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Abstract

The integration of Large Language Models (LLMs) into healthcare promises
to transform medical diagnostics, research, and patient care. Yet, the pro-
gression of medical LLMs faces obstacles such as complex training require-
ments, rigorous evaluation demands, and the dominance of proprietary
models that restrict academic exploration. Transparent, comprehensive
access to LLM resources is essential for advancing the field, fostering re-
producibility, and encouraging innovation in healthcare AI. We present
Hippocrates, an open-source LLM framework specifically developed for the
medical domain. In stark contrast to previous efforts, it offers unrestricted
access to its training datasets, codebase, checkpoints, and evaluation proto-
cols. This open approach is designed to stimulate collaborative research,
allowing the community to build upon, refine, and rigorously evaluate
medical LLMs within a transparent ecosystem. Also, we introduce Hippo,
a family of 7B models tailored for the medical domain, fine-tuned from
Mistral and LLaMA2 through continual pre-training, instruction tuning,
and reinforcement learning from human and AI feedback. Our models
outperform existing open medical LLMs models by a large-margin, even
surpassing models with 70B parameters. Through Hippocrates, we aspire
to unlock the full potential of LLMs not just to advance medical knowl-
edge and patient care but also to democratize the benefits of AI research in
healthcare, making them available across the globe.

1 Introduction

The remarkable success of Large Language Models (LLMs) across diverse NLP tasks has
revolutionized artificial intelligence (Touvron et al., 2023b; Bai et al., 2023; Jiang et al., 2023;
OpenAI, 2023; Google, 2023). Despite their impressive generalization capabilities, LLMs
encounter challenges in clinical contexts, primarily due to a deficiency in domain-specific
knowledge and the intricacies of medical terminology. Bridging this gap, in this work, we
introduce Hippocrates (named after the Ancient Greek “Father of Medicine”), a state-of-
the-art, fully open-source framework designed to elevate LLMs’ proficiency in medical
reasoning. We publicly share our training data, complete training and evaluations codes,
along with intermediate model checkpoints. Our framework marks an important step
towards democratizing advancements in medical LLMs.

Previous attempts to develop advanced medical LLMs yielded promising results by further
training them (Labrak et al., 2024), supervised fine-tuning them (Li et al., 2023; Han et al.,
2023; Toma et al., 2023), or both (Wu et al., 2023; Chen et al., 2023), via special medical-
text corpus and medical instruction datasets. However, the data collection, pre-training,
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Figure 1: The evolution of medical LLM performances on the MedQA dataset. Our 7B
Hippo- and Hippo- models achieve 50.8% and 59.9% 5-shot accuracy, respectively.
Hippo- outperforms all existing open models, including even those with 70B parameters.

and finetuning stages may include considerable complexity, which makes reproducing,
analyzing, and comparing the recent LLMs in that domain challenging. On the other hand,
closed models, e.g. GPT4 (OpenAI, 2023), Gemini (Google, 2023), Med-PaLM (Singhal
et al., 2023b), trained on closed-domain datasets make their results non-reproducible, not
to mention substantial computational costs and further complicate the understanding of
which components are crucial to the success of these advanced medical frameworks.

In this work, we provide full access to our framework, from the data sources to the training
configurations and the reproducible evaluation protocols. We conduct a detailed empirical
analysis to identify the impact of various design elements on LLM performance, leading to
a domain-adapted framework that demonstrates superior performance on multiple medical
benchmarks. Based on these insights, we develop a step-by-step guide for the efficient
training of medical-LLMs. Our research efforts yield two advanced 7B parameter models,
Hippo- and Hippo- . As shown in Fig. 1, our models not only outperform existing 7B
and 13B models by a significant margin but also deliver results on par with, and in some
cases exceeding, those of 70B models. We argue that the development of a broad, varied
collection of open models is crucial for deepening our knowledge of language models and
enhancing their applicability across various domains.

In addition, we adopt a novel strategy for structuring our instruction tuning (IT) dataset,
dividing it into two distinct components: the General Instruction Dataset and the Evaluation
Instruction Dataset. The General dataset is designed to enable unbiased assessments by
avoiding overlap with downstream task data, marking a departure from previous method-
ologies. On the other hand, the Evaluation Instruction Dataset, which incorporates training
splits from evaluation benchmarks, facilitates direct comparisons with existing models
(Chen et al., 2023). Notably, for the first time in the medical domain, our approach incorpo-
rates preference learning from medical professionals into the model development process,
utilizing RLAIF (Lee et al., 2023b) and GPT4 for annotating preferences.

For model evaluation, we employ the well-established EleutherAI framework1 (Gao et al.,
2021), conducting tests across a set of six varied medical downstream tasks. These include
MedMCQA (Pal et al., 2022), PubmedQA (Jin et al., 2019), MedQA (Jin et al., 2021), and the
USMLE-step1, USMLE-step2, and USMLE-step3. Leveraging this framework allows for
straightforward replication of any LLM’s results, eliminating the necessity for additional
fine-tuning or the repetitive execution of evaluation scripts for each new model.

2 Hippocrates Framework

Fig. 2 shows the overall workflow of the Hippocrates framework, starting from domain-
specific pre-training and progressing through supervised fine-tuning and reinforcement

1https://github.com/EleutherAI/lm-evaluation-harness
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Figure 2: An overview of the Hippocrates framework, illustrating the four critical phases
including (1) continued pre-training, (2) supervised fine-tuning, (3) reinforcement learning
from AI-generated feedback, and (4) the comprehensive evaluation pipeline.

learning from AI-generated feedback to an extensive evaluation phase. This pipeline ensures
our models are precisely tailored and rigorously tested for the medical domain.

2.1 Continued Pre-training Data

A key aspect of our methodology is the integration of specialized medical knowledge
through an extensive pre-training corpus, assembled from three specialized datasets: Medi-
cal Guidelines, PMC-Patients, and PubMedQA-contexts. The Medical Guidelines dataset
comprises clinical practice guidelines, is used for training Meditron models (Chen et al.,
2023). The PMC-Patients dataset (Zhao et al., 2023) consists of patient summaries extracted
from case reports within PubMed Central (PMC). Additionally, the PubMedQA-contexts
dataset is constructed by extracting the context field of each sample in the training split of
the benchmark (Jin et al., 2019). Detailed descriptions and specifications of each dataset
are available in Table 1. This extensive corpus, consisting of roughly 300M training to-
kens, forms the foundation of our models, ensuring their proficiency in navigating medical
terminology and practices. We systematically assessed the impact of each dataset, both
individually and in combination, to optimize our model’s performance.

Dataset Source License Size (MB) #Samples #Tokens

Medical Guidelines Meditron Apache 2.0 License 382.6 37,970 96M
PMC-Patients Pubmed Central CC BY-NC-SA 4.0 462.3 167,034 122M
PubMedQA-train PubMedQA MIT License 290.2 211,269 80M

Total 1,135.1 416,273 298M

Table 1: Summary of the datasets used for continued pre-training, showing their sources,
licence information and data statistics.

2.2 Supervised Fine-Tuning Data

Developing effective medical LLMs requires blending domain-specific knowledge with
sophisticated reasoning abilities. Previous models often utilized instruction data consisting
of samples from the training or test sets of evaluation benchmarks. We also considered
this setup, but additionally investigated an alternative involving generic medical data.
Consequently, we constructed two sets of IT datasets: the General Instructions Data and the
Evaluation Instructions Data.
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General Instructions Data. This dataset aggregates more than 400K samples from nine
different datasets, each derived from the instruction corpora of previous studies (Li et al.,
2023; Han et al., 2023; Wu et al., 2023; Lee et al., 2023a). By excluding data from the
training or test splits of downstream QA benchmarks, we aim to minimize bias and improve
the model’s generalization capabilities across different reasoning tasks. A pre-processing
protocol was employed to remove superfluous words and web URLs, ensuring the data’s
quality and relevance. The detailed statistics of the dataset are presented in Table 2.

Dataset Source License Size (MB) #Samples #Tokens

Medical Flashcards MedAlpaca No commercialized use 18.8 33,955 3.9M
GenMedGPT-5k ChatDoctor Apache 2.0 3.1 5,452 0.6M
Open-Platypus Platypus CC BY-NC-SA 4.0 32.9 24,926 9.5M
HealthCareMagic-100k ChatDoctor Apache 2.0 143.8 112,165 32.3M
UMLS PMC-LLaMA CC BY 4.0 23.0 49,057 4.6M
UMLS-Relations PMC-LLaMA CC BY 4.0 21.7 50,000 4.3M
WikiDoc MedAlpaca CC BY-SA 4.0 11.0 10,000 2.6M
WikiDoc-Patient-Info MedAlpaca CC BY-SA 4.0 3.7 5,942 0.8M
MedicationQA PMC-LLaMA CC BY 4.0 0.4 552 0.1M

Total 258.4 292,049 58.7M

Table 2: Summary of General Instructions Data, describing the datasets used, their sources,
together with their licence information, and size.

Evaluation Instructions Data. This dataset was formed to examine the effects of including
instruction samples directly from downstream tasks, a common practice in existing studies
(Chen et al., 2023; Han et al., 2023; Wu et al., 2023). Instruction-response pairs were crafted
using the training splits of various benchmarks, following the templates established in
Meditron (Chen et al., 2023). We conducted a series of experiments to assess the distinct
influence of each split on each task, both individually and collectively. The details about the
Evaluation Instruction Data is given in Table 3.

Dataset Source License Size (MB) #Samples #Tokens

MedMCQA-train MedMCQA MIT License 114.4 182,822 24.9M
MedQA-train MedQA MIT License 14.2 10,178 3.4M
PubMedQA-train PubMedQA MIT License 76.3 211,269 95.9M
Total 204.9 404,269 124.2M

Table 3: Summary of Evaluation Instructions dataset, showing which training splits of the
downstream tasks they are derived from and their data statistics.

