. In [8] Dong provided an alternative proof of the C1,α-regularity
result obtained in [4]. Notably, his proof method differs from that in [4] and
embraces more generalized elliptic systems featuring variable coefficients. Fur-
thermore, extensions to C1,Dini interfaces and domains encompassing multiple
sub-domains were also explored.

With regarding to degenerate operators, we mention the work by Bianca,
Pimentel, and Urbano [3] where they analyzed (1.1) in the framework of Or-
licz spaces. Natural challenges (as the lack of representation operator formulas
and the degenerate characteristics of the diffusion process) arose from their
study. In the scenario of bounded interface data, the local boundedness of
weak solutions was proved. Also an estimate for their gradient in BMO spaces
was obtained via Campanato type arguments, furnishing Log-Lipschitz regu-
larity across the transmission interface. Furthermore, by relaxing the data
constraints, local Hölder continuity for the solutions was also obtained.

Meanwhile, for fully nonlinear elliptic transmission, there have some note-
worthy preceding results. Very recently in Soria-Carro and Stinga [21] the
authors developed a robust study concerning the regularity theory of viscosity
solutions to transmission problems for fully nonlinear second order uniformly
elliptic equations. The authors of the mentioned reference obtained C0,α,C1,α

and C2,α estimates for viscosity solutions to (1.2) for some α ∈ (0,1). The
proof in [21] relies on a crucial global estimate for homogenous flat interface
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transmission problem

(1.7) { F (D2u) = 0 in B±1
u+xn
− u−xn

= 0 on T = B1 ∩ {xn = 0},
where F is a convex operator, combined with a certain geometric oscillation
estimate which has its roots in the seminal paper of Caffarelli [7]. In our case,
we will replace Lemma 4.19 in [21] with Proposition 3.1 in the first case and
Theorem 4.16 in [21] with Theorem 5.1 in the second case.

2. Preliminaries and statements of the main results

For a given r > 0 and x ∈ Rn, we denote by Br(x) ⊆ Rn the ball of radius
r centered at x = (x′, xn), where x′ = (x1, x2, . . . , xn−1) and B′r(x) ⊆ Rn−1 the
ball of radius r centered at x′. We write Br = Br(0) and B±r = Br ∩Rn

±. Also,
we write Tr∶= {(x′,0) ∈ Rn−1 ∶ ∣x′∣ < r} and Tr(x0)∶= Tr + x′0 where x′0 ∈ Rn−1.
Given r > 0, we write Ω±r = Ω± ∩Br. ∇′ denotes the gradient in the variables
x′, D2

x′ denotes the Hessian in the variables x′. In what follows, USC(B1)
and LSC(B1) are the sets of upper semicontinuous and lower semicontinuous
functions on B1, respectively. For 0 < λ ≤ Λ, we define the Pucci’s extremal
operatorsM±

λ,Λ as

M+
λ,Λ(M) = λ ⋅ ∑

ei<0

ei +Λ ⋅ ∑
ei>0

ei and M−
λ,Λ(M) = λ ⋅ ∑

ei>0

ei +Λ ⋅ ∑
ei<0

ei

where {ei ∶ 1 ≤ i ≤ n} denote the eigenvalues of M .
Since our focus is on regularity for fully nonlinear elliptic transmission prob-

lems (1.2), we introduce the to appropriate notion of weak solutions.

Definition 2.1 (Viscosity solutions). Consider a function F ∈ E(λ,Λ). We
say that u ∈ USC(B1) is a viscosity solution to the transmission problem (1.2)
if the following conditions are true:

a) If x0 ∈ Ω± and φ ∈ C2(Bδ(x0)) is touching the function u by above at
x0 in B1, then

F (D2φ(x0)) ≥ f±(x0)
and if x0 ∈ Γ, φ ∈ C2(B+δ (X0)) ∩ C2(B−δ (x0)), then φ+ν(x0) − φ−ν(x0) ≥
g(x0) at x0 ∈ Γ.

b) If x0 ∈ Ω± and φ ∈ C2(Bδ(x0)) is touching the function u by below at
x0 in B1, then

F (D2φ(x0)) ≤ f±(x0)
and if x0 ∈ Γ, φ ∈ C2(B+δ (X0)) ∩ C2(B−δ (x0)), then φ+ν(x0) − φ−ν(x0) ≤
g(x0) at x0 ∈ Γ.

Definition 2.2. We denote by S (λ,Λ, f±) and S (λ,Λ, f±) the sets of all con-
tinuous functions u that satisfy M+

λ,Λ(D2u) ≥ f±, M−
λ,Λ(D2u) ≤ f± in the

viscosity sense respectively. We also denote

S (λ,Λ, f±) ∶= S (λ,Λ, f±) ∩ S (λ,Λ, f±)
and

S⋆ (λ,Λ, f±) ∶= S (λ,Λ, ∣f±∣) ∩ S (λ,Λ,−∣f±∣) .
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We collect some tools from transmission problems, referring to [21] for more
details. An important piece of information which we need in our article con-
cerns the notion of stability of viscosity solutions, i.e., the limit of a sequence
of viscosity solutions turns out to be a viscosity solution of the corresponding
limiting equation. We refer to the following Lemma, whose proof can be found
in [21, Lemma 5.1].

Lemma 2.3 (Stability Lemma). For j ∈ N let Γj ∈ C2 and assume that
uj ∈ C(B1) is a viscosity solution to the problem

{ Fj(D2uj) = f±j in Ω±j(u+j )ν − (u−j )ν = gj on Γj ,

where Γj = B1∩{xn = ψj(x′)} for ψj ∈ C2(B′1), f±j ∈ C(Ω±j ∪Γj), and gj ∈ C(Γj),
for g ≥ 1. Suppose also that there are continuous functions u, f±, g, and elliptic
operators F ± ∈ E(λ,Λ) such that

(i) Fj → F uniformly on compact subsets of Sym(n);
(ii) uj → u uniformly on compact subsets of B1;
(iii) ∥f±j − f±∥L∞(Ω±j ) → 0;

(iv) ∥gj − g∥L∞(Γj) = supx′∈B′
1

∣gj(x′, ψj(x′)) − g(x′,0)∣→ 0;

(v) Γj → T in C2 in the sense that ∥ψj∥C2(B′
1
) → 0.

Then u ∈ C(B1) is a viscosity solution to the problem

{ F (D2u) = f± in B±1 ,

u+ν − u−ν = g on T.

The fundamental result to obtain regularity results of viscosity solutions to
the transmission problem described in (1.2) will be a ABP estimate. For a
proof of such result see for instance [21, Theorem 2.1]

Lemma 2.4 (ABP estimate). Consider the surface Γ = B1 ∩ {xn = ψ(x′)}
and u functions satisfying the conditions

{ u ∈ S(λ,Λ, f±) in Ω±

u+ν − u−ν = g(x) on Γ,

with f± ∈ C(Ω±) ∩ L∞(B1), g ∈ L∞(Γ), and ψ ∈ C1,α(B′1), for some 0 < α < 1.
Then the following estimate is true

∥u∥L∞(Ω) ≤ ∥u∥L∞(∂B1) +C(∥g∥L∞(Γ) + ∥f+∥Ln(Ω+) + ∥f−∥Ln(Ω−))
where C is a constant which depends only on the quantities n, λ, Λ.

