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A holographic bottom-up approach to Σ baryons
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In this work, we discuss the description of neutral Σ baryons with I(JP ) = 1(1/2+) and I(JP ) =
1(3/2+) using two bottom-up approaches: the deformed background and the static dilaton. In both
models, we consider a non-linear Regge trajectory extension motivated by the strange nature that Σ
baryons have. We found that both models describe these systems with an RMS error smaller than
10 %. We also perform a configurational entropy calculation in both models to discuss hadronic
stability.

I. INTRODUCTION

Describing baryons in the AdS/QCD bottom approach
follows the same path as meson states. We start with an
action for bulk fields dual to baryons at the conformal
boundary. However, confinement is performed slightly
differently from the meson scenario. Confinement is un-
derstood in these bottom-up scenarios as a localization

process, where the non-normalizable bulk modes become
normalizable by adding properly an energy scale. This
energy scale will later fix the Regge slope. This localiza-
tion mechanism can be done by two possible alternatives:
cutting off or deforming the AdS geometry, i.e., breaking
the conformal invariance in the bulk.
The cutoff of the space leads to the so-called hardwall

[1–3] and softwall models [4]. The former is achieved by
placing a D-brane into the AdS space. The locus of the
brane defines the energy scale as ΛQCD = 1/zc ∝ M0,
where M0 is the lightest hadron on the Regge trajec-
tory. The mass spectrum usually behaves as Mn ∝ n,
which is unexpected from light-unflavored hadron phe-
nomenology. Quantum mechanically, this model behaves
qualitatively like an infinite square well. The softwall
model case includes a dilaton field that can be static or
dynamically generated [5], smoothly breaking conformal
invariance. The net effect of this dilaton is the emergence
of linear confinement [4] when considering quadratic dila-
ton profiles, leading to Regge-like behaviorM2

n ∝ n, with
n defined as the excitation number, expected for unfla-
vored light. Quantum mechanically speaking, these holo-
graphic potentials defined with quadratic dilatons behave
as harmonic oscillators in the polar plane.
The softwall model proposal has proved to be suc-

cessful in describing the spectroscopy of light-unflavored
hadrons [6–17], form factors [18–20] structure functions
[21], deep inelastic scattering [12, 22]. It has been ex-
tended to the light-front case [23–25], where it has opened

∗ Gxiguoxi@163.com
† miguelangel.martin@usc.edu.cn
‡ chenxunhep@qq.com
§ xiangdong@usc.edu.cn

an active research area for wave functions [26, 27], form
factors [28, 29], and spectroscopy [30].
However, despite all its success in the light sector, it

could not properly describe heavy mesons since their
Regge trajectories are not linear. From the Bethe-
Salpeter perspective, by including the quark constituent
mass linearity is lifted, i.e.,M2

n ∝ nν , where ν depends on
the constituent mass [31–33]. Along with this issue comes
the mesonic decay constants issue. For bottom-up mod-
els, the decay constants do not match the phenomenologi-
cal expected behavior; mesonic decay constants (in units
of MeV) are expected to decrease with the excitation
number. For hardwall, they increase, and for softwall,
they are degenerate. Attempts to preserve quadratic be-
havior and obtain acceptable phenomenological decays
have been made in the past [34, 35]. However, as pointed
out in Ref. [36], decay constants also depend on the
low-z behavior of the dilaton field. This situation is pre-
cisely the scenario proposed in Ref. [37] for heavy vector
quarkonia.
Regarding the heavy-spectroscopy issue, Ref. [38] has

extended the softwall model to include non-linear Regge
trajectories by promoting the quadratic dilaton κ2 z3 to
be deformed (κ z)2−α by a parameter that accounts con-
stituent mass effects. This proposal was also success-
ful in describing non-qq̄ states such as hadroquarkonium,
hadronic molecules, or hybrid mesons, as in Ref. [39],
where configurational entropy is used as a tool to test
the feasibility of the proposed holographic structures.
Ref. [40] originally proposed the deformation of the