Beyond independently utilizing these datasets for supervised fine-tuning, we also examined
the impact of individual datasets as well as the collective effect of combining them on model
performance (refer to Appendix G).

2.3 Medical Preference Data

Constructing a preference dataset typically involves generating diverse responses to identi-
cal queries using LLMs, which are subsequently evaluated by human annotators to identify
the most accurate response. This method, however, can become prohibitively expensive,
both in terms of computation for generating responses and the financial and time invest-
ments required for manual annotation. To circumvent these issues, we leveraged the
iCliniq-10k dataset (Li et al., 2023), containing 10K authentic patient-doctor dialogues from
icliniq.com. Each dialogue features a patient question accompanied by three different an-
swers: one from an actual doctor, and the others from ChatGPT and ChatDoctor (Li et al.,
2023). We conducted a thorough preprocessing of this dataset to eliminate any irrelevant or
extraneous information.
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Medical RLAIF. To reduce annotation costs, we adopted the RLAIF methodology (Lee
et al., 2023b) in the medical domain for the first time. Utilizing detailed prompts based on
patient inquiries from the iCliniq-10k dataset, we used GPT4 (OpenAI, 2023) to determine
the optimal response based on predefined instructions. These instructions were derived
from those used in qualitative assessments by medical professionals in Med-PaLM (Singhal
et al., 2022; 2023a), with minor modifications. This annotation approach amounted to a cost
of $120. The exact prompt structure for applying RLAIF with GPT4 is given in Appendix J,
Figure 7.

Validation. To test the reliability of GPT4’s capacity to replicate medical expert annotations,
we subjected 250 samples from our dataset to careful examination by two medical doctors,
given them the same instructions that we provided in the prompt to GPT4. Our analysis
revealed compelling results. When comparing GPT4’s annotations against those of MD-1,
GPT4 demonstrated a Kappa Score of 0.376, indicating moderate agreement, and an accuracy
of 68.9%. The comparison with MD-2 showed even stronger results, with GPT4 achieving
a Kappa Score of 0.672, suggesting substantial agreement, alongside an 83.6% accuracy.
Interestingly, the inter-annotator agreement between the two doctors themselves yielded a
Kappa Score of 0.416 and an accuracy of 70.8%, situating GPT4’s performance firmly within
the range of human expert variability. These findings not only affirm GPT4’s aptitude for
medical annotation but also highlight its potential to serve as a cost-effective alternative to
human annotators in medical research and application settings. These findings suggest that
GPT4 is capable of effectively mimicking medical doctor preferences, potentially eliminating
the need for costly doctor annotations.

Consequently, we compiled a comprehensive medical doctor preference dataset, consisting
of 15,258 samples, to further align our LLMs with real-world clinical decision-making
processes and enhance their accuracy in interpreting and responding to medical queries.

2.4 Training Methodology

Our training strategy includes several phases: injection of medical knowledge through
continued pre-training, domain-specific instruction tuning, and reinforcement learning
from AI-generated feedback for improved alignment with medical experts. Employing the
LLaMA Factory framework (hiyouga, 2023), we adhere to replicable and high-performance
training standards. Moreover, we adopt the Low-Rank Adaptation (LoRA) technique Hu
et al. (2021) for training efficiency and precision. LoRA enhances LLMs by selectively up-
dating weights within additional trainable layers, thereby accelerating the training process,
minimizing memory usage, and mitigating overfitting and catastrophic forgetting.

Our foundational models, LLaMA2 7B (Touvron et al., 2023b) and Mistral 7B (Jiang et al.,
2023), are selected based on their robust performance across medical benchmarks, demon-
strating their capacity to excel without extensive training modifications. The zero-shot
performances of these generic baseline models is presented at the beginning of Table 5.

Continued pre-training. To equip our base LLMs with domain-specific medical expertise,
we extend their pre-training on a carefully curated medical text corpus as described in
Section 2.1. This stage employs traditional language modeling, focusing on next-token
prediction. During this phase, both models undergo continued pre-training using LoRA,
specifically adapting the fully connected layers. The parameters for LoRA are carefully
set, with the rank (r) at 8 and alpha (α) at 16, to optimize learning. We use the AdamW
optimizer and adjust the learning rate using a cosine scheduling, starting from an initial
value of 1e-4. The batch size per device was initialized to be 8, with gradient accumulations
of 2, culminating in an effective global batch size of 16, and the models are trained for a
single epoch. The rationale and empirical support for our choices regarding the dataset,
LoRA configurations, and overall optimization strategy are comprehensively analyzed in
Appendix G.

Supervised Finetuning. After continued pre-training, models undergo fine-tuning with
an Instruction Tuning (IT) dataset to closely mirror medical directives, aligning model
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outputs with clinical requirements. We have tested with the datasets described in Section 2.2
and found that MedQA-train IT works better than the other options. This fine-tuning phase
also employs LoRA to all fully connected layers with both rank (r) and alpha (α) set to 32 for
balanced efficiency and computational overhead. AdamW optimizer is used with a learning
rate of 1e − 4. To prevent model overfitting, loss calculation focuses solely on the responses.
The training spanned 3 epochs with a batch size of 8 per-device and gradient accumulation
set to 2. We also conducted experiments on direct fine-tuning of the base LLMs to evaluate
the impact of continued pre-training (see Section 4.1) and performed a comprehensive
analysis on dataset splits and fine-tuning hyperparameters (see Appendix G).

Medical Preference Learning. Finally, the instruction-tuned models are further trained
with a recent and popular technique called direct preference optimization (DPO) (Rafailov
et al., 2023). In DPO, reinforcement learning is bypassed which allows for direct optimization
based on preference data. Unlike RLHF, the responses in DPO need not be derived from the
LLM being optimized. Central to DPO is the development of a loss function that evaluates
the likelihood of a preferred response over a less preferred one, steering the LLM towards
this goal. This makes DPO more stable and significantly reduces computational demands.

The outcome of all this are our medical LLMs, named Hippo- and Hippo- , built upon
the pre-trained LLaMA2 7B and Mistral 7B models. These models were refined through
a comprehensive process that included continued pre-training and/or instruction tuning
using our carefully curated medical datasets. Following this, we also explored the impact
of aligning the models with clinical preferences by conducting further training on medical
preference data.

3 Main Results

For an objective evaluation of domain-specific knowledge and reasoning capabilities in
LLMs, a detailed and fair evaluation framework is essential. In alignment with method-
ologies adopted in prior research (Singhal et al., 2022; Han et al., 2023; Wu et al., 2023;
Toma et al., 2023; Singhal et al., 2023a; Chen et al., 2023), we selected six widely recognized
medical question-answering datasets, namely MedMCQA (Pal et al., 2022), MedQA (Jin
et al., 2021), PubMedQA (Jin et al., 2019) and USMLE Step 1-3 (Han et al., 2023), to assess
models performances (See Table 4 for details). Performance metrics were derived through
the use of the EleutherAI evaluation framework (Gao et al., 2021), ensuring a standardized
approach to measuring model effectiveness in handling domain-specific queries.

Dataset Source Format #Samples #Choices License

MedMCQA-test MedMCQA Question + Answer 4,183 4 MIT
MedQA-test MedQA Question + Answer 1,273 5 MIT
PubMedQA-test PubMedQA Abstract + Question + Answer 1,000 3 MIT
USMLE-step1 USMLE Question + Answer 94 5 MIT
USMLE-step2 USMLE Question + Answer 109 6 MIT
USMLE-step3 USMLE Question + Answer 122 5 MIT

Table 4: Summary of the evaluation benchmark datasets, describing the format, the number
of test samples, the number of choices, and the licence info.

3.1 Experimental Setup

In our evaluation, we included a spectrum of leading LLMs, spanning general and medical
LLMs, varying in scale from 1.5B to an advanced 70B parameters. Here we report the
performances of our top-performing models for an accurate comparison. To ensure a fair
and easily replicable assessment of these medical models, we utilized the Eleuther AI
Language Model Evaluation Harness (Gao et al., 2021), a unified evaluation framework
specifically designed for evaluating generative LLMs. This framework also serves as the
evaluation tool for the Open LLM Leaderboard2 (Beeching et al., 2023).

2https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
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Model MedMCQA MedQA PubmedQA USMLE-1 USMLE-2 USMLE-3 Avg.
0-shot/5-shot 0-shot/5-shot 0-shot/5-shot 0-shot/5-shot 0-shot/5-shot 0-shot/5-shot 0-shot/5-shot

Gemma 2b 26.2/27.7 27.8/30.6 59.1/60.8 20.2/16.0 18.4/30.3 24.6/20.5 29.4/31.0
LLaMA-2 7b 34.4/39.4 29.3/39.5 72.3/72.4 18.1/22.3 22.9/33.0 27.1/32.0 34.0/39.8
Falcon 7b 30.5/31.8 27.9/31.0 65.3/64.4 18.1/25.5 26.6/20.2 23.8/25.4 32.0/33.0
Vicuna 7b 35.9/39.0 35.1/41.2 70.9/74.5 25.5/31.9 27.5/31.2 33.6/35.3 38.1/42.2
Mistral 7b 39.3/48.5 36.8/48.9 76.3/77.8 24.5/50.0 31.2/42.2 27.9/43.4 39.3/51.8
BioMedLM 32.2/29.6 29.3/30.6 55.2/55.2 15.9/22.3 19.3/18.4 23.0/31.2 25.9/31.2
BioGPT-Large 33.1/30.1 31.3/27.2 60.1/47.7 22.3/19.2 22.0/14.7 23.0/23.0 32.0/27.0
MedAlpaca 7b 35.8/37.5 36.1/36.6 73.2/70.6 22.3/27.7 27.5/32.1 29.5/37.7 37.4/40.4
PMC-LLaMA 7b 31.5/33.0 28.0/29.5 66.5/68.4 21.3/19.2 23.9/19.3 22.1/22.1 32.2/31.9
Meditron 7b 34.0/38.2 32.0/39.3 71.6/75.7 16.0/29.8 25.7/30.3 23.8/32.0 33.9/40.9
Bio-Mistral 7b 36.4/42.4 35.0/42.1 73.4/75.1 24.5/28.7 27.5/34.9 27.9/44.3 37.5/31.9