2.1. Uniqueness and Existence of Viscosity Solutions of flat interface
problems. This subsection is concerned with the Uniqueness and Existence
of viscosity solution to fully nonlinear elliptic transmission problems

(2.1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
F (D2u) = f± in B±1 ,

u+ν − u−ν = g on T = B1 ∩ {xn = 0}
u = ϕ on ∂B1

The next proof follows the ideas from [21, Theorem 4.7] with minor modifica-
tions. For this reason, we will omit it here.
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Theorem 2.5. Let f±1 , f
±
2 ∈ C(B±1 ) ∩ L∞(B±) and g1, g2 ∈ C(T ). Also, let

u ∈ USC(B1), v ∈ LSC(B1) be bounded functions satisfying

{ F ±(D2u) ≥ f1 in B±1 ,

u+xn
− u−xn

≥ g1 on T
and { F ±(D2v) ≤ f2 in B±1 ,

v+xn
− v−xn

≤ g2 on T

in the viscosity sense. It holds that

{ w ∈ S (λn ,Λ, f±1 − f±2 ) in Ω,
w+xn
−w−xn

≥ g1 − g2 on T,

where w = u − v , in the viscosity sense.

Theorem 2.6 (Existence and Uniqueness). Suppose that the conditions(A1), and (SC) hold. Consider functions f± ∈ C(B± ∪T )∩L∞(B1), g ∈ C(T ),
and ϕ ∈ C(∂B1). Then there exists a unique viscosity solution u ∈ C(B1) of
(2.1).

Proof. The result follows by the direct application of [21, Corollary 4.8] and [21,
Theorem 4.11] in conjunction with the ABP estimate given in Lemma 2.4. �

2.2. Main assumptions. In this subsection, we detail the main assumptions
used throughout the paper.

A1. [Reducibility condition] We will assume that F (0) = 0 and f+(0) =
f−(0) = 0.

A2. [Interface Regularity] The interface Γ = B1 ∩ {xn = ψ(x′)} is given
by the graph of a function ψ ∈ C2(Rn−1). Moreover, we suppose that∣g(0)∣ ⋅ ∥D2

x′ψ(0)∥ = 0.
A3. [Integrabilility of the source term] The functions f± are continuous

at 0 and f± ∈ C0,α(0) with
(∫

Br∩Ω±
∣f±(x)∣ndx)1/n ≤ cf± ⋅ rα,

for all r > 0 small.

A4. [Transmission boundary condition.] We suppose that g ∈ C0,α(0).

Remark 2.7. A few remarks are in order:

(i) It is interesting to note that our results indeed provided C2,α at the
origem, i.e., C2,α(0). It is not difficult to verify that C2,α(0) implies
C2,α(x0).

(ii) Notice that A1., is not restrictive. In fact, otherwise, by unifor ellip-

ticity, there exists s ∈ R such that F (sIdn×n) = f±(0) and ∣s∣ ≤ ∣f±(0)∣λ
.

Hence, consider F̃(M) = F (M +sIdn×n)−f±(0) and v = u− s
2
∣x∣2. Then

F̃ ∈ E(λ,Λ), F̃ (0) = 0, and F̃ (D2v) = f± − f±(0).
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(iii) The hypothesis A2., which plays an important role in reference [21],
allowed the authors to derive certain global C2,α estimates for the prob-
lem considered in their work that includes the case of a curved surface.
Such a requirement will be necessary due to the fact that some argu-
ments from [21], which depend on the aforementioned hypothesis, will
be applied in this manuscript.

Our first result of this paper gives a theoretical contribution to such a ques-
tion. Namely, the first result of this paper is

Theorem 2.8 (C2,α estimate under Small Ellipticity Aperture). Let
α ∈ (0,1) be arbitrary. Assume the hypotheses A1.- A4. hold and that 0 lies
within Γ. Then there exists δ > 0 such that if

(2.2)
Λ

λ
− 1 ≤ δ,

then any bounded viscosity solution u to the problem (1.2) satisfies u± ∈ C2,α(0),
that is, there are polynomials with quadratic growth given by

P±(x) = 1
2
xt ⋅A± ⋅ x + B± ⋅ x + c

satisfying

∥u± −P±∥L∞(Ω±r ) ≤ Cr2+α, for all r ≪ 1

with C0 > 0 depending only on n,λ,Λ and α. Moreover, the estimate below
holds true

∥A±∥Sym(n) + ∣B±∣ + ∣c∣ ≤ C0∥ψ∥C2,α(0) (∥g∥C1,α(0) + [f+]Cα(0) + [f−]Cα(0)) .
Theorem 2.8 improves the result established in [21] because we prove the

result for all α ∈ (0,1). The idea of the proof of Theorem 2.8 is based in [21]
along with a compactness approach as in [7], see also [13].The insights however
come from the prominent heuristics explained in [13]. We shall interpret the
Laplace equation as the geometric tangential equation of the manifold formed
by fully nonlinear elliptic operators F as e ∶= 1− λ

Λ
→ 0. In turns, we show that at

every scale it is possible to find a harmonic function close to a viscosity solution
to (1.2). The degree of closeness will be measured by how close the ellipticity
constants of F are of being constant, i.e., provided the ellipticity aperture is
small enough. Iterating such an argument in ρ−adic balls shows that the graph
of a viscosity solution u can be approximated in B±ρ by a quadratic polynomial
with an error of order ∼ O (ρ2+α).

Our second result addresses a Schauder estimate for (1.2) when the opera-
tor is assumed only convexity of the superlevel (sublevel) sets, which means
that F is quasiconcave (resp. quasiconvex), or, alternatively, we impose some
asymptotic concavity properties, namely F = F (M) is concave (resp. convex
or “close to a linear function”) when M is large. For instance, by way of il-
lustration, such a limiting profile F ⋆ appears naturally in singularly perturbed
free boundary problems ruled by fully nonlinear equations, whose Hessian of
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solutions blows-up through the phase transition of the model, i.e., ∂{uε > ε},
where uε satisfies in the viscosity sense

F (D2uε) = Q0(x)1
ε
ζ (uε

ε
) .

For such approximations, we have 0 < Q0 ∈ C0(Ω), 0 ≤ ζ ∈ C∞(R) with supp ζ =[0,1]. For this reason, in the above model, the limiting free boundary condition
is governed by the F⋆ rather than F, i.e.,

F ⋆(∇u(z0)⊗∇u(z0)) = 2T, z0 ∈ ∂{u0 > 0}
in some appropriate viscosity sense, for a certain total mass T > 0 (cf. [35,
Section 6] for some enlightening example and details). Furthermore, limit
profiles also appears in [9] for an account of the Schauder theory of viscosity
solutions of F (D2v) = 0 in B1 under weak concavity assumptions.

Definition 2.9. For a uniformly elliptic operator F ∶ Sym(n) → R, we say
that it is quasiconcave (resp. quasiconvex) if it is a quasiconcave (quasiconvex)
function ofM ∈ Sym(n), namely for allM1,M2 ∈ Sym(n) and θ ∈ [0,1] we have
F ((1 − θ)M1 + θM2) ≥min{F (M1), F (M2)} (respc. ≤max{F (M1), F (M2)}).
Useful to the subsequent analysis, we define

(2.3) α0∶= sup
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
β ∈ (0,1) RRRRRRRRRRR

∃ Cβ > 0 such that ∥v∥C2,β(B1/2)
≤ Cβ∥v∥L∞(B1)

for any viscosity solution of F (D2v) = 0
in B1,whereF ∈ E(λ,Λ) is a

quasiconvex/quasiconcave operator

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
.

The existence of α0 ∈ (0,1) is guaranteed by the following result.

