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Continuity equations associated to continuous-time Markov processes can be considered as Eu-
clidean Schrödinger equations, where the non-hermitian quantum Hamiltonian H = divJ is natu-
rally factorized into the product of the divergence operator div and the current operator J. For
non-equilibrium Markov jump processes in a space of N configurations with M links between them
and C = M − (N −1) ≥ 1 independent cycles, this factorization of the N ×N Hamiltonian H = I†J
involves the incidence matrix I and the current matrix J that are both of size M ×N , so that the
supersymmetric partner Ĥ = JI† governing the dynamics of the currents living on the M links is
a priori of size M ×M . To better understand the relations between the spectral decompositions of
these two Hamiltonians H = I†J and Ĥ = JI† with respect to their bi-orthogonal basis of right and
left eigenvectors that characterize the relaxation dynamics towards the steady state and the steady
currents, it is useful to analyze the properties of the Singular Value Decompositions of the two
rectangular matrices I and J of size M ×N and the interpretations in terms of discrete Helmholtz
decompositions. This general framework concerning Markov jump processes can be adapted to
non-equilibrium diffusion processes governed by Fokker-Planck equations in dimension d, where the
number N of configurations, the number M of links and the number C = M−(N−1) of independent
cycles become infinite, while the two matrices I and J of size M ×N become first-order differential
operators acting on scalar functions to produce vector fields.

I. INTRODUCTION

While Markov processes satisfying detailed-balance are well understood, in particular via the similarity transfor-
mation of the opposite Markov generator into a supersymmetric quantum Hamiltonian of the form H = Q†Q with a
real energy spectrum (see the textbooks [1–3] and the applications to various models [4–16]), non-equilibrium Markov
processes involving steady currents remain challenging and require the introduction of many new ideas (see the re-
views with different scopes [17–25], the PhD Theses [26–31], the Habilitation Thesis [32], and the recent lecture notes
[33]). Among the various perspectives that have emerged to analyze non-equilibrium Markov jump processes, the
appropriate graph theory based on the N configurations, on the M links existing between them, and on the number
C = M − (N − 1) of independent cycles has proven to be very useful (see [33–38] and references therein) since the
pioneering work of Schnakenberg [39]. In the present paper, we will keep the idea that the incidence matrix I of size
M × N between links and sites plays an essential role, but we will consider on the same footing the current matrix
J of size M × N , that can be considered as a deformation of the incidence matrix I via the transition rates. We
will focus on the natural rewriting of the opposite Markov generator as the non-hermitian supersymmetric Hamil-
tonian H = I†J in order to analyze the consequences for its spectral properties, in particular in relation with the
Singular Value Decompositions of the two rectangular matrices I and J and the interpretations in terms of discrete
Helmholtz decompositions. Note that independently of the present motivations coming from Markov processes, the
field of non-hermitian physics has become relevant in many areas (see the review [40] and references therein), while
the interest into hermitian supersymmetric quantum hamiltonians of the form H = Q†Q (see the review [41] and
references therein) has expanded towards various non-hermitian cases [42–45].

The paper is organized as follows. The main text is devoted to non-equilibrium Markov jump processes in a space
of N configurations. In section II, we recall that the Markov generator can be considered as the opposite of a non-
hermitian quantum N ×N Hamiltonian H, and that the spectral decomposition in the bi-orthogonal basis of its right
and left eigenvectors is useful to analyze the convergence of configurations probabilities and configurations observables
towards their steady values. In section III, we describe the properties of the currents that are defined on the M links
existing between the N configurations and we analyze the consequences of the supersymmetric factorization of the
N × N non-hermitian Hamiltonian H = I†J in terms of the incidence matrix I and the current matrix J that are
both of size M ×N , so that the supersymmetric partner Ĥ = JI† governing the dynamics of the currents is a priori
of size M × M . The relations between the spectral properties of the two Hamiltonians H = I†J and Ĥ = JI† are
analyzed via the Singular Value Decompositions of the two rectangular matrices I and J that are discussed in sections
IV and V respectively. Our conclusions are summarized in section VI. In Appendix A, we describe how the general
framework described in the main text concerning Markov jump processes can be adapted to non-equilibrium Fokker-
Planck generators in dimension d = 3. The main technical differences are that the number N of configurations, the
number M of links and the number C = M − (N − 1) of independent cycles become infinite, while the two matrices
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I and J of size M ×N become first-order differential operators acting on scalar functions to produce vector fields.

II. NON-EQUILIBRIUM MARKOV JUMP PROCESSES IN A SPACE OF N CONFIGURATIONS

In this section, we introduce the general notations for Markov jump processes in a space of N configurations. We
recall that the Markov generator can be considered as the opposite of a non-hermitian quantum Hamiltonian H of
size N ×N , and that its spectral decomposition in the bi-orthogonal basis of right and left eigenvectors is useful to
analyze the convergence of configurations probabilities and configurations observables towards their steady values.

A. Markov generator w(., .) of size N ×N in the space of the N configurations

For a Markov jump process over N configurations x, the master equation for the probability to be at configuration
x at time t

∂tpt(x) =
∑
x′

w(x, x′)pt(x
′) = w(x, x)pt(x

′) +
∑
x′ ̸=x

w(x, x′)pt(x
′) (1)

involves the N ×N Markov matrix w(., .), where the off-diagonal element w(x, x′) ≥ 0 represents the transition rate
from x′ towards x, while the diagonal element is negative and determined by the off-diagonal elements

w(x, x) = −
∑
x′ ̸=x

w(x′, x) < 0 (2)

The steady state p∗(x) satisfies

0 = ∂tp∗(x) =
∑
x′

w(x, x′)p∗(x
′) (3)

B. Parametrization of the transition rates w(x, x′)

For each pair of configurations (x ̸= x′) related by strictly positive transition rates w(x′, x)w(x, x′) > 0 , it is thus
useful to introduce the parametrization

w(x′, x) = D(x′, x)eA(x′,x)

w(x, x′) = D(x′, x)e−A(x′,x) (4)

in terms of the positive symmetric function

D(x′, x) =
√

w(x, x′)w(x′, x) = D(x, x′) > 0 (5)

and of the antisymmetric function

A(x′, x) =
1

2
ln

(
w(x′, x)

w(x, x′)

)
= −A(x, x′) (6)

C. Opposite of the Markov generator (−w) = H as a non-hermitian quantum Hamiltonian H ̸= H†

It is useful to consider that the master Eq. 1 is an Euclidean Schrödinger equation

−∂t|pt⟩ = H|pt⟩ (7)

where the quantum Hamiltonian H is simply the opposite of the Markov matrix H = −w. With the parametrization
of Eq. 4 for the transition rates, the off-diagonal elements read

H(x′, x) = −w(x′, x) = −D(x′, x)eA(x′,x)

H(x, x′) = −w(x, x′) = −D(x′, x)e−A(x′,x) (8)
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The symmetric function D(x′, x) = D(x, x′) of Eq. 5 represents the symmetric part of the hopping amplitude
between the two sites x and x′, while the antisymmetric function A(x, x′) = −A(x′, x) of Eq. 6 plays the role of an
imaginary vector potential that is responsible for the non-hermitian character H ̸= H†. This correspondence between
continuous-time Markov generators and non-hermitian quantum Hamiltonians involving imaginary vector potentials
has been already emphasized for diffusion processes [46] and for Markov jump processes on hypercubic lattices [47].
Note that non-hermitian quantum Hamiltonians with imaginary vector potentials have been much studied in various
contexts since the pioneering works of Hatano and Nelson [48–50]. However the specificity of Markov models is that
the on-site potentialH(x, x) is not chosen independently of the off-diagonal matrix elements of Eq. 8 but is determined
in terms of the off-diagonal matrix elements by Eq. 2

H(x, x) = −w(x, x) = −
∑
x′ ̸=x

H(x′, x) =
∑
x′ ̸=x

D(x′, x)eA(x′,x) (9)

D. Spectral decomposition of the Hamiltonian H in the bi-orthogonal basis of right and left eigenvectors

The spectral decomposition of the non-hermitian Hamiltonian H ̸= H†

H =
N−1∑
n=0

En|rn⟩⟨ln| (10)

involves its N eigenvalues En with the corresponding right and left eigenvectors

En|rn⟩ = H|rn⟩
En⟨ln| = ⟨ln|H (11)

that form a bi-orthogonal basis with the orthonormalization and closure relations

δn,n′ = ⟨ln|rn′⟩ =
∑
x

⟨ln|x⟩⟨x|rn′⟩

1N =

N−1∑
n=0

|rn⟩⟨ln| (12)

The vanishing eigenvalue E0 = 0 is associated to the left eigenvector unity l0(x) = 1 as a consequence of Eq. 2,
while the right eigenvector corresponds to the steady state r0(x) = p∗(x) of Eq. 3

E0 = 0

l0(x) = 1

r0(x) = p∗(x) (13)

The other (N − 1) eigenvalues En=1,..,N−1 with strictly positive real parts

Re(En) > 0 for n = 1, 2, .., N − 1 (14)

govern the relaxation towards the steady state p∗(x) of the propagator pt(x|x0) when one starts at position x0 at time
t = 0

pt(x|x0) = ⟨x|e−tH|x0⟩ =

N−1∑
n=0

e−tEn⟨x|rn⟩⟨ln|x0⟩

= p∗(x) +

N−1∑
n=1

e−tEn⟨x|rn⟩⟨ln|x0⟩ (15)

So the (N − 1) right eigenvectors rn(x) = ⟨x|rn⟩ represent the relaxation modes associated to the excited eigenvalues
En=1,..,N .
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The spectral decomposition of the propagator of Eq. 15 is also useful to obtain the relaxation of the average O(x(t))
of any observable O(x) of the configuration x towards its steady state value O∗ =

∑
x O(x)p∗(x).

O(x(t)) ≡
∑
x

O(x)pt(x|x0) =

N−1∑
n=0

e−tEn

(∑
x

O(x)⟨x|rn⟩

)
⟨ln|x0⟩

=

(∑
x

O(x)p∗(x)

)
+

N−1∑
n=1

e−tEn

(∑
x

O(x)⟨x|rn⟩

)
⟨ln|x0⟩ (16)

When the observable O(x) coincides with an excited left eigenvector ⟨lm|x⟩ = l∗m(x), the dynamics of Eq. 16 reduces
to a single term

l∗m(x(t)) ≡
∑
x

⟨lm|x⟩pt(x|x0) =

N−1∑
n=0

e−tEn⟨lm|rn⟩⟨ln|x0⟩

=

N−1∑
n=0

e−tEnδm,n⟨ln|x0⟩ = e−tEm l∗m(x0) (17)

So the excited left eigenvector ⟨lm|x⟩ = l∗m(x) for m ∈ {1, 2, .., N − 1} represents a very simple observable whose
dynamics reduces to the relaxation towards zero with the single exponential governed by the excited eigenvalue Em.