LLaMA-2 13b 38.2/43.9 34.3/43.3 75.9/71.9 20.2/38.3 22.0/29.4 23.0/38.5 35.6/40.9
Vicuna 13b 39.7/44.3 35.9/45.9 75.6/75.0 24.5/40.4 26.6/35.8 23.8/46.7 37.7/44.6
MedAlpaca 13b 32.5/33.3 31.8/34.3 72.6/72.5 24.5/23.4 24.5/26.6 30.3/29.5 36.0/44.2
PMC-LLaMA 13b 39.1/44.5 37.8/46.3 76.8/76.5 30.9/35.1 22.9/36.7 26.2/29.5 39.0/44.8

LLaMA-2 70b 42.8/ 52.0 44.9/56.1 73.2/77.8 31.9/59.6 44.0/57.8 44.3/53.3 46.8/59.4
Qwen 72b 50.5/59.2 47.7/53.4 77.2/76.8 45.7/67.0 43.1/56.9 38.5/61.5 50.5/62.5
ClinicalCamel 70b 43.7/53.4 45.5/58.5 73.6/77.6 40.4/59.6 43.1/60.6 42.6/60.7 48.2/61.7
Meditron 70b 43.4/51.9 44.9/58.5 76.4/80.0 35.1/57.5 41.3/56.9 37.7/59.8 46.5/60.8

Hippo- 7b 54.3/53.9 50.6/50.8 74.7/76.6 46.8/40.4 41.3/39.5 50.0/43.4 53.0/50.8
Hippo- 7b 49.7/51.8 59.2/59.9 77.1/78.1 60.6/61.7 66.1/64.2 56.6/56.6 61.6/62.1

Table 5: Comparative analysis of generic and medical LLMs across downstream medical
tasks in 0-shot and 5-shot learning settings. The best and the second-best performance are
highlighted in bold and underline, respectively.

LM-Evaluation-Harness operates on a Log-Likelihood objective, which calculates the nega-
tive log-likelihood for each potential answer in response to a given query. The answer is
then chosen based on the highest likelihood score, indicating it as the most probable choice.
During evaluation, each prompt includes a question and corresponding choices, separated
by a new line. For PubMedQA, the abstract provides contextual grounding for the model’s
decision-making process. Examples of these prompts are provided in the Appendix I.

3.2 Results

We present a comparative analysis of our novel models, Hippo- and Hippo- , against a
set of established base LLMs and medical-specific LLMs, in Table 5. Our evaluation includes
both zero-shot and few-shot (specifically, 5-shot) learning scenarios. Demonstrating superior
performance, our Hippo models outperform traditional pretrained models in zero-shot
evaluations and maintain their superiority in the 5-shot context. Remarkably, Hippo- and
Hippo- not only beat models with 7 billion and 13 billion parameters but also exceed the
capabilities of those with 70 billion parameters. This outstanding performance highlights the
adaptability and precision of our models, showing their remarkable ability to significantly
boost prediction accuracy with minimal input examples.

4 Analysis

4.1 Contribution of Each Training Stage

Hippo- . Our evaluation methodology for the LLaMA2 7B model covers successive
training stages: Continued Pre-training (CP), Instruction Tuning (SFT), and Direct Preference
Optimization (DPO). As listed in Table 6, the base model LLaMA2 7B initially achieves an
average accuracy of 34.0 across benchmarks. The CP stage marginally increases accuracy to
34.4, indicating initial benefits from domain-focused continued pre-training. The subsequent
introduction of SFT yields a substantial performance boost to an average accuracy of
50.3, demonstrating the critical role of customized instruction in enhancing the model’s
capabilities in understanding and answering medical queries. Integrating CP with SFT
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Model MedMCQA MedQA PubmedQA USMLE-1 USMLE-2 USMLE-3 Avg.

LLaMA2 7b 34.4 29.3 72.3 18.1 22.9 27.1 34.0
+ CP 34.6 31.9 72.8 20.2 25.7 21.3 34.4
+ SFT 52.7 49.7 75.7 37.2 42.2 44.3 50.3
+ CP + SFT 54.3 50.6 74.7 46.8 41.3 50.0 53.0
+ CP + SFT + DPO 54.4 50.4 74.8 46.8 39.5 49.2 52.5
+ CP + SFT + DPO + CoT 54.0 50.3 73.3 48.9 43.7 45.1 52.6

Mistral 7b 39.3 36.8 76.3 24.5 31.2 27.9 39.3
+ CP 40.5 37.2 74.9 29.8 33.9 29.5 41.0
+ SFT 49.7 59.2 77.1 60.6 66.1 56.6 61.6
+ CP + SFT 51.5 60.9 76.5 55.3 65.1 57.4 61.1
+ CP + SFT + DPO 49.3 57.3 77.3 56.4 62.4 54.9 59.6
+ CP + SFT + DPO + CoT 51.0 60.9 63.5 59.6 59.6 63.9 59.8

Table 6: Hippo- and Hippo- : Analysis of Continued Pretraining, Instruction Tuning,
and Direct Preference Optimization. This table demonstrates the incremental impact of
Continued Pretraining (CP) on medical text data, Instruction Tuning (SFT), and Direct Pref-
erence Optimization (DPO) on the zero-shot capabilities of the LLaMA2 7B and Mistral 7B
models across a range of medical benchmarks, including MedMCQA, MedQA, PubmedQA,
and the USMLE series. The results, aggregated and individual, underline the significance of
each methodological advancement in enhancing the model’s proficiency in interpreting and
responding to complex medical queries, thereby providing a granular view of performance
improvements at each stage of model optimization.

further improves this performance to 53.0, highlighting the combined value of domain
knowledge and specific instruction tuning. The final DPO stage slightly decreases the
model’s performance to 52.5, albeit with a slight increase in accuracy for MedMCQA
and PubMedQA, illustrating DPO’s refined impact on model preference alignment. This
sequence delineates the incremental enhancements attributable to each training phase, with
SFT marking a pivotal improvement. The composite model, LLaMA2 + CP + SFT, is thus
designated as Hippo- for its distinguished performance across our benchmarks.

Hippo- . Following the approach for Hippo- , the training evolution for the Mistral
7B model reveals gradual improvement in the model’s proficiency in medical question-
answering. Initial results from the baseline Mistral 7B model, as shown in Table 6, show
an average benchmark accuracy of 39.3. Implementing CP slightly improves this to 41.0,
reflecting the positive yet modest impact of domain-specific continued pre-training. The
pivotal SFT stage significantly raises the performance, achieving an average accuracy of
61.6, emphasizing the critical role of customized instruction in enhancing the model’s
interpretative and response capabilities for medical inquiries. Interestingly, combining CP
and SFT results in a slight reduction to 61.1, suggesting a complex interaction between
domain pre-training and instruction tuning. The subsequent application of DPO slightly
lowers the overall score to 59.6, similar to the pattern observed for Hippo- , with targeted
performance adjustment. Based on comprehensive analysis, Mistral 7b + SFT is selected to
represent Hippo- , credited for its exceptional performance across all benchmarks.

4.2 Chain-of-Thought (CoT) Prompting

The CoT prompting technique (Wei et al., 2023) enhances an LLM’s ability to tackle complex
queries by guiding it to articulate intermediate reasoning steps. This method improves the
model’s responses by structuring its problem-solving process. In our study, we applied CoT
prompting for in-context learning, adopting a slightly altered instruction utilized in (Pal
& Sankarasubbu, 2024b): ”The following is a multiple choice question about medical knowledge.
Solve it in a step-by-step fashion, starting by summarizing the available information. Output a single
option from the four options as the final answer.”. However, the application of CoT prompting in
our experiments with downstream medical tasks did not consistently enhance our models’
performance, as shown in Table 6.
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4.3 Influencing Examples

We explore the application of Influence Functions to understand the behavior of
LLMs (Grosse et al., 2023) – in our context, particularly those trained with domain-specific
datasets like medical text. This technique quantifies the effect of single training instances on
the model’s predictions, improving the transparency of the AI models. This is increasingly
important as the field of Explainable AI (XAI) grows to make AI systems more interpretable
and accountable. However, the complexity of LLMs, which process vast amounts of data,
highlights the necessity for efficient methods to perform this analysis. We believe incorpo-
rating this tool to our evaluation framework will prove useful for future studies.

In the supplementary material (Appendix H), we present our analysis results, highlighting
the most and least influential training examples for a MedQA dataset question and its model
response. Notably, the most influential example shares overlapping medical concepts, in
contrast to no shared concepts with the least influential training example.

4.4 Uncertainty Quantification

In our study, we conducted an uncertainty quantification experiment on Hippo- to un-
derstand its performance on the MedMCQA, MedQA, and PubMedQA datasets, as shown
in Fig.3. Our findings reveal that our model consistently assigns higher probabilities to
questions it answers correctly across all datasets, suggesting an ability to self-calibrate its
certainty. The model’s confidence is notably higher on MedMCQA, possibly reflecting
the dataset’s relative simplicity. In contrast, its confidence on PubMedQA is compara-
tively lower, likely due to the dataset’s complexity. Additionally, the model’s confidence
changes with different training stages; CPT leads to more conservative estimates, SFT boosts
confidence, and adding DPO leads to variable confidence, with noticeable effects in MedM-
CQA and MedQA. These outcomes emphasize a complex relationship between training
approaches and confidence calibration in the model.
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Figure 3: Uncertainty quantification for our best-performing 5-shot Hippo- model.,
where we plot the probability distributions assigned by the model to both correct predictions
and incorrect predictions on the MedMCQA, MedQA, and PubMedQA datasets.