Proposition 2.10 ([9], Theorem 4.1). Let F ∈ E(λ,Λ) be quasiconvex and
continuous, ϕ ∈ C(∂B1) and u be a continuous viscosity solution to

{ F (D2u) = 0 in B1,

u = ϕ on ∂B1

Then u ∈ C2,α0

loc (B1) for some α0 ∈ (0,1) with the estimate below holding true

∥u∥C2,α0 (B1/2)
≤ C∥u∥L∞(B1),

where C is a constant that depends only on n,λ, and Λ.

Finally, we can state our second result.

Theorem 2.11 (C2,α estimates for viscosity solutions of quasiconcave
equations). Let F ∈ E(λ,Λ) be a quasiconvex or quasiconcave operator. Fix
any α ∈ (0, α0) and assume the hypotheses A1.–A4.. If u is a bounded viscosity
solution to the problem (1.2), then u± ∈ C2,α(0), in the sense that there are
quadratic polynomials

P±(x) = 1

2
xt ⋅A± ⋅ x +B± ⋅ x + c,

such that ∥u± −P±∥L∞(Ω±r ) ≤ Cr2+α, for all r ≪ 1
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with C0 > 0 depending only on n,λ,Λ and α. Moreover, the estimate below
holds true

∥A±∥Sym(n) + ∣B±∣ + ∣c∣ ≤ C0∥ψ∥C2,α(0) (∥g∥C1,α(0) + [f+]Cα(0) + [f−]Cα(0)) .
To develop our theory, we will utilize the ideas contained in [21] and employ

the so-called geometric tangential mechanisms. By doing so, we can obtain
good regularity estimates (cf. [31]) and, in a suitable manner, transfer such es-
timates to solutions of the original problem (1.2) via compactness and stability
processes.

Finally, a few comments. It is interesting to note that Theorem 2.8 (or The-
orem 2.11) provides pointwise regularity of u based on the respective pointwise
regularity of f±. It is not difficult to verify that pointwise estimates imply
global estimates, as stated in the Corollary 6.1.

3. Schauder type Estimate under Small Ellipticity Aperture

In this section we derive Schauder estimates for viscosity solutions to non-
convex fully nonlinear elliptic transmission problems. We assume the Cordes-
Landis type conditions on the ellipticity conditions, i.e, when λ

Λ
≤ 1 + δ.

We begin with some preliminary results.

Proposition 3.1 (Interior derivative estimates). Let 0 < r ≤ 1. Suppose that h
is a bounded viscosity solution of the transmission problem

(3.1) { ∆h = 0 in B±1 ,

h+xn
− h−xn

= 0 on T.

Then, for any radii 0 < ρ ≤ r
2
, it holds that h ∈ C3(B±ρ ) with the following

estimates holding true

osc
B±ρ
(h± − 1

2
xt ⋅D2h±(0) ⋅ x −∇h(0) ⋅ x) ≤ C (ρ

r
)3 ⋅ osc

Br

h

r2∥D2h±(0)∥Sym(n) + r∣∇h(0)∣ ≤ C ⋅ osc
Br

h,

where C > 0 is a constant that depends only on n,λ, and Λ.

Proof. In fact, fix 0 < ρ ≤ r
2
. Let w be the unique viscosity solution of the

Dirichlet problem

{ ∆w = 0 in B±1 ,

w = h on T.

We know that w ∈ C3
loc(B1) and ∥w∥C3(B1/2)

≤ C∥w∥L∞(B1). By uniqueness of

viscosity solution to flat interface problems (see Theorem 2.6 ) it follows that
w = h in B1. Applying the above result to the function v(x) = h(rx)−h(0), for
x ∈ B1, we get ∥v∥C3(B1/2)

≤ C∥v∥L∞(B1). Thus, it follows from the Mean Value
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Theorem that

osc
B±ρ
(h± − 1

2
xt ⋅D2h±(0) ⋅ x −∇h(0) ⋅ x) ≤ Cρ3∥D3h±∥L∞(B±ρ )

≤ C (ρ
r
)3 ∥v∥L∞(B1)

≤ C (ρ
r
)3 osc

Br

h.

Moreover,

r2∥D2h±(0)∥Sym(n) + r∣∇h(0)∣ ≤ C∥v∥L∞(B1) ≤ C osc
Br

h.

�

3.1. Compactness Result. In this section, we present the proof of Theorem
2.8. An important step towards the proof consists of some key results that will
play a crucial role in our strategy.

Lemma 3.2. Suppose that Γ = B1∩{xn = ψ(x′)}, for some function ψ ∈ C2(B′1).
Fix D′ ∈ Rn−1 and b ∈ R. Then, given any ǫ > 0 there exists δ > 0 (depending
only on ǫ, n, λ,Λ) such that if

max{∥ψ∥C2(B′
1
), ∥g −D′ ⋅ x − b∥L∞(Γ), ∥f±∥L∞(Ω±)} ≤ δ and Λ ≤ (1 + δ)λ,

then viscosity solutions u and h of

{ F (D2u) = f± in Ω±,
u+ν − u−ν = g on Γ,

and

(3.2) { ∆h = 0 in B±
3/4
,

h+xn
− h−xn

= D′ ⋅ x′ + b on B3/4 ∩ {xn = 0},
respectively, satisfy

∥u − h∥L∞(B3/4) ≤ ǫ.
Proof. We will proceed by a reductio at absurdum argument. Thus, let us
assume that the thesis is false. Then, there exist ǫ0 > 0 and sequences of
functions (Fj)j∈N, (uj)j∈N, (f±j )j∈N, {gj}j∈N, (ψj)j∈N and (Λj)j∈N satisfying

{ Fj(D2uj) = f±j (x) in Ω±j ,(u+j )ν − (u−j )ν = gj on Γj = B1 ∩ {xn = ψj(x)}
with ∥uk∥L∞(B1) ≤ 1, where
(3.3) ∥f±j ∥L∞(Ω±j ) + ∥gj −D′ ⋅ x′ − b∥L∞(Γj) + ∥ψj∥C2(B′

1
) ≤ 1

j
and Λj ≤ (1 + 1

j
)λ

and such that

(3.4) ∥uj − h∥L∞(B 3
4

) > ǫ0
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for any viscosity solution h of (5.12). From global elliptic regularity theory (cf.
[21, Theorem 1.1]) we have

(3.5) ∥uj∥Cα1 (B3/4)
≤ C(n,λ,Λ, c1)

for some α1 = α1(n,λ,Λ) ∈ (0,1) and sufficiently large j. The sequence {uj}j≥1
is therefore bounded and equicontinuous on B3/4. By compactness, up to a
subsequence, uj → u∞ uniformly on compact subsets of B3/4 as j → +∞.

On the other hand, from (3.3) we have that Λj ≤ 2λ for all j ≫ 1, which
implies that the operators Fj ∈ E(λ,2λ) for j ≫ 1. Moreover, by using (3.3),
we can conclude that Λj → λ, up to a subsequence. Hence, Fj → λTr locally
uniformly on Sym(n) and by Stability Lemma (Lemma 2.3) u∞ satisfies

(3.6) { ∆u∞ = 0 in B±
3/4
,

(u+∞)xn
− (u−∞)xn

= D′ ⋅ x′ + b on T3/4

in viscosity sense. This contradicts (3.4).
�

As in [21], in the previous lemma we assumed that u ∈ C(B1). In later
proofs, we will also need a similar approximation result when u has a jump
discontinuity across the interface. We prove this version in the next lemma.