III. DYNAMICS OF THE CURRENTS jt(x
′, x) DEFINED ON THE M ORIENTED LINKS

In this section, we describe the dynamical properties of the currents that are defined on the M links existing between
the N configurations.

A. Rewriting the master equation as a continuity equation involving the currents defined on the M links

On each link between two configurations (x, x′) that are related by the strictly positive transitions rates w(x, x′)w(x, x′) >
0 with the parametrization of Eq. 4, it is useful to introduce the antisymmetric current

jt(x
′, x) = −jt(x,

′ x) ≡ w(x′, x)pt(x)− w(x, x′)pt(x
′)

= D(x′, x)
[
eA(x′,x)pt(x)− e−A(x′,x)pt(x

′)
]

(18)

Then the master Eq. 1 can be rewritten as the discrete continuity equation

−∂tpt(x) =
∑
x′ ̸=x

jt(x
′, x) (19)

where the right handside corresponds to the sum over x′ of all the currents jt(x
′, x) flowing out of the configuration

x, i.e. to the discrete divergence at position x of the current.

B. Reminder on the space of the M links

The number M of links that should connect the N configurations has for maximal value Mmax = N(N−1)
2 in fully-

connected models when any configuration is connected to the (N − 1) other configurations, and for minimal value
Mmin = N − 1, when the graph is a tree-like structures without any loop. In the general case, the difference between
the number M of links and the minimal value Mmin = (N −1) needed to connect the N configurations via a spanning
tree (see [33–39] and references therein)

C ≡ M − (N − 1) (20)

represents the number of independent cycles γ = 1, 2, .., C with the following notations :

a cycle γ is a directed self-avoiding closed path of configurations x[γ](1 ≤ l ≤ l[γ])

involving at least l[γ] ≥ 3 distinct configurations

and the same number l[γ] of oriented links [x[γ](l) → x[γ](l + 1)] with x[γ](l[γ] + 1) ≡ x[γ](1). (21)
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These cycles are essential to characterize the equilibrium or non-equilibrium nature of the steady state as we now
recall.

C. Reminder on the properties of the steady currents j∗(., .)

The steady current j∗(x
′, x) associated to the steady state p∗(.) of Eq. 19

j∗(x
′, x) = −j∗(x,

′ x) ≡ w(x′, x)p∗(x)− w(x, x′)p∗(x
′)

= D(x, x′)
[
eA(x,x′)p∗(x)− e−A(x,x′)p∗(x

′)
]

(22)

should be divergenceless, i.e. for any configuration x, the sum over x′ of the steady currents j∗(x
′, x) out of x should

vanish

0 =
∑
x′ ̸=x

j∗(x
′, x) (23)

The vanishing or non-vanishing of the steady currents j∗(x
′, x) define the equilibrium or non-equilibrium character of

the dynamics as we now recall.

1. Equilibrium steady state peq∗ (.) with vanishing steady currents jeq∗ (., .) = 0

At equilibrium, the steady current j∗(., .) of Eq. 22 vanishes on any link

0 = jeq∗ (x2, x1) = w(x2, x1)p
eq
∗ (x1)− w(x1, x2)p

eq
∗ (x2) = D(x2, x1)

[
eA(x2,x1)peq∗ (x1)− e−A(x1,x2)peq∗ (x2)

]
(24)

This vanishing is possible only if the transition rates w(., .) satisfy

1 =
w(x2, x1)p

eq
∗ (x1)

w(x1, x2)p
eq
∗ (x2)

= e2A(x2,x1)
peq∗ (x1)

peq∗ (x2)
(25)

i.e. only if the antisymmetric function A(x2, x1) of Eq. 6 corresponds to the discrete gradient

A(x2, x1) =
1

2
[ln (peq∗ (x2))− ln (peq∗ (x1))] (26)

On a tree-like structure without any cycle C = 0, the requirement of vanishing divergence of Eq. 23 for the steady
currents can be taken into account iteratively starting from the leaves to obtain that the steady current should vanish
on every link

C = 0 : j∗(x
′, x) = 0 (27)

On a graph with C ≥ 1 independent cycles γ = 1, .., C introduced around Eq. 21, one needs to check whether the
gradient form of Eq. 25 is compatible along each cycle γ : these compatibility conditions can be written either in
terms of the transition rates w(., .) in order to recover the famous Kolmogorov criterion for reversibility

l[γ]∏
l=1

w(x[γ](l + 1), x[γ](l))

w(x[γ](l), x[γ](l + 1))
= 1 (28)

or in terms of the antisymmetric function A(., .) whose total circulation Γ[γ][A(., .)] around each cycle should vanish

Γ[γ][A(., .)] ≡
l[γ]∑
l=1

A(x[γ](l + 1), x[γ](l)) = 0 (29)
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2. Non-equilibrium steady state p∗(.) with nonvanishing steady currents j∗(., .) ̸= 0

In all the other cases where the Kolmogorov criterion of Eq. 28 is not satisfied on the C independent cycles
γ = 1, .., C, i.e. equivalently when the antisymmetric function A(., .) displays some non-vanishing circulations around
cycles that prevent its rewriting as a discrete gradient, then the steady state p∗(.) will be out-of-equilibrium with
non-vanishing steady currents

j∗(., .) ̸= 0 (30)

The requirement that the discrete divergence should vanish (Eq. 23) yields that the steady current j∗ can be written

as a superposition of the C cycle-currents j
Cycle[γ]
∗ that flow around the C cycles γ = 1, 2, .., C. These cycle-currents

j
Cycle[γ]
∗ can be obtained from the circulation Γ[γ][j∗(., .)] of the steady current j∗(., .) around each cycle γ of Eq. 21

Γ[γ][j∗(., .)] ≡
l[γ]∑
l=1

j∗(x
[γ](l + 1), x[γ](l)) = l[γ]j

Cycle[γ]
∗ (31)

Then the steady current j∗(x2, x1) on each oriented link can be rewritten as a linear combination of these cycle-currents

j
Cycle[γ]
∗

j∗(x2, x1) =

C∑
γ=1

j
Cycle[γ]
∗ ϵ[γ](x2, x1) (32)

where the coefficient ϵ[γ](x2, x1) takes into account whether the oriented cycle γ contains this oriented link (x1, x2)
with the same orientation or with the opposite orientation

ϵ[γ](x2, x1) ≡
l[γ]∑
l=1

(
δx2,x[γ](l+1)δx1,x[γ](l) − δx2,x[γ](l)δx1,x[γ](l+1)

)

=


+1 if the oriented link (x1 → x2) appears in the oriented cycle γ with the same orientation

−1 if the oriented link (x1 → x2) appears in the oriented cycle γ with the opposite orientation

0 otherwise

(33)

Once the steady current j∗(., .) has been parametrized by the C coefficients of Eq. 32, the steady state p∗(.) should
satisfy on each of the M links

w(x2, x1)p∗(x1)− w(x2, x1)p∗(x1) = j∗(x2, x1) =

C∑
γ=1

j
Cycle[γ]
∗ ϵ[γ](x2, x1) (34)

This gives a system of M equations for the M = C + (N − 1) variables that are the C coefficients j
Cycle[γ]
∗ of the

steady current of Eq. 32 and the (N − 1) independent coefficients of the normalized steady state p∗(.).
In the present paper, we will always assume that the dynamics is out-of-equilibrium with non-vanishing steady

current j∗(., .) ̸= 0 with C = M − (N − 1) ≥ 1 cycles.

D. Factorization of the non-hermitian Hamiltonian H = I†J in terms of two M ×N matrices I and J

In order to analyze the properties of functions v(x′, x) that are antisymmetric when the two configurations x and
x′ at the ends of a link are exchanged

v(x′, x) = −v(x, x′) (35)

it will be useful to introduce the double-ket notation |x2
x1
⟩⟩ for the space of the M oriented links between two configu-

rations x1 < x2 and to write

⟨⟨x2
x1
|v⟩⟩ ≡ v(x2, x1) (36)
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1. Current matrix J of size M ×N

The current matrix J of size M ×N with the matrix elements

⟨⟨x2
x1
|J|x⟩ = w(x2, x1)δx,x1

− w(x1, x2)δx,x2
(37)

can be applied to the probability ket |pt⟩

⟨⟨x2
x1
|J|pt⟩ =

∑
x

⟨⟨x2
x1
|J|x⟩⟨x|pt⟩ = w(x2, x1)pt(x1)− w(x1, x2)pt(x2) = jt(x2, x1) ≡ ⟨⟨x2

x1
|jt⟩⟩ (38)

to reproduce the current jt(x2, x1) ≡ ⟨⟨x2
x1
|jt⟩⟩ of Eq. 18 flowing from x1 towards x2, so that one can write at the

matrix level

|jt⟩⟩ = J|pt⟩ (39)

The adjoint matrix J† of size N ×M acts on |v⟩⟩ to produce at configuration x

⟨x|J†|v⟩⟩ =
∑
(x2
x1)

⟨x|J†|x2
x1
⟩⟩⟨⟨x2

x1
|v⟩⟩ =

∑
(x2
x1)

(w(x2, x1)δx,x1
− w(x1, x2)δx,x2

) v(x2, x1)

=
∑
x2>x

w(x2, x)v(x2, x)−
∑
x1<x

w(x1, x)v(x, x1) =
∑
x2>x

w(x2, x)v(x2, x) +
∑
x1<x

w(x1, x)v(x1, x)

=
∑
x′ ̸=x

w(x′, x)v(x′, x) (40)

2. Incidence matrix I of size M ×N

When the transition rates are replaced by unity

w(x′, x) → 1 (41)

the current matrix J of Eq. 37 reduces to the incidence matrix I that keeps only the information on the geometry of
the existing links between configurations

⟨⟨x2
x1
|I|x⟩ = δx,x1 − δx,x2 (42)

The analog of Eq. 38

⟨⟨x2
x1
|I|f⟩ = f(x1)− f(x2) ≡ −⟨⟨x2

x1
|grad|f⟩ (43)

represents the difference of the function f between the two ends of the oriented link, so the incidence matrix I
represents the opposite of the discrete gradient

I = −grad (44)

The analog of Eq. 40

⟨x|I†|v⟩⟩ =
∑
x′ ̸=x

v(x′, x) ≡ ⟨x|div|v⟩⟩ (45)

represents the discrete divergence div of the vector |v⟩⟩ at configuration x

I† = div (46)



8

3. Supersymmetric factorization of the non-hermitian Hamiltonian into H = I†J

The two matrices J and I of size M × N introduced above are useful to factorize the N × N non-hermitian
Hamiltonian H into

H = divJ = I†J (47)

This factorization corresponds to the natural splitting of the Euclidean Schödiner Eq. 7 into the pair of matrix
equations

