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Abstract—The space-air-ground integrated network (SAGIN)
is a pivotal architecture to support ubiquitous connectivity in the
upcoming 6G era. Inter-operator resource and service sharing is a
promising way to realize such a huge network, utilizing resources
efficiently and reducing construction costs. Given the rationality
of operators, the configuration of resources and services in
SAGIN should focus on both the overall system performance and
individual benefits of operators. Motivated by emerging symbiotic
communication facilitating mutual benefits across different radio
systems, we investigate the resource and service sharing in SAGIN
from a symbiotic communication perspective in this paper. In
particular, we consider a SAGIN consisting of a ground network
operator (GNO) and a satellite network operator (SNO). Specif-
ically, we aim to maximize the weighted sum rate (WSR) of the
whole SAGIN by jointly optimizing the user association, resource
allocation, and beamforming. Besides, we introduce a sharing
coefficient to characterize the revenue of operators. Operators
may suffer revenue loss when only focusing on maximizing the
WSR. In pursuit of mutual benefits, we propose a mutual benefit
constraint (MBC) to ensure that each operator obtains revenue
gains. Then, we develop a centralized algorithm based on the
successive convex approximation (SCA) method. Considering that
the centralized algorithm is difficult to implement, we propose a
distributed algorithm based on Lagrangian dual decomposition
and the consensus alternating direction method of multipliers
(ADMM). Finally, we provide extensive numerical simulations to
demonstrate the effectiveness of the two proposed algorithms,
and the distributed optimization algorithm can approach the
performance of the centralized one. The results also reveal that
the proposed MBCs can enable operators to achieve mutual
benefits and realize a symbiotic resource and service sharing
paradigm.

Index Terms—Symbiotic communication, SAGIN, inter-
operator resource and service sharing, resource optimization.

I. INTRODUCTION

Wireless communication has made outstanding achieve-

ments in the past decades and stepped into the 5G era.

Although 5G can realize much better performance than former

communication systems, including higher peak data rate, and

ultra reliable and low latency, it still cannot satisfy some

requirements in 6G, such as the ubiquitous connectivity [1].

In fact, there are still 2.7 billion people who cannot access

the Internet, and about 6% of the rural area worldwide lacks
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mobile network coverage [2]. The principal reasons are the

limited coverage of ground networks and the high expenses

of deploying networks in rural areas. Satellite networks have

emerged as an important complementary technology to en-

hance coverage of ground networks [3], which can tackle

the above issues. Compared with ground networks, satellite

networks can provide seamless coverage to users without

deploying costly fiber optic backhaul. Therefore, the space-

air-ground integrated network (SAGIN) is a vital technology

to realize ubiquitous connectivity in the 6G era.

Recently, satellite networks have rapidly developed and

attracted considerable attention from academia to industry. For

instance, SpaceX has launched over 4, 000 low earth orbit

(LEO) satellites to construct Starlink [4]. To realize ubiquitous

connectivity, addressing the severe path loss caused by the

long propagation distance is necessary. In Starlink, a satellite

terminal (ST) comprising a satellite dish and an access point

is exploited to deal with this problem. The satellite dish

provides high antenna gain to compensate for the path loss,

and the access point offers access service to users. In [5],

a satellite access network for 5G and beyond is proposed

based on this kind of ST. Satellite networks are also expected

to realize high throughput satellite communication. To this

end, high frequency is adopted in satellite communication,

such as Ka band [6]. Besides, multi-beam satellites also

play an essential role in realizing high throughput satellite

communication. Compared with conventional satellites, multi-

beam satellites can generate multiple beams with high gain and

thus provide better satellite communication [7], [8]. Moreover,

the shadowed-Rician (SR) fading is widely adopted to model

the satellite-ground channels, based on which many works

analyze the performance of satellite networks [9]–[11]. Re-

source allocation in satellite networks is also widely studied

[12], [13]. Additionally, diverse multiple access techniques are

adopted in satellite networks to serve users [14], [15], such as

the time division multiple access (TDMA) manner.

The rapid growth of satellite networks paves the way for

realizing SAGIN, which has been widely studied in recent

years. Since SAGIN is a large-scale network, it is almost

impossible for an individual network operator to construct

it. Therefore, inter-operator sharing1 is a promising technol-

ogy for constructing SAGIN. In fact, the famous ground

network operator (GNO) T-mobile announces that it aims

to provide seamless coverage to users by cooperating with

satellite network operator (SNO) SpaceX [16]. Optimizing the

1For ease of notation, “inter-operator sharing” is synonymous with “inter-
operator resource and service sharing” in this paper.
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configuration of resources and services is an essential problem

to fully exploit the advantages of SAGIN with inter-operator

sharing. Considering the limited spectrum, many works study

the spectrum sharing problem in SAGIN [17]–[19]. In [18],

catering to the heterogeneity and high dynamics of SAGIN, the

authors propose an intelligent spectrum management frame-

work empowered by artificial intelligence and software defined

network (SDN). In [20], the spectrum allocation is optimized

to maximize the sum rate while reducing the interference

received at satellite users. On the other hand, service sharing

is another critical topic in studying SAGIN. Many recent

scientific literatures demonstrate that satellite networks are a

promising supplement to ground networks in providing diver-

sity services to remote areas, such as backhaul connectivity

[21]–[23] and task offloading [24], [25]. In [23], a satellite

assists ground networks in providing backhaul links to users

in remote areas, and both user association and beamforming

are optimized to maximize the sum rate. In [25], satellite

networks support task offloading of remote Internet-of-Things

(IoT) devices. An optimization problem about user association

and spectrum allocation is formulated to minimize the task

offloading delay. The above works only focus on the overall

performance of SAGIN. However, motivating different oper-

ators to share resources and services is also a vital problem.

As the operators are inherently competitors with conflicting

interests, they will be reluctant to construct SAGIN if resource

and service sharing cannot guarantee their revenue, i.e., they

cannot achieve mutual benefits. In [26], a pricing mechanism

is proposed to ensure each operator’s revenue. However, it

cannot fully leverage the resources in SAGIN to achieve a high

overall performance. Therefore, it is vital to simultaneously

achieve mutual benefits among operators and maximize the

overall performance of SAGIN.

The recently emerging symbiotic communication provides

a promising paradigm to tackle the above problem, which

aims to optimize the collective objectives of diverse radio

systems and realize mutual benefits among them via sharing

resources and services [27]. Symbiotic communication has

been widely studied in backscatter communications [28]–

[32]. In [28], the authors investigate the symbiotic commu-

nication in a passive IoT system, consisting of an active

transmission and a backscatter transmission. Specifically, the

active transmission shares spectrum and energy resources with

the backscatter transmission, and in return the backscatter

transmission provides a beneficial multi-path to the active

transmission via reflecting the incident signal. As a result,

the active and backscatter transmission achieve mutual ben-

efits in this system, realizing higher sum rate. Besides, the

symbiotic communication is realized in the coexistence of

a cellular network and WiFi system in [33]. Particularly,

the WiFi system shares spectrum with the cellular network,

and the cellular network adjusts transmission parameters to

guarantee the performance of WiFi system. Resource allo-

cation in symbiotic communication is also studied. In [34],

[35], both user association and beamforming are optimized to

realize the symbiotic communication in multi-operator cellular

networks. Symbiotic communication can also be a prominent

solution to construct SAGIN. In [36], the authors propose a

blockchain and deep learning based framework to optimize

resource allocation in SAGIN with the guidance of symbiotic

communication. However, it lacks an explicit formulation to

strictly guarantee individual benefits after sharing resources

and services.