AdS space in the context of gauge/string duality applied
to describe the OPE expansion for the two-point func-
tion. In this work, the author proves how quadratic de-
formations in the AdS5 sector lead to Regge-like behav-
ior. This observation leads to Ref. [41], where the au-
thors extended this idea to compute Regge trajectories
for mesons and baryons. Later, the geometric deforma-
tion was used in Ref. [42] to describe glueballs and light
baryons. These works have in common that deforma-
tions in the AdS geometry induce locality by transform-
ing bulk modes into normalizable ones, realizing confine-
ment. This fact is translated into the emergence of con-
fining terms in the holographic potential. In this sense,
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deformations and softwall models are equivalent. How-
ever, the analytical behavior of eigenmodes is completely
different. In this framework, it has been possible to de-
scribe proton structure functions [43], electromagnetic
form factors for nucleons [44] and pions [45].
Another tool has gained importance with the holo-

graphic approaches developed to describe hadrons, the
configurational entropy. The original proposal [46–48]
addresses the connection between the information and
physical solutions for a given system. This idea is con-
nected to how the energy is localized in such solutions.
This localization of energy is related to the emergence
of order structures. Thus, the configurational entropy
(CE) can be understood as a entropic measure of how
system constituents are organized in space. Holograph-
ically, CE has been extended in works as [49, 50] to de-
scribe black hole stability in AdS and heavy quarkonia.
In particular, the authors found the connection between
decay constants and configurational entropy. When the
former decreases with the excitation number, the latter
increases. This observation can be considered an insight
into hadronic stability via holographic tools. In this line
of research, several works have enriched the literature, as
indicated by Refs. [51–55].
In this work, we will consider the approach to heavy

baryons using the deformed dilaton proposal in both soft-
wall and deformed geometry models. We will also con-
sider configurational entropy as a tool to test hadronic
stability in these models.
This work is organized as follows. In Section II, we

summarize the bottom-up description of baryons. In Sec-
tion III, we use geometric deformations and static dilaton
in the non-linear Regge trajectory context to describe Σ
baryons. Section IV has a detailed calculation of the
configurational entropy for these fermionic systems. And
finally, in Section V, we present our conclusions.

II. HOLOGRAPHIC APPROACH TO BARYONS

Let us consider the AdS5 space defined by the Poincarè
line element as

dS2 = e2A(z)
[

dz2 + ηµν dx
µ dxν

]

, (1)

where the warp factor is defined as A(z) = log(R/z) +
h(z), with R the radius of the AdS curvature. The func-
tion h(z) ∈ C∞ is the geometric deformation that, for
the softwall model case, will be fixed as zero. We will use
Latin indices for five-dimensional bulk objects and Greek
indices for four-dimensional boundary objects.
Baryons, as it is standard in AdS/QCD, are described

by bulk fermionic fields. However, it is not a straight-
forward task compared to mesons, where the effect of a
dilaton field (static or dynamically generated) enters di-
rectly into the holographic potential due to the coupling
of the dilaton field with bulk fields dual to mesons. In the
case of baryons, the dilaton field is factorized out from

the equation of motion. Thus, different mechanisms have
to be considered to model these states. This situation
is avoided when geometric deformations are considered
since the confinement information is condensed in the
warp factor. The main objection now arises because the
background is flavor-dependent.
We will describe fermionic fields in AdS backgrounds

with deformation and dilaton fields, following the pre-
scription defined in [13, 42].
Let us focus on baryons with dilaton fields. Refs. [13,

56] pointed out, the dilaton field can be introduced as
an anomalous dimension that modifies the fermion bulk
mass

M̃5(z) =M5 +
Φ(z)

R
. (2)

This modification ensures that the bulk modes become
normalizable when considering dilaton-based models.

A. Spin 1/2 baryons

For 1/2 baryons, the bulk action is written in the stan-
dard Dirac form as follows:

I =
1

K

∫

d5x
√−g

[

1

2
ψ̄ Γr

↔

Dr ψ −M5(z) ψ̄ ψ

]

, (3)

with Γr = era γ
a as the Dirac gamma matrices in curved

space, K is a constant fixing the units in the action, and
covariant spin-connected derivative operator Dm is de-
fined as

Dm ψ = ∂m ψ +
1

4
ωab
m σab ψ, (4)

where ωab
m is the spin connection, σab is the flat gamma

matrix commutator. The equations of motion for these
fields read as follows.

(

Γm
→

Dm −M5

)

ψ(z, xµ) = 0, (5)

ψ̄(z, xµ)

(

Γm
←

Dm +M5

)

= 0. (6)

For AdS5, the frame field is eam = δam eA(z), where Latin
indices a, b, c, . . . denote the flat frame indices. Thus, for
the spin-affine connection, the non-zero components are

ω5 b
µ = −A′ (z) δbµ. (7)

Therefore, the Dirac equation for the bulk spinor
ψ(z, xµ) can be written as
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[

γ5 ∂z + ηµν γµ ∂ν + 2A′ (z)γ5 −M5(z) e
A(z)

]

ψ (z, xµ) = 0.