−∂t|pt⟩ = I†|jt⟩⟩ = div|jt⟩⟩
|jt⟩⟩ = J|pt⟩ (48)

The current |jt⟩⟩ = J|pt⟩ follows the dynamics

−∂t|jt⟩⟩ = J

(
− ∂t|pt⟩

)
= JI†|jt⟩⟩ ≡ Ĥ|jt⟩⟩ (49)

governed by supersymmetric partner

Ĥ ≡ JI† of dimension M ×M (50)

of the Hamiltonian H = I†J of dimension N ×N .
However, the currents |jt⟩⟩ = J|pt⟩ do not live in the full space of dimension M but in a smaller subspace since they

can be computed from the ket |pt⟩ of dimension N given by the spectral decomposition of the propagator of Eq. 15

|pt⟩ =

N−1∑
n=0

e−tEn |rn⟩⟨ln|x0⟩ = |p∗⟩+
N−1∑
n=1

e−tEn |rn⟩⟨ln|x0⟩ (51)

So the relaxation of the current

|jt⟩⟩ = J|pt⟩ = J|p∗⟩+
N−1∑
n=1

e−tEnJ|rn⟩⟨ln|x0⟩

≡ |j∗⟩⟩+
N−1∑
n=1

e−tEn |jn⟩⟩⟨ln|x0⟩ (52)

towards the steady current |j∗⟩⟩ associated to the steady state |p∗⟩

|j∗⟩⟩ ≡ J|p∗⟩ (53)

involves the same (N−1) excited eigenvalues En=1,..,N−1 as the Hamiltonian H. The corresponding relaxation modes
|jn⟩⟩ are the currents associated to the excited right eigenvectors rn

|jn⟩⟩ ≡ J|rn⟩ (54)

while the eigenvalue Eq. 11 for the right eigenvectors |rn⟩ gives the counterpart of Eq. 54

En|rn⟩ = I†J|rn⟩ = I†|jn⟩⟩ (55)

Eqs 54 and 55 yield that |jn⟩⟩ is a right eigenvector of the partner Ĥ ≡ JI† of Eq. 50 associated to the eigenvalue En

En|jn⟩⟩ = JI†|jn⟩⟩ = Ĥ|jn⟩⟩ (56)

including the case n = 0 since the non-vanishing steady current |jn=0⟩⟩ = |j∗⟩⟩ ̸= 0 is annihilated by I† = div

I†|j∗⟩⟩ = 0 = Ĥ|j∗⟩⟩ (57)

Similarly, the eigenvalue Eq. 11 for the excited left eigenvector ⟨ln| can be split into the two matrix equations

En⟨⟨in| = ⟨ln|I†

⟨ln| = ⟨⟨in|J (58)
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involving the bra ⟨⟨in| which is a left eigenvector of the partner Ĥ ≡ JI† of Eq. 50 associated to the eigenvalue En

En⟨⟨in| = ⟨⟨in|JI† = ⟨⟨in|Ĥ (59)

For n = 0 where the left eigenvector is unity ⟨l(n=0)|x⟩ = 1, the bra ⟨⟨i(n=0)| satisfies

⟨l0| = ⟨⟨i0|J ̸= 0

0 = ⟨l0|I† = ⟨⟨i0|JI† = ⟨⟨i0|Ĥ (60)

The scalar products between the bra ⟨⟨in| and the kets |jn′⟩⟩ satisfy the orthonormalisation inherited from the or-
thonormalization of Eq. 12 concerning the left eigenvectors ln and the right eigenvectors rn′

⟨⟨in|jn′⟩⟩ = ⟨⟨in|J|rn′⟩ = ⟨ln|rn′⟩ = δn′,n (61)

Note that for the (N−1) excited eigenvalues En=1,..,N−1 ̸= 0, the relations involving the incidence matrix I = −grad
of Eq. 44 and its adjoint I† = div of Eq. 46 mean that the right eigenvector rn(.) can be rewritten in terms of the
discrete divergence of the |jn⟩⟩

rn(x) = ⟨x|rn⟩ =
1

En
⟨x|I†|jn⟩⟩ =

⟨x|div|jn⟩⟩
En

(62)

in constrast to the steady state |rn=0⟩ = |p∗⟩ associated to the divergenceless steady current |jn=0⟩⟩ = |j∗⟩⟩

div|j∗⟩⟩ = 0 (63)

while the |in⟩⟩ for n = 1, .., N − 1 can be rewritten as the discrete gradient of the left eigenvector ln(.)

⟨⟨x2
x1
|in⟩⟩ =

1

E∗
n

⟨⟨x2
x1
|I|ln⟩ = − 1

E∗
n

⟨⟨x2
x1
|grad|ln⟩ =

ln(x1)− ln(x2)

E∗
n

(64)

in contrast to |in=0⟩⟩ associated to the unity left eigenvector l0(x) = 1.
Since the initial current |jt=0⟩⟩ associated to the initial condition |x0⟩ is

|jt=0⟩⟩ = J|x0⟩ (65)

one can rewrite the scalar products ⟨ln|x0⟩ appearing in Eq. 52 as

⟨ln|x0⟩ = ⟨⟨in|J|x0⟩ = ⟨⟨in|jt=0⟩⟩ (66)

including the case n = 0 with

1 = l0(x0) = ⟨l0|x0⟩ = ⟨⟨i0|J|x0⟩ = ⟨⟨i0|jt=0⟩⟩ (67)

in order to rewrite the spectral decomposition of Eq. 52

|jt⟩⟩ = |j∗⟩⟩+
N−1∑
n=1

e−tEn |jn⟩⟩⟨⟨in|jt=0⟩⟩ =

(
N−1∑
n=0

e−tEn |jn⟩⟩⟨⟨in|

)
|jt=0⟩⟩ (68)

In conclusion, the current |jt⟩⟩ lives in the subspace of dimension N spanned by the bi-orthogonal basis of the bras

⟨⟨in=0,..,N−1| and the kets |jn=0,1,..,N−1⟩⟩ that are left and right eigenvectors of the partner Ĥ of Eq. 50 associated

to the eigenvalues En=0,..,N−1. However since the partner Ĥ = JI† of Eq. 50 is a matrix of size M ×M bigger than
N ×N , it is useful in the two following sections to write the Singular Values Decompositions of the two rectangular
matrices I and J of size M ×N and to analyze the consequences for the spectral properties of the two Hamiltonians
H = I†J and Ĥ = JI†.

IV. SINGULAR VALUE DECOMPOSITION OF THE INCIDENCE MATRIX I OF SIZE M ×N

This section is devoted to the properties of the Singular Value Decomposition of the Incidence matrix I of Eq. 42
of size M ×N with M ≥ N .
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A. SVD of the Incidence matrix I involving (N − 1) positive singular values Iα=1,..,N−1 > 0 and I(α=0) = 0

The Singular Value Decomposition of the Incidence matrix I of size M ×N with M ≥ N involves (N − 1) strictly
positive singular values Iα > 0 with α = 1, .., N − 1

I =

N−1∑
α=1

Iα|IRα ⟩⟩⟨ILα |

I† =

N−1∑
α=1

Iα|ILα ⟩⟨⟨IRα | (69)

while the vanishing singular value

I(α=0) = 0 (70)

is associated to the uniform normalized eigenvector

⟨x|IL(α=0)⟩ =
1√
N

(71)

that is annihilated by the matrix I that represents the opposite of the discrete gradient (Eq. 43)

I|IL(α=0)⟩ = −grad|IL(α=0) = 0 (72)

The N left singular kets |ILα=0,1..,N−1⟩ form an orthonormal basis of the space of the N configurations

δα,α′ = ⟨ILα |ILα′⟩ =
∑
x

⟨ILα |x⟩⟨x|ILα′⟩

1N =

N−1∑
α=0

|ILα ⟩⟨ILα | =
N−1∑
α=1

|ILα ⟩⟨ILα |+ |IL(α=0)⟩⟨I
L
(α=0)| (73)

while the (N − 1) right singular kets |IRα=1,..,N−1⟩⟩ that are associated to the (N − 1) strictly positive singular values

Iα=1,..,N−1 > 0 in Eq. 69 should be supplemented by M − (N − 1) = C other kets |IRα=0,−1,−2..,−(C−1)⟩⟩ in order to

obtain an orthonormal basis of the space of the M links

δα,α′ = ⟨⟨IRα |IRα′⟩⟩ =
∑
(x2
x1)

⟨⟨IRα |x2
x1
⟩⟩⟨⟨x2

x1
|IRα′⟩⟩

1M =

N−1∑
α=−(C−1)

|IRα ⟩⟩⟨⟨IRα | =
N−1∑
α=1

|IRα ⟩⟩⟨⟨IRα |+
0∑

α=−(C−1)

|IRα ⟩⟩⟨⟨IRα | (74)

B. Relation with the spectral decomposition of the discrete Laplacian in the space of the N configurations

Since the incidence matrix I represents the opposite of the discrete gradient (Eq. 44) and since the adjoint I†

represents the discrete divergence (Eq. 46), the supersymmetric matrix I†I of size N ×N corresponds to the opposite
of the discrete Laplacian ∆ in the space of the N configurations

I†I = div(−grad) = −∆ (75)

as can be checked via the evaluation of the matrix elements using Eq. 42

⟨x|I†I|x′⟩ =
∑
(x2
x1)

⟨x′|I|x2
x1
⟩⟩⟨x′|I|x2

x1
⟩⟩ =

∑
(x2
x1)

(
δx,x1

− δx,x2

)(
δx′,x1

− δx′,x2

)
=
∑
(x2
x1)

(
δx,x1

δx′,x1
+ δx,x2

δx′,x2
− δx,x2

δx′,x1
− δx,x1

δx′,x2

)

=


z(x) if x = x′

−1 if x and x′ are the two ends of a link

0 otherwise

≡ −⟨x|∆|x′⟩ (76)
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where z(x) is the number of links connected to the configuration x.
On the other hand, the evaluation of the supersymmetric matrix I†I via the Singular Value Decompositions of Eq.