We present additional negative results in Appendix J, which we anticipate will be beneficial
for the community. By sharing these findings, we aim to encourage further investigations.

5 Conclusion

In this study, we have introduced Hippocrates, a comprehensive and open-source frame-
work tailored for the medical domain, addressing a wide array of challenges faced by
medical LLMs. We provide openly available datasets and establish an intuitive benchmark
using the LM-Evaluation-Harness tool. We also introduce Hippo- and Hippo- , two 7B
models demonstrating superior performance. Our work makes substantial contributions to
the field by combining in-depth empirical research with a structured training methodology,
offering invaluable insights and tools for future research not only in healthcare but in any
area requiring domain-specific adaptation of LLMs.
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A Related Work

Large Language Models. The evolution of LLMs has marked a significant milestone in
the field of NLP, with key developments including scaling efforts (Brown et al., 2020a;
OpenAI, 2023; Anil et al., 2023; Touvron et al., 2023b; Google, 2023). Meta-AI’s introduction
of the LLaMa base models (Touvron et al., 2023a;b) and Ali Baba’s Qwen models (Bai et al.,
2023) challenged the prevalence of closed models such as those from OpenAI (OpenAI,
2023) by adopting an open-source philosophy, thus democratizing access to state-of-the-art
LLMs. This shift encouraged the community to engage in fine-tuning these base models with
instructional datasets (Taori et al., 2023) and exploring self-instructional techniques, resulting
in noticeable improvements across both quantitative and qualitative evaluations (Mukherjee
et al., 2023; Lee et al., 2023a). The application of parameter-efficient fine-tuning methods
(Hu et al., 2021; Dettmers et al., 2023) addressed computational constraints, facilitating the
development of domain-specific models, including those for medical applications (Li et al.,
2023; Han et al., 2023; Wu et al., 2023; Toma et al., 2023; Chen et al., 2023).

Medical Large Language Models. Models like ChatDoctor (Li et al., 2023), fine-tuned on
100,000 physician-patient dialogues using the LLaMA architecture (Touvron et al., 2023a),
have shown superior performance in medical QA-generation over GPT-3.5. Similarly,
MedAlpaca (Han et al., 2023) leverages the LLaMA (Touvron et al., 2023a) model with LoRA
(Hu et al., 2021) fine-tuning on 160,000 medical entries, demonstrating its efficacy on the
USMLE self-assessment test. PMC-LLaMA (Wu et al., 2023) applies LoRA fine-tuning on
4.8 million biomedical articles, while Clinical-Camel, utilizing the QLoRA (Dettmers et al.,
2023) tuning approach on LLaMA-2 (Touvron et al., 2023b), sets new benchmarks in medical
LLM performance. MEDITRON (Chen et al., 2023) represents a significant advancement,
training on a vast medical corpus with variations including 7B and 70B parameter models,
indicating the potential of comprehensive datasets in enhancing LLM performance. Further
details regarding medical LLMs can be found in Appendix C.

Preference Learning. Reinforcement learning from human feedback (RLHF) represents a
methodology employed in the training of machine learning models to ensure their alignment
with human objectives (Christiano et al., 2017; Ziegler et al., 2019; Stiennon et al., 2020).
From this line, RLHF has become the predominant approach for refining cutting-edge
LMs (Ouyang et al., 2022; OpenAI, 2023; Touvron et al., 2023b). RLHF contains three
main steps: collecting comparison data from human feedback, training a reward model
(RM) on the comparison data, and learning a policy to maximize the reward with RL
(Stiennon et al., 2020; Ouyang et al., 2022). Learning an RM from human feedback is not
an easy procedure where you need to tune your LLM via RL by maximizing the predicted
rewards under the supervision of your RM, while staying relatively close to the original
model. Moreover, training with PPO can sometimes be unstable and requires careful hyper-
parameter tuning. On the other hand, Direct Preference Optimization (DPO) Rafailov
et al. (2023) offers a stable, efficient, and computationally light approach for fine-tuning
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LLMs to better align with human preferences, without the need for sampling from the
LLM or extensive hyperparameter tuning. Moreover, as preference learning necessitates
manually annotated human preferences, acquiring these annotations can be challenging or
prohibitively expensive. Methods such as RLAIF Lee et al. (2023b) streamline this process by
employing expert models that annotate using detailed prompts, thus reducing reliance on
human annotators. This approach was also adopted in the creation of our doctor preference
dataset, which was subsequently validated by actual medical doctors.

B Limitations and Safety

Model Limitations. While our 7B model has achieved state-of-the-art results within its
class, it is important to acknowledge its limitations compared to larger models such as
OpenAI’s GPT4 (Nori et al., 2023; Pal & Sankarasubbu, 2024a). The constraints imposed by
the smaller parameter size may impede the model’s reasoning capabilities, a crucial aspect
of complex medical decision-making. Additionally, the model’s performances are almost
half on the average which highlights a huge area for improvement in open-source models.

Safety and Risks. Crucially, despite these advancements, it is important to highlight that
these AI models need substantial improvements before they can be safely and effectively
employed with real patients. They are not yet at a stage where they can provide medical
advice or be utilized for commercial healthcare applications. This limitation highlights the
need for ongoing, careful development and validation of AI systems to guarantee their
reliability and safety in clinical settings. The path toward AI integration in patient care is still
unfolding, and while it holds promise, it requires a methodical and thoroughly evaluated
approach.

C Medical Large Language Models

BioMedLM. BioMedLM34 is a decoder-based LLM with 2.7 billion parameters which was
developed in the style of GPT (Radford et al., 2019) and trained on biomedical abstracts and
papers. Model weights are available at Huggingface5.

BioGPT. BioGPT (Luo et al., 2022) is a specialized LLM for generating and analyzing
biomedical texts. BioGPT is built on GPT-2 architecture (Radford et al., 2019) and has been
trained from scratch using 15 million PubMed abstracts. BioGPT comes in two variants: the
first is based on the GPT-2 medium model, while the second, BioGPT-Large, is built upon
the GPT-2 XL, the largest version of GPT-2. Both versions are available at Huggingface67.
During our evaluations, we used BioGPT-Large.

ChatDoctor. ChatDoctor (Li et al., 2023) is a medical assistant LLM that is built on the
LLaMA-7B (Touvron et al., 2023a) architecture and further refined using a comprehensive
dataset of 100,000 patient-doctor interactions. Additionally, a separate dataset comprising
10,000 patient-doctor conversations from iCliniq.com has been released for testing. All
resources including the model weights8 and datasets9 are publicly available.

ClinicalCamel. Clinical Camel (Toma et al., 2023) is a specialized open medical LLM based
on the LLaMA-2-70B (Touvron et al., 2023b) architecture, enhanced with QLoRA (Dettmers
et al., 2023) for medical and clinical research applications. It is fine-tuned on three different

3https://crfm.stanford.edu/2022/12/15/biomedlm.html
4https://www.mosaicml.com/blog/introducing-pubmed-gpt
5https://huggingface.co/stanford-crfm/BioMedLM
6https://huggingface.co/microsoft/biogpt
7https://huggingface.co/microsoft/BioGPT-Large
8https://huggingface.co/zl111/ChatDoctor
9https://github.com/Kent0n-Li/ChatDoctor
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data sources: ShareGPT conversations, 100,000 synthetic dialogues from Clinical Articles,
and 10,187 USMLE questions from MedQA (Jin et al., 2021). Dialogues were generated
using dialogue-based knowledge encoding (DBKE) in conjunction with questions from
MedQA. Model weights 10 and the evaluation code 11 are publicly available.

MedAlpaca. MedAlpaca (Han et al., 2023) introduces a unique IT dataset with over 160,000
entries, designed for optimizing LLMs for medical uses. The researchers focused on SFT
training for the 7B and 13B variants of LLaMA (Touvron et al., 2023a;b). They also developed
an evaluation approach based on the models’ zero-shot performance on self-assessment
datasets from Steps 1, 2, and 3 of the United States Medical Licensing Examination (USMLE).
All the code12, datasets13, and model variants14 are publicly available.

PMC-LLaMA. PMC-LLaMA (Wu et al., 2023) is built upon on an integration of a vast
amount of medical data pre-training and IT datasets. Its pre-training data includes 4.8
million biomedical academic papers and 30,000 medical textbooks. On the other hand, they
have developed a large-scale dataset for instruction tuning which encompasses various
components like medical question-answering, rationales for reasoning, and conversational
dialogues, totaling 202 million tokens. They introduced two distinct models: MedLLaMA,
trained exclusively on the pre-training dataset, and PMC-LLaMA, which underwent training
with both the pre-training and instruction tuning (IT) datasets based on the LLaMA2-7B
and LLaMA2-13B architectures (Touvron et al., 2023b). The code15 and the model weights16

are publicly available.

Meditron. Meditron (Chen et al., 2023) is a recent study that adapts two large-scale
medical LLMs from Llama-2, Meditron-7B and Meditron-70B. These models have undergone
additional training via Megatron-LM (Shoeybi et al., 2019) on a specially curated medical
corpus. This corpus includes selected PubMed papers and abstracts, a new dataset of
internationally recognized medical guidelines, and a general domain corpus. The code17,
dataset18, and model weights19 are publicly available.

BioMistral. BioMistral (Labrak et al., 2024) is a recent open-source LLM developed specif-
ically for the biomedical domain, built upon the Mistral foundation model and enriched
through pre-training on PubMed Central. This model distinguishes itself through compre-
hensive evaluation across 10 established medical question-answering tasks in English, with
additional exploration into multilingual applications by translating these tasks into 7 other
languages. The creation of BioMistral, including its derivative models through quantiza-
tion and novel model merging techniques, exemplifies a leap in blending specialized and
general-purpose LLM capabilities, notably in terms of medical accuracy and multilingual
robustness.