(8)
A similar expression can be found for the adjoint bulk

spinor ψ̄(z, xµ). Next, we introduce the chiral compo-
nents for the bulk spinors as

ψ(z, xµ) = ψL(z, x
µ) + ψR(z, x

µ). (9)

Using this definition and after transforming to the
Fourier space, the Dirac equation is written as

[

∓∂z ∓ 2A′ (z)−M5(z) e
A(z)

]

ψL/R

+mψR/L = 0, (10)

[

∂z + 2A′ (z)±M5(z) e
A(z)

]

ψL/R

∓mψR/L = 0. (11)

In the last equation, we used the boundary Dirac equa-
tion in Fourier space to introduce the baryonic mass m.
To decouple these equations, we take the second deriva-

tive, and after some algebra, we obtain the Sturm-

Louville form of the Dirac equation:

ψ′′± + 3A′ ψ′± +
{

4A′2 + 2A′′

± [M5(z)A
′ +M ′5(z)] e

A −M2
5 (z) e

2A
}

ψ±

+m2 ψ± = 0. (12)

At this step, confinement emerges from the holographic
potential V (z). This potential is defined using the
Boguliobov transformation

ψL/R (z) = e−2A(z) φL/R (z) , (13)

we obtain the Schrodinger-like form of the bulk equations
of motion:

−φ′′L/R + V (z)φL/R = m2
n φL/R, (14)

with p2 = −m2
n and for the potential has the following

structure

V (z) =M2
5 (z) e

2A(z) ∓ [M5(z)A
′(z) +M ′5(z)] e

A(z).
(15)

The eigenvalues of this potential will correspond to the
spin 1/2 baryon masses at the boundary. A similar be-
havior is found for the adjoint spinor solutions. Both left
and right solutions have the same eigenvalue mass m2

n.
Thus, following [42], we choose left movers to be dual to

baryons at the boundary. The last ingredient we must
fix is the bulk mass to define the baryonic identity. We
will discuss this topic in the next section.
In the next sections, we will discuss applying the non-

quadratic dilaton and the deformed geometry in this for-
malism.

B. Spin 3/2 baryons

Let us consider spin 3/2 baryons defined using a
Rarita-Schwinger bulk field. The bulk action in this case
is given by [13]

I = − 1

2K

∫

d5x
√−g gmn×
[

ψ̄m Γr
↔

∇r ψn −M5(z) ψ̄m ψn

]

, (16)

where ψm(z, xµ) is a bulk vector spinor, and the covariant
derivative is defined as

∇m ψn = Dm ψn − Γr
mn ψr, (17)

with Γr
mn is the Levi-Civita affine connection in AdS5,

that has the non-zero components given by

Γz
zz = A′ (z) , (18)

Γz
µν = −A′ (z) ηµν , (19)

Γµ
zν = A′ (z) δµν . (20)

From the action principle (16), we obtain the following
bulk equations of motion

[gnm Γm∇n −M5(z)] ψm = 0. (21)

Let us consider the gauge fixing. Since no holographic
information should be explicitly written at the boundary,
i.e., no dependence on the holographic coordinate z is
expected, we impose

ψz(z, x
µ) = 0. (22)

As a consequence, we will have the following set of
transverse conditions :

Γm ψm(z xµ) = 0, (23)

gmn∇m ψn(z, x
µ) = 0. (24)

The condition (24) follows considering the product
of the antisymmetric products of the Dirac matrices
Γmnrwith the symmetric spinor tensor field, i.e.
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Γmnr ∇m ψr +M5(z) Γ
mn ψn = 0, (25)

which is equivalent to the Dirac equation. Using the first
transverse condition will lead to the second one (24).
After the gauge fixing process, and using the expres-

sions for the covariant derivative in AdS5, we write the
equations of motion for the bulk vector spinor as

[

γ5 ∂z + γµ ∂µ + 2A′ (z) γ5 −M5(z) e
A(z)

]

ψm = 0,

(26)
which is the equation for spin 1/2 bulk fermions. The
main difference is the bulk mass M5(z) since the opera-
tors that define spin 3/2 baryons have a different scaling
dimension than the spin 1/2 ones.
Therefore, following the same procedure exposed for

spin 1/2 bulk spinor, we obtain the Schrodinger-like equa-

tion of motion as

−φ′′L/R + U (z) φL/R = m2
n φL/R, (27)

with the holographic potential U(z) defined as

U(z) =M2
5 (z) e

2A(z) ∓ [M5(z)A
′(z) +M ′5(z)] e

A(z).
(28)

As in the spin 1/2 case, we consider baryons defined by
left vector spinors. In the next sections, we will solve the
eigenvalue problem for the non-quadratic and deformed
geometry models.