69 for the incidence matrix I and its adjoint I†

−∆ = I†I =

(
N−1∑
α=1

Iα|ILα ⟩⟨⟨IRα |

)(
N−1∑
α′=1

Iα′ |IRα′⟩⟩⟨ILα′ |

)
=

N−1∑
α=1

I2α|ILα ⟩⟨ILα | (77)

gives its spectral decomposition in terms of the (N−1) strictly positive eigenvalues I2α=1,..,N−1 > 0 with their associated

orthonormalized eigenvectors |ILα=1,..,N−1⟩, while the vanishing eigenvalue I2(α=0) = 0 of Eq. 70 is associated to the

uniform normalized eigenvector |IL(α=0)⟩ of Eq. 71.
In particular, whenever an orthonormalized basis of eigenvectors |ILα ⟩ of the opposite Laplacian (−∆) of Eq. 77 is

known, this is the orthonormalized basis of left singular vectors |ILα ⟩ that appear in the SVD of the incidence matrix
I of Eq. 69, while the corresponding singular values Iα of the incidence matrix I are given by the square-roots of the
eigenvalues I2α. The corresponding (N − 1) right singular vectors |IRα=1,..,N−1⟩ of Eq. 69 can be then obtained via the

application of the incidence matrix I on the left singular vectors |ILα ⟩

I|ILα ⟩ =

(
N−1∑
α′=1

Iα′ |IRα′⟩⟩⟨ILα′ |

)
|ILα ⟩ = Iα|IRα ⟩⟩ (78)

The further application of the adjoint matrix I† to these right singular vectors |IRα=1,..,N−1⟩⟩

I†|IRα ⟩⟩ =

(
N−1∑
α′=1

Iα′ |ILα′⟩⟨⟨IRα′ |

)
|IRα ⟩⟩ = Iα|ILα ⟩ (79)

then reproduce the left singular vectors |ILα ⟩.

C. Relation with the spectral decomposition of the supersymmetric partner II† of size M ×M

The matrix elements of the supersymmetric partner II† of size M ×M read using Eq. 42

⟨x2
x1
|II†|x

′
2

x′
1
⟩ =

∑
x

⟨x2
x1
|I|x⟩⟨x

′
2

x′
1
|I|x⟩ =

∑
x

(
δx,x1

− δx,x2

)(
δx,x′

1
− δx,x′

2

)
= δx1,x′

1
+ δx2,x′

2
− δx1,x′

2
− δx′

1,x2

=


2 if the two oriented links coincide, i.e. x1 = x′

1 and x2 = x′
2

1 if the two oriented links are different but share the same starting-point x1 = x′
1 or the same end-point x2 = x′

2

-1 if the starting-point of one oriented link coincide with the end-point of the other link, i.e. x2 = x′
1 or x′

2 = x1

(80)

On the other hand, the evaluation of the supersymmetric matrix II† of size M ×M via the Singular Value Decom-
positions of Eq. 69 for the incidence matrix I and its adjoint I†

II† =

N−1∑
α=1

I2α|IRα ⟩⟩⟨⟨IRα | (81)

gives its spectral decomposition that involves the same (N − 1) strictly positive eigenvalues I2α=1,..,N−1 > 0 as the

opposite-Laplacian of Eq. 77, while the corresponding eigenvectors |IRα=1,..,N−1⟩⟩ are related to the eigenvectors

|ILα=1,..,N−1⟩ of the opposite-Laplacian via Eq. 78.

So here the vanishing eigenvalue I20 = 0 is degenerate and associated to the subspace of dimension M− (N−1) = C
with the orthonormalized basis |IRα=0,−1,..,−(C−1)⟩⟩, as discussed in more details in the next subsection.

D. Relation with the discrete Helmholtz decomposition for an arbitrary vector |v⟩⟩ of dimension M

An arbitrary vector |v⟩⟩ in the space of dimension M can be decomposed with respect to the orthonormalized basis
|IRα ⟩⟩ of Eq. 74 in terms of its M coefficients

vα ≡ ⟨⟨IRα |v⟩⟩ for α = −(C − 1), ...,−1, 0,+1, .., N − 1 (82)
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It is useful to separate these M = (N − 1) +C terms into two orthogonal contributions of dimensions (N − 1) and C
respectively

|v⟩⟩ =

N−1∑
α=−(C−1)

vα|IRα ⟩⟩ ≡ |v[I.>0]⟩⟩+ |v[I0=0]⟩⟩

|v[I.>0]⟩⟩ ≡
N−1∑
α=1

vα|IRα ⟩⟩

|v[I0=0]⟩⟩ ≡
0∑

α=−(C−1)

vα|IRα ⟩⟩ (83)

with the following properties.

1. The component |v[I0=0]⟩⟩ of dimension C associated to the vanishing singular value I0 = 0

The vanishing singular value I0 = 0 is degenerate and associated to the subspace of dimension C = M − (N − 1)
that is annihilated by the adjoint operator I† = div that represents the discrete divergence (see Eq. 46). As a
consequence, the component |v[I0=0]⟩⟩ of Eq. 83 can be characterized by its vanishing divergence

0 = I†|v[I0=0]⟩⟩ = div|v[I0=0]⟩⟩ (84)

As already discussed around Eq. 31 on the special case of the steady current |j∗⟩⟩ whose divergence vanishes div|j∗⟩⟩ =
0, the divergenceless component |v[I0=0]⟩⟩ can be similarly parametrized by its C circulations around the C independent
cycles γ = 1, 2, .., C.

Γ[γ][v[I0=0]] ≡
l[γ]∑
l=1

⟨⟨x
[γ](l+1)

x[γ](l)
|v[I0=0]⟩⟩ (85)

2. The component |v[I.>0]⟩⟩ of dimension (N − 1) associated to the strictly positive singular values Iα=1,2,..,N−1 > 0

The component |v[I.>0]⟩⟩ of Eq. 83 associated to the (N − 1) strictly positive singular values Iα=1,2,..,N−1 > 0 can
be rewritten using Eq. 78

|v[I.>0]⟩⟩ =
N−1∑
α=1

vα|IRα ⟩⟩ =
N−1∑
α=1

vα
Iα

I|ILα ⟩ = I

(
N−1∑
α=1

vα
Iα

|ILα ⟩

)
≡ −grad|g[I.>0]⟩ (86)

as the opposite discrete gradient I ≡ −grad of Eq. 44 applied to the ket |g[I.>0]⟩ that lives in the space of the N
configurations

|g[I.>0]⟩ ≡
N−1∑
α=1

vα
Iα

|ILα ⟩ (87)

and that belongs to the subspace spanned by the (N−1) left singular vectors |ILα=1,2,..,N−1⟩ orthogonal to the constant

ket |I(α=0)⟩ of Eq. 71. As a consequence, the circulation of |v[I.>0]⟩⟩ = −grad|g[I.>0]⟩ of Eq. 86 around any of the C
independent cycle γ = 1, 2, .., C vanishes

Γ[γ][v[I.>0]] ≡
l[γ]∑
l=1

⟨⟨x
[γ](l+1)

x[γ](l)
|v[I.>0]⟩⟩ = 0 (88)

The application of I† = div that represents the discrete divergence (see Eq. 46) to the component |v[I.>0]⟩⟩ =
−grad|g[I.>0]⟩ of Eq. 86 corresponds to the application of the opposite Laplacian of Eq. 77 to the ket |g[I.>0]⟩ of Eq.
87

I†|v[I.>0]⟩⟩ = I†I|g[I.>0]⟩ = −∆|g[I.>0]⟩ (89)
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with the following decomposition in the orthonormalized basis |ILα ⟩ of the Laplacian associated to the eigenvalues I2α

I†|v⟩⟩ = −∆

(
N−1∑
α=1

vα
Iα

|ILα ⟩

)
=

N−1∑
α=1

vαIα|ILα ⟩ (90)

3. Conclusion on the discrete Helmholtz decomposition associated to the SVD of the incidence matrix I

In conclusion, the decomposition of Eq. 83 for arbitrary vector |v⟩⟩ of the space of M links into the gradient
component |v[I.>0]⟩⟩ = −grad|g[I.>0]⟩ of Eq. 86 of dimension (N −1) and into the divergenceless component |v[I0=0]⟩⟩
of Eq. 84 of dimension C corresponds to the discrete Helmholtz decomposition, with its two important properties:

(1) The application of the discrete divergence I† = div on |v⟩⟩ only involves the divergence of the gradient component
|v[I.>0]⟩⟩ = −grad|g[I.>0]⟩

div|v⟩⟩ = I†|v⟩⟩ = I†|v[I.>0]⟩⟩+ 0 = −∆|g[I.>0]⟩ (91)

and thus only the opposite Laplacian of the ket |g[I.>0]⟩.
(2)The circulation of |v⟩⟩ along the any of the C independent closed cycles γ = 1, .., C only involves the circulation

of the component |v[I0=0]⟩⟩

Γ[γ][v] ≡
l[γ]∑
l=1

⟨⟨x
[γ](l+1)

x[γ](l)
|v⟩⟩ = 0 + Γ[γ][v[I0=0]] (92)

4. Application to the definition of the pseudo-inverse Ipseudo[−1] of the incidence matrix I

The linear system

I|g⟩ = |v⟩⟩ (93)

for the unknown ket |g⟩ of dimension N when the ket |v⟩⟩ of dimension M is given can be analyzed via the SVD of
Eq. 69 for the incidence matrix

N−1∑
α=1

Iα|IRα ⟩⟩⟨ILα |g⟩ = |v⟩⟩ (94)

and via the Helmholtz decomposition of Eq. 83 for the arbitrary vector |v⟩⟩ in the space of dimension M with the
following discussion :

(i) The component |v[I0=0]⟩⟩ spanned by the kets |IRα=0,−1,..,−(C−1)⟩⟩ that do not appear on the left hand side of Eq.

94 should vanish

|v[I0=0]⟩⟩ ≡
0∑

α=−(C−1)

vα|IRα ⟩⟩ = 0 (95)

i.e. the C coefficients vα=0,−1,..,−(C−1) should vanish

vα ≡ ⟨⟨IRα |v⟩⟩ = 0 for α = 0,−1, ..,−(C − 1) (96)

(ii) The identification of the coefficients of the (N − 1) eigenvectors |IRα=1,2,..,N−1⟩⟩ yields the coefficients of |g⟩ in

the basis of the left singular vectors |ILα ⟩ are given by

⟨ILα |g⟩ =
vα
Iα

=
vα
Iα

for α = 1, 2, .., N − 1 (97)

so that the solution for the ket |g⟩

|g⟩ =
N−1∑
α=1

|ILα ⟩⟨ILα |g⟩ =
N−1∑
α=1

|ILα ⟩
⟨⟨IRα |v⟩⟩

Iα
=

(
N−1∑
α=1

|ILα ⟩⟨⟨IRα |
Iα

)
|v⟩⟩ ≡ Ipseudo[−1]|v⟩⟩ (98)
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corresponds to the application to the ket |v⟩⟩ of the pseudo-inverse Ipseudo[−1] of the incidence matrix I with the SVD
of Eq. 69

Ipseudo[−1] =

N−1∑
α=1

|ILα ⟩⟨⟨IRα |
Iα

(99)

V. SINGULAR VALUE DECOMPOSITION OF THE CURRENT MATRIX J OF SIZE M ×N

This section is devoted to the properties of the SVD of the current matrix J of Eq. 37 of size M ×N with M ≥ N .
Since the current matrix J of Eq. 37 can be considered as a deformation by the transition rates w(., .) of the incidence
matrix I of Eq. 42, whose SVD was discussed in detail in the previous section V, many properties are very similar,
so we will mainly emphasize the important differences.