Lemma 3.3. Assume that Γ = B1 ∩ {xn = ψ(x′)} for some ψ ∈ C2(B′1), and
that f± satisfy

(∫
Br(x0)∩Ω±

∣f±∣ndx)1/n ≤ Cf± ⋅ rα−1,
for all small radii r > 0, x0 ∈ Ω± ∪ Γ, and some α ∈ (0,1). Fix D′ ∈ Rn−1, b ∈ R.
If u ∈ C(B1 ∖ Γ) ∩L∞(B1) a viscosity solution of the problem

{ F (D2u) = f± in Ω±,
u+ν − u−ν = g on Γ

with ∥u∥L∞(B1) ≤ 1, u+ − u− ≡ h ∈ C2(Γ), then given an arbitrary ǫ > 0, there is

δ̃ > 0 such that if

(3.7) max{∥ψ∥C2(B′
1
), ∥g −D′ ⋅ x − b∥L∞(Γ), ∥f±∥L∞(Ω±)} ≤ δ̃ and Λ ≤ (1 + δ̃)λ,

then there exists a bounded viscosity solution h ∈ C(B1/2) to
(3.8) { ∆h = 0 in B±

1/2
,

h+xn
− h−xn

= D′ ⋅ x′ + b on B3/4 ∩ {xn = 0}
such that

∥u − h∥L∞(B1/2) ≤ ǫ.
Proof. Using Lemma 3.2, the proof follows exactly as the one of Lemma 5.8 in
[21]. �
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3.2. A quadratic polynomials approximation. In this subsection, we present
the core oscillation decay that will ultimately imply C2,α(0)-regularity for so-
lutions to the problem (1.2). The first task is a step-one discrete version of the
aimed regularity estimate. This is the content of the next lemma. As in [21],
here we also require that A2. be satisfied.

Lemma 3.4 (A quadratic approximation). Given α ∈ (0,1), there are con-
stants C0 > 0, and 0 < ǫ, ρ < 1/2, depending only on n,λ,Λ and α, such that, if
u satisfies the assumptions of Lemma 3.3 with D′ = ∇′g(0) and b = g(0), and∥g∥C1(Γ) ≤ 1, then there are polynomials with quadratic growth

P±(x) = 1

2
xt ⋅A± ⋅ x +B± ⋅ x + c,

with A± ∈ Sym(n), B± ∈ Rn and c ∈ R satisfying Tr(A±) = 0,
B+i − B−i = 0 if i < n and B+n − B−n = g(0),(3.9)

A+ij −A−ij = 0 if i, j < n and A+nj −A−nj = gxj
(0) if j < n,(3.10)

and ∥A±∥Sym(n) + ∣B±∣ + ∣c∣ ≤ C0,

such that ∥u± −P±∥L∞(Ω±ρ) ≤ ρ2+α.
Proof. The proof follows the same lines as that of [21, Lemma 7.1] along with
minor changes. In fact, fix 0 < ǫ, ρ < 1/2 to be determined. By Lemma 3.3,
there exists a bounded viscosity solution v ∈ C(B1/2) to
(3.11) { ∆v = 0 in B±

1/2
,

v+xn
− v−xn

= ∇′g(0) ⋅ x′ + g(0) on B3/4 ∩ {xn = 0},
such that

(3.12) ∥u − v∥L∞(B1/2) ≤ ǫ.
Now, since ∇′g(0) ⋅ x′ + g(0) is smooth and the interface is flat, from Lemma
3.1, we have ∥v±∥

C3(B±
1/3
) ≤ C0,

for some constant C0 = C0(n,λ,Λ) > 0. Let
P±(x)∶= 1

2
xt ⋅D2v±(0) ⋅ x +∇v±(0) ⋅ x + v(0).

By the previous estimate, it follows that ∥D2v±(0)∥Sym(n)+∣∇v±(0)∣+∣v(0)∣ ≤ C0

and, for ρ ∈ (0,1/3),
(3.13) ∥v± −P±∥L∞(B±ρ ) ≤ C0 ⋅ ρ3.
Now, choose ρ small enough such that C0ρ3 ≤ 1

2
ρ2+α. Then choose ǫ = 1

2
ρ2+α.

Combining (3.12) and (3.13), we get

∥u± −P±∥L∞(Ω±ρ) ≤ ∥u − v∥L∞(B1/2) + ∥v± −P±∥L∞(Ω±ρ) ≤ ǫ +C0ρ
3 ≤ ρ2+α.

Moreover, since v+ = v− on {xn = 0}∩B1/2 and v is C2 up to the flat interface, we
see that ∇′v+(0) = ∇′v−(0) and D2

x′v
+(0) =D2

x′v
−(0). In particular, B+i −B−i = 0
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and A+ij −A−ij = 0 if i, j < n. From the transmission condition in (3.6), we get
B+n − B−n = v+xn

− v−xn
= g(0) and A+nj −A−nj = v+xnxj

(0) − v−xnxj
(0) = gxj

(0) for all
j < n. �

In the sequel, we shall iterate Lemma 3.4 in appropriate dyadic balls in order
to obtain the precise sharp oscillation decay of the difference between u and
the quadratic polynomials P±k .

4. Proof of Theorem 2.8

The proof of the result will be divided into several stages.

4.1. Step 1: Smallness regime. Initially, we comment on the scaling fea-
tures of the transmission problems that allow us to reduce the proof of Theorem
2.8 to the hypotheses of Lemma 3.3 and Lemma 3.4.

Let C0, ρ, ǫ > 0 be the constants given in Lemma 3.4 and δ > 0 be the one
given in Lemma 3.2. Before delving into the details of this initial step, fix
the number δ0 > 0 specified in the proof of Lemma 4.1. Since this δ0 does
not depend on the arguments of this first step, we’ve chosen to fix δ0 at this
moment to improve the readability of the manuscript. We can suppose that

(i) ψ(0′) = 0, ∇′ψ(0′) = 0′; ∥D2
x′ψ(0′)∥ ≤ δ0, and [ψ]C2,α(0) ≤ δ0,

(ii) ∥u∥L∞(B1) ≤ 1 and ∥g∥C1(Γ) ≤ 1,
(iii) [g]C1,α(0) + cf− + cf+ ≤ δ0,

replacing if necessary u by

(4.1) w(y)∶= u(ηy)
τ

for parameters η and τ to be determined. In fact, let u ∈ C(B1) be a viscosity
solution to

{ F (D2u) = f± in Ω±,
u+ν − u−ν = g on Γ

Define w ∶ B1 → R as in (4.1). We readily check that w solves

(4.2) { Fη,τ(D2w) = f±η,τ in Ω̃±,

w+ν −w−ν = gη,τ on Γ̃

where
Ω̃±∶= {y ∈ Ω̃ ∶ ηy ∈ Ω±}, Γ̃∶= {y ∈ B1 ∶ yn = ψη(y)},

with ψη(y) = η−1ψ(ηy) and
Fη,τ(M)∶= η2

τ
F ( τ

η2
M) , f±η,τ(y)∶= η2τ f±(ηy) and gη,τ(y)∶= η

τ
g(ηy).

Easily one verifies that Fη,τ ∈ E(λ,Λ). Thus, it satisfies the same Cordes
condition as F . Moreover, f±η,τ satisfy

(∫
Br∩Ω̃±

∣f±η,τ(y)∣ndy)
1/n = η2

τ
(∫

Bηr∩Ω±
∣f±(x) − f±(0)∣n)1/n

≤ η2

τ
⋅ cf±(rη)α = η2+α

τ
cf± ⋅ rα ≤ c̃f± ⋅ rα−1.(4.3)
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where c̃f±η,τ = η2+α

τ
cf± .