III. AdS/QCD APPLIED TO Σ BARYONS

This section will apply the above-mentioned machinery
to describe the Σ baryons spectrum.
These Σ baryons were initially observed in cosmic ray

experiments during the 1950s and have since been exten-
sively studied in particle accelerators. These states are
compounded by a pair of light quarks with an s quark.
They play a crucial role in understanding the strong force
that binds quarks and the composition of protons and
neutrons within atomic nuclei.
In particular we will focus on the neutral Σ baryons,

with I(JP ) = 1(1/2+) and I(JP ) = 1(3/2+). We sum-
marize the experimental masses in Tables I and II. Neu-
tral Σ baryons, aside from the Σ0(1/2), decay into neutral
kaons mostly. For the Σ0 baryon, the dominant decay is
Λ e+ e−.
In previous studies (see [57] and references therein), it

has been found that the Regge trajectory depends on the
constituent mass of quarks. Thus, if a hadron contains
an s or a heavy quark, the linearity of the trajectory
ceases. Motivated by this observation, we employ the
non-quadratic softwall model [38] to address the neutral
Σ spectroscopy.

In the standard AdS/CFT prescription, baryonic

states, created by boundary operators like Ô ∼
ǫijk q̂i q̂j q̂k with dim Ō = ∆, are dual to bulk normal-
izable fermionic modes that scale as z∆. This matching

is a consequence of the so-called field/operator duality.
These bulk fields obey the dynamics governed by action
densities such as (3) and (16). The information regard-
ing the hadronic identity, i.e., the dimension of Ō, is con-
densed in the fermionic bulk mass M5. In general, for a
given hadron, we can write the conformal dimension as a
combination of the contribution from constituent quarks
(twist) and the total orbital angular momentum L as

∆baryon = ∆q + L. (29)

In the case of baryons, the expression above becomes
handy to deal with high fermionic spin. Higher spin con-
tributions can be written with L. For Σ with spin 1/2
and 3/2, their L are 0 and 1, respectively.
Since a baryonic state has three quarks, each with

a scaling dimension of 3/2, the constituent scaling di-
mension is ∆q = 9/2. By substituting these data into
Eq.(29), we can easily obtain the conformal dimensions
∆1/2 = 9/2 and ∆3/2 = 11/2 for the Σ trajectories.
From the AdS/CFT dictionary, we find the following

relationship for the fermion bulk massM5 and its baryon
conformal dimension, given by:

|M5| = ∆baryon − 2. (30)

Therefore, according to Eq. (29), for the Σ baryons we
obtain M5 = 5/2 and M5 = 7/2 for Σ(1/2) and Σ(3/2)
respectively.

A. Non-quadratic deformed background

This model is a variation of the proposal presented
in [42], where quadratic deformations of the AdS warp
factor, in Poincare coordinates, describe light hadrons.
For strange baryons, we propose h(z) = 1

2 (k z)
2−α

and
fix the dilaton to be zero. Thus, for the warp factor in
the AdS metric, we can write the following expression.

A (z) = log

(

R

z

)

+
1

2
(k z)

2−α
. (31)

The effect of the geometric deformation h(z) is to place
confinement. For fermions in the AdS space, bulk modes
are unbounded. However, the deformation h(z) causes
the emergence of bounded states dual to baryons at the
conformal boundary. Since we choose Φ(z) = 0, the bulk
mass reduces to the standard value of M5 given by Eq.
(30).
After these definitions, we obtain the Schrödinger-like

equation for both the right and left bulk fermions as:
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− φ′′R/L(z) +
[

M2
5 e

2A(z) ±M5 e
A(z)A′(z)

]

φR/L(z)

= m2
n φR/L(z), (32)

where mn is the four-dimensional fermion mass.
We fix the parameters in geometric deformation h(z),

given in Eq. (31) as k1/2 = 239 MeV, k3/2 = 219 MeV
and α1/2 = α3/2 = 0.16 for each baryonic trajectory.
By entering these parameters in Eq.(32), we calculated
a baryonic mass spectrum that is consistent with Σ(1/2)
and Σ(3/2) trajectories, as indicated in Tables I and II.
The relative error is presented in the last columns of
Tables I and II. This error is calculated as follows

%M =

√

(

δOi

Oi

)2

× 100, (33)

where δOi depicts the deviations between the data
(MExp) and the model prediction (MTh).

