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We have derived previously the relations between the neutrino masses and mixing angles in a
dispersive analysis on the mixing of neutral leptonic states. The only involved assumption is that
the electroweak symmetry of the Standard Model (SM) is restored at a high energy scale in some
new physics scenario, which diminishes the box diagrams responsible for the mixing. Here we
include corrections to the analysis up to three loops, arising from exchanges of additional neutral
and charged scalars in the electroweak symmetric phase. The solution to the dispersion relation for
the µ−e+-µ+e− mixing generates a typical neutrino mass mν ∼