(i) If y ∈ Γ̃, then yn = ψ̃(y′), with ψ̃(y′) = 1
η
ψ(ηy′). Thus, choosing

η∶=min{(δ0/[ψ]C2,α(0)) 1

1+α , δ0/∥D2
x′ψ(0′)∥},

we get ∥D2
x′ψ̃(0′)∥ = η∥D2

x′ψ(0′)∥ ≤ δ0 and

[ψη]C2,α(0) = sup
y′∈B′

1

y′ /=0

∣D2
y′ψ̃η,τ(y′) −D2

y′ψ̃η(0)∣
∣y′∣α

≤ η1+α ⋅ [ψ]C2,α(0) ≤ δ0.(4.4)

Moreover

∥D2
x′ψ∥L∞(B′1) ≤ sup

x′∈B′
1

∥D2
x′ψ(x′) −D2

x′ψ(0′)∥ + ∥D2
x′ψ(0)∥ ≤ 2δ0.

For (ii) and (iii), we get,

[gη,τ ]C1,α(0) = sup
y∈B1

y/=0

∣∇gη,τ(y) −∇gη,τ(0)∣∣y∣α = η2
τ

sup
y∈B1

y/=0

∣∇g(ηy)−∇g(0)∣
∣y∣α(4.5)

≤ η2+α

τ
[g]C1,α(0).(4.6)

Thus, choosing

τ ∶= ∥u∥L∞(B1) + η2+αδ−10 ⋅ ([g]C1,α(0) + cf− + cf+),
we have ∥w∥L∞(B1) ≤ 1. Moreover, by (4.3),

[gη,τ ]C0,α(0) + cf−η,τ + cf+η,τ ≤ η
2+α

τ
([g]C0,α(0) + cf− + cf+) ≤ δ0

Thus, if we show that there exist quadratic polynomials

P±η,τ(y) = 1

2
yt ⋅A±η,τ ⋅ y + Bη,τ ⋅ y + bη,τ

such that

∣w±(y) −P±η,τ(y)∣ ≤ Cη,τ ⋅ ∣y∣2+α, ∀y ∈ Ω̃1/2

and there exists C > 0 depending only on n,λ,Λ, such that

∥A±η,τ∥Sym(b) + ∣Bη,τ ∣ + ∣bη,τ ∣ ≤ C̃∥ψη∥C2,α(0) ⋅ (∣gη,τ(0)∣ + [gη,τ ]C0,α(0) + cf−η,τ + cf+η,τ),
then, rescaling back, we get that

∣u±(x) −P±(x)∣ ≤ C0∣x∣2+α, ∀x ∈ Ω±η
2

(y0) = Bη/2(y0) ∩Ω±
with

P±(x) = 1

2
xt ⋅A± ⋅ x +B ⋅ x + b,

where

A± = τ

η2
A±η,τ , B = τηBη,τ , b = τbη,τ and C0 = τ

η2+α
Cη,τ
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and

η2

τ
∥A±∥Sym(n) + η

τ
∣B∣ + 1

τ
∣b∣ ≤ C̃∥ψη∥C2,α(0) ⋅ (∣gη,τ(0)∣ + [gη,τ ]C0,α(0) + cf−η,τ + cf+η,τ)

≤ C̃η1+α∥ψ∥C2,α(0) ⋅ [η
τ
∣g(y0)∣ + η2+α

τ
[g]C0,α(y0) + η

2+α

τ
(cf− + cf+)] .

Multiplying by τ
η2+α

, and using the definition of η, we get

∣A±∣ + ∣b∣ + ∣C0∣ ≤ C̃δ−10 [ψ]C2,α(0) ⋅ (∣g(0)∣ + [g]C0,α(0) + cf+ + cf−) .
4.2. Step 2: Iterative process. In the sequel, we shall iterate Lemma 3.4 in
appropriate dyadic balls as to obtain the precise sharp oscillation decay of the
difference between u± and quadratic polynomials functions. As a byproduct of
a perturbation argument of [21] we get the following result

Lemma 4.1 (Iterative process). Suppose that the conditions of the previous
lemma hold true. Given k ≥ 1, F ∈ E(λ,Λ) and the Small Ellipticity Aperture
condition

Λ

λ
− 1 ≤ δ,

it holds that there are quadratic polynomials

Pk(x) = 1
2
xt ⋅A±k ⋅ x + B±k + ck

satisfying Tr(A±
k
) = 0,

(B+k )i − (B−k)i = 0 if i < n and (B+k)n − (B−k)n = g(0)(4.7)

(A+k)ij − (A−k)ij = 0 if i, j < n, and (A+k)nj − (A−k)nj = gxj
(0) if j < n(4.8)

with

(4.9) ρ2(k−1)∥A±k −A±k−1∥Sym(n) + ρk−1∣B±k − B±k−1∣ + ∣ck − ck−1∣ ≤ C0 ⋅ ρ(k−1)(2+α)
with P0 ≡ 0 and C0 = C0(n,λ,Λ, α) > 0, and such that

(4.10) ∥u± −P±k∥L∞(Ω±
ρk
) ≤ ρk(2+α)

Proof. Since the proof depends on Lemma 3.4, we will omit some steps. The
complete proof can be found in [21]. We will only outline the case D2

x′ψ(0′) = 0
because the case g(0) = 0 is analogous. The proof proceeds by induction. For
k = 1, by the normalization, we are under the assumptions of Lemma is precisely
the statement of Lemma 3.4.

Suppose we have verified (4.7), (4.8), (4.9) and (4.10) for k = 1,2, . . . , ℓ.
Consider the rescaled function v ∶ B1 → R

v(x) = u(ρℓx) −Pℓ(ρℓx)
ρℓ(2+α)

,

where P(x)∶= P+ℓχΩ̃+
ℓ
+P−ℓχΩ̃−

ℓ
, Ω̃±ℓ = {x ∈ B1 ∶ ρℓx ∈ Ω±} and Γ̃ℓ = {x ∈ B1 ∶ xn =

ψℓ(x′)}, for ψℓ(x′) = ρ−ℓψ(ρℓx′). By the induction hypothesis, ∥v∥L∞(B1) ≤ 1,
and v satisfies

{ Fℓ(D2v, x) = f±ℓ in Ω̃±ℓ
v+νℓ − v−νℓ = gℓ on Γ̃ℓ
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in the viscosity sense, with

Fℓ(M,x) = ρ−ℓαFτ(ρℓαM +A±ℓ , ρℓx) for M ∈ Sym(n), x ∈ B1.

f±ℓ (x) = ρ−ℓαf±(ρℓx) for any x ∈ Ω̃±ℓ
gℓ(x) = ρ−ℓ(1+α) [g(ρℓx) − (A+ℓ −A−ℓ )(ρℓx) ⋅ νℓ(x) − (B+ℓ −B−ℓ ) ⋅ νℓ(x)] for x ∈ Γ̃ℓ

It’s possible to find δ > 0 such that, v satisfies the assumptions of Lemma 3.4.
In fact, the proof follows exactly as the one of proof of Theorem 1.3 in [21].
Then, there are quadratic polynomials

P±(x) = 1
2
xt ⋅A± ⋅ x +B ⋅ x + c,

where A± ∈ Sym(n), B± ∈ Rn, c ∈ R, and ∥A±∥Sym(n) + ∣B±∣ + ∣c∣ ≤ C0, satisfying

B+i − B−i = 0 if i < n and B+n − B−n = g(0)(4.11)

A+ij −A−ij = 0 if i, j < n and A+nj −A−nj = gxj
(0) if j < n(4.12)

such that

(4.13) ∥v± −P±∥L∞(Ω±ρ) ≤ ρ2+α.
Rewriting (4.13) back to the original domain yields

∣u±(z) −P±ℓ (z) − ρℓ(2+α)P±ℓ (ρ−ℓz)∣ ≤ ρ(ℓ+1)(2+α)
Finally, by defining P±ℓ+1(x)∶= P±ℓ (x) + ρℓ(2+α)P±(ρ−ℓx) we check the (ℓ + 1)th
step of induction. Note that

A±ℓ+1 = A±ℓ + ρℓαA±, B±ℓ+1∶= B±ℓ + ρℓ(1+α), and cℓ+1∶= cℓ + ρℓ(2+α)c.
Thus, using that ∥A±∥Sym(n) + ∣B±∣ + ∣c∣ ≤ C0 we get that

ρ2ℓ∥A±ℓ+1 −A±ℓ ∥Sym(n) + ρℓ∣B±ℓ+1 −B±ℓ ∣ + ∣cℓ+1 − cℓ∣ ≤ C0ρ
ℓ(2+α).