I(JP ) = 1(1/2+) states

n Mth(MeV) MExp(MeV) %M
1 1135.22 1192.6±0.02 4.81
2 1431.32 1585±20 9.70
3 1717.22 1820 to 1940 8.66

TABLE I. Masses of the Σ(1/2) trajectory using the non-
quadratic deformed background with k1/2 = 239 MeV and
α1/2 = 0.16. The ground state is represented by n = 1. The
last column is the relative error Eq. (33) defines. For the
mass intervals, we choose the average between the interval
extremes. The experimental masses are read from the particle
data group [58].

I(JP ) = 1(3/2+) states

n Mth(MeV) MExp(MeV) %M
1 1401.37 1382.83±0.34 1.28
2 1675.77 1730 to 1830 5.86
3 1942.61 1920 to 1960 0.13
4 2203.36 2060 to 2120 5.42
5 2459.06 2240±27 10.07

TABLE II. Masses of Σ(3/2) trajectory using the non-
quadratic deformed background with k3/2 = 219 MeV and
α3/2 = 0.16. The ground state is represented by n = 1. The
last column is the relative error Eq. (33) defines. For the
mass intervals, we choose the average between the interval
extremes. The experimental masses are read from the parti-
cle data group [58].

We constructed (n,m2) Chew-Frautschi plots using
data from Tables I and II, which are presented in Figs.1
and 2. The figures show that the discrepancies between
the calculated baryon masses and the experimentally
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FIG. 1. The (n,m2) Chew-Frautschi plot depicting the Regge
trajectory for Σ(1/2) baryon system computed from the non-
quadratic deformed background.
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FIG. 2. The (n,m2) Chew-Frautschi plot depicting the Regge
trajectory for Σ(3/2) baryon system computed from non-
quadratic deformed background.

measured mass data are below 10%. Particularly note-
worthy is the nearly identical masses for Σ(1/2) with
n = 1, exhibiting an error of 4.8%, while for Σ(3/2)
with n = 3, the error is a strikingly low 0.13%.
Additionally, we calculate the overall RMS error using

the following definition:

δRMS =

√

√

√

√

1

N −Np

N
∑

i=1

(

δOi

Oi

)2

× 100, (34)

where N and Np are the number of measurements and
parameters, respectively. In this case, we obtain the val-
ues of the parameters α and κ for the Σ(1/2) and Σ(3/2)
trajectories separately by fitting and assigning a common
value α for both trajectories. This choice comes from the
Bethe-Salpeter analysis of Regge-trajectories [31], where
the constituent quark mass influences the linearity of the
trajectory. Since both Σ trajectories have the same quark
content, it is natural to consider the same α for them.
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From Eq.(34), we find that δrms = 8.5% for Σ trajecto-
ries using the deformed background.

B. Non-quadratic dilaton

This proposal is an extension of the non-quadratic dila-
ton idea developed for isovector mesons and non-qq̄ states
[38, 39]. In the case of fermionic bulk fields, the dilaton
field factors out from the equations of motion. How-
ever, confinement is addressed by inserting the dilaton
an anomalous dimension, as we explain in section II.
In this prescription, we will set h(z) = 0, and then

the warp factor A(z) and the dilaton field Φ(z) can be
written as

A(z) = log

(

R

z

)

, (35)

Φ(z) =
1

R
(κ z)2−α. (36)

Then, using Eq.(2), we obtain a Schrödinger-like equa-
tion:

− φ′′R/L(z) +
{

[M5 +Φ(z)]2 e2A(z)±
[

(M5 +Φ)eA(z)
]′
}

φR/L(z) = m2
n φR/L(z). (37)

Notice that the bulk mass M5 used here remains the
same as in the deformed case. We set κ1/2 = κ3/2 =
0.423 and α1/2 = α3/2 = 0.17, and substitute them into
Eq.(37). The resulting data is displayed in Tables III and
IV.