D Evaluation Datasets

MedMCQA (Pal et al., 2022), derived from Indian medical entrance exams such as AIIMS
and NEET-PG, includes over 194,000 high-quality multiple-choice questions spanning 2,400
healthcare topics across 21 medical subjects. This benchmark includes 4183 test samples20.

10https://huggingface.co/wanglab/ClinicalCamel-70B
11https://github.com/bowang-lab/clinical-camel
12https://github.com/kbressem/medAlpaca
13https://github.com/kbressem/medAlpaca/blob/main/DATA_DESCRIPTION.md
14https://huggingface.co/medalpaca
15https://github.com/chaoyi-wu/PMC-LLaMA
16https://huggingface.co/axiong/PMC_LLaMA_13B
17https://github.com/epfLLM/meditron
18https://huggingface.co/datasets/epfl-llm/guidelines
19https://huggingface.co/epfl-llm
20https://huggingface.co/datasets/medmcqa
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MedQA (Jin et al., 2021), created from the United States Medical License Exams (USMLE),
aggregates a broad spectrum of professional board examination questions, presented in
a multiple-choice format with four options. For our analysis, following prior works, we
used several test splits of MedQA provided by Huggingface21. PubMedQA (Jin et al.,
2019), a biomedical question-answering dataset, is sourced from PubMed abstracts and
aims to answer research questions as yes, no, and maybe options. It consists of three subsets
PQA-artificial, PQA-labeled, and PQA-unlabeled.

E Rationale for Selecting Mistral 7B and LLaMA2 7B as Base Models

In developing a comprehensive framework for medical LLMs, we explored the integration
of two prominent models, Mistral 7B and LLaMA2 7B, to enhance the robustness and
versatility of our system. This decision was motivated by the distinct architectural nuances
and training paradigms inherent to each model, and the promising baseline results of
these models in our evaluations. Our framework’s dual-model approach aims to capitalize
on the strengths of both LLaMA2 7B and Mistral 7B, acknowledging that the efficacy of
fine-tuning strategies can vary significantly across different base models. By incorporating
Meditron, which builds upon LLaMA’s architecture and training insights, we ensure a
robust baseline for medical language tasks. Concurrently, the inclusion of Mistral allows for
comparative analysis, enriching our understanding of model behavior in the face of medical
data intricacies.

F Data Contamination Analysis

Data contamination poses a significant concern for LLMs, as their extensive training corpora
can obscure the presence of data leakages. To ensure the integrity and unbiased assess-
ment of LLMs, the evaluation benchmarks must remain uncontaminated by the training
datasets. In our study, we examined the n-gram overlap between the test splits of evalua-
tion benchmarks and the three distinct categories of training sets: Continued Pre-training
Data, General Instruction Data, and Evaluation Instruction Data. Our method involved
calculating the overlap of 3-grams and 5-grams between the evaluation benchmarks and
these training datasets, adopting OpenAI’s preprocessing technique, which includes the
removal of punctuation, symbols, and normalization of case sensitivity (OpenAI, 2023).
While previous studies analyzed higher n-gram numbers, such as 8-grams in Meditron
(Chen et al., 2023) and 13-grams in GPT-3 Brown et al. (2020b), our investigation did not
extend beyond 5-grams. This decision was based on the observation that the overlap ratio
at the 5-gram level was minimal and thus negligible. The outcomes for each evaluation
benchmark are detailed separately in Table 7.

G Additional Details on Training Stages

Continued Pre-training (CP) Each medical text corpus originates from diverse sources,
with each potentially exhibiting different distributions despite containing medical infor-
mation. To evaluate the effectiveness of each corpus, we conducted various experiments
involving both individually and by combining them. During these experiments, we utilized
Low-Rank Adaptation (LoRA) with r = 8 and α = 16, targeting the fully-connected layers
of the corresponding LLM Hu et al. (2021). We set the learning rate at 1e − 4 for each
experiment, employing a batch size of 8 with two gradient accumulations, and go through
all tokens in the input dataset exactly once. To enhance training convergence, we applied a
cosine scheduler alongside the Adam optimizer. Our comprehensive experiments, detailed
in Table 8 and utilizing the base LLM LLaMA2 7B Touvron et al. (2023b), show that each
data split contributes differently to downstream task accuracy. Notably, the highest scores
were achieved using a combination of the PubMedQA-train split Jin et al. (2019), which
provides context for each sample, and Medical Guidelines from the Meditron dataset Chen

21https://huggingface.co/augtoma
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Dataset MedMCQA MedQA PubmedQA USMLE-1 USMLE-2 USMLE-3
n = 3/n = 5 n = 3/n = 5 n = 3/n = 5 n = 3/n = 5 n = 3/n = 5 n = 3/n = 5

Medical Guidelines 0.10 / 0.01 0.16 / 0.01 0.26 / 0.02 0.01 / 0.00 0.02 / 0.00 0.02 / 0.00
PMC-Patients 0.10 / 0.01 0.23 / 0.03 0.22 / 0.01 0.02 / 0.00 0.03 / 0.00 0.03 / 0.00
PubMedQA-train 0.09 / 0.00 0.12 / 0.01 0.37 / 0.05 0.01 / 0.00 0.02 / 0.00 0.02 / 0.00

Medical Flashcards 1.08 / 0.05 1.65 / 0.10 1.55 / 0.07 0.16 / 0.01 0.20 / 0.01 0.25 / 0.01
GenMedGPT-5k 1.43 / 0.03 3.02 / 0.13 1.67 / 0.03 0.34 / 0.01 0.39 / 0.01 0.55 / 0.01
Open Platypus 0.27 / 0.01 0.36 / 0.01 0.50 / 0.02 0.04 / 0.00 0.05 / 0.00 0.07 / 0.00
HealthCareMagic-100k 0.20 / 0.01 0.40 / 0.03 0.28 / 0.01 0.03 / 0.00 0.05 / 0.00 0.06 / 0.00
UMLS 0.92 / 0.03 1.13 / 0.06 1.41 / 0.06 0.13 / 0.01 0.15 / 0.00 0.19 / 0.01
UMLS-Relation 0.52 / 0.00 0.66 / 0.00 0.61 / 0.00 0.07 / 0.00 0.11 / 0.00 0.12 / 0.00
Wikidoc 0.95 / 0.00 1.37 / 0.00 1.83 / 0.00 0.14 / 0.00 0.18 / 0.00 0.24 / 0.00
Wikidoc-Patient-Info 1.45 / 0.00 2.33 / 0.00 2.29 / 0.00 0.25 / 0.00 0.34 / 0.00 0.44 / 0.00
MedicationQA 3.11 / 0.00 4.08 / 0.00 5.24 / 0.00 0.52 / 0.00 0.65 / 0.00 0.97 / 0.00

MedMCQA-train 1.85 / 0.37 1.52 / 0.24 0.69 / 0.02 0.15 / 0.03 0.19 / 0.03 0.23 / 0.03
MedQA-train 1.71 / 0.12 7.61 / 2.78 1.51 / 0.05 0.60 / 0.18 0.90 / 0.25 0.99 / 0.22
PubMedQA-train 0.08 / 0.00 0.12 / 0.01 0.35 / 0.04 0.01 / 0.00 0.01 / 0.00 0.02 / 0.00

Table 7: Comparative Analysis of N-gram Overlap Ratios between Evaluation Benchmark
Datasets and Various Training Sets: Continued Pre-training Data, General Instruction Data,
and Evaluation Instruction Data. The overlap ratio is determined by dividing the count of
matching n-grams found in both the evaluation benchmark and a training dataset by the
total count of n-grams in the evaluation benchmark.

et al. (2023). These findings remained consistent when employing the Mistral 7B as the base
model Jiang et al. (2023).

Supervised Finetuning (SFT) The instruction Tuning (IT) stage is one of the tricky steps
to enhance the knowledge and reasoning capabilities of LLMs one step forward. To do that,
we gathered lots of IT datasets from different sources. We categorize our IT datasets as two
distinct groups: (i) General Instruction Datasets and (ii) Evaluation Instruction Datasets.
General Instructions contains over 400,000 samples from nine different datasets, originating
from the instruction corpora of previous studies like MedAlpaca Han et al. (2023), PMC-
LLaMA Wu et al. (2023), and Platypus Lee et al. (2023a). It aims to reduce bias and enhance
generalization across various reasoning tasks by excluding data from training or test splits
of downstream QA benchmarks. A pre-processing protocol was used to eliminate irrelevant
content, like unnecessary words and web URLs, to ensure the quality and relevance of
the data. Detailed statistics of the dataset can be found in Table 2. On the other hand,
Evaluation Instruction Datasets are generated from the training splits of the downstream
tasks, if training splits exist. It aimed to study the impact of incorporating instruction
samples from downstream tasks to see the effect it by following similar works like Meditron
Chen et al. (2023), see Table 4 for details. Instruction-response pairs were generated using
the training splits of different benchmarks, based on the instruction templates provided
by Meditron. A variety of experiments were conducted to assess the impact of each split
on tasks, individually and collectively. Following an in-depth analysis of each split for
both LLaMA2 7B and Mistral 7B, it was found that the concatenation of each Evaluation
Instruction split yielded the highest scores in LLaMA. Conversely, for Mistral, the MedQA’s
Instruction split delivered the most superior outcomes. For additional insights into how
each dataset influences downstream results, please see Table 8.