Moreover, by (4.11) and (4.12) we have

(B+ℓ+1)i − (B−ℓ+1)i = (B+ℓ )i − (B−ℓ )i + ρℓ(2+α)(B+i − B−i ) = 0, if i < n;
B+ℓ+1)n − (B−ℓ+1)n = (B+ℓ )n − (B−ℓ )n + ρℓ(2+α)(B+n −B−n) = g(0);(A+ℓ+1)ij − (A−ℓ+1)ij = (A+ℓ )ij − (A−ℓ )ij + ρℓα(A+ij −A−ij) = 0 if i, j < n;

(A+ℓ+1)nj − (A−ℓ+1)nj = (A+ℓ )nj − (A−ℓ )nj + ρℓα(A+nj −A−nj) = gxj
(0) if j < n;

Tr(A±ℓ+1) = Tr(ρℓαA± +A±ℓ ) = ρℓαTr(A±) = 0.
This concludes the proof of the Theorem.

�

With Lemma 4.1 in hand, we now prove our main result Theorem 2.8.

Proof of Theorem 2.8. It is enough to prove the estimate at x = 0. Now, we
notice that if follows from (4.9), namely A±k , B

±
k and ck, are Cauchy sequences

in Sym(n), Rn and in R, respectively. Let A±∞, B
±
∞ and c∞ be the limiting

coefficients, i.e.

A±∞ = lim
k→+∞

A±k , B
±
∞ = lim

k→+∞
A±k and c∞ = lim

k→+∞
ck.
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Ij the sequel, in view (4.9),

∥P±k −P±∞∥L∞(Ω±ρ) ≤ C⋆ρ2+α
for some universal constant C⋆ > 0. Now fix 0 < r < ρ, we choose k ∈ N such
that

ρk+1 < r ≤ ρk.
We estimate

∥u± −P±∞∥L∞(Ω±r ) ≤ C0 ⋅ r2+α
�

5. Schauder estimates of quasiconcave equations

In this section we will study Schauder estimates for viscosity solution of fully
nonlinear elliptic transmission problems when the operator fails to be concave
or convex in the space of symmetric matrices. In particular, it is assumed that
either the level sets are convex or the operator is concave, convex or close to a
linear function near infinity.

5.1. Regularity estimates up to the flat interface. In this part, we will
work initially with the regularity estimates up to the flat interface with constant
coefficients, that is, with the following problem

(5.1) { F (D2u) = f± in B±1 ,

u+xn
− u−xn

= g on T

where F is a quasiconvex operator.

Theorem 5.1. Let F be a a quasiconcave operator and fix α ∈ (0, α0). Assume
that g ∈ C1,α(T ) and f± ∈ C0,α(B±1 ) with f+ = f− on T . Then any bounded
viscosity solution u of the problem

{ F (D2u) = f± in B±1 ,

u+xn
− u−xn

= g on T,

satisfies u ∈ C2,α(B±
1/2
) and

∥u∥
C2,α(B±

1/2
) ≤ C ⋅ (∥u∥L∞(B1) + ∥g∥C1,α(T ) + ∥f−∥C0,α(B−

1
) + ∥f+∥C0,α(B+

1
)),

where C > 0 is a constant depending only on n,λ and Λ.

To prove Theorem 5.1 we will need the following result.

Proposition 5.2. Let F be a quasiconcave operator, and 0 < r ≤ 1. Suppose
that h is a bounded viscosity solution of the problem

(5.2) { F (D2h) = 0 in B±1 ,

h+xn
− h−xn

= 0 on T.
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Then, for any radii 0 < ρ ≤ r
2
, it holds that h ∈ C2,α0(B±ρ ) with the following

estimates holding true

osc
B±ρ
(h± − 1

2
xt ⋅D2h±(0) ⋅ x −∇h(0) ⋅ x) ≤ C (ρ

r
)2+α0

⋅ osc
Br

h

r2∥D2h±(0)∥Sym(n) + r∣∇h(0)∣ ≤ C ⋅ osc
Br

h,

where C is a constants that depends only on n,λ, and Λ.

Proof. Fix 0 < ρ ≤ r
2
. Let w be the unique viscosity solution to

{ F (D2w) = 0 in B1,

w = h on ∂B1.

Since F is a quasiconcave, by Theorem 2.10, w ∈ C2,α0

loc (B1) and
∥w∥C2,α0 (B1/2)

≤ C∥w∥L∞(B1).

Moreover, by uniqueness of viscosity solutions to flat interface problems, it
follows that w = h in B1. Now, applying the above result for h(rx), for x ∈ B1,
we get h ∈ C2,α0(B1/2). Let v(x) = h(rx)−h(0), for x ∈ B1. Then, by the mean
value theorem,

osc
B±ρ

(h± − 1
2
xt ⋅D2h±(0) ⋅ x −∇h(0) ⋅ x) ≤ Cρ2+α0∥D2h±∥C0,α0 (B±ρ )

= C (ρ
r
)2+α0 [D2v±]

C0,α0(B±
ρ/r
)

≤ C (ρ
r
)2+α0 ∥v∥L∞(B1)

≤ C (ρ
r
)2+α0

osc
Br

h.

Moreover,

r2∥D2h±(0)∥Sym(n) + r∣∇h(0)∣ ≤ C∥v∥L∞(B1) ≤ C osc
Br

h.

This concludes the proof of the Proposition. �

Proof of Theorem 5.1. It is enough to prove the estimate at x = 0. Without
loss of generality, assume that v(0) = 0 and g(0) = 0. Suppose further that
f+(0) = f−(0) = 0. Let

M = ∥u∥L∞(B1) + ∥g∥C1,α(T ) + ∥f−∥C1,α(B−
1
) + ∥f+∥C1,α(B+

1
).

Claim: For all k ≥ 0, there exist 0 < γ < 1 and C0,C1 > 0, depending only
on n,λ,Λ and α, and sequences of quadratic polynomials P±k(x) = 1

2
xt ⋅A±k ⋅x+

Bk ⋅ x, k ≥ 0, such that

osc
B

ρk

(u± −P±) ≤ C0Mγk(2+α)(5.3)

γk−1∥A±k −A±k−1∥Sym(n) + ∣Bk −Bk−1∣ ≤ C1Mγ(k−1)(2+α),(5.4)
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for any k ≥ 0, where A±
−1 = 0 and B−1 = 0. Furthermore, F (A±,0) = 0 and

(5.5) (A+k)ij − (A−k)ij = 0 if i, j /= n and (A+k)jn − (A−k)jn − gxj
(0) if j /= n,

where Aij denotes the element in the (i, j)-entry of the matrix A.
We argue by finite induction. In fact, for k = 0, choose B0 = 0 and A±0

symmetric sucht that (5.5) holds and (A±0)nn is given by F (A±0) = 0. Then∥A±0∥ ≤ C1∣∇′g(0)∣ ≤ C1M , for some C1 > 0. Moreover, choose C0 > 1 large so
that

osc
B1

(u± −P±0) ≤ 2 (∥u∥L∞(B1) + ∥A±0∥Sym(n)) ≤ 2(1 + C1)M ≤ C0M.