Motivated by the above works, in this paper, we investigate

joint user association, resource allocation, and beamforming

design in SAGIN from a symbiotic communication perspec-

tive. Specifically, the considered SAGIN system consists of a

GNO and SNO engaging in inter-operator sharing, i.e., sharing

spectrum and allowing users to access arbitrary networks. The

GNO has base stations (BSs) connected to the core network

by fiber. On the other hand, the SNO has STs connected to the

core network via a multi-beam LEO satellite, and this LEO

satellite serves STs in the TDMA manner. Given the high

cost of deploying fiber in remote areas, the number of BSs

is fewer than that of STs. Our objective is to maximize the

weighted sum rate (WSR) of all users while achieving mutual

benefits among operators in terms of revenue. To characterize

revenue of operators, we introduce a sharing coefficient that

reflects the impact of inter-operator sharing. The revenue may

experience losses when only pursuing the maximization of

the WSR. To achieve mutual benefits, we propose a mutual

benefit constraint (MBC) to guarantee that each operator can

obtain higher revenue with inter-operator sharing. The main

contributions of this work can be summarized as follows:

• We investigate a symbiotic resource and service sharing

paradigm in the SAGIN, which aims to maximize the

overall system performance and realize mutual benefits

between the GNO and SNO. We formulate an opti-

mization problem regarding user association, resource

allocation, and beamforming design to maximize the

WSR, subject to the MBCs and STs’ backhaul capacity

constraints.

• We introduce a sharing coefficient to characterize the

revenue of each network operator, based on which the

MBC is formulated to ensure each operator can obtain

revenue gains after sharing spectrum and services.

• We propose a centralized algorithm based on successive

convex approximation (SCA) for the formulated WSR

maximization problem. Concerning the large scale of the

SAGIN, it is challenging to implement the centralized al-

gorithm. Then, we develop a distributed algorithm, which

consists of the Lagrangian dual decomposition based

algorithm for user association and consensus alternating

direction method of multipliers (ADMM) based algorithm

for beamforming design and resource allocation.

• Simulation results show that both the proposed algorithms

can outperform the considered benchmarks, and the dis-

tributed algorithm approaches a performance close to that

of the centralized algorithm. Moreover, in comparison

to operators in the non-symbiotic case, each operator in

the symbiotic case attains higher revenue after sharing

spectrum and services. This implies that operators achieve

mutual benefits and realize a symbiotic resource and

service sharing paradigm in the SAGIN.

The remainder of this paper is organized as follows. Section
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Fig. 1. The considered SAGIN with inter-operator sharing.

II illustrates the system model. In Section III, we formulate

the WSR maximization problem for the considered SAGIN

system. In Section IV, an SCA-based centralized algorithm

and finding initial point algorithm are proposed for the WSR

maximization problem. In Section V, a distributed algorithm

based on consensus ADMM and Lagrangian dual decom-

position methods is developed. In Section VI, the extensive

simulation results are presented. Finally, Section VII concludes

this paper.

Notations: The notations in this paper are listed as follows.

The scalars, column vectors and matrices are represented by

lowercase, bold lowercase and uppercase symbols (e.g., x, x

and X), respectively. |A| denotes the cardinality of set A.

C denotes the set of complex numbers. Main notations are

summarized in Table I.

II. SYSTEM MODEL

A. SAGIN Network

As shown in Fig. 1, we consider the downlink of a SAGIN

system, which consists of a GNO and SNO, and we define

O = {G,S} as the set of operators. Specifically, the GNO

has NU users and deploys NB BSs, directly connected to

the core network via fiber that can provide large backhaul

capacity. On the other hand, the SNO has N ′
U subscribed

users and deploys N ′
B STs to serve users in remote areas, and

it exploits a multi-beam LEO satellite to provide backhaul

links to STs over the Ka band. Since the payload of the

satellite is constrained, the backhaul capacity it provides to

STs is limited. Besides, both operators have a dedicated C

band for serving users. We denote BG = {1, 2, . . . , NB} and

BS = {NB + 1, NB + 2, . . . , NB + N ′
B} as the set of all

BSs and STs, respectively. Denote the set of subscribed users

of the GNO as UG = {1, 2, . . . , NU} and that of the SNO

as US = {NU + 1, NU + 2, . . . , NU +N ′
U}. Then, we denote

B , ∪n∈OBn and U , ∪n∈OUn. We consider that all BSs and

STs are equipped with Nt transmit antennas while all users

are equipped with a single antenna. In the considered SAGIN,

inter-operator sharing is adopted, where all BSs and STs share

their C bands to serve users, and the users can access arbitrary

BSs or STs for service. Furthermore, we assume that each

operator has a control center to collect necessary information

(e.g., channel state information (CSI), and user locations.).

B. Space-Ground Communication Model

We consider that the multi-beam LEO satellite is equipped

with NL feeds, and each can generate a spot beam to provide

backhaul links to STs. Specifically, each beam serves STs

within its coverage in the TDMA manner. Besides, universal

frequency reuse is adopted in space-ground communication,

which means all beams operate over the Ka band. Then,

we assume each ST is pointed towards the satellite, and the

received signal of ST i within the coverage of beam ℓ is

yℓ,i =
√

pℓGT (ζℓ,i)GRfisℓ

+

NL
∑

ℓ′=1,
ℓ′ 6=ℓ

√

pℓ′GT (ζℓ′,i)GRfisℓ′ + zi,
(1)

where pℓ is the transmit power of ℓ-th spot beam; sℓ is

the symbol transmitted by ℓ-th spot beam, which is assumed

to be an independent random variable with zero mean and

unit variance; and zi ∼ CN (0, σ2
s) is the additive white

Gaussian noise (AWGN). GR is the receive antenna gain of

STs, GT (ζℓ,i) is the transmit antenna gain of the ℓ-th spot

beam toward ST i, and ζℓ,i is the off-boresight angle between

the center of ℓ-th spot beam and ST i. Specifically, GT (ζℓ,i)
is given by

GT (ζℓ,i) = G0
T · 4

∣

∣

∣

∣

J1(κa sin ζℓ,i)

κa sin ζℓ,i

∣

∣

∣

∣

2

,

where G0
T is the maximum transmit gain, κ = 2π

λKa
is the

wave number, a is the radius of the dish antenna, and λKa
is the carrier length of Ka band. fi is the downlink channel

between the LEO satellite and ST i, which is given by

fi =
√

dif̃i, (2)

where di accounts for the path-loss between the satellite and

ST i, while f̃i is the SR fading. The probability distribution

function of SR fading gain |f̃i|2 is given by

f|f̃i|2(s; b,m,Ω) =
1

2b

(

2bm

2bm+Ω

)m

exp
(

−
s

2b

)

×

1F1

(

m, 1,
Ωs

2b(2bm+Ω)

)

,

(3)

where Ω is the average power of a LoS component, 2b is the

average power of the scatter components, m is the Nakagami

parameter, and 1F1(·, ·, ·) is the confluent hypergeometric

function. Based on (1), the backhaul capacity for ST i served

by ℓ-th spot beam is

Cℓ,i = BKatℓ,i

× log2

(

1 +
pℓGT (ζℓ,i)GR|fi|2

∑

ℓ′ 6=ℓ pℓ′GT (θℓ′,i)GR|fi|
2 + σ2

s

)

,
(4)

where BKa denotes the bandwidth of Ka band, tℓ,i is the

fraction of time resource ℓ-th spot beam allocates to ST i.