H Influence Functions

To assess the influence of specific training examples on model parameters, we measure how
changes in these parameters affect the model’s output when a data point is added, removed,
or weighted differently in the training set, requiring the computation of the inverse-Hessian-
vector product (IHVP) (Koh & Liang, 2017). Our approach to influence analysis combines
the preliminary subsampling of training examples based on TF-IDF vector similarity with
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the application of DataInf, a computationally efficient method for calculating influence
scores (Kwon et al., 2024). We experiment with the MedQA dataset where we calculate
the influence of training samples over test samples. Due to computational constraints
mentioned in Appendix J.2, we subsample the MedQA train split to 1000 examples by
selecting the most similar training samples compared to test samples based on a TF-IDF
similarity, similar to Grosse et al. (2023).

In Figure 4, we present an illustrative example showing the most and least influential
MedQA instruction-tuning samples identified by our approach for a specific MedQA test
example. The most influential training example is found to be similar to the test example,
as measured in terms of the overlapping medical terms extracted by the MetaMap tool22,
contrasting sharply with the absence of any such overlap for the least influential example.

Experiment MedMCQA MedQA PubmedQA USMLE-1 USMLE-2 USMLE-3 Avg.

LLaMA2 7b 34.4 29.3 72.3 18.1 22.9 27.1 34.0

+ Guidelines 35.2 31.7 70.6 20.2 22.9 24.6 34.2
+ PMC 34.2 30.9 71.1 9.6 20.2 24.6 31.8
+ PubMedQA 34.3 29.9 73.3 14.9 21.1 27.9 33.6
+ PubMedQA + Guidelines (PMQA + GDL) 34.6 31.9 72.8 20.2 25.7 21.3 34.4
+ PMC + Guidelines 35.2 31.7 69.5 14.9 23.9 26.2 33.6
+ PMC + Guidelines + PubMedQA 34.8 31.5 72.2 17.0 23.9 24.6 34.0

+ General Instructions 35.8 35.0 73.1 26.6 24.8 32.8 38.0
+ PubMedQA Instruction 32.2 27.5 55.2 22.3 17.4 18.0 28.8
+ MedMCQA Instruction 53.3 47.2 74.5 40.4 37.6 45.9 49.8
+ MedqQA Instruction 38.9 46.6 75.5 37.2 36.7 43.4 46.4
+ Evaluation Instructions 52.7 49.7 75.7 37.2 42.2 44.3 50.3
+ General + Evaluation Instructions 48.0 43.9 75.3 30.9 33.0 41.0 45.4

+ PMQA + GDL + General Instructions 35.2 32.5 72.2 20.2 27.5 23.8 35.2
+ PMQA + GDL + PubMedQA Instructions 26.5 27.8 78.0 18.1 23.9 27.1 33.6
+ PMQA + GDL + MedMCQA Instructions 54.6 45.8 74.6 36.2 43.1 47.5 50.3
+ PMQA + GDL + MedqQA Instructions 39.0 47.5 73.5 41.5 33.0 42.6 46.2
+ PMQA + GDL + Evaluation Instructions 54.3 50.6 74.7 46.8 41.3 50.0 53.0
+ PMQA + GDL + General + Evaluation Instr. 47.6 41.2 75.0 38.3 34.9 37.7 45.8

+ PMQA + GDL + Evaluation Instr. + DPO 54.4 50.4 74.8 46.8 39.5 49.2 52.5

Mistral 7B 39.3 36.8 76.3 24.5 31.2 27.9 39.3

+ Guidelines 41.4 38.4 74.8 28.7 31.2 31.2 40.9
+ PMC 40.0 37.9 75.2 25.5 30.3 33.6 40.4
+ PubMedQA 39.0 36.2 78.2 26.6 27.5 32.0 39.9
+ PubMedQA + Guidelines (PMQA + GDL) 41.0 37.9 76.8 24.5 34.9 31.2 41.0
+ PMC + Guidelines 40.2 37.2 74.6 27.7 33.0 31.2 40.6
+ PMC + Guidelines + PubMedQA 40.0 36.5 76.3 31.9 30.3 28.7 40.6

+ PubMedQA Instructions 32.5 29.5 60.4 19.2 18.4 31.2 31.9
+ MedQA Instructions 49.7 59.2 77.1 60.6 66.1 56.6 61.6
+ MedMCQA Instructions 60.6 53.1 75.5 58.5 47.7 52.5 58.0
+ General Instructions 59.1 54.6 60.8 54.3 52.3 51.6 55.5
+ General + Evaluation Instructions 51.2 48.9 75.6 52.1 37.6 47.5 52.1

+ PMQA + GDL + General Instructions 58.1 54.8 73.6 53.2 56.0 50.0 57.6
+ PMQA + GDL + MedMCQA Instructions 57.4 50.0 78.1 45.7 45.0 52.5 54.8
+ PMQA + GDL + MedQA Instructions 51.5 60.9 76.5 55.3 65.1 57.4 61.1
+ PMQA + GDL + PubMedQA Instructions 32.7 29.2 68.2 14.9 29.4 34.4 34.8
+ PMQA + GDL + General + Evaluation Instr. 50.7 48.2 76.6 48.9 38.5 44.3 51.2

+ PMQA + GDL + MedQA Instr. + DPO 49.3 57.3 77.3 56.4 62.4 54.9 59.6

Table 8: LLaMA2 7B and Mistral 7B zero shot experiments on MedMCQA, PubMEDQA,
MedQA, USMLE-step1, USMLE-step2, USMLE-step3 by using the LM-Evaluation-Harness.

I Evaluation

Reliability. To ensure a fair and easily replicable assessment of these medical models, we
utilized the Eleuther AI Language Model Evaluation Harness (Gao et al., 2021), a unified

22https://metamap.nlm.nih.gov/
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evaluation framework specifically designed for evaluating generative LLMs. This frame-
work is also the foundational evaluation tool for the Open LLM Leaderboard23 (Beeching
et al., 2023).

QA Evaluation Metric. The LM-Evaluation-Harness operates on a Log-Likelihood objec-
tive, calculating the negative log-likelihood for each potential answer in response to a given
query. The answer is then chosen based on the highest likelihood score, indicating it as the
most probable choice.

Prompting. Our evaluation was conducted using widely recognized datasets from prior
works. Specifically, we employed six different question-answering datasets: MedMCQA,
MedQA, PubMedQA, USMLE-Step1, USMLE-Step2, and USMLE-Step3 (Pal et al., 2022; Jin
et al., 2021; 2019). Each prompt includes a question and corresponding choices, separated
by a newline. For PubMedQA evaluations, we also incorporated the abstract as context for
the model’s reasoning. Prompt examples can be seen in Fig. 5 and Fig. 6.

Qualitative Results In Tables 9 through 14, we show representative samples from
each benchmark employed in our evaluation. These tables include responses from our
Hippo- and Hippo- models as well as from competing models. We use the LM-
Evaluation-Harness for prompt formatting, and the results are obtained with zero-shot
setting.

J Negative Results

This section points out the negative results associated with each section from the main text.
The organization of these paragraphs closely reflects the structure of the main body.

J.1 Hippocrates Framework

Combining Different Datasets. In both Continued Pre-training and Supervised Fine-
tuning, simply combining each dataset and adding more samples does not positively impact
the downstream task. For Continued Pre-training, the best results were achieved by utilizing
the Medical Guidelines and PubmedQA-train splits, while excluding the PMC-Patients
dataset. On the other hand, during the process of instruction tuning, significant time
was invested in compiling various IT datasets, as detailed in Table 2. Furthermore, we
created Evaluation Instruction datasets by adopting the prompts from Meditron Chen et al.
(2023). Despite possessing a vast array of instruction samples, including 292K from General
Instructions, 182,822 MedMCQA-train samples, 10,178 MedQA-train samples, and 211,269
PubmedQA-train samples, our best performance was notably achieved by exclusively
utilizing the MedQA-train split. Intriguingly, this split contained the smallest quantity of
instruction samples yet yielded the most significant improvement by a considerable margin.

Impact of Continued Pre-training. Continued Pre-training (CP) serves as a foundational
step in customizing LLMs for domain-specific tasks. However, an examination of Table 6
shows that while Supervised Finetuning (SFT) improves the accuracy of LLaMA2 7B follow-
ing CP; Mistral 7B, employing only SFT, outperforms the combination of CP followed by
SFT. This suggests that the impact of CP prior to SFT may vary depending on the underlying
base LLM.

Preference Dataset Creation. We attempted to employ preference learning methods for
the first time by utilizing RLAIF Lee et al. (2023b) for the medical domain. We created
our comparison dataset using GPT-4 OpenAI (2023); Nori et al. (2023), which acted as
the annotator. This approach was facilitated by providing a detailed instruction prompt
(Figure 7), adapted from MedPaLM’s instruction used by human annotators Singhal et al.
(2022; 2023a). Instead of creating a custom dataset comprising single prompts and their

23https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
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corresponding model outputs for GPT-4 to annotate based on specific instructions, we opted
to directly leverage the iCliniq dataset. This dataset encompasses three distinct responses
from a real doctor and other LLMs. This approach raises an open question: Could there be
an improved alignment with medical preferences if our own LLMs generated the responses?

RLAIF with DPO. We utilized the Medical Comparison Dataset outlined in Section 2.3
to enhance the medical alignment by applying DPO Rafailov et al. (2023) to learn from
medical feedback and update our models. However, as indicated in Table 6, training
with DPO resulted in modest improvements for PubMedQA and certain USMLE steps
for both LLaMA2 and Mistral-based models, but a slight decrease in overall performance
across all tasks in the benchmark. We hypothesize that this may be due to the similarity in
question format between our preference datasets and PubMedQA. Our datasets include a
detailed explanation of the patient’s current issue followed by a related question, mirroring
PubMedQA’s structure of presenting an abstract related to the problem before posing the
question. In contrast, other datasets follow a more straightforward question-and-answer
format.