Assume that (5.3)-(5.5) hold for some k ≥ 0. Let r = ρk0 and Pk = P+
k
χB+r
+

P−kχB−r
. Note that, by (5.5), we have P+k =P−k on T ∩Br, and thus, Pk ∈ C(Br).

Let v ∈ C(Br) be the viscosity solution to

⎧⎪⎪⎪⎨⎪⎪⎪⎩
F (D2v +A±k) = 0 in B±r ,

v+xn
− v−xn

= 0 on T ∩Br

v = u −Pk on ∂Br

For the proof of existence, see [21, Theorem 4.11]. From ABP estimate (cf. [21,
Theorem 2.1]) and the fact that F (A±k ,0) = 0,
(5.6) osc

Br

v ≤ osc
Br

(u −Pk).
Fix ρ ≤ r

2
to be determined later. By Proposition 5.2, we know that v± ∈

C2,α0(B±ρ ), with
osc
B±ρ

(v± −P±) ≤ C (ρ
r
)2+α0

osc
Br

v(5.7)

r2∥Q±∥Sym(n) + r∣R∣ ≤ C osc
Br

v,(5.8)

where P±(x) = 1
2
xt ⋅Q± ⋅ x +R ⋅ x, Q± = D2v±(0), and R = ∇v(0). Moreover, as

F (D2v +A±k) = 0, it follows that
(5.9) F (Q +A±k) = 0.
Let ρ = γr and ǫ = α0 − α > 0. Choose γ ≤ 1/2 small enough so that Cγǫ ≤ 1/2.
Combining (5.6), (5.7), and the induction hypothesis, we see that

(5.10) osc
B±ρ
(v± −P±) ≤ C (ρ

r
)2+α0

osc
Br

(u −Pk) ≤ 1
2
C0Mγ(k+1)(2+α).

Let w = u −Pk − v. So, taking into account (5.5), it follows that

⎧⎪⎪⎪⎨⎪⎪⎪⎩
w ∈ S(λ/n,Λ, f±) in B±r ,

w+xn
−w−xn

= g −∇′g(0) ⋅ x′ on T ∩Br

w = 0 on ∂Br

Now, using the rescaled ABP estimate (see [21, Theroem 2.1]), and the as-
sumptions on g and f±, we get

∥w∥L∞(Bρ) ≤ Cρ (∥g − g(0) −∇′g(0) ⋅ x′∥L∞(T∩Bρ) + ∥f± − f±(0)∥Ln(B±ρ )
)

≤ Cρ2+α ([g]C1,α(0) + [f±]C0,α(0)) ≤ CMρ2+α.
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Choose C0 ≥ 4C. In view of (5.10) and the previous estimate, we have

osc
B±

γk+1

(u± −P±k −P±) ≤ osc
Bρ

w + osc
B±ρ
(v± −P±) ≤ C0Mγ(k+1)(2+α).

Hence, the estimate in (5.3) holds for k+1 with Pk+1 =Pk +P. To prove (5.4),
we use (5.8), (5.6), and the induction hypothesis to get

γk∥A±k+1A±k∥Sym(n) + ∣Bk+1 −Bk∣ ≤ C1Mγk(1+α),

where C1 = CC0. Since, A±k+1 = A±k + Q, then F (A±k+1,0) = 0 and hence (5.5)
follows from the induction hypothesis. �

5.2. Regularity estimate for non-flat interface problems. The key in-
gredients to prove Theorem 2.11 are the following lemmas, whose proofs will
be omitted because they are similar to those of [21, Lemma 5.7 and 5.8].

Lemma 5.3. Assume that Γ = B1 ∩ {xn = ψ(x′)} for some ψ ∈ C2(B′1). Fix a
vector D′ ∈ Rn−1 and b ∈ R. Then, given any ǫ > 0 there is δ > 0 such that if
u ∈ C(B1) is a viscosity solution of the problem

{ F (D2u) = f± in Ω±,
u+ν − u−ν = g on Γ,

with ∥u∥L∞(B1) ≤ 1 and

(5.11) max{∥ψ∥C2(B′
1
), ∥g −D′ ⋅ x − b∥L∞(Γ), ∥f±∥L∞(Ω±)} ≤ δ,

then there exist a bounded viscosity solution v ∈ C(B3/4) to
(5.12) { F (D2v) = 0 in B±

3/4
,

v+xn
− v−xn

= D′ ⋅ x′ + b on B3/4 ∩ {xn = 0},
satisfying ∥u − v∥L∞(B3/4) ≤ ǫ.
Lemma 5.4. Consider Γ = B1 ∩ {xn = ψ(x′)}, for some functionψ ∈ C2(B′1),
and that the term f± satisfy the inequality

(∫
Br(x0)∩Ω±

∣f±∣ndx)1/n ≤ Cf± ⋅ rα−1,
for all small radii r > 0, x0 ∈ Ω± ∪ Γ, and some α ∈ (0,1). Fix D′ ∈ Rn−1, b ∈ R
and consider u ∈ C(B1 ∖ Γ) ∩L∞(B1) a viscosity solution to

{ F (D2u) = f± in Ω±,
u+ν − u−ν = g on Γ

with ∥u∥L∞(B1) ≤ 1, u+ − u− ≡ h ∈ C2(Γ). Then, it holds that given an arbitrary

ǫ > 0, there exists δ̃ > 0 such that if the inequality

(5.13) max{∥ψ∥C2(B′
1
), ∥g −D′ ⋅ x − b∥L∞(Γ), ∥f±∥L∞(Ω±)} ≤ δ̃,

holds, then there exists a bounded viscosity solution v ∈ C(B1/2) to the problem

(5.14) { F (D2v) = 0 in B±
1/2
,

v+xn
− v−xn

= D′ ⋅ x′ + b on B3/4 ∩ {xn = 0}
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satisfying ∥u − v∥L∞(B1/2) ≤ ǫ.
Theorem 2.11 will be a consequence of iterating the next lemma.

Lemma 5.5. Let F be a quasiconcave and uniformly elliptic operator. Given
α ∈ (0, α0), there are constants C0 > 0, and 0 < ǫ, ρ < 1/2, depending only on
the quantities n,λ,Λ, and α such that, if u satisfies the assumptions of Lemma
5.4 with D′ = ∇′g(0) and b = g(0), and ∥g∥C1(Γ) ≤ 1, then there are polynomials
with quadratic growth

P±(x) = 1

2
xt ⋅A± ⋅ x +B± ⋅ x + c,

where A± ∈ Sym(n), B± ∈ Rn, c ∈ R, and ∥A±∥Sym(n) + ∣B±∣ + ∣c∣ ≤ C0 such that
the following estimate holds true

∥u± −P∥L∞(Ω±ρ) ≤ ρ2+α.
Moreover, it holds that F (A±,0) = 0 and

B+i −B−i = 0 if i < n and B+n −B−n = g(0),(5.15)

A+ij −A−ij = 0 if i, j < n and A+nj −A−nj = gxj
(0) if j < n(5.16)

Proof. The proof includes the same lines as [21, Lemma 7.1] along with minor
changes. The main difference is to replace Theorem 4.16 in [21] with Theorem
5.1. �

Proof of Theorem 2.11. The proof is omitted because it follows similar lines as
the proof of [21, Theorem 1.3]. Indeed, the key ingredients are the Theorem
5.1 and Lemma 5.5. Details are left to the interested reader. �

6. Applications and comments

6.1. Global estimates. As a product of a translation argument, we obtain
the following result: a global C2,α estimate for Theorems 2.8 and 2.11.