C. Ground-Ground Communication Model

Universal frequency reuse is also adopted by BSs/STs to

serve users, and the downlink channel between BS/ST i and

user k over the spectrum band of operator n ∈ O is given by

hni,k =
√

di,kh̃
n
i,k, (5)



TABLE I
MAIN NOTATIONS

Notation Meaning

G,S,O GNO, SNO, set of network operators

B,BG,BS Set of BSs and STs, set of BSs, set of STs

U ,UG,US Set of all users, set of users from GNO, set of users from SNO

NB , N ′

B The number of BSs, the number of STs

NU , N ′

U The number of users from GNO, the number of users from SNO

NL, Nt The number of feeds of the LEO satellite, the number of transmit antennas of BSs/STs

Pi, PSat Maximum transmit power of BS/ST i, maximum transmit power of the LEO satellite

GT (·), GR Transmit antenna gain of the ℓ-th spot beam, receive antenna gain of STs

fi Downlink channel between the LEO satellite and ST i

hn
i,k

Downlink channel between BS/ST i and user k over band n

pℓ, tℓ,i Power of ℓ-th spot beam, time allocated to ST i by ℓ-th spot beam

xi,k User association variable for BS/ST i and user k

w
n
i,k

Transmit beamforming that BS/ST i assigns to user k over band n

δz Sharing coefficient of operator z

U0
z , Uz Revenue without inter-operator sharing, revenue with inter-operator sharing

where di,k is the path-loss between BS/ST i and user k, and

h̃ni,k ∈ C1×Nt is the small-scale fading coefficient. With inter-

operator sharing, the users of one operator can access other

operators’ networks, and each BS/ST can operate over all

spectrum bands. In this case, the received signal of user k

associated with BS/ST i ∈ Bm over the band n is

yni,k = hni,kw
n
i,ksk

+
∑

j∈Bm,k
′∈U

(j,k′) 6=(i,k)

hnj,kw
n
j,k′sk′

+
∑

j∈B\Bm,k′∈U

hnj,kw
n
j,k′sk′ + zn,

(6)

where wn
i,k ∈ CNt×1 is the transmit beamforming that BS/ST

i assigns to user k over the band n; sk denotes the symbol

transmitted to user k; and zn ∼ CN (0, σ2
t ) is the AWGN

over band n. The instantaneous signal-to-interference-plus-

noise ratio (SINR) of user k in the band n can be written

as

γni,k =

∣

∣

∣hni,kw
n
i,k

∣

∣

∣

2

Ĩni,k + Ini,k + σ2
t

, (7)

where Ĩni,k denotes the intra-operator interference while Ini,k
denotes the inter-operator interference. Specifically, Ĩni,k and

Ini,k are as follows:

Ĩni,k =
∑

j∈Bm,k
′∈U

(j,k′) 6=(i,k)

∣

∣hnj,kw
n
j,k′

∣

∣

2
, (8a)

Ini,k =
∑

j∈B\Bm,k′∈U

∣

∣hnj,kw
n
j,k′

∣

∣

2
. (8b)

Thus, the achievable rate for user k with inter-operator sharing

is shown as

Ri,k =
∑

n∈O

log2(1 + γni,k). (9)

III. PROBLEM FORMULATION

As the network performance heavily depends on the con-

figuration of resources and services, we formulate a WSR

maximization (WSRM) problem through jointly optimizing

user association, resource allocation, and beamforming design.

Specifically, since the backhaul capacity offered by the LEO

satellite is limited, the investigated WSRM problem is subject

to the backhaul capacity constraints of STs. Besides, we

introduce a sharing coefficient δz for operator z to characterize

its revenue. Based on the revenue, MBCs are proposed to

realize mutual benefits, realizing a symbiotic resource and

service sharing paradigm.

A. Revenue of Operators

While inter-operator sharing can improve the overall per-

formance, it concurrently incurs additional costs due to

inter-operator interference and serving other operators’ users.

Hence, to compensate for the additional costs and incentivize

operators to engage in inter-operator sharing, a sharing co-

efficient δz ∈ [0, 1] is introduced for each operator z to

characterize its revenue. As the revenue of an operator is

usually related to the transmission rate that it can offer, we

define the revenue of operator z as

Uz =
∑

i∈B,k∈U

xi,kα
z
i,kRi,k, (10)

where xi,k ∈ {0, 1} is the user association variable, xi,k = 1
if user k is associated with BS/ST i, and xi,k = 0 otherwise.

Let BS/ST i belong to operator m, and user k subscribe to

operator n, then αzi,k is defined as

αzi,k =



















1, if z = m = n,

δm, if z = m,m 6= n,

1− δm, if z = n,m 6= n,

0, otherwise.

(11)

From (10) and (11), it can be observed that the sharing coeffi-

cient δm can affect the revenue (or compensation) obtained

by operator m from serving other operators’ users. Thus,

this sharing coefficient has a significant impact on service

sharing. For example, when δm = 0, other operators need

not compensate operator m for offloading their users to it,

and operator m cannot obtain any revenue. As a result, for



higher revenue, operator m prefers to serve its users, while

other operators prefer to offload their users to operator m.

B. WSRM Formulation

In the studied SAGIN system, each user can be associated

with any BSs/STs, and each BS/ST can operate in all bands. To

efficiently maximize performance of the whole system while

ensuring that operators achieve mutual benefits, we formulate

the WSRM problem from the symbiotic communication per-

spective, which is written as

P1 : max
p,t,W,x

∑

i∈B

∑

k∈U

xi,kbi,kRi,k (12a)

s.t. Uz ≥ U0
z , ∀z ∈ O, (12b)

∑

i∈BS

tℓ,i ≤ 1, ∀ℓ = 1, · · · , NL, (12c)

∑

k∈U

BCRi,k ≤ Cℓ,i, ∀i ∈ BS , (12d)

∑

n∈O

∑

k∈U

‖ wn
i,k ‖2≤ Pi, ∀i ∈ B, (12e)

NL
∑

ℓ=1

pℓ ≤ PSat, (12f)

∑

i∈B

xi,k ≤ 1, ∀k ∈ U , (12g)

xi,k ∈ {0, 1}, ∀i ∈ B, ∀k ∈ U , (12h)

where p , {pℓ}ℓ=1,2,··· ,NL
, t , {tℓ,i}ℓ=1,2,··· ,NL,i∈BS

,

w , {wn
i,k}n∈O,i∈B,k∈U , x , {xi,k}∈B,k∈U , bi,k denotes

the weight for the rate of user k associated with BS i, and

Pi and PSat are the maximum transmit power of BS/ST i

and the LEO satellite, respectively. Besides, (12c) is the time

resource allocation constraint; (12d) is the backhaul constraint

for each ST, and BC is the bandwidth of C band; (12e) is the

power constraint for each BS/ST, which indicates the spectrum

sharing is enabled; (12f) is the power constraint for the LEO

satellite; (12g) means that each user can be associated with

only one BS/ST, which indicates the service sharing is enabled,

and (12h) indicates that xi,k is a binary variable. Further,

(12b) is referred to as the MBC, which ensures that each

operator can obtain benefits. Specifically, Uz is the revenue

operator z can obtain with inter-operator sharing, while U0
z

is the revenue obtained without inter-operator sharing. The

details of determining U0
z will be illustrated in Section IV-C.

In the above formulation, we do not take xi,k into con-

sideration in the left-hand-side (LHS) of constraint (12d)

because Ri,k will automatically be 0 when xi,k = 0 at the

optimality. To see this, consider the optimal beamforming and

user association scheme of P1 for user k is xi,k = 0 while

wn
i,k 6= 0. Since xi,k is considered in the objective (12a), by

setting wn
i,k = 0, a feasible solution with higher objective

value can be obtained. Then, according to (7) and (9), Ri,k
will be 0, too.

IV. CENTRALIZED OPTIMIZATION ALGORITHMS FOR

WSRM

In this section, we leverage the block successive maxi-

mization (BSM) method [37] to solve P1, where the above

problems are solved in three stages iteratively. In the first

stage, the beamforming w of BSs/STs and power p of the

multi-beam LEO satellite are optimized for the given user

association scheme x and time allocation t using the SCA

method. Then, w and t are optimized with fixed x and p.

In the last stage, x is optimized for the given beamforming

design and resource allocation. Next, we also provide a method

to obtain the revenue for each operator without inter-operator

sharing (U0
z ). Besides, we propose an initial point searching

method for the SCA-based algorithm. Finally, the proposed

centralized algorithm can be implemented in the assigned

control center.