A. SVD of the current matrix J involving N strictly positive singular values λβ=1,..,N > 0

For a non-equilibrium steady state with non-vanishing steady current (Eq. 30), the Singular Value Decomposition
of the current matrix J of size M ×N involves N strictly positive singular values λβ=1,..,N > 0

J =

N∑
β=1

λβ |λR
β ⟩⟩⟨λL

β |

J† =

N∑
β=1

λβ |λL
β ⟩⟨⟨λR

β | (100)

where theN right singular vectors |λR
β=1,..,N ⟩⟩ should be supplemented byM−N = (C−1) other kets |λR

β=0,−1..,−(C−2)⟩⟩
in order to obtain an orthonormal basis of the space of the M links

δβ,β′ = ⟨⟨λR
β |λR

β′⟩⟩ =
∑
(x2
x1)

⟨⟨λR
β |x2

x1
⟩⟩⟨⟨x2

x1
|λR

β′⟩⟩

1M =

N∑
β=−(C−2)

|λR
β ⟩⟩⟨⟨λR

β | =
N∑

β=1

|λR
β ⟩⟩⟨⟨λR

β |+
0∑

β=−(C−2)

|λR
β ⟩⟩⟨⟨λR

β | (101)

while the N left singular vectors |λL
β=1,2..,N ⟩ form an orthonormal basis of the space of the N configurations

δβ,β′ = ⟨λL
β |λL

β′⟩ =
∑
x

⟨λL
β |x⟩⟨x|λL

β′⟩

1N =

N∑
β=1

|λL
β ⟩⟨λL

β | (102)

that can be found from the diagonalization of the supersymmetric matrix of size N ×N

J†J =

N∑
β=1

λ2
β |λL

β ⟩⟨λL
β | (103)

whose matrix elements read

⟨x|J†J|x′⟩ =
∑
(x2
x1)

⟨x|J|x2
x1
⟩⟩⟨x′|J|x2

x1
⟩⟩ =

∑
(x2
x1)

(
w(x2, x1)δx,x1

− w(x1, x2)δx,x2

)(
w(x2, x1)δx′,x1

− w(x1, x2)δx′,x2

)
=
∑
(x2
x1)

(
w2(x2, x1)δx,x1

δx′,x1
+ w2(x1, x2)δx,x2

δx′,x2
− w(x2, x1)w(x1, x2)δx,x2

δx′,x1
− w(x2, x1)w(x1, x2)δx,x1

δx′,x2

)

=


∑
x′′ ̸=x

w2(x′′, x) if x = x′

−w(x, x′)w(x′, x) = −D2(x, x′) if x and x′ are the two ends of a link

0 otherwise

(104)
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If the spectral decomposition of Eq. 103 is known for the this matrix J†J, then the N singular values λβ=1,..,N > 0
and the N left singular vectors |λL

β=1,..,N ⟩ of the matrix J are known, while the corresponding N right singular vectors

|λR
β=1,..,N ⟩⟩ can be obtained via the application of the matrix J

J|λL
β ⟩ = λβ |λR

β ⟩⟩ (105)

B. Analog of the Helmholtz decomposition when the incidence matrix I is replaced by the current matrix J

As discussed in detail in subsection IVD, the discrete Helmholtz decomposition is directly related to the SVD of
the incidence matrix I. In the present subsection, it is thus useful to describe the analog of the discrete Helmholtz
decomposition when the incidence matrix I is replaced by the current matrix J using its SVD decomposition of Eq.
100 as follows.

An arbitrary vector |u⟩⟩ in the space of dimension M can be decomposed with respect to the orthonormalized basis
|λR

β ⟩⟩ of Eq. 101 in terms of its M coefficients

uβ ≡ ⟨⟨λR
β |u⟩⟩ for β = −(C − 2), ...,−1, 0,+1, .., N (106)

Let us now analyze the separation of these M terms into two orthogonal contributions of dimensions N and (C − 1)
respectively

|u⟩⟩ =

N∑
β=−(C−2)

uβ |λR
β ⟩⟩ ≡ |u[λ.>0]⟩⟩+ |u[λ0=0]⟩⟩

|u[λ.>0]⟩⟩ ≡
N∑

β=1

uβ |λR
β ⟩⟩

|u[λ0=0]⟩⟩ ≡
0∑

β=−(C−2)

uβ |λR
β ⟩⟩ (107)

1. The component |u[λ0=0]⟩⟩ of dimension (C − 1) annihilated by J†

The component |u[λ0=0]⟩⟩ of Eq. 107 is annihilated by the adjoint J† with the SVD of Eq. 100

0 = J†|u[λ0=0]⟩⟩ (108)

2. The component |u[λ.>0]⟩⟩ of dimension N associated to the strictly positive singular values λR
β > 0

The component |u[λ.>0]⟩⟩ of Eq. 107 associated to the N strictly positive singular values λR
β > 0 can be rewritten

using Eq. 105

|u[λ.>0]⟩⟩ ≡
N∑

β=1

uβ |λR
β ⟩⟩ =

N∑
β=1

uβ

λβ
J|λL

β ⟩ = J

 N∑
β=1

uβ

λβ
|λL

β ⟩

 ≡ J|k[λ.>0]⟩ (109)

as the application of the current matrix J of Eq. 44 to the ket |k[λ.>0]⟩ that lives in the space of the N configurations

|k[λ.>0]⟩ ≡
N∑

β=1

uβ

λβ
|λL

β ⟩ (110)

The application of J† on |u⟩⟩ of Eq. 107 only involves the application on the component |u[λ.>0]⟩⟩ = J|k[λ.>0]⟩ of
Eq. 109, and thus the application of the matrix J†J with the spectral decomposition of Eq. 103 on the ket |k[λ.>0]⟩

J†|u⟩⟩ = J†|u[λ.>0]⟩⟩+ 0 = J†J|k[λ.>0]⟩ =
N∑

β=1

uβλβ |λL
β ⟩ (111)
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3. Conclusion on the subspace of dimension N for the physical currents |jt⟩⟩ = J|pt⟩

The above discussion shows that the component |u[λ0=0]⟩⟩ of dimension (C − 1) corresponds to the unphysical
subspace orthogonal to the physical space for the currents |jt⟩⟩ = J|pt⟩ of Eq. 39 that are obtained from the application
of the current matrix J to a ket |pt⟩ of the configuration space. This explains why the spectral decomposition of Eq.

68 only involves the bi-orthogonal basis of the ⟨⟨in| and the |jn⟩⟩ for n = 0, 1, .., (N − 1), even if the partner Ĥ that
governs the dynamics of the current is a matrix of size M ×M .
In conclusion, the projector PPhysicalSpaceCurrents onto the subspace of dimension N for the physical currents can be

written either with the bi-orthogonal basis of the ⟨⟨in| and the |jn⟩⟩ for n = 0, 1, .., (N−1) or with the orthonormalized
basis |λR

β=1,..,N ⟩⟩ of right singular vectors of the current matrix J associated to the subspace associated to the strictly

positive singular values λR
β=1,..,N > 0

PPhysicalSpaceCurrents =

N−1∑
n=0

|jn⟩⟩⟨⟨in| =
N∑

β=1

|λR
β ⟩⟩⟨⟨λR

β | (112)

4. Application to the definition of the pseudo-inverse Jpseudo[−1] of the current matrix J

The linear system

|u⟩⟩ = J|k⟩ ≡
N∑

β=1

λβ |λR
β ⟩⟩⟨λL

β |k⟩ (113)

for the unknown ket |k⟩ of dimension N when the ket |u⟩⟩ of dimension M is given, can be analyzed via the following
adaptation of the discussion of subsection IVD4 :

(i) The (C − 1) coefficients uβ=0,−1,..,−(C−2) should vanish

uβ ≡ ⟨⟨λR
β |u⟩⟩ = 0 for β = 0,−1, ..,−(C − 2) (114)

(ii) The solution for the ket |k⟩

|k⟩ = Jpseudo[−1]|u⟩⟩ (115)

corresponds to the application to the ket |u⟩⟩ of the pseudo-inverse Jpseudo[−1] of the current matrix J with the SVD
of Eq. 100

Jpseudo[−1] =

N∑
β=1

1

λβ
|λL

β ⟩⟨⟨λR
β | (116)

C. Solving the linear system |j∗⟩⟩ = J|p∗⟩ to obtain the steady state p∗ and the current j∗

Let us consider the application of the previous subsection to the linear system of Eq. 34

|j∗⟩⟩ = J|p∗⟩ ≡
N∑

β=1

λβ |λR
β ⟩⟩⟨λL

β |p∗⟩ (117)

for the unknown steady state |p∗⟩ in the space of the N configurations, once the steady current |j∗⟩⟩ has been
parametrized by its C coefficients in Eq. 32 :

(i) Eq. 114 gives (C − 1) equations for the C coefficients parametrizing the steady current |j∗⟩⟩

⟨⟨λR
β |j∗⟩⟩ = 0 for β = 0,−1, ..,−(C − 2) (118)

(ii) Eq. 115 gives the steady state of dimension N

|p∗⟩ = Jpseudo[−1]|j∗⟩⟩ =
N∑

β=1

1

λβ
|λL

β ⟩⟨⟨λR
β |j∗⟩⟩ (119)

in terms of the projections of the steady current |j∗⟩⟩ on theN singular eigenvectors ⟨⟨λR
β=1,..,N |, Then the normalization

of the steady state p∗(.) of Eq. 119 determines the last remaining unknown coefficient for the steady current.