Corollary 6.1.

(1) (First Case) Fix any α ∈ (0,1). Assume that g ∈ C1,α(Γ) and f± ∈
C0,α(Ω±) with f+ = f− on Γ. Then there exists δ > 0 such that if (2.2)
is satisfied then any bounded viscosity solution u to the problem (1.2)
satisfies u ∈ C2,α(Ω±

1/2
) with estimate

∥u±∥
C2,α(Ω±

1/2
) ≤ C0∥ψ∥C2,α(B′

1
) (∥u∥L∞(B1) + ∥g∥C1,α(Γ) + ∥f±∥C0,α(Ω±)) .

where C0 > 0 depends only on n,Λ, λ and α.
(2) (Second Case) Let F ∈ E(λ,Λ) be a quasiconvex or quasiconcave

operator. Fix any α ∈ (0, α0)1. Assume that g ∈ C1,α(Γ) and f± ∈
C0,α(Ω±) with f+ = f− on Γ . Then any bounded viscosity solution u
to the problem (1.2) satisfies u ∈ C2,α(Ω±

1/2
) with the same estimate as

in item (1).
1α0 ∈ (0,1) as in (2.3).
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Proof. In fact, for each x0 ∈ Ω±1/2, define w ∶ B1 → R by w(x) = 4 ⋅ u (x0 + 1
2
x)

and w±∶= w∣
Ω±
. Then, w ∈ C(B1) is a viscosity solution to

{ F (D2w) = f̃± in Ω±,
w+ν −w−ν = g̃ on Γ

where f̃±(x)∶= f (x0 + 1
2
x) and g̃(x)∶= 2g (x0 + 1

2
x). Therefore, applying Theo-

rem 2.8 (or Theorem 2.11 ) to the function w, we obtain u ∈ C2,α(x0) . �

6.2. Estimates for more general equations by perturbation. The re-
sults obtained so far provide us with C2,α estimates under weak convexity
assumptions when the variable x is frozen, that is, when the operator F does
not depend on x. It seems plausible that the techniques in this paper can be
modified to yield C2,α regularity results for transmission problems of the type

(6.1) { F (D2u,x) = f± in Ω±,
u+ν − u−ν = g on Γ.

As it turns out, this is the case. The starting point relies on the function

βF (x,x0)∶= sup
M∈Sym(n)

F (M,x) − F (M,x0)
1 + ∥M∥ ,

which measures the oscillation of F in x near the x0.

6.3. First case. In the first main result, we realize that everything follows the
same way as long as we modify Lemma 3.2 and 3.3, since Lemmas 3.4 and 4.1
are consequences of them. Notice that the proof of Lemma 3.2 is based on the
ABP estimate, existence and uniqueness of viscosity solutions and compactness
argument. The proof of Theorem 2.1 in [21] can readily be modified to yield
ABP-type estimates, existence and uniqueness results for operators of the form
F = F (M,x). Regarding the proof of Lemma 3.2, if we include the additional
hypothesis ∥β∥Ln(Ω±) ≤ δ in (3.7), we have that the previous techniques can be
modified to yield to proof Lemma 3.2, including the assumption ∥βj∥Ln(Ω±

j
) → 0

as j → +∞ in Lemma 2.3. To conclude, Lemma 3.3 follows from Lemma 3.2.

6.4. Second case. For quasiconvex/quaseconcave operators, we do not need
to modify Theorem 5.1. In Lemma 5.3, it is possible to prove that given ǫ > 0,
there exists δ > 0 such that if (5.11) holds and ∥β∥Ln(Ω±) ≤ δ, then any two
viscosity solutions u and v of (6.1) and

{ F (D2v,0) = 0 in B±
3/4
,

v+xn
− v−xn

= D′ ⋅ x + b on B3/4 ∩ {xn = 0}
respectively, satisfy

∥u − v∥L∞(B3/4) ≤ ǫ.
As in the previous case, the proof of Lemmas 5.3 is based on the ABP estimates
and Cα1 regularity of the solution. It is worth noting that Lemma 5.4 and
Lemma 5.5 are consequences of Lemma 5.3.
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Thus, as a product of the ideas above, we can extend to more general op-
erators of the type F = F (M,x). In what follows we describe precisely such
results.

Theorem 6.2.

(1) (First Case) Fixe any α ∈ (0,1). Assume that g ∈ C1,α(Γ) and f± ∈
C0,α(Ω±) with f+ = f− on Γ and for any x0 ∈ Ω±1/2,

(6.2) (∫
Br(x0)∩Ω±

βn(x,x0)dx)1/n ≤ c ⋅ rα,
for r small and c > 0. Then there exists δ > 0 such that if (2.2) is
satisfied then any bounded viscosity solution u to the problem (6.1)
satisfies u ∈ C2,α(x0) with estimate

∥u±∥
C2,α(Ω±

1/2
) ≤ C0∥ψ∥C2,α(B′

1
) (∥u∥L∞(B1) + ∥g∥C1,α(Γ) + ∥f±∥C0,α(Ω±)) .

where C0 > 0 depends only on n,Λ, λ and α.
(2) (Second Case) Let F ∈ E(λ,Λ) be a quasiconvex or quasiconcave

operator. Fixe any α ∈ (0, α0). Assume that g ∈ C1,α(Γ) and f± ∈
C0,α(Ω±) with f+ = f− on Γ and (6.2). Then any bounded viscosity
solution u to the problem (6.1) satisfies u ∈ C2,α(Ω±

1/2
) with the same

estimate as in item (1).
As immediate consequence of Theorem 6.2-(1) we can recover the classical

result of Cordes-Nirenberg.

Corollary 6.3 (Cordes-Nirenberg). Fix any x0 ∈ Ω±1/2. Let u be a viscosity

solution to ⎧⎪⎪⎨⎪⎪⎩
sup
β∈B

inf
γ∈A
(Lγ,β u − hβγ(x)) = f± in Ω±,

u+ν − u−ν = g on Γ,

where Lγ,β u∶= aijγβ(x)∂iju is a family of uniformly elliptic operators with, hγβ ∈
C0,α(x0) and (aijγ,β − δij) ∈ C0,α(x0). There exists δ > 0 such that if aijγβ(x)
fulfills the condition (2.2), then u ∈ C2,α(x0).
Acknowledgments. G.C. Ricarte have been partially supported by
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http://dx.doi.org/10.1016/j.anihpc.2010.05.001.

https://arxiv.org/pdf/2311.02524.pdf
http://dx.doi.org/10.1007/s00039-007-0626-7
http://dx.doi.org/10.1016/j.matpur.2007.10.004
http://dx.doi.org/10.1016/j.anihpc.2010.05.001


26 G.C.RICARTE, C.S. BARROSO, AND L. S. TAVARES

[28] M. Picone. Nuovi indirizzi di ricerca nella teoria e nel calcolo delle soluzioni di talune

equazioni lineari alle derivate parziali della fisica-matematica. Ann. Scuola Norm. Super.
Pisa Cl. Sci. (2), 5(3-4):213–288, 1936.

[29] Trudinger, Neil S. On regularity and existence of viscosity solutions of nonlinear sec-

ond order, elliptic equations. In Partial differential equations and the calculus of varia-

tions, Vol. II, Progr. Nonlinear Differential Equations Appl., Pages 939-957. Birkhäuser
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