A. Resource Allocation and Beamforming Optimization for

WSRM

P1 is a non-convex and mixed-integer problem, which is

hard to tackle. To make the problem tractable, we introduce

some auxiliary variables and rewrite P1 equivalently as

P1.1 : max
p,t,w,x,Γ,β,ϕ,ρ

∑

i∈B

∑

k∈U

xi,kbi,kri,k (13a)

s.t. (12c), (12f), (12g), (12h), (13b)

Γni,k ≤

∣

∣

∣hni,kw
n
i,k

∣

∣

∣

2

βni,k
, (13c)

βni,k ≥ Ĩni,k + Ini,k + σ2
t , (13d)

ϕni,k ≥

∣

∣

∣
hni,kw

n
i,k

∣

∣

∣

2

ρni,k
, (13e)

ρni,k ≤ Ĩni,k + Ini,k + σ2
t , (13f)

∑

i∈B

∑

k∈U

xi,kα
z
i,kri,k ≥ U0

z , (13g)

∑

n∈O

∑

k∈U

BC log2(1 + ϕni,k) ≤ Cℓ,i, (13h)

ri,k =
∑

n∈O

log2(1 + Γni,k), (13i)

where Γ , {Γni,k}n∈O,i∈B,k∈U represents the lower bound of

SINR for user k associated with BS/ST i over band n; β ,

{βni,k}n∈O,i∈B,k∈U represents the upper bound of total inter-

ference and noise received at user k; ϕ , {ϕni,k}n∈O,i∈B,k∈U

represents the upper bound of SINR for user k associated with

BS/ST i over band n; ρ , {ρni,k}n∈O,i∈B,k∈U represents the

lower bound of interference and noise received at user k.

By introducing Γ and ϕ, the MBC (12b) and backhaul

constraint (13h) can be satisfied at the optimality, respectively.

Besides, it is obvious that the constraints from (13c) to

(13f) should hold with equality at the optimality. Thus, the

equivalence between (12) and (13) is guaranteed. P1.1 is still

challenging to tackle due to the non-convex constraints (13c),

(13f) and (13h). To make P1.1 more tractable, we propose

to exploit the SCA method to deal with these non-convex

constraints.

Note that the right-hand-side (RHS) of (13c) is a joint

convex quadratic-over-linear function with respect to wn
i,k

and βni,k. With this fact, we can use the SCA method to



approximate the RHS of (13c) with a lower bound. The

RHS of (13c) can be approximated with the first-order Taylor

expression as
∣

∣

∣hni,kw
n
i,k

∣

∣

∣

2

βni,k
≥ g1(w

n
i,k, β

n
i,k), (14)

where g1(w
n
i,k, β

n
i,k) is given in (15) on top of the next page,

wn
i,k[τ − 1], βni,k[τ − 1] are the iterative optimization variables

obtained in iteration τ − 1, and Hn
i,k ,

(

hni,k

)H

hni,k. Note

that the RHS of (13f) is also a convex function with respect

to w, and thus its lower bound can be approximated as

Ĩni,k + Ini,k + σ2
t ≥

∑

(j,k′) 6=(i,k)

g2(w
n
j,k′ ) + σ2

t , (17)

where g2(w
n
j,k′ ) is given in (16) on top of the next page. The

RHS of (13h) is a concave function with respect to ϕni,k and

its upper bound can be obtained as

log2
(

1 + ϕni,k
)

≤ g3(ϕ
n
i,k)

, log2
(

1 + ϕni,k[τ − 1]
)

+
ϕni,k − ϕni,k[τ − 1]

ln 2(1 + ϕni,k[τ − 1])
.

(18)

The LHS of (13h) can be expressed as the difference of

concave functions, and its lower bound is as follows:

Cℓ,i ≥ Cℓ,i(p)

, BKatℓ,i

{

log2

(

∑

ℓ′

pℓ′GT (θℓ′,i)GR|fi|
2 + σ2

s

)

− C1
ℓ,i − C2

ℓ,i

}

,

(19)

where C1
ℓ,i and C2

ℓ,i are given by

C1
ℓ,i = log2





∑

ℓ′ 6=ℓ

pℓ′ [τ − 1]GT (θℓ′,i)GR|fi|
2 + σ2

s



 ,

C2
ℓ,i =

∑

ℓ′ 6=ℓ

GT (θℓ′,i)GR|fi|2

ln 2(
∑

ℓ′ 6=ℓ pℓ′ [τ − 1]GT (θℓ′,i)GR|fi|2 + σ2
s )

× (pℓ′ − pℓ′ [τ − 1]) .

With approximations (14), (17), (18) and (19), we can obtain

the reformulated optimization problem at iteration τ of SCA

as follows:

P1.2 : max
p,t,w̃

∑

i∈B

∑

k∈U

xi,kbi,kri,k (20a)

s.t. (13b), (13d), (13e), (13g), (13i),

Γni,k ≤ g1(w
n
i,k, β

n
i,k), (20b)

ρni,k ≤
∑

(j,k′) 6=(i,k)

g2(w
n
j,k′ ) + σ2

t , (20c)

∑

n∈O

∑

k∈U

BCg3(ϕ
n
i,k) ≤ Cℓ,i(p). (20d)

For notational simplicity, we denote variables Γ, β,ϕ, ρ, and

w as w̃ = {w,Γ,β,ϕ, ρ}, because those variables all depend

on w. The problem (20) is still not convex because variables

p, t and ϕ are coupled due to the constraint (20d). It can be

observed that (20) is convex with respect to either {p, w̃} or

{t, w̃}. Based on this observation, the BSM method is adopted

to solve (20). Specifically, {p, t, w̃} can be updated in the

following manner: given {t,x}, optimize {p, w̃}; and given

{p,x}, optimize {t, w̃}.

B. User Association Optimization for WSRM

When variables {p, t, w̃} are fixed, (20) is an integer pro-

gramming problem with respect to x, which is challenging to

tackle. Therefore, we first relax the binary variable constraint

(12h) into 0 ≤ xi,k ≤ 1. Then, to obtain a high-quality

solution for the original integer programming problem, a

penalty term ̺(x2i,k − xi,k) is introduced into the objective

(20a) to force xi,k to be binary, where ̺ is a positive penalty

parameter. The reformulated problem is written as follows:

P1.3 : max
x

∑

i∈B

∑

k∈U

xi,kbi,kRi,k + ̺
∑

i∈B

∑

k∈U

(x2i,k − xi,k)

(21a)

s.t. (12g), (13g), (20d), (21b)

0 ≤ xi,k ≤ 1. (21c)

Considering the penalty term is a convex function of xi,k , we

approximate it with the SCA method, which is given by

(x2i,k − xi,k) ≥ f(xi,k)

, (2xi,k[τ − 1]− 1)xi,k

− x2i,k[τ − 1],

(22)

where xi,k[τ−1] is the iterative optimization variable obtained

in iteration τ − 1. With (22), we can write the problem at

iteration τ of the SCA as

P1.4 : max
x

∑

i∈B

∑

k∈U

xi,kbi,kRi,k + ̺
∑

i∈B

∑

k∈U

f(xi,k)

s.t. (21b), (21c).

(23)

P1.4 is a linear programming problem with respect to x

and can be easily solved. Besides, it can be verified that,

when ̺ → ∞, the solution x of P1.4 will satisfy the binary

constraint (12h) [38]. However, if ̺ is too large, the objective

of (23) will be dominated by the penalty term, and the original

objective (i.e., WSR) will be diminished. To avoid this, we first

initialize ̺ to a small value to find a good starting point and

then gradually increase ̺ as: ̺ = q̺, where q > 1. The overall

algorithm is summarized in Algorithm 1.

C. Obtaining Revenue without Inter-operator Sharing

U0
z can be determined by solving the WSRM problem

without inter-operator sharing, which can be formulated as

follows

P2 : max
p,t,W,x

∑

i∈Bz

∑

k∈Uz

xi,kbi,kRi,k (24a)

s.t. (12c), (12d), (12f), (12g),
∑

k∈Uz

‖ wz
i,k ‖2≤ Pi, ∀i ∈ Bz, (24b)

xi,k =

{

0 or 1, if i ∈ Bz, k ∈ Uz,

0, otherwise,
(24c)



g1(w
n
i,k, β

n
i,k) ,

2Re

{

(

wn
i,k[τ − 1]

)H

Hn
i,kw

n
i,k

}

βni,k[τ − 1]
−

∣

∣

∣hni,kw
n
i,k[τ − 1]

∣

∣

∣

2

(βni,k[τ − 1])2
βni,k (15)

g2(w
n
j,k′ ) , 2Re

{

(

wn
j,k′ [τ − 1]

)H
Hn
j,kw

n
j,k′

}

−
∣

∣hnj,kw
n
j,k′ [τ − 1]

∣

∣

2
(16)

Algorithm 1 Centralized Optimization Algorithm for WSRM

1: Initialize p[0], t[0], w̃[0],x[0] to feasible values.