17

D. Consequences for the excited right eigenstates |rn=1,..,N−1⟩ and their associated currents |jn⟩⟩ = J|rn⟩

Plugging the SVD of J of Eq. 100 into Eq. 54

|jn⟩⟩ = J|rn⟩ =
N∑

β=1

λβ |λR
β ⟩⟩⟨λL

β |rn⟩ (120)

yields that the excited right eigenstate |rn=1,..,N−1⟩ can be also computed from the current |jn⟩⟩ via the pseudo-inverse
as in Eq. 119

|rn⟩ = Jpseudo[−1]|jn⟩⟩ =
N∑

β=1

1

λβ
|λL

β ⟩⟨⟨λR
β |jn⟩⟩ (121)

E. Consequences for the left eigenstates ⟨ln=0,..,N−1| and their associated ⟨⟨in| satisfying ⟨ln| = ⟨⟨in|J

Plugging the SVD of J of Eq. 100 into Eq. 58 yields

⟨ln| = ⟨⟨in|J =

N∑
β=1

λβ⟨⟨in|λR
β ⟩⟩⟨λL

β | (122)

Since ⟨⟨in| belongs to the subspace of physical currents of Eq. 112, Eq. 122 can be inversed to compute ⟨⟨in| in terms
of ⟨ln| via

⟨⟨in| =

N∑
β=1

⟨⟨in||λR
β ⟩⟩⟨⟨λR

β | =
N∑

β=1

⟨ln|λL
β ⟩

λβ
⟨⟨λR

β | = ⟨ln|Jpseudo[−1] (123)

that involves the pseudo-inverse Jpseudo[−1].
For n = 0 with the left eigenvector l0(x) = 1, Eq. 123 yields that the bra ⟨⟨i0| can be evaluated from the pseudo-

inverse Jpseudo[−1]

⟨⟨i0| = ⟨l0|Jpseudo[−1] =
∑
x

⟨l0|x⟩⟨x|Jpseudo[−1]

=
∑
x

⟨x|Jpseudo[−1] =

N∑
β=1

⟨x|λL
β ⟩

λβ
⟨⟨λR

β | (124)

VI. CONCLUSIONS

In this paper, we have focused on continuity equations associated to continuous-time Markov processes that can
be considered as Euclidean Schrödinger equations, where the non-hermitian quantum Hamiltonian H = divJ is
naturally factorized into the product of the divergence operator div and the current operator J. In the main text
devoted to non-equilibrium Markov jump processes in a space of N configurations with M links between them and
C = M − (N −1) ≥ 1 independent cycles, this factorization of the N ×N Hamiltonian H = I†J involves the incidence

matrix I and the current matrix J that are both of size M × N , so that the supersymmetric partner Ĥ = JI†

governing the dynamics of the currents living on the M links is a priori of size M × M . To better understand the
relations between the spectral decompositions of these two Hamiltonians H = I†J and Ĥ = JI† with respect to their
bi-orthogonal basis of right and left eigenvectors that characterize the relaxation dynamics towards the steady state
and the steady currents, we have analyzed the properties of the Singular Value Decompositions of the two rectangular
matrices I and J of size M ×N and the interpretations in terms of discrete Helmholtz decompositions.
As described in the following Appendix, this general framework concerning Markov jump processes can be adapted

to non-equilibrium diffusion processes governed by Fokker-Planck equations in dimension d, where the number N of
configurations, the number M of links and the number C = M − (N − 1) of independent cycles become infinite, while
the two matrices I and J of size M ×N become first-order differential operators acting on scalar functions to produce
vector fields.
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Appendix A: Fokker-Planck generators as non-hermitian supersymmetric quantum Hamiltonians

For diffusion processes in dimension d, the essential ideas are the same as in the main text concerning Markov
jump processes, but there are important technical differences that should be stressed. In particular, the number N of
configurations, the number M of links, and the number C of cycles become infinite, while the various Hamiltonians
and matrices become differential operators. For concreteness and to simplify the notations, we will focus on the space
dimension d = 3 in order to use the 3D curl operator that is more familiar than its generalization in higher dimensions
d > 3.

1. Fokker-Planck equation in terms of probability density pt(x⃗) and the currents j⃗t(x⃗)

The Fokker-Planck equation for the probability density pt(x⃗) to be around the position x⃗ at time t can be written
as the continuity equation

∂tpt(x⃗) = −div j⃗t(x⃗) (A1)

where the current involves the force F⃗ (x⃗) and the diffusion coefficient D(x⃗)

j⃗t(x⃗) = F⃗ (x⃗)pt(x)−D(x⃗) ⃗grad pt(x⃗) (A2)

2. Rephrasing with the first-order differential operators J and I

The analog of the current matrix J of size M ×N of Eq. 37 39 is the differential operator

J ≡ F⃗ (x⃗)−D(x⃗) ⃗grad =

F1(x⃗)−D(x⃗) ∂
∂x1

F2(x⃗)−D(x⃗) ∂
∂x2

F3(x⃗)−D(x⃗) ∂
∂x3

 (A3)

that acts on the scalar density pt(x) to produce the current j⃗t(x⃗) of Eq. A2 with its d = 3 components

j⃗t(x⃗) = Jpt(x) (A4)

The analog of the incidence matrix I of size M ×N of Eq. 42 44 is the opposite of the gradient operator, that can

be recovered from the current operator of Eq. A3 for the simplest case where the force vanishes F⃗ (x⃗) → 0 and where
the diffusion coefficient reduces to unity D(x⃗) → 1

I ≡ − ⃗grad = −

 ∂
∂x1
∂

∂x2
∂

∂x3

 (A5)

The adjoint operator I† is the divergence operator that acts on three-dimensional vectors to produce a scalar

I† ≡ div =
(

∂
∂x1

∂
∂x2

∂
∂x3

)
(A6)

which is the analog of the discrete divergence matrix of size N ×M of Eq 45 46.
The Fokker-Planck Eq. A1 can be rewritten as the euclidean Schrödinger equation

−∂tpt(x⃗) = Hpt(x⃗) (A7)

where the second-order differential non-hermitian HamiltonianH ̸= H† is factorized into the two first-order differential
operators I† and J

H = I†J =
(

∂
∂x1

∂
∂x2

∂
∂x3

)F1(x⃗)−D(x⃗) ∂
∂x1

F2(x⃗)−D(x⃗) ∂
∂x2

F3(x⃗)−D(x⃗) ∂
∂x3

 =

3∑
µ=1

∂

∂xµ

(
Fµ(x⃗)−D(x⃗)

∂

∂xµ

)
(A8)
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3. Electromagnetic quantum interpretation of the non-hermitian Hamiltonian H

The electromagnetic quantum interpretation requires the rewriting of this non-hermitian Hamiltonian H as

H = −
3∑

µ=1

(
∂

∂xµ
−Aµ(x⃗)

)
D(x⃗)

(
∂

∂xµ
−Aµ(x⃗)

)
+ V (x⃗)

=

3∑
µ=1

(
−i

∂

∂xµ
+ iAµ(x⃗)

)
D(x⃗)

(
−i

∂

∂xµ
+ iAµ(x⃗)

)
+ V (x⃗)

=
(
−i∇⃗+ iA⃗(x⃗)

)
D(x⃗)

(
−i∇⃗+ iA⃗(x⃗)

)
+ V (x⃗) (A9)

that involves a purely imaginary vector potential [−iA⃗(x⃗)] of real amplitude

A⃗(x⃗) ≡ F⃗ (x⃗)

2D(x⃗)
(A10)

which is the analog of the antisymmetric function A(., .) of Eq. 6 that appears in the off-diagonal terms H(x, x′) of
Eq. 8, while the scalar potential

V (x⃗) ≡
3∑

µ=1

(
D(x⃗)A2

µ(x⃗) +
∂[D(x⃗)Aµ(x⃗)]

∂xµ

)

=

3∑
µ=1

(
F 2
µ(x⃗)

4D(x⃗)
+

1

2

∂Fµ(x⃗)

∂xµ

)
(A11)

is the analog of the on-site potential H(x, x) of Eq. 9.

The magnetic field B⃗(x⃗) associated to the vector potential A⃗(x⃗) of Eq. A10

B⃗(x⃗) ≡ curl A⃗(x⃗) = ∇⃗ × A⃗(x⃗) =

∂A3

∂x2
− ∂A2

∂x3
∂A1

∂x3
− ∂A3

∂x1
∂A2

∂x2
− ∂A1

∂x2

 (A12)

is useful to rewrite the circulation of the vector potential A⃗(x⃗) around any closed curve γ

Γ[γ][A⃗(.)] ≡
∮
γ

d⃗l.A⃗(x⃗) =

∫
d2S⃗.B⃗(x⃗) (A13)

as the flux of the magnetic field B⃗(x⃗) through the surface enclosed by the closed curve γ. This magnetic field B⃗(x⃗)
determines the equilibrium or non-equilibrium nature of the steady state as we now recall (see [46] for more detailed
discussions).

4. Reminder on the properties of the steady current j⃗∗(.)

a. Equilibrium steady state peq∗ (.) with vanishing steady currents j⃗eq∗ (x⃗) = 0⃗

At equilibrium, the steady current j⃗eq∗ (x⃗) associated to the steady density peq∗ (.) vanishes everywhere

0⃗ = j⃗eq∗ (x⃗) = F⃗ (x⃗)peq∗ (x)−D(x⃗)∇⃗peq∗ (x⃗) (A14)

This is possible only if the vector potential A⃗ ≡ F⃗ (x⃗)
2D(x⃗) introduced in Eq. A10 can be written as the gradient

A⃗(x⃗) =
1

2
∇⃗ ln peq∗ (x⃗) (A15)
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This condition is the continuous analog of Eq. 26 and means that the circulation of the vector potential A⃗(x⃗) of Eq.
A13 vanishes along any closed curve γ as in Eq. 29

Γ[γ][A⃗(.)] ≡
∮
γ

d⃗l.A⃗(x⃗) = 0 (A16)

i.e. that the magnetic field B⃗(x⃗) ≡ ∇⃗ × A⃗(x⃗) introduced in Eq. A12 should vanish everywhere

B⃗(x⃗) ≡ ∇⃗ × A⃗(x⃗) = 0⃗ (A17)

b. Non-equilibrium steady state p∗(.) with nonvanishing steady currents j⃗∗(x⃗) = 0⃗

When the magnetic field B⃗(x⃗) ≡ ∇⃗ × A⃗(x⃗) associated to the vector potential A⃗(x⃗) ≡ F⃗ (x⃗)
2D(x⃗) of Eq. A10 does not

vanish

B⃗(x⃗) ≡ ∇⃗ × A⃗(x⃗) ̸= 0⃗ (A18)

then the steady current

j⃗∗(x⃗) ≡ F⃗ (x⃗)p∗(x)−D(x⃗)∇⃗p∗(x⃗) = 2D(x⃗)p∗(x)

[
A⃗(x⃗)− 1

2
∇⃗ ln p∗(x⃗)

]
̸= 0⃗ (A19)

cannot vanish, but should be divergenceless

div⃗j∗(x⃗) = 0 (A20)

So the steady current j⃗∗(x⃗) can be rewritten as the curl of a divergenceless vector ω⃗∗(x⃗)

j⃗∗(x⃗) = ∇⃗ × ω⃗∗(x⃗)

div ω⃗∗(x⃗) ≡ ∇⃗.ω⃗∗(x⃗) = 0 (A21)

which is the analog of the decomposition into cycles-currents of Eq. 32. The curl of the steady current

∇⃗ × j⃗∗(x⃗) = ∇⃗ ×
(
∇⃗ × ω⃗∗(x⃗)

)
= ∇⃗

(
∇⃗.ω⃗∗(x⃗)

)
−∆ω⃗∗(x⃗) = −∆ω⃗∗(x⃗) (A22)

corresponds to the opposite Laplacian of the vector ω⃗∗(x⃗).