I(JP ) = 1(1/2+) states

n Mth(MeV) MPDG(MeV) %M
1 1377.51 1192.6±0.02 15.50
2 1555.77 1585±20 1.84
3 1712.28 1820 to 1940 8.92

TABLE III. Mass spectrum for the Σ(1/2) trajectory within
the non-quadratic dilaton model. We use κ = 0.423 MeV and
α = 0.17. The ground state is represented by n = 1. As
customary, %M is the relative error defined by Eq. (33). For
the mass intervals, we choose the average between the interval
extremes. The experimental masses are read from PDG [58].

We have generated the (n,m2) Chew-Frautschi plot
based on the data presented in Tables III and IV. The
non-quadratic dilaton accurately matches the high ex-
cited states: the relative errors are below 6%. However,
the ground state is not well-fitted. It is unsurprising since
the ground state strongly depends on the dilaton slope
κ.

I(JP ) = 1(3/2+) states

n Mth(MeV) MPDG(MeV) %M
1 1571.94 1382.83±0.34 13.60
2 1726.75 1730 to 1830 3.00
3 1866.39 1920 to 1960 3.79
4 1994.45 2060 to 2120 4.57
5 2113.28 2240±27 5.40

TABLE IV. Mass spectrum of Σ(3/2) trajectory within the
non-quadratic dilaton model. We set κ = 0.423 MeV and
α = 0.17. The ground state is represented by n = 1. As
customary, %M is the relative error defined by Eq.(33). For
the mass intervals, we choose the average between the interval
extremes. The experimental masses are read from PDG [58].

mPDG

mTh

1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

n

m
2
(G
e
V
2
)

FIG. 3. The (n,m2) Chew-Frautschi plot for the Σ(1/2) tra-
jectory using the non-quadratic dilaton.

Lastly, we computed the total RMS error, and it is
important to mention that we employed identical pa-
rameters for Σ with different spins. Therefore, Np = 2
is involved in this calculation. From Eq.(34), we find
δrms = 9.84% for the Σ family.
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FIG. 4. The (n,m2) Chew-Frautschi plot for Σ(3/2) trajec-
tory using the non-quadratic dilaton.
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IV. CONFIGURATIONAL ENTROPY

A. Configurational entropy and hadronic stability

The inspiration behind Configuration Entropy [46–48]
comes from Shannon’s information entropy [59], a mea-
sure that quantifies the amount of information in a mes-
sage [60]. For a variable that can take Nd discrete pos-
sible values, with probabilities given by pi, it is defined
by

Sinfo = −
Nd
∑

i=1

pi ln pi. (38)

In the original formulation within information theory,
configurational entropy (CE) can be understood as a
measure of the information required to describe localized
functions or sets of solution parameters. Generally, dy-
namical solutions emerge from optimizing an action, and
configurational entropy measures the information avail-
able in these solutions. The relationship between con-
figurational entropy and complexity is associated with
stability. As configurational entropy characterizes the
complexity of a given physical system, states with higher
configurational entropy require more energy for their oc-
currence in nature compared to states with lower config-
urational entropy. Higher energy levels also imply more
modes that conform to such physical states, indicating
that configurational entropy increases with higher coarse-
ness. Hence, configurational entropy can also be per-
ceived as a measure of stability. Remember that con-
figurational entropy reflects the relative ordering in field
configuration space, illustrating the relationship between
energy and coarseness. With an increase in constituents,
there is a corresponding increase in energy and relative
configurational entropy. Additionally, investigations on
active matter systems demonstrate that the final state
of a many-particle system minimizes configurational en-
tropy when it reaches equilibrium.
Configuration Entropy is commonly used to describe

the variety of particle spatial arrangements within a sys-
tem at the microscopic scale. Its calculation involves
determining the quantity and distribution of distinct
microscopic states throughout the system. Specifically,
CE measures the complexity and diversity within a sys-
tem, reflecting the uncertainty associated with particle
arrangements at the microscopic level. When comput-
ing the configurational entropy for the Σ family, from
a bottom-up perspective, we connect bulk localization of
the dual fermionic modes with the stability at the bound-
ary. This fact is connected with the observation that
heavier states should decay faster than light ones. Thus,
we expect that the CE decreases with the excitation level
n.
Thus, we can say that holographic CE indirectly mea-

sures the diversity and complexity of constituent spatial
arrangements in the Σ baryon family. A high configu-