J.2 Analysis

Model Selection. As previously noted in the Appendix J.1 on negative results within
the Hippocrates framework, the sequential application of CP, followed by SFT, and then
Preference Learning, does not yield optimal models for LLaMA2 7B and Mistral 7B. Our top-
performing model for LLaMA2 7B, dubbed Hippo- , was developed by CP, immediately
followed by SFT. Conversely, for the Mistral 7B model, our best results, leading to the
creation of Hippo- , were achieved solely through SFT.

Additional Prompting Strategies. Our incorporation of Chain-of-Thought (CoT) as an
additional prompting strategy resulted in slight improvements in certain subtasks but
an overall decrease in accuracy (see Table 6), mirroring findings from PubMedQA CoT
evaluations in MedPaLM Singhal et al. (2022; 2023a). This underscores an intriguing avenue
for further exploration, given the generally high accuracy these strategies motivate in LLMs
Wei et al. (2023); Wang et al. (2023).

Influence functions. The main challenge regarding influence functions was CPU memory
limitations. In the case of Hippo- , each example has approximately 200 MBs of gradients,
therefore storing gradients for a total of 700000 examples needs 140 TB hard disk and RAM
space, excluding any essential memory requirements. Therefore, we subsample the MedQA
train split to 1000 examples and perform a small-scale qualitative analysis.
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Test Sample

Question: A 4-week-old female newborn is brought to the physician because of increasing
yellowing of her eyes and skin for 2 weeks. The mother has noticed that the girl’s stools have
become pale over the past week. She was breastfed since birth but her parents switched her to
formula feeds recently after reading on the internet that breastfeeding could be the cause of
her current symptoms. The patient was delivered vaginally at 38 weeks’ gestation. Pregnancy
and delivery were uncomplicated. She appears healthy. Vital signs are within normal limits.
She is at the 50th percentile for length and at the 60th percentile for weight. Examination
shows scleral icterus and jaundice. The liver is palpated 2 cm below the right costal margin.
Cardiopulmonary examination shows no abnormalities. Neurologic examination shows no
focal findings. Serum studies show: Bilirubin Total 15 mg/dL Direct 12.3 mg/dL Alkaline
phosphatase 2007 U/L AST 53 U/L ALT 45 U/L γ-glutamyl transferase 154 U/L Blood group
A positive Which of the following is the most likely diagnosis?”
Options: (A) Galactosemia (B) Biliary atresia (C) Crigler–Najjar syndrome (D) Breast milk
jaundice Answer: Biliary atresia

Most Influential Training Sample

Question: A 10-month-old girl is brought to the physician by her mother because of fever
and irritability for the past 2 days. The mother says that the girl’s diapers have smelled
bad since the symptoms started. The patient has had some clear nasal secretions over the
past week. Two months ago, she was brought to the emergency department for a simple
febrile seizure. Otherwise, she has been healthy and her immunizations are up-to-date. She
appears ill. She is at the 50th percentile for height and weight. Her temperature is 39.1°C
(102.3°F), pulse is 138/min, respirations are 26/min, and blood pressure is 75/45 mm Hg.
Oropharyngeal examination shows a mild postnasal drip. The remainder of the examination
shows no abnormalities. Laboratory studies show: Hemoglobin 12.4 g/dL Leukocyte count
8,000/mm3 Serum Na+ 138 mEq/L K+ 4.0 mEq/L Cl- 100 mEq/L Creatinine 0.5 mg/dL Urine
RBC 1–2/hpf WBC 18–20 WBCs/hpf Nitrites positive Bacteria gram-negative rods Nasal swab
for respiratory syncytial virus, influenza A, and influenza B antigens is negative. Urine culture
grows > 105 colony forming units (CFU)/mL of E. coli. Treatment with acetaminophen and
cefixime is started. Two days later, her symptoms have improved. Which of the following is
the most appropriate next step in management?”
Options: (A) Obtain CT scan of the abdomen (B) Perform renal and bladder ultrasound
(C) Perform an intravenous pyelogram (IVP) (D) Start prophylaxis with trimethoprim-
sulfamethoxazole Answer: Perform renal and bladder ultrasound

Least Influential Training Sample

Question: A 35-year-old woman presents to the emergency room with chest pain. She de-
scribes the chest pain as severe, 9/10, sharp in character, and diffusely localized to anterior
chest wall. She also says she is sweating profusely and feels like “she is about to die”. She has
presented to at least 4 different emergency rooms over the past month with similar episodes
which resolve after 10–15 minutes with no sequelae or evidence of cardiac pathology. How-
ever, she says she is fearful every day of another episode. No significant past medical history.
Vital signs are within normal limits, and physical examination is unremarkable. Laboratory
findings, including cardiac troponins, are normal. Which of the following is the best pharma-
cological treatment for long-term management of this patient?
Options: (A) Paroxetine (B) Benzodiazepine (C) Phenelzine (D) Nortriptyline Answer: Parox-
etine

Figure 4: The most and least influential MedQA instruction-tuning samples for a MedQA
test sample for the Hippo- model. The test sample and the most influential sample are
more similar compared to the least influential sample.
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MedQA — Format: Question

Question: A 3-week-old newborn is brought to the physician by his parents because of poor
feeding, irritability, and frequent vomiting over the past week. The vomitus is greenish
in color and smells strange. His parents have tried to feed him every 4 hours, but the
patient often spits up or refuses to eat. The patient was born at term and had his first bowel
movement at 50 hours of life. He has since had one bowel movement daily. He is at the 50th
percentile for length, 10th percentile for weight, and 40th percentile for head circumference.
He does not appear to be in acute distress. His temperature is 36.9°C (98.4°F), pulse is
140/min, respirations are 40/min, and blood pressure is 90/60 mm Hg. Physical examination
shows that the patient has small, low-set ears, a broad and flat nasal bridge, and a large space
between the first and second toes bilaterally. The abdomen is distended. When the finger
is removed following a rectal exam, there is an explosive release of stool from the patient’s
rectum. An x-ray of the abdomen shows a section of dilated colon followed by a segment of
colon without stool or air.

Which of the following is most likely to confirm the diagnosis?
(A) CT scan of the abdomen (B) Transabdominal ultrasonography (C) Anorectal manometry
(D) Rectal suction biopsy

MedMCQA — Format: Question

Question: Tensor veli palatini is supplied by:

(A) Facial nerve (B) Trigeminal nerve (C) Glossopharyngeal nerve (D) Pharyngeal plexus

PubMedQA — Format: Abstract + Question

Abstract: The use of open access endoscopy is increasing. Its effect on the adequacy of patient
informed consent, procedure acceptance and the impact on subsequent communication/trans-
fer of procedure results to the patient have not been evaluated. The aim of our study was
to compare the extent of preknowledge of procedures and test explanation, patient medical
complexity, information transfer and overall patient satisfaction between a patient group
referred for outpatient open access endoscopy versus a patient group from a gastrointestinal
(GI) subspecialty clinic. Information was obtained from all patients presenting for outpatient
upper and lower endoscopy by using a 1-page questionnaire. Patients from the two groups
who had an outpatient upper/lower endoscopic procedure were contacted by phone after
the procedure to obtain information with a standardized questionnaire. The open access
patients reported receiving significantly less information to help them identify the procedure
(p<0.01) and less explanation concerning the nature of the procedure than the group of
patients referred from the subspecialty clinic (p<0.005). There was no difference between the
two groups in satisfaction scores for examinations performed under conscious sedation. For
flexible sigmoidoscopy without sedation, however, the GI clinic patient group were more
satisfied with their procedure. The majority of patients, regardless of access, were more
likely to receive endoscopic results from a gastroenterologist than the referring physician.
Furthermore, the patients in the GI clinic group who underwent colonoscopy felt significantly
better at follow-up.

Question: Does open access endoscopy close the door to an adequately informed patient? (A)
yes (B) no (C) maybe

Figure 5: Examples of prompts used in the evaluation of MedMCQA, MedQA, and Pub-
MedQA. Format shows the information order in the prompt.
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USMLE-Step1 — Format: Question

Question: A 58-year-old man with chronic obstructive pulmonary disease comes to the clinic
with his wife for a follow-up examination. He has smoked one pack of cigarettes daily for 35
years. He has tried to quit smoking twice but was unsuccessful both times. At today’s visit,
when the physician asks the patient about smoking cessation, he says he is not ready to do so.
The patient’s wife states her husband’s smoking makes her cough and gives her chest tightness.

Which of the following is the most appropriate physician statement?
(A) ”Are there any reasons why you might want to quit smoking?” (B) ”Are you aware that
your lung condition is chronic at this point?” (C) ”I’m sure you don’t want your wife to suffer
as a result of your smoking.” (D) ”The majority of your health issues would improve if you
quit smoking.” (E) ”Why haven’t you been able to stay off cigarettes?”

USMLE-Step2 — Format: Question

Question: A 32-year-old woman comes to the emergency department because of a 1-day
history of sharp, right-sided chest pain that worsens with coughing and sneezing. Four days
ago, she had a mild sore throat and runny nose followed by nonproductive cough 1 day later.
Over-the-counter decongestant and aspirin mildly relieved the symptoms. She has not had
shortness of breath, blood-tinged sputum, fever, or chills. She has a long-standing history
of recurrent aphthous ulcers. Her only medication is an oral contraceptive. Temperature is
37.2°C (99.0°F), pulse is 65/min, and respirations are 14/min. Pulse oximetry on room air
shows an oxygen saturation of 99%. Splinting is observed over the right hemithorax with
deep breathing. On cardiac examination, no abnormalities are heard. The remainder of the
examination shows no abnormalities. Chest x-ray shows no abnormalities.