5. Spectral decomposition of the Hamiltonian H in the bi-orthogonal basis of right and left eigenvectors

For concreteness, we will consider that the Fokker-Planck dynamics takes place in a finite domain with reflecting
boundary conditions, so that the spectral decomposition of the non-hermitian Hamiltonian H ̸= H† of Eq. A8 does
not involve a continuum but only an infinity of discrete eigenvalues En (instead the finite number N of Eq. 10 for
Markov jump processes considered in the main text)

H =

+∞∑
n=0

En|rn⟩⟨ln| (A23)

The corresponding right eigenvectors rn(x⃗) = ⟨x⃗|rn⟩ and left eigenvectors ln(x⃗) = ⟨x⃗|ln⟩ of H (that are equivalently
the right eigenvectors of the adjoint differential operator H† )

Enrn(x⃗) = Hrn(x⃗) =

3∑
µ=1

∂

∂xµ

(
Fµ(x⃗)rn(x⃗)−D(x⃗)

∂rn(x⃗)

∂xµ

)

E∗
nln(x⃗) = H†ln(x⃗) = −

3∑
µ=1

(
Fµ(x⃗) +

∂

∂xµ
D(x⃗)

)
∂ln(x⃗)

∂xµ
(A24)
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form a bi-orthogonal basis where the orthonormalization and closure relations of Eq. 12 become

δn,n′ = ⟨ln|rn′⟩ =
∫

ddx⃗⟨ln|x⃗⟩⟨x⃗|rn′⟩ =
∫

ddx⃗l∗n(x⃗)rn(x⃗
′)

δ(3)(x⃗− x⃗′) = ⟨x⃗|x⃗′⟩ =
+∞∑
n=0

⟨x⃗|rn⟩⟨ln|x⃗′⟩ =
+∞∑
n=0

rn(x⃗)l
∗
n(x⃗

′) (A25)

As in Eq. 13, the vanishing eigenvalue E0 = 0 is associated to the positive left eigenvector unity and to the positive
right eigenvector given by the steady density p∗

E0 = 0

l0(x⃗) = 1

r0(x⃗) = p∗(x⃗) (A26)

while the other eigenvalues En=1,..,+∞ with strictly positive real parts Re(En) > 0 govern the relaxation towards the
steady density p∗(x) as in Eqs 15 and 16.
At the level of the eigenvalues Eqs A24, the factorization of Eq. A8 corresponds for the right eigenvectors rn(x⃗) to

the splitting into a pair of first-order differential equations

Enrn(x⃗) = I†j⃗n(x⃗) = ∇⃗.⃗jn(x⃗)

j⃗n(x⃗) = Jrn(x⃗) =
[
F⃗ (x⃗)−D(x⃗)∇⃗

]
rn(x⃗) (A27)

that is the analog of Eqs 54 55, while the corresponding splitting for the left eigenvectors ln(x⃗)

ln(x⃗) = J†⃗in(x⃗) = F⃗ (x⃗).⃗in(x⃗) + ∇⃗.
(
D(x⃗).⃗in(x⃗)

)
E∗

n⃗in(x⃗) = Iln(x⃗) = −∇⃗ln(x⃗) (A28)

is the analog of Eq 58.

6. Dynamics of the current j⃗t(x⃗) governed by the supersymmetric partner Ĥ = JI†

As in Eq. 49, the dynamics of the current j⃗t(x⃗)

−∂tj⃗t(x⃗) = J

(
− ∂t|pt⟩

)
= JI†j⃗t(x⃗) ≡ Ĥj⃗t(x⃗) (A29)

involves the supersymmetric partner Ĥ = JI† of the Hamiltonian H = I†J of Eq. A8

Ĥ = JI† =

F1(x⃗)−D(x⃗) ∂
∂x1

F2(x⃗)−D(x⃗) ∂
∂x2

F3(x⃗)−D(x⃗) ∂
∂x3

( ∂
∂x1

∂
∂x2

∂
∂x3

)
=

[(
Fµ(x⃗)−D(x⃗)

∂

∂xµ

)
∂

∂xν

]
µ=1,2,3;ν=1,2,3

(A30)

that corresponds to a 3× 3 matrix of differential operators acting on the 3 components of the current.
As discussed around Eqs 52 68, the dynamics of the current j⃗t(x⃗) involves the same non-vanishing eigenvalues

En=1,..,+∞ as the hamiltonian H, where the right and left eigenvectors for Ĥ are given by the j⃗n(x⃗) of Eq. A27 and

i⃗n(x⃗) of Eq. A28

Enj⃗n(x⃗) = JI†j⃗n(x⃗) = Ĥj⃗n(x⃗)

E∗
n⃗in(x⃗) = IJ†⃗in(x⃗) = Ĥ†⃗in(x⃗) (A31)

For n = 0, the steady current j⃗n(x⃗) = j⃗∗(x⃗) is annihilated by I† = div and thus by Ĥ

I†j⃗∗(x⃗) = 0 = Ĥj⃗∗(x⃗) (A32)

while i⃗0(x⃗) satisfies Eq. A28 with l0(x⃗) = 1 annihilated by I = −grad

1 = l0(x⃗) = J†⃗i0(x⃗) = F⃗ (x⃗).⃗i0(x⃗) + ∇⃗.
(
D(x⃗).⃗i0(x⃗)

)
0 = I⃗i0(x⃗) = IJ†⃗i0(x⃗) = Ĥ†⃗i0(x⃗) (A33)
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7. Singular Value Decompositions for the differential operator I = − ⃗grad and its adjoint I† ≡ div

The Singular Value Decompositions for the operator I = − ⃗grad and its adjoint I† ≡ div involves an infinite series
of strictly positive singular values Iα > 0 (instead of the (N −1) values in Eq. 69 of the main text concerning Markov
jump processes)

I ≡ − ⃗grad =

+∞∑
α=1

Iα|IRα ⟩⟩⟨ILα |

I† ≡ div =

+∞∑
α=1

Iα|ILα ⟩⟨⟨IRα | (A34)

As in Eq. 70, the vanishing singular value

I(α=0) = 0 (A35)

is associated to the uniform normalized eigenvector ⟨x|IL(α=0)⟩ over the bounded volume x⃗ ∈ V where the Fokker-Planck

dynamics takes place. The operator I†I corresponds to the opposite of the Laplacian

I†I = div(−grad) = −
(

∂
∂x1

∂
∂x2

∂
∂x3

) ∂
∂x1
∂

∂x2
∂

∂x3

 = −
3∑

µ=1

∂2

∂x2
µ

= −∆ (A36)

while its evaluation from the SVD decompositions of Eq. A34

−∆ = I†I =

+∞∑
α=1

I2α|ILα ⟩⟨ILα | (A37)

gives its spectral decomposition in terms of its positive eigenvalues I2α with the corresponding orthonormalized basis
of eigenvectors |ILα ⟩. So the left singular kets |ILα=0,1,..,+∞⟩ form an orthonormal basis of the space of scalar functions

δα,α′ = ⟨ILα |ILα′⟩ =
∫
V
d3x⃗⟨ILα |x⃗⟩⟨x⃗|ILα′⟩

δ(3)(x⃗− x⃗′) = ⟨x⃗|x⃗′⟩ =
+∞∑
α=0

⟨x⃗|ILα ⟩⟨ILα |x⃗′⟩ (A38)

When the basis of eigenvectors |ILα=0,..,+∞⟩ of the opposite Laplacian [−∆] of Eq. A37 over the bounded volume

x⃗ ∈ V is known, the corresponding right singular vectors |IRα=1,..,+∞⟩ can be obtained via the application of the

operator I = − ⃗grad

I|ILα ⟩ = − ⃗grad|ILα ⟩ = Iα|IRα ⟩⟩ (A39)

while the application of the adjoint I† = div to these right singular vectors |IRα=1,..⟩

I†|IRα ⟩⟩ = div|IRα=1,..⟩ = Iα|ILα ⟩ (A40)

reproduce the left singular vectors |ILα ⟩.
The supersymmetric partner

II† = −grad div = −

 ∂
∂x1
∂

∂x2
∂

∂x3

( ∂
∂x1

∂
∂x2

∂
∂x3

)
= −

[
∂2

∂xµ∂xν

]
µ=1,2,3;ν=1,2,3

(A41)

corresponds to the opposite of the 3× 3 symmetric matrix of the double derivatives ∂2

∂xµ∂xν
.
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The SVD decomposition of Eq. 69 yields that its spectral decomposition

II† =

+∞∑
α=1

I2α|IRα ⟩⟩⟨⟨IRα | (A42)

involves the same strictly positive eigenvalues I2α=1,..,+∞ > 0 as the opposite-Laplacian of Eq. A37, while the

corresponding eigenvectors |IRα=1,..,⟩⟩ are related to the eigenvectors |ILα=1,..⟩ of the opposite-Laplacian via Eq. 78.

However the eigenvectors |IRα=1,..,⟩⟩ should be supplemented an infinite number of other kets |IRα=0,−1,−2..,−∞⟩⟩ (instead
of the finite number C of Eq. 74 of the main text concerning Markov jump processes) in order to obtain an orthonormal
basis of the space of vector fields

δα,α′ = ⟨⟨IRα |IRα′⟩⟩

1{VectorFields} =

+∞∑
α=−∞

|IRα ⟩⟩⟨⟨IRα | =
+∞∑
α=1

|IRα ⟩⟩⟨⟨IRα |+
0∑

α=−∞
|IRα ⟩⟩⟨⟨IRα | (A43)

As discussed in detail in subsection IVD concerning the finite configuration space, the vectors |IRα′⟩⟩ are directly
related to the Helmholtz decomposition for an arbitrary three-dimensional vector fields v⃗(x⃗)

v⃗(x⃗) =
+∞∑

α=−∞
vα|IRα ⟩⟩ ≡ v⃗[I.>0](x⃗) + v⃗[I0=0](x⃗)

v⃗[I.>0](x⃗) ≡
+∞∑
α=1

vα|IRα ⟩⟩

v⃗[I0=0](x⃗) ≡
0∑

α=−∞
vα|IRα ⟩⟩ (A44)

into two orthogonal components with the following properties :
(i) the component v⃗[I0=0](x⃗) is annihilated by I† = div

0 = I†v⃗[I0=0](x⃗) = divv⃗[I0=0](x⃗) (A45)

As already discussed on the special case of the divergencesless steady current around Eq. A20, this divergencesless
component v⃗[I0=0](x⃗) can be rewritten as the curl of a divergenceless vector ω⃗(x⃗)

v⃗[I0=0](x⃗) = ∇⃗ × ω⃗(x⃗)

div ω⃗(x⃗) = 0 (A46)

(ii) the component v⃗[I.>0](x⃗) can be rewritten using Eq. A39

v⃗[I.>0](x⃗) ≡
+∞∑
α=1

vα|IRα ⟩⟩ = − ⃗grad

(
+∞∑
α=1

vα
Iα

|ILα ⟩

)
≡ − ⃗grad g(x⃗) (A47)

as the opposite gradient of the scalar function

g(x⃗) ≡
+∞∑
α=1

vα
Iα

|ILα ⟩ (A48)