2: repeat

3: repeat

4: Update p[τ ], w̃[τ ] by solving (20) with given t[τ−1]
and x[τ − 1].

5: Update t[τ ], w̃[τ ] by solving (20) with given p[τ ]
and x[τ − 1].

6: Update x[τ ] by solving (23) with given p[τ ], t[τ ] and

w̃[τ ].
7: until The objective converges or the maximum number

of iterations is reached.

8: ̺ = q̺.

9: until f(xi,k) is below a certain threshold ǫ or the maxi-

mum number of iterations is reached.

where (24b) indicates there is no spectrum sharing, and (24c)

indicates that each user can only be associated with the

BSs/STs of the same operator. Further, Ri,k in (24a) is given

by

Ri,k = log2(1 + γni,k), (25)

where γni,k can be obtained by (7) with Ini,k = 0. P2 can

be decomposed into independent subproblems for different

operators. Similar to P1, the subproblem for operator n can

be equivalently reformulated as

P2.1 : max
p,t,w̃,x

∑

i∈Bz

∑

k∈Uz

xi,kbi,kri,k

s.t. (12c), (12f), (12g), (24b), (24c),

(20b) − (20d).

(26)

It is clear that P2.1 can be regarded as a special case of P1.2.

Therefore,the algorithm proposed for P1.2 can be applied to

solving P2.1. Different from P1.2, MBCs are not considered in

P2.1, and there exists optimal x of P2.1 are binary variables.

Hence, we do not need to introduce the penalty term (22)

to the objective of (26). If we solve x directly to the global

optimality, x will not change during the algorithm and fix at

0 or 1. To find a good x, we exploit the gradient projection

[39] for updating x, which is given by

xi,k = PΩx
(xi,k + ηbi,kRi,k) , (27)

where PΩx
(·) is the projection to the set Ωx = {xi,k |

(12g), (24c)}, and η is the step size. The overall algorithm

is summarized in Algorithm 2.

D. Finding Initial Points

The feasible initial points are important for the SCA-based

algorithm. However, due to the backhaul constraint (20d) and

Algorithm 2 Algorithm for Obtaining Revenue without Inter-

operator Sharing

1: Initialize p[0], t[0], w̃[0],x[0] to feasible values.

2: repeat

3: Update p[τ ], w̃[τ ] by solving (26) with given t[τ − 1]
and x[τ − 1].

4: Update t[τ ], w̃[τ ] by solving (26) with given p[τ ] and

x[τ − 1].
5: Update x with the gradient projection method (27) with

given p[τ ], t[τ ] and w̃[τ ].
6: until The objective converges or the maximum number of

iterations is reached.

MBC (13g), it is challenging to find feasible initial points for

P1.2. To address this issue, we propose a penalty method to

find the feasible initial points [40]. Specifically, we can obtain

initial points by solving the following optimization problem

P3 : max
p,t,w̃,x,s

∑

i∈B

∑

k∈U

xi,kbi,kri,k − ξ(
∑

z∈O

suz
+
∑

i∈BS

sbi)

(28a)

s.t. (13b), (13d), (13e), (13i), (20b)
∑

i∈B

∑

k∈U

xi,kα
z
i,kri,k + suz

≥ U0
z , (28b)

∑

n∈O

∑

k∈U

BCg3(ϕ
n
i,k) ≤ Cℓ,i(p) + sbi , (28c)

suz
, sbi ≥ 0, (28d)

where ξ is a positive penalty parameter and s ,

{suz
, sbi}z∈O,i∈BS

are slack variables. The basic idea of the

above formulation is forcing the penalty terms to be zero

by maximizing (28a). P3 can also be solved with the BSM

method. Besides, the gradient projection can be exploited for

updating x and s, which is given by

(xi,k, suz
) = PΩxs

(xi,k + ηbi,kRi,k, suz
− ηξ) , (29)

where PΩxs
(·) is the projection to the set Ωxs = {xi,k, suz

|
(12g), (13g), (21c)}. The overall algorithm is summarized in

Algorithm 3.

E. Convergence and Complexity Analysis

Algorithms proposed in this section have similar main

process. As a result, we mainly analyze the convergence and

complexity of Algorithm 1, and the results can be applied

to Algorithm 2 and 3. The convergence of Algorithm 1 is

provided as follows.

Proposition 1. Algorithm 1 is guaranteed to converge

Proof. Please refer to Appendix A



Algorithm 3 Initial Points Searching Algorithm

1: Initialize p[0], t[0], w̃[0],x[0] to feasible values.

2: repeat

3: Update p[τ ], w̃[τ ], s by solving (28) with given t[τ−1]
and x.

4: Update t[τ ], w̃[τ ], s by solving (28) with given p[τ−1]
and x.

5: Update x, s using gradient projection (29) with given

p[τ ], t[τ ] and w̃[τ ].
6: until ‖s‖∞ is below a certain threshold ǫ or the maximum

number of iterations is reached.

The main complexity of Algorithm 1 is caused by solving

(20) and (23) in the inner loop. The worst-case complexity of

Algorithm 1 depends on the number of variables, which can

be upper bound as

O{I1outI
1
in( (NL +Nt(NB +N ′

B)(NU +N ′
U ))

4

+ (N ′
B +Nt(NB +N ′

B)(NU +N ′
U ))

4

+ ((NB +N ′
B)(NU +N ′

U ))
4
)}

where I1out and I1in are the number of outer and inner iterations,

respectively.

V. DISTRIBUTED ALGORITHMS FOR WSRM

The centralized algorithm proposed in Section IV is chal-

lenging to implement in the real SAGIN. In this section, we

propose a distributed algorithm for the WSRM problem, which

can be implemented in local centers independently. Specif-

ically, we develop a distributed user association algorithm

based on the Lagrangian dual decomposition and a distributed

algorithm for beamforming design and resource allocation

based on the consensus ADMM.

A. Lagrangian Dual Decomposition-based User Association

Design

With fixed {p, t, w̃}, P1.1 can be reformulated as

P1.5 : max
x

∑

i∈B

∑

k∈U

xi,kbi,kRi,k (30a)

s.t. (12b), (12g), (12h), (30b)

It is clear that P1.5 is non-convex due to the binary variables

x. Although the centralized algorithm can tackle this problem

efficiently by relaxing binary variables, it is difficult to imple-

ment in the real SAGIN due to high complexity. Keeping that

in mind, we propose a distributed user association algorithm

based on the Lagrangian dual decomposition [41], [42].

First, the Lagrangian function with respect to constraint

(12b) is

L(x,λ) =
∑

i∈B

∑

k∈U

xi,kbi,kRi,k +
∑

z∈O

λz
(

Uz − U0
z

)

, (31)

where λ are dual variables introduced for (12b). Then the dual

function is give as

g(λ) =

{

maxx L(x,λ)

s.t. (12g), (12h)
. (32)

Based on the dual function, the Lagrange dual problem of P1.5

can be written as

min
λ
g(λ). (33)

Now, the solution to P1.5 can be obtained by solving (33).

Note that since P1.5 is non-convex and discrete in nature,

solving (33) is not equivalent to solving P1.5, and there may

exist a duality gap. Nevertheless, good primal solutions can

often be obtained by solving the dual problem [42].