rational entropy in the Σ system implies that the mi-
croscopic particle arrangement exhibits a high degree of
randomness and disorder, potentially making the system
more susceptible to decay or fragmentation, thus reduc-
ing its stability. In contrast, a low configurational en-
tropy suggests a more compact and orderly microscopic
particle arrangement, often indicative of a more stable
system.
In recent years, numerous studies have focused on con-

figurational entropy, including investigations into com-
pact objects [61] and holographic AdS/QCD models
[49, 50, 55, 62–66], among other diverse systems. These
studies, approached from various angles, consistently
demonstrate a parallel relationship between changes in
configurational entropy and stability. In this paper, we
perform holographic calculations of the configurational
entropy for baryons using different holographic models
discussed in the previous section.
To do so, we compute the differential configurational

entropy (DCE) for a given physical system by perform-
ing the following calculations for each model: Firstly, we
obtain the localized solutions to the equations of motion.
Then, we evaluate the on-shell energy density. Next,
we transform the on-shell energy density into momen-
tum space. Finally, we calculate the modal fraction and
evaluate the DCE integral based on the results.

B. Configurational entropy for baryons

The key ingredient for DCE comes from the on-shell
energy-momentum tensor for the bulk fields. Since the
AdS frame is static to these fields, it is possible to use
the dynamical On-shell energy tensor is defined as

Tmn = − 2√−g
δ I

δ gmn
. (39)

For the DCE, it is enough to consider this definition
since gravity has not been affected by the fermionic fields.
However, the variations must be done using the frame
fields eam instead of the metric tensor. Thus, we will
follow the prescription in Ref. [67]. Therefore, from the
action (3) we obtain for spin 1/2

Tmn =
1

2K ψ̄
(

Γm

↔

Dn + Γn

↔

Dm

)

ψ, (40)

and for spin 3/2, from action (16), we have:

Tmn = − 1

2K ψ̄rp

(

Γm

↔

∇n + Γn

↔

∇m

)

ψrp

+
1

K

[

ψ̄p
m Γr

↔

∇r ψnp

−M5(z) ψ̄
l
mψnl

]

. (41)
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The energy density in both cases is extracted from
the T00 component. For the spin 1/2 field, after Fourier
transform, we find

ρ1/2(z) =
1

Ke
A(z)mn

(

φ2L,n + φ2R,n

)

A0, (42)

where A0 is a polarization factor. The energy density for
the spin 3/2 field is

ρ3/2(z) = − 1

K e−A(z)
[

mn

(

2A1 −A2 e
2A(z)

)

+M5A2 e
2A(z)

]

(

φ2L,n + φ2R,n

)

, (43)

where A1 and A2 are polarization factors that appear
from the contraction of the indices. For simplicity, we
will choice A1 = A2 = A0. Then, we perform a Fourier
transform on the energy density and express it as

ρ̄(k) =

∫ ∞

0

dζe−ikζρ(ζ). (44)

The modal fraction, which describes how localized the
information is in a given mode, is defined as

f(k) =
|ρ̄(k)|2

∫

dk|ρ̄(k)|2 . (45)

For the continuous variables case, we use the differen-
tial configurational entropy (DCE) defined as

SDCE = −
∫

dkf̃(k) log f̃(k), (46)

where f̃(k) = f(k)/f(k)Max, and f(k)Max is the maxi-
mum value assumed by f(k).
Recall that ρ(z) ∈ L2(R) has information on how en-

ergy is localized in the bulk. Thus, it indirectly measures
how normalizable modes are well localized in the AdS
space. In hadronic terms, this localization measure is
also a signal of confinement since a bounded state should
be localized. Therefore, DCE becomes a clear test for
holographic models mimicking hadrons.

We calculated the differential configurational entropy
(DCE) for the Σ(1/2) and Σ(3/2) trajectories using both
bottom/up approaches. We summarize our findings in
Figs.5 and 6.
As we expected from the localization and stability hy-

pothesis, Fig. 5 shows that as n increases, SDCE increases
for the σ(1/2) trajectory in both models. However, for
the Σ(3/2) trajectory, the DCE only grows with n for

FIG. 5. The differential configurational entropy (DCE) for the
two holographic models describing the Σ(1/2) trajectory as a
function of excitation number n. Blue circles represent non-
quadratic geometric deformation, and orange squares repre-
sent non-quadratic dilaton.