(iii) The application of the divergence I† = div to the vector field v⃗(x⃗) of Eq. A44 only involves the application to

the gradient component v⃗[I.>0](x⃗) = − ⃗grad g(x⃗) of Eq. A47

divv⃗(x⃗) = divv⃗[I.>0](x⃗) + 0 = −∆g(x⃗) (A49)

and reduces to the opposite Laplacian of the scalar function g(x⃗). The application of the curl to the vector field v⃗(x⃗)

of Eq. A44 only involves the application to the component v⃗[I0=0](x⃗) = ∇⃗ × ω⃗(x⃗) of Eq. A46

∇⃗ × v⃗(x⃗) = 0 + ∇⃗ × v⃗[I0=0](x⃗)∇⃗ ×
(
∇⃗ × ω⃗(x⃗)

)
= ∇⃗

(
∇⃗.ω⃗(x⃗)

)
−∆ω⃗(x⃗) = −∆ω⃗(x⃗) (A50)

and reduces to the opposite Laplacian of the the field ω⃗(x⃗).
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8. Singular Value Decomposition of the current differential operator J and its adjoint J†

Let us replace the force F⃗ (x⃗) = 2D(x⃗)A⃗(x⃗) in terms of the vector potential A⃗(x⃗) introduced in Eq. A10 and
write the Singular Value Decomposition for the current differential operator J and its adjoint J† that involves an
infinite series of strictly positive singular values λβ=1,2,..,+∞ > 0 (instead of the N values in Eq. 100 of the main text
concerning Markov jump processes)

J = D(x⃗)

(
2A⃗(x⃗)− ∇⃗

)
=

+∞∑
β=1

λβ |λR
β ⟩⟩⟨λL

β |

J† ≡
(
2A⃗(x⃗) + ∇⃗

)
D(x⃗). =

+∞∑
β=1

λβ |λL
β ⟩⟨⟨λR

β | (A51)

For a non-equilibrium steady state with a non-vanishing steady current j⃗∗(x⃗) ̸= 0, the left singular vectors
λL
β=1,2,..,+∞ form an orthonormal basis of the space of scalar functions

δβ,β′ = ⟨λL
β |λL

β′⟩ =
∫
V
d3x⃗⟨λL

β |x⃗⟩⟨x⃗|λL
β′⟩

δ(3)(x⃗− x⃗′) = ⟨x⃗|x⃗′⟩ =
+∞∑
β=1

⟨x⃗|λL
β ⟩⟨λL

β |x⃗′⟩ (A52)

that appear the spectral decomposition of the supersymmetric operator

J†J =

(
2A⃗(x⃗) + ∇⃗

)
D2(x⃗)

(
2A⃗(x⃗)− ∇⃗

)
=

+∞∑
β=1

λ2
β |λL

β ⟩⟨λL
β | (A53)

The supersymmetric partner

JJ† =

[
D(x⃗)

(
2Aµ(x⃗)−

∂

∂xµ

)(
2Aν(x⃗) +

∂

∂xµ

)
D(x⃗)

]
µ=1,2,3;ν=1,2,3

=

+∞∑
β=1

λ2
β |λR

β ⟩⟩⟨⟨⟨λR
β | (A54)

involves the same strictly positive eigenvalues λ2
β=1,2,...,+∞ as Eq. A53 while the corresponding eigenvectors |λR

β ⟩⟩ are
related to the eigenvectors |λL

β ⟩ via

J|λL
β ⟩ = λβ |λR

β ⟩⟩ (A55)

These eigenvectors |λR
β=1,2,..,+∞⟩⟩ should be supplemented an infinite number of other kets |λR

β=0,−1,..,−∞⟩⟩ (instead
of the finite number (C − 1) of Eq. 101 of the main text concerning Markov jump processes) in order to obtain an
orthonormal basis of the space of vector fields

δβ,β′ = ⟨⟨λR
β |λR

β′⟩⟩

1{VectorFields} =

+∞∑
β=−∞

|λR
β ⟩⟩⟨⟨λR

β | =
+∞∑
β=1

|λR
β ⟩⟩⟨⟨λR

β |+
0∑

β=−∞

|λR
β ⟩⟩⟨⟨λR

β | (A56)

As discussed in subsection VB of the main text, it is interesting to define the analog of the Helmholtz decomposition
when the operator I = −grad is replaced by the current matrix J using its SVD decomposition of Eq. A51 as follows.

An arbitrary three-dimensional vector field u⃗(x⃗) can be decomposed into two orthogonal components

u⃗(x⃗) =

+∞∑
β=−∞

uβ |λR
β ⟩⟩ ≡ u⃗[λ.>0](x⃗) + u⃗[λ0=0](x⃗)

u⃗[λ.>0](x⃗) ≡
+∞∑
β=1

uβ |λR
β ⟩⟩

u⃗[λ0=0](x⃗) ≡
0∑

β=−∞

uβ |λR
β ⟩⟩ (A57)
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with the following properties :
(i) the component u⃗[λ0=0](x⃗) of Eq. A57 is annihilated by J† of Eq. A51

0 = J†u⃗[λ0=0](x⃗) =

(
2A⃗(x⃗) + ∇⃗

)
.

(
D(x⃗)u⃗[λ0=0](x⃗)

)
(A58)

(ii) the component u⃗[λ.>0](x⃗) can be rewritten using Eq. A55

u⃗[λ.>0](x⃗) =

+∞∑
β=1

uβ |λR
β ⟩⟩ = J

+∞∑
β=1

uβ

λβ
|λL

β ⟩

 ≡ J k(x⃗) (A59)

as the application of the current operator J to the scalar function

k(x⃗) ≡
+∞∑
β=1

uβ

λβ
|λL

β ⟩ (A60)

The application of J† to the vector field u⃗(x⃗) of Eq. A57 only involves the application to the component u⃗[λ.>0](x⃗) =
Jk(x⃗) of Eq. A59 and reduces to the application of the supersymmetric operator J†J of Eq. A53 to the scalar function
k(x⃗) of Eq. A60

J†u⃗(x⃗) = J†u⃗[λ.>0](x⃗) + 0 = J†Jk(x⃗) =

+∞∑
β=1

uβλβ |λL
β ⟩ (A61)

As discussed in subsection VB3 of the main text, the component |u[λ0=0]⟩⟩ corresponds to the unphysical subspace

unphysical subspace orthogonal to the physical space of the physical currents j⃗t(x⃗) = Jpt(x⃗) that are obtained from
the application of the current matrix J to a ket |pt⟩ of the configuration space. The projector PPhysicalSpaceCurrents

onto the physical subspace of the physical currents can be written either with the bi-orthogonal basis of the ⟨⟨in| and
the |jn⟩⟩ for n = 0, 1, ..,+∞ or with the orthonormalized basis |λR

β=1,..,+∞⟩⟩ of the right singular vectors of the current
matrix J associated to the strictly positive singular values λR

β=1,..,+∞ > 0

PPhysicalSpaceCurrents =

+∞∑
n=0

|jn⟩⟩⟨⟨in| =
+∞∑
β=1

|λR
β ⟩⟩⟨⟨λR

β | (A62)

with the following consequences :
(a) As in Eqs 117 118 119, the decomposition of the steady current on the basis of right singular vectors |λR

β ⟩⟩

|j∗⟩⟩ = J|p∗⟩ ≡
+∞∑
β=1

λβ |λR
β ⟩⟩⟨λL

β |p∗⟩ (A63)

yields the vanishing of the components for β = 0,−1, ..,−∞

β = 0,−1, ..,−∞ : ⟨⟨λR
β |j∗⟩⟩ = 0 (A64)

while the steady state |p∗⟩ can be obtained from the inversion of Eq. A63

|p∗⟩ = Jpseudo[−1]|j∗⟩⟩ =
N∑

β=1

1

λβ
|λL

β ⟩⟨⟨λR
β |j∗⟩⟩ (A65)

with the pseudo-inverse

Jpseudo[−1] =

+∞∑
β=1

1

λβ
|λL

β ⟩⟨⟨λR
β | (A66)
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that can also be used for the excited right eigenvectors |rn=1,..,+∞⟩ and their associated currents |jn⟩⟩ = J|pn⟩ as in
Eq. 121

|rn⟩ = Jpseudo[−1]|jn⟩⟩ =
+∞∑
β=1

1

λβ
|λL

β ⟩⟨⟨λR
β |jn⟩⟩ (A67)

(b) As in Eqs 122 123, the pseudo-inverse Jpseudo[−1] of Eq. A66 is also useful to invert

⟨ln| = ⟨⟨in|J =

+∞∑
β=1

λβ⟨⟨in|λR
β ⟩⟩⟨λL

β | (A68)

into

⟨⟨in| =

+∞∑
β=1

⟨⟨in||λR
β ⟩⟩⟨⟨λR

β | =
+∞∑
β=1

⟨ln|λL
β ⟩

λβ
⟨⟨λR

β | = ⟨ln|Jpseudo[−1] (A69)

For n = 0 with the left eigenvector l0(x⃗) = 1, Eq. A69 yields that the bra ⟨⟨i0| is given by

⟨⟨i0| = ⟨l0|Jpseudo[−1] =
∑
x⃗

⟨l0|x⃗⟩⟨x⃗|Jpseudo[−1]

=
∑
x⃗

⟨x⃗|Jpseudo[−1] =

+∞∑
β=1

⟨x⃗|λL
β ⟩

λβ
⟨⟨λR

β | (A70)
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[18] R J Harris and G M Schütz, J. Stat. Mech. P07020 (2007).
[19] E.M. Sevick, R. Prabhakar, S. R. Williams and D. J. Searles, Ann. Rev. of Phys. Chem. Vol 59, 603 (2008).
[20] H. Touchette and R.J. Harris, chapter ”Large deviation approach to nonequilibrium systems” of the book ”Nonequilibrium

Statistical Physics of Small Systems: Fluctuation Relations and Beyond”, Wiley (2013).
[21] L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio and C. Landim Rev. Mod. Phys. 87, 593 (2015).
[22] R. L. Jack and P. Sollich, The European Physical Journal Special Topics 224, 2351 (2015).
[23] A. Lazarescu, J. Phys. A: Math. Theor. 48 503001 (2015).
[24] A. Lazarescu, J. Phys. A: Math. Theor. 50 254004 (2017).
[25] R. L. Jack, Eur. Phy. J. B 93, 74 (2020).
[26] A. de La Fortelle, PhD Thesis (2000) ”Contributions to the theory of large deviations and applications” INRIA Rocquen-

court.
[27] V. Lecomte, PhD Thesis (2007) ”Thermodynamique des histoires et fluctuations hors d’équilibre” Université Paris 7.
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