Compared with P1.3, (33) can be decomposed into indepen-

dent subproblems for each user and BS/ST and then solved

in a distributed manner. Specifically, (33) can be solved in

two levels, i.e., the inner maximization problem at the user

level and the outer minimization problem at the operator

level. In the inner layer, x is optimized to maximize the

Lagrangian function (31) with given λ. The maximization of

the Lagrangian function (31) has the following explicit analytic

solution:

x∗ik =

{

1, if i = argmax
j

(bj,k +
∑

z λzα
z
j,k)Rj,k

0, otherwise.
(34)

We can see that optimal x∗ik can be determined by each user k

independently according to (34). On the other hand, the dual

problem (33) is convex concerning λ and thus can be solved

with the subgradient method. With x∗ik , the dual variables can

be updated as

λz =
[

λz − η
(

Uz − U0
z

)]+
, (35)

where x+ = max{x, 0}. Specifically, λ can be updated by

each operator independently. The above algorithm is com-

pactly written in Algorithm 4

Algorithm 4 Distributed Algorithm for User Association

1: Initialize x,λ to feasible values.

2: repeat

3: Each user updates x according to (34).

4: Each operator updates λ according to (35) and broad-

casts λ to all users.

5: until The dual objective converges or the maximum num-

ber of iterations is reached.

B. Consensus ADMM-based Resourca Allocation and Beam-

forming Design

Due to the inter-operator interference (8b) and the MBC

(12b), Algorithm 1 is required to be implemented in a cen-

tralized manner, which is challenging to realize in practice.

To this end, we propose an algorithm based on the consensus

ADMM [43] to tackle this problem distributedly.

First, P1.2 can be equivalently rewritten as follows:

P1.2.1 : max
p,t,w̄,

Γ̇,θ̇,ψ̇

∑

z∈O

∑

i∈Bz

∑

k∈U

xi,kbi,kr
(z)
i,k (36a)

s.t. (13b), (13e), (20d),

r
(z)
i,k =

∑

n∈O

log2(1 + Γ
n,(z)
i,k ), (36b)

∑

i∈Bz

∑

k∈U

xi,kα
z
i,kr

(z)
i,k ≥ U0

z , (36c)

Γ
n,(z)
i,k ≤g1(w

n
i,k,β

n
i,k), (36d)



βni,k ≥ Ĩni,k +
∑

m∈O\{z}

θ
n,(z)
m,k + σ2

t , (36e)

ρni,k ≤
∑

i∈Bz

∑

k′∈U\{k}

g2(w
n
i,k′ ) +

∑

m∈O\{z}

ψ
n,(z)
m,k ,

(36f)

θ
n,(z)
z,k ≥

∑

i∈Bz

∑

k′∈U\{k}

∣

∣hni,kw
n
i,k′

∣

∣

2
, (36g)

ψ
n,(z)
z,k ≤

∑

i∈Bz

∑

k′∈U\{k}

g2(w
n
i,k′ ), (36h)

Γ
n,(z)
i,k = Γ̇ni,k, (36i)

θ
n,(m)
z,k = θ̇nz,k, (36j)

ψ
n,(m)
z,k = ψ̇nz,k, (36k)

where w̄ , {w̄z}z∈O, and w̄z ,

{wn
i,k, β

n
i,k, ϕ

n
i,k, ρ

n
i,k,Γ

n,(z)
i,k , θ

n,(z)
i,k , ψ

n,(z)
i,k }n∈O,i∈Bz,k∈U

represents the local variables of operator z. Γ
n,(z)
i,k , θ

n,(z)
i,k

and ψ
n,(z)
i,k are newly introduced slack variables. Specifically,

Γ
n,(z)
i,k represents the SINR of user k associated with BS/ST

i over band n, while θ
n,(z)
i,k and ψ

n,(z)
i,k denote the upper and

lower bound for the inter-operator interference that operator

z causes to user k over band n, respectively. The reason we

introduce θ
n,(z)
i,k is to guarantee MBCs (36c), while that for

ψ
n,(z)
i,k is to satisfy backhaul constraints (20d).

Note that Γ
n,(z)
i,k , θ

n,(z)
i,k and ψ

n,(z)
i,k are all obtained and

optimized by operator z locally. Intuitively, Γ
n,(z)
i,k is a local

version of Γni,k determined by operator z, while θ
n,(z)
i,k and

ψ
n,(z)
i,k are the local versions of Inj,k, j ∈ B \ Bz . On the

other hand, Γ̇ , {Γ̇ni,k}, θ̇ni,k , {θ̇ni,k} and ψ̇n
i,k , {ψ̇ni,k}

are the corresponding global versions of Γni,k, θni,k and ψni,k,

which can be obtained through aggregating local variables

across operators. The constraints (36i)-(36k) can make sure

that operators finally reach a consensus on the value of SINR

and inter-operator interference, guaranteeing the equivalence

of (20) and (36).

With the introduced slack variables, the constraints from

(36c) to (36h) can be decomposed into independent local

convex sets for each operator, and the local set for operator z

is:

Cz =

{

(p, t, w̄z) | (13b), (13e), (20d), (36b) − (36h)

}

,

(37)

Then, the subproblem of (36) for operator z can be compactly

expressed as

P1.2.2 : min
p,t,w̄

z
,

Γ̇,θ̇,ψ̇

∑

i∈Bz

∑

k∈U

−xi,kbi,kr
(z)
i,k (38a)

s.t. (36b)

(p, t, w̄z) ∈ Cz, (38b)

Γ
n,(z)
i,k = Γ̇ni,k, ∀i ∈ B, ∀k ∈ U , (38c)

θ
n,(m)
z,k = θ̇nz,k, ∀m ∈ O, ∀i ∈ B, ∀k ∈ U , (38d)

ψ
n,(m)
z,k = ψ̇nz,k,∀m ∈ O,∀i ∈ B, ∀k ∈ U . (38e)

For notational simplicity, define Φz , {p, t, w̄z} and ̥̥̥z ,

{Γ
n,(z)
i,k }n∈O,i∈Bz,k∈U . Similarly, we define θz and ψz . Then

the augmented Lagrangian of (38) can be written in the

following

L(Φz, Γ̇, θ̇, ψ̇,νz) =
∑

i∈Bz

∑

k∈U

−xi,kbi,kr
(z)
i,k + ICz

(Φz)

+ νTz,Γ

(

̥̥̥z − Γ̇
)

+
c

2

∥

∥

∥̥̥̥z − Γ̇

∥

∥

∥

2

+ νTz,θ

(

θz − θ̇
)

+
c

2

∥

∥

∥θz − θ̇
∥

∥

∥

2

+ νTz,ψ

(

ψz − ψ̇
)

+
c

2

∥

∥

∥
ψz − ψ̇

∥

∥

∥

2

,

where ICz
(Φz) is an indicator function defined as

ICz
(Φz) =

{

0, if Φz ∈ Cz,

+∞, otherwise,

νz , {νz,Γ,νz,θ,νz,ψ} denotes the dual variables related to

constraints (38c)-(38e) of operator z, and c is the penalty

coefficient introduced for penalizing the violation of equality

constraints.

In the following, we elaborate on the variable updates in

ADMM. First, the local variables {p, w̄z} or {t, w̄z} in the

(l + 1)-th iteration can be updated as follows:

(p, w̄z)
(l+1) = arg min

p,w̄z

L(Φ(l), Γ̇(l), θ̇(l), ψ̇(l),ν(l)
z ),

(t, w̄z)
(l+1) = arg min

p,w̄z

L(Φ(l), Γ̇(l), θ̇(l), ψ̇(l),ν(l)
z ).

(40)

Next, the global variables can be updated as

Γ̇(l+1) =
1

|O|

∑

z∈O

(

̥̥̥
(l+1)
z +

1

c
ν
(l)
z,Γ

)

,

θ̇(l+1) =
1

|O|

∑

z∈O

(

θ(l+1)
z +

1

c
ν
(l)
z,θ

)

,

ψ̇(l+1) =
1

|O|

∑

z∈O

(

ψ(l+1)
z +

1

c
ν
(l)
z,ψ

)

,

(41)

where |O| is the number of operators. Finally, dual variables

can be updated as follows:

ν
(l+1)
z,Γ = ν

(l)
z,Γ + c(̥̥̥(l+1)

z − Γ̇(l+1)),

ν
(l+1)
z,θ = ν

(l)
z,θ + c(θ(l+1)

z − θ̇(l+1)),

ν
(l+1)
z,ψ = ν

(l)
z,ψ + c(ψ(l+1)

z − ψ̇(l+1)).