FIG. 6. The differential configurational entropy (DCE) for
the two holographic models describing the Σ(3/2) trajec-
tory as a function of the excitation number n. Blue circles
represent non-quadratic geometric deformation, and orange
squares represent non-quadratic dilaton.

the non-quadratic dilaton approach. The deformed back-
ground approach increases only for the first excited state.
Higher excitations have decreased the DCE. Assuming
the DCE-stability hypothesis, these higher states become

more stable. This conclusion is not possible from the
hadronic phenomenology. Thus, deformed background

approach is not good for describing these Σ(3/2) states.

V. CONCLUSIONS

In this study, we developed two models: the non-
quadratic deformed background with the warp factor set
as A (z) = log

(

R
z

)

+ 1
2 (k z)

2−α
. For the second model,

we assume a non-quadratic dilaton Φ(z) = 1
R (κ z)2−α.
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Using standard bottom-up techniques, we tested these
models as alternatives to describe Σ baryon spectroscopy.
Each model has two parameters associated with the
Regge slope and the linearity deviation. In both cases,
experimental data was properly fitted, having RMS er-
rors smaller than 10 %. The next stage in choosing a
good model is the DCE analysis.

Regarding the mass spectrum, we observed that
ground states are not well-fitted in both models. In other
bottom-up models, ground state mass sets the Regge
slope. However, in this non-quadratic scenario, the slope
and the deformation are fitted by regression over the en-
tire trajectory. Ground states are strongly attached to
the behavior of the one-gluon exchange term in hadronic
potentials. These terms come from the perturbative anal-
ysis, which is not captured in the dilaton or deforma-
tions. Recall that this bottom-up confinement tries to
mimic the confinement part in the Cornell-like potentials
that control the higher excitations. Further improve-
ments in the determination of the intercept (leading to a
better ground state mass) are required. For further de-
tails, see [68] for an interesting discussion and review of
how hadronic spectroscopy can be captured in bottom-up
models.

Configurational entropy measures how well localized a
mode is in the solution space. Thus, it could have infor-
mation about confinement by considering that the emer-
gence of bounded colorless states is a consequence of color
confinement. Thus, DCE can be used to address whether
or not a given holographic approach is suitable to de-
scribe hadrons from the stability point of view. However,
DCE is not the only test we have. Thermal analysis [45]
of the two-point spectral function also discusses stability.

For the models discussed here, we observed that the
deformed background seems inconsistent with the hy-
pothesis of stability/DCE, at least for the Σ(3/2) tra-
jectory. As a hypothesis, if we analyze the behavior of
the Schrödinger modes in the deformed background, we
see that they are highly suppressed in the bulk due to the
structure of the holographic potential, i.e., the exponen-
tial factor in Eqn. (15), the modes are spatially confined.
For excited modes, they oscillate in small bulk regions.
Since these solutions do not tend to smear out into the
bulk, the DCE does not decrease. This hypothesis has to
the tested with other similar geometric approaches.

From its original motivation, differential configura-
tional entropy describes how constituents are distributed
among different states or configurations in a given sys-

tem. It allows us to quantify the degree of disorder or
randomness of those constituent arrangements, provid-
ing insights into the probabilities of various particle con-
figurations. Thus, DCE is related to how constituents
interact with each other. This fact allows DCE to be
considered a probe to test how confinement is realized in
holographic models. However, there is still plenty of room
to discuss the nature of the arrangements of constituents
inside hadrons since how we model these systems in such
holographic models has to be improved.
A higher differential configurational entropy indicates

more possible particle arrangements, implying greater
disorder or freedom of movement. On the other hand,
a lower differential configurational entropy suggests a
more ordered particle arrangement or more significant
constraints on the configuration. The calculation results
for the two models are shown in Figs. 5 and 6. From the
figures, we can observe that the data overall increases
with the increase in mass, and the values of configura-
tional entropy also increase. By comparing the results of
the two models, it is found that the model incorporating
the dilaton field obtains lower configurational entropy in
the calculation of Σ(1/2) and Σ(3/2).
The relationship between configurational entropy and

the mass spectrum of Σ baryons is highly significant.
Configurational entropy is an indirect measure of the in-
tricacy of the structure in Σ baryons. Meanwhile, the
mass spectrum characterizes the distribution of masses
corresponding to different energy levels and combinations
of constituent particles within Σ baryons. Higher config-
urational entropy in Σ baryons signifies a broader range
of arrangements and degrees of freedom. This observa-
tion can also be interpreted in terms of transition prob-
abilities. Higher DCE is connected with smaller decay
widths. Thus, the smallest DCE is expected to belong to
the ground state with the highest decay width. We will
explore this idea in further investigations.
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