Which of the following is the most appropriate next step in management?
(A) Azithromycin therapy (B) CT angiography (C) Electrocardiography (D) Ibuprofen therapy
(E) Prednisone therapy (F) Transthoracic echocardiography

USMLE-Step3 — Format: Question

Question: A 57-year-old woman comes to the office for a preoperative evaluation 2 weeks
before undergoing scheduled laparoscopic cholecystectomy. Medical history is otherwise
unremarkable and the patient takes no medications. Family history is significant for stable
angina in her father and rheumatoid arthritis in her mother. The patient has a 102-year-old
grandmother who resides in a nursing care facility and has Parkinson disease. The patient
does not smoke cigarettes or drink alcoholic beverages. During the interview, her face is
expressionless. She has a flexed posture and is unable to open her mouth wide. She is 173 cm
(5 ft 8 in) tall and weighs 81 kg (179 lb); BMI is 27 kg/m2. Vital signs are normal. Physical
examination discloses thickening and hardening of the skin over the dorsum of the hands and
forearms, as well as mild kyphosis. Strength testing shows no abnormalities; muscle tension
is normal. Passive and active range of motion of the upper extremities is full. Gait is slow and
deliberate. The remainder of the physical examination discloses no abnormalities. Prior to
surgery, further evaluation is indicated for which of the following conditions in this patient?

(A) Osteitis deformans (Paget disease) (B) Parkinson disease (C) Progressive supranuclear
palsy (D) Sarcopenia (E) Systemic sclerosis (scleroderma)

Figure 6: Examples of prompts used in the evaluation of USMLE-Step1, USMLE-Step2, and
USMLE-Step3. Format shows the information order in the prompt.
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MedMCQA

Question: Low insulin to glucagon ratio is seen in all of these except: (A) Glycogen synthesis
(B) Glycogen breakdown (C) Gluconeogenesis (D) Ketogenesis
Answer:

Gold Answer A

BioMistral-7B D) Ketogenesis
MediTron-7B (A) Glycogen synthesis
MediTron-70B (A) Glycogen synthesis
Hippo- (A) Glycogen synthesis
Hippo- Glycogen synthesis

Table 9: Example from MedMCQA benchmark with responses from different models.

MedQA

Question: A 65-year-old man is brought to the emergency department 30 minutes after the
onset of acute chest pain. He has hypertension and asthma. Current medications include
atorvastatin, lisinopril, and an albuterol inhaler. He appears pale and diaphoretic. His pulse is
114/min and blood pressure is 130/88 mm Hg. An ECG shows ST-segment depressions in
leads II, III, and aVF. Laboratory studies show an increased serum troponin T concentration.
The patient is treated for acute coronary syndrome and undergoes percutaneous transluminal
coronary angioplasty. At the time of discharge, echocardiography shows a left ventricular
ejection fraction of 58%. In addition to aspirin, which of the following drugs should be added
to this patient’s medication regimen? (A) Nifedipine (B) Enoxaparin (C) Clopidogrel (D)
Spironolactone
Answer:

Gold Answer C

BioMistral-7B B Enoxaparin
Meditron-7B (A) Nifedipine
Meditron-70B (C) Clopidogrel
Hippo- (C) Clopidogrel
Hippo- Clopidogrel

Table 10: Example from MedQA benchmark with responses from different models.
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PubMedQA

Abstract: Although observational data support an inverse relationship between high-density
lipoprotein (HDL) cholesterol and coronary heart disease (CHD), genetic HDL deficiency
states often do not correlate with premature CHD. Carotid intima-media thickness (cIMT)
measurements were obtained in cases comprising 10 different mutations in LCAT, ABCA1
and APOA1 to further evaluate the relationship between low HDL resulting from genetic
variation and early atherosclerosis. In a 1:2 case-control study of sex and age-related (+/-5
y) subjects (n=114), cIMT was nearly identical between cases (0.66+/-0.17 cm) and controls
(0.65+/-0.18 cm) despite significantly lower HDL cholesterol (0.67 vs. 1.58 mmol/l) and
apolipoprotein A-I levels (96.7 vs. 151.4 mg/dl) (P¡0.05)
Question: Do mutations causing low HDL-C promote increased carotid intima-media
thickness?
Answer:

Gold Answer No

BioMistral-7B No, mutations causing low HDL-C do not promote increased carotid
intima-media thickness. This suggests that the relationship between
HDL-C and CHD is not causal.

MediTron-7B No
MediTron-70B No
Hippo- No, mutations causing low HDL-C do not promote increased carotid

intima-media thickness.
Hippo- No

Table 11: Example from PubMedQA benchmark with responses from different models.

USMLE-1

Question: Results of a study that examined the impact of risk factors on cardiovascular health
are being evaluated. In the study,serum LDL-cholesterol (LDL) concentration is found to have
a correlation of 0.6 with serum high-sensitivity C-reactive protein (hs-CRP) concentration.
Which of the following statements best describes the relationship betweenLDL concentration
and hs-CRP concentration based on this finding? (A) Higher LDL concentrations are
associated with higher hs-CRP concentrations (B) Higher LDL concentrations are associated
with lower hs-CRP concentrations (C) Higher LDL concentrations cause higher hs-CRP
concentrations (D) Higher LDL concentrations cause lower hs-CRP concentrations
Answer:

Gold Answer A

BioMistral-7B A
MediTron-7B (A) Higher LDL concentrations are associated with higher hs-CRP

concentrations
MediTron-70B The correct answer is option (A).
Hippo- (A) Higher LDL concentrations are associated with higher hs-CRP

concentrations
Hippo- Higher LDL concentrations are associated with higher hs-CRP concen-

trations

Table 12: Example from USMLE-1 benchmark with responses from different models.
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USMLE-2

Question: A 16-year-old boy is brought to the emergency department because of a 2-day
history of fever, nausea, vomiting, headache, chills, and fatigue. He has not had any sick
contacts. He underwent splenectomy for traumatic injury at the age of 13 years. He has no
other history of serious illness and takes no medications. He appears ill. His temperature is
39.2°C (102.5°F), pulse is 130/min, respirations are 14/min, and blood pressure is 110/60
mm Hg. On pulmonary examination, scattered crackles are heard bilaterally. Abdominal
examination shows a well-healed midline scar and mild, diffuse tenderness to palpation.
Which of the following is the most appropriate next step in management? (A) Antibiotic
therapy (B) Antiemetic therapy (C) CT scan of the chest (D) X-ray of the abdomen (E)
Reassurance
Answer:

Gold Answer A

BioMistral-7B C
MediTron-7B (A) Antibiotic therapy
MediTron-70B The correct answer is option C.
Hippo- (A) Antibiotic therapy
Hippo- Antibiotic therapy

Table 13: Example from USMLE-2 benchmark with responses from different models.

USMLE-3

Question: A 34-year-old woman comes to the office because of a 1-month history of
worsening right upper quadrant abdominal pain and discomfort. She describes the pain as
a dull ache and says it is not affected by eating or defecating. She has not had nausea or
changes in appetite or bowel habits. She feels the pain constantly while she is awake, but
it rarely keeps her from sleeping. Acetaminophen provides occasional relief. She has been
otherwise healthy. Medical history is unremarkable and her only other medication is an
oral contraceptive. Vital signs are normal. Abdominal examination discloses hepatomegaly
but no palpable masses or evidence of cirrhosis. Results of liver function tests and serum
α-fetoprotein concentration are within the reference ranges. Serologic studies for hepatitis B
and C are negative. Ultrasonography of the abdomen shows a 4×4-cm mass in the right lobe
of the liver. Which of the following is the most likely diagnosis? (A) Hepatic adenoma (B)
Hepatocellular cancer (C) Hydatid cyst (D) Metastatic ovarian cancer
Answer:

Gold Answer A

BioMistral-7B A
MediTron-7B (A) Hepatic adenoma.
MediTron-70B (A) Hepatic adenoma.
Hippo- (A) Hepatic adenoma
Hippo- Hepatic adenoma

Table 14: Example from USMLE-3 benchmark with responses from different models.
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You are an expert medical knowledge assistant. Given a piece of question and two of
its possible answers, output 1 or 2 to indicate which answer is better. A good doctor
answer has to be useful, complete, and scientifically-grounded for the patience search
query about health. Compare the answers along 11 axes:

1. Scientific consensus: How does the answer relate to the consensus in the
scientific and clinical community?

2. Extent of possible harm: What is the extent or possible likelihood of possible
harm?

3. Evidence of correct comprehension: Does the answer contain any evidence
of correct reading comprehension? (indication the question has been under-
stood)

4. Evidence of correct retrieval: Does the answer contain any evidence of
correct recall of knowledge? (mention of a relevant and/or correct fact for
answering the question)

5. Evidence of correct reasoning: Does the answer contain any evidence of
correct reasoning steps? (correct rationale for answering the question)

6. Evidence of incorrect comprehension: Does the answer contain any evi-
dence of incorrect reading comprehension? (indication the question has not
been understood)

7. Evidence of incorrect retrieval: Does the answer contain any evidence of
incorrect recall of knowledge? (mention of an irrelevant and/or incorrect
fact for answering the question)

8. Evidence of incorrect reasoning: Does the answer contain any evidence of
incorrect reasoning steps? (incorrect rationale for answering the question)

9. Inappropriate/incorrect content: Does the answer contain any content it
shouldn’t?

10. Missing content: Does the answer omit any content it shouldn’t?
11. Possibility of bias: Does the answer contain any information that is inappli-

cable or inaccurate for any particular medical demographic?

Question - #question
Answer 1 - #answer1
Answer 2 - #answer2
Consider if the answer include agreement with scientific consensus, possibility
and likelihood of harm, evidence of comprehension, reasoning and retrieval ability,
presence of inappropriate, incorrect or missing content, possibility of bias in the
answer and explain which answer is one is better along with these axes.
Rationale: #GPT-4 choice

Figure 7: The GPT-4 prompt used for reinforcement learning from AI-generated feedback.
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