(42)

The algorithm for updating {p[τ ], w̄[τ ]} or {t[τ ], w̄[τ ]} is

summarized in Algorithm 5.

Motivated by the fact observed in [44], we adopt the early

termination strategy in the ADMM-loop. However, the new

objective value may be worse than the previous one due

to limited iterations. In this case, we will increase IADMM

and not accept the new results. The overall algorithm is

summarized in Algorithm 6.
C. Convergence and Complexity Analysis

The convergence of Algorithm 6 is provided as follows.

Proposition 2. Algorithm 6 is guaranteed to converge.

Proof. Please refer to Appendix B



Algorithm 5 Distributed Algorithm for Resource Allocation

and Beamforming

1: Input p[τ − 1], t[τ − 1], w̄[τ − 1],x[τ − 1],νz.

2: repeat

3: Each operator updates local variables {p[τ ], w̄z [τ ]} or

{t[τ ], w̄z [τ ]} according to (40).

4: Each operator shares Γz , θz and ψz with each other

and updates global variables Γ̇, θ̇ and ψ̇ according to

(41).

5: Each operator updates dual variables νz according to

(42).

6: until The objective converges or the maximum number of

iterations is reached.

7: if The new WSR is smaller than the previous one then

8: Increase the maximum number of ADMM iteration

IADMM

9: Return {p[τ − 1], w̄[τ − 1]} or {t[τ − 1], w̄[τ − 1]}
10: end if

Algorithm 6 Distributed Algorithm for WSRM

1: Initialize p[0], t[0], w̄[0],x[0] to feasible values.

2: repeat

3: Update p[τ ], w̄[τ ] via Algorithm 5.

4: Update t[τ ], w̄[τ ] via Algorithm 5.

5: Update x via Algorithm 4.

6: until The objective converges or the maximum number of

iterations is reached.

The complexity of Algorithm 6 is dominated by Algo-

rithm 4 (line 5 of Algorithm 6) and Algorithm 5 (line 3
and 4 of Algorithm 6). The complexity of Algorithm 4

is O(IUA(NB + N ′
B)(NU + N ′

U )), in which IUA is the

iteration number of Algorithm 4. The main complexity of

Algorithm 5 is solving (40), which is similar to Algorithm 1.

As a result, the complexities for line 3 and 4 of Algorithm

6 are O(IADMM (NL + (NB + N ′
B)(NU + N ′

U ))
4) and

O(IADMM (N ′
B + (NB +N ′

B)(NU +N ′
U ))

4), respectively.

VI. SIMULATION RESULTS

In this section, simulation results are provided to demon-

strate the effectiveness of the proposed algorithms and the

significance of the MBCs. The considered SAGIN is shown

in Fig. 2. Specifically, GNO has NB = 2 BSs and NU = 3
users, while SNO has N ′

B = 4 STs and N ′
U = 7 users.

Each BS/ST is equipped with Nt = 4 antennas, and the

maximum transmit power for each BS is 52 dBm, and for

each ST, it is 49 dBm. Besides, we assume each operator has

a BC = 100 MHz dedicated C band. The parameters of the

satellite-ground link are summarized in Table II. The channel

for the ground-ground link is set as follows: the path-loss is

modeled as 32.4 + 20 log(fC) + 30 log(d), where fC = 3 is

the carrier frequency in GHz and d is the distance in km.

The Rayleigh fading is adopted to characterize the small-scale

fading, and the noise power spectral density is −174 dBm/Hz.

Other parameters are set as follows: ̺ = 1 × 10−4, q = 50,

ǫ = 20, η = 0.1, ǫ = 10−3, c = 1.5, and bi,k = 1, ∀i, k.

To show the effectiveness of the proposed algorithms, we

consider the following baseline algorithms for comparison.

Fig. 2. The considered SAGIN.
TABLE II

SYSTEM PARAMETERS FOR SATELLITE-GROUND LINK

PARAMETER VALUE

LEO height 600 km

The number of beams NL = 2

Beam radius 10 km

Carrier frequency fKa = 20 GHz

System bandwidth BKa = 400 MHz

LEO maximum transmit power PSat = 50 W

LEO maximum transmit gain G0

T
= 40 dBi

LEO antenna aperture 0.6 m

ST maximum receive gain GR = 10 dBi

ST antenna temperature 150 K

Environment temperature 290 K

Boltzmann constant 1.38× 10−23 J/K

Noise figure 1.2 dB

Path-loss 92.44 + 20 log(fKa) + 20 log(d)

SR fading (b,m,Ω) (0.126, 10.1, 0.835)

• Closest Association and Equal Resource Allocation

(CA-ERA): Each user is connected to the closest BS/ST,

with equal power allocation and maximum ratio transmit

(MRT) beamfroming employed by BSs/STs. The LEO

satellite equally allocates power to beams and time to

STs within a beam.

• Closest Association and Optimized Power and Beam-

forming (CA-OPW): The power allocation of the LEO

satellite and the beamforming of BSs/STs are optimized

with the proposed algorithm.

• Closest Association and Optimized Time and Beam-

forming (CA-OTW): The time allocation of each beam

and the beamforming of BSs/STs are optimized with the

proposed algorithm.

0 20 40 60 80 100

Iterations

28

30

32

34

36

38

40

42

W
SR

 (
bp

s/
H

z)

Cen. N
U
S =3

Cen. N
U
S =5

Cen. N
U
S =7

Dis. N
U
S =3

Dis. N
U
S =5

Dis. N
U
S =7

Fig. 3. The convergence of the centralized Algorithm 1 and distributed
Algorithm 6: δG = δS = 0.6.



10 20 30 40 50 60 70 80 90 100

Iterations

12

14

16

18

20

22

W
SR

 (
bp

s/
H

z)

N
U
S =3

N
U
S =5

N
U
S =7

Fig. 4. The convergence of Algorithm 2: δG = δS = 0.6.

5 10 15 20 25 30 35 40 45 50
LEO Power (W)

10

15

20

25

30

35

40

45

W
SR

 (
bp

s/
H

z)

Cen. w/ Sharing
Dis. w/ Sharing
CA-OPW w/ Sharing

CA-OTW w/ Sharing
Alg. 2 w/o. Sharing
CA-ERA w/o. Sharing

Fig. 5. WSR versus maximum transmit power of the LEO satellite PSat:
δG = δS = 0.6, Pi = 52 dBm,i ∈ BG, Pj = 49 dBm,j ∈ BS .

Firstly, we validate the convergence of proposed Algo-

rithms. In Fig. 3, we show the convergence of the proposed

centralized Algorithm 1 (‘Cen.’) and distributed Algorithm

6 (‘Dis.’) when δG = δS = 0.6. It can be seen that

both algorithms converge finally, and the distributed algorithm

achieves a very close performance to the centralized algorithm.

Then, the convergence of the Algorithm 2 is demonstrated in

Fig. 4.

Secondly, we compare WSRs achieved by different ap-

proaches versus the transmit power of the LEO satellite in Fig.

5. It is clear that WSRs increase with PSat increasing, indicat-

ing that the impact of backhaul capacity on the WSR. Then,

we compare WSRs achieved by Algorithm 2 and CA-ERA

for the case without inter-operator sharing (‘w/o. Sharing’).
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δS = 0.6, PSat = 50 W.

The proposed algorithm outperforms CR-ERA, demonstrating

the effectiveness of Algorithm 2. Besides, we illustrate the

WSRs for different approaches in the case with inter-operator

sharing (‘w/ Sharing’). The distributed algorithm approaches

the centralized algorithm and performs much better than other

benchmarks. This points out that the necessity of jointly opti-

mizing user association, resource allocation and beamforming

design. Moreover, the WSR achieved in the case with inter-

operator sharing is much higher than that in the case without

inter-operator sharing, indicating significant gains introduced

by realizing SAGIN with inter-operator sharing.

Thirdly, we investigate the WSRs achieved by different

approaches versus the transmit power of STs in Fig. 6.It can

be seen that the WSR in the case with inter-operator sharing

does not keep increasing as Pi increases. Particularly, when

Pi is greater than 40 dBm, the WSR almost remains the

same. This indicates that the backhaul capacity provided by

the LEO satellite limits the WSR, which is consistent with

the result obtained from Fig. 5. Additionally, by comparing

WSRs achieved by different approaches in two cases, we can

find that the proposed algorithms always realize the highest

WSRs and the distributed algorithm performs close to that of

the centralized algorithm.
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Next, we present the WSR and operators’ revenue versus

sharing coefficients to investigate the effect of MBCs in Fig. 7

and Fig. 8. Specifically, we consider two cases: i) the symbiotic

case with MBCs (‘w/ MBC’), and ii) the non-symbiotic case

without MBCs (‘w/o. MBC’). In Fig. 7, we demonstrate WSRs
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and revenue versus δG with δS = 1. By comparing revenue in

the two cases, we can find that each operator’s revenue in the

symbiotic case does not experience revenue loss after sharing

spectrum and services. On the contrary, the GNO suffers

revenue loss in the non-symbiotic case when δG is less than

0.2. This indicates that MBCs can enable operators to achieve

mutual benefits. Then, we compare the WSRs in the two cases.

The WSRs in the symbiotic case are less than those in the

non-symbiotic case when δG < 0.2. The reason is that when

δG < 0.2, the spectrum and service configuration maximizing

the WSR makes GNO suffer revenue loss. Therefore, the GNO

does not adopt this configuration in the symbiotic case. It is

worth noting that the WSRs achieved in the symbiotic case are

close to those in the non-symbiotic case when δG > 0.2, which

demonstrates the proposed algorithms can efficiently maximize

WSR and achieve mutual benefits. Besides, the WSR and

revenue of GNO both grow gradually as δG increases, while

the revenue of the SNO increases first and then decreases when

δG > 0.3. This trend can be explained as follows. With δG
increasing, the GNO can obtain more revenue from serving

users of SNO. As a result, the GNO demonstrates a growing

preference for inter-operator sharing, increasing the WSR and

revenue of operators. However when δG > 0.3, the GNO takes

away the most revenue from serving SNO’s users, resulting in

revenue loss of SNO.

Lastly, we study the WSR and revenue versus the sharing

coefficient of SNO δS in Fig. 8. It can be seen that the

MBC for SNO cannot be satisfied until δS ≥ 0.8 in the

non-symbiotic case. Besides, the WSR and revenue in the

symbiotic case almost remain the same when δS < 0.8. The

reason is that the SNO cannot benefit enough from inter-

operator sharing and lacks the motivation to share spectrum

and services. On the other hand, by comparing Fig. 7 and

Fig. 8, it can be observed that the GNO will obtain benefit

when (δG ≥ 0.3, δS = 1) while the SNO gains when

(δS ≥ 0.8, δG = 1). This result indicates a principle to achieve

mutual benefits when inter-operator sharing is enabled: the

operator with more resources, like the SNO in this paper,

should get more compensation from others. On the contrary,

the GNO, who contributes less to the SAGIN, should not

require much compensation from others.

VII. CONCLUSION

In this paper, we have studied a SAGIN consisting of a

GNO and SNO, and inter-operator sharing has been adopted

to construct such a large-scale network. To fully leverage the

advantage of inter-operator sharing, both system performance

and individual benefits should be considered. Therefore, we

have investigated the spectrum and service sharing in the SA-

GIN from a symbiotic communication perspective, which can

instruct different operators to achieve mutual benefits. Specif-

ically, we have studied a WSR maximization problem about

jointly optimizing the user association, resource allocation, and

beamforming design. Besides, we have introduced a sharing

coefficient to characterize the revenue of each operator, based

on which the MBC has been formulated to guarantee that

revenue for all operators does not decline after inter-operator

sharing. Then, we have proposed a centralized algorithm based

on SCA to solve the WSR maximization problem. Since imple-

menting the centralized is difficult in real networks, we have

also developed a distributed algorithm based on Lagrangian

dual decomposition and consensus ADMM. Finally, extensive

simulation results have been provided to show the effectiveness

of the proposed algorithms and that the distributed algorithm

can approach the centralized algorithm. Moreover, the results

have indicated that the MBCs can enable the operators to

realize symbiotic communication in the SAGIN.

APPENDIX A

PROOF OF PROPOSITION 1

Let F (p[τ−1], t[τ−1],x[τ−1], w̃[τ−1]) denote the origi-

nal objective, and Fp[τ−1](p[τ−1], t[τ−1],x[τ−1], w̃[τ−1])
denote the approximated objective with the SCA method at

point p[τ − 1]. For notational simplicity, we use F (p[τ −
1], w̃[τ−1]) and Fp[τ−1](p[τ −1], w̃[τ−1]) in the following.

In step 4 of Algorithm 1, we have the following inequality

F (p[τ − 1], w̃[τ − 1])
(a)
= Fp[τ−1](p[τ − 1], w̃[τ − 1])

(b)

≤ Fp[τ−1](p[τ ], w̃[τ ])

(c)

≤ F (p[τ ], w̃[τ ])

(43)

where (a) comes from the fact that the first-order Taylor

expressions used in (14), (17), and (19) are tight at point

p[τ−1]; (b) holds since (p[τ ], w̃[τ ]) are the optimal solutions

to (20) with given (t[τ − 1],x[τ − 1]); and (c) holds since

Fp[τ−1](p[τ ], w̃[τ ]) is a lower bound of F (p[τ ], w̃[τ ]).
Note that Fp[τ ](p[τ ], w̃[τ ]) is the input of step 5, and

the inequality (43) can be applied to analyzing step 5 and

6. Finally, we have F (p[τ − 1], t[τ − 1],x[τ − 1], w̃[τ −
1]) ≤ F (p[τ ], t[τ ],x[τ ], w̃[τ ]), which implies that Algorithm

1 can generate a non-decreasing objective after each iteration.

Moreover, the objective is constrained due to the power budget

of BSs/STs and the satellite. As a result, Algorithm 1 is

guaranteed to converge.

APPENDIX B

PROOF OF PROPOSITION 2

In step 3 of Algorithm 6, we have the following inequality

Fp[τ−1](p[τ − 1], w̃[τ − 1])
(a)

≤ Fp[τ−1](p[τ ], w̃[τ ]) (44)

where (a) comes from the fact that the subproblem (38) is

convex with fixed (t,x) and consensus ADMM can converge

to the optimal solution with enough iterations [43]. Besides, it

is clear that (a) also holds when early termination strategy is

adopted due to the Algorithm 5 (step 7). The inequality (44) is

also applicable for step 4 of Algorithm 6. As a result, we have

F (p[τ − 1], t[τ − 1],x[τ − 1], w̃[τ − 1]) ≤ F (p[τ ], t[τ ],x[τ −
1], w̃[τ ]).

In step 6 of Algorithm 6, we have the following inequality

Fx[τ−1](x[τ − 1])
(b)

≤ Fx[τ−1](x[τ ]) ≤ F (x[τ ]) (45)

where (b) holds since the subgradient method is guaranteed to

converge to the optimal solution when the dual problem (33)



is convex [45]. As a result, we have F (p[τ−1], t[τ−1],x[τ−
1], w̃[τ − 1]) ≤ F (p[τ ], t[τ ],x[τ ], w̃[τ ]), which implies that

Algorithm 6 generates a non-decreasing objective after each

iteration. Therefore, Algorithm 6 is guaranteed to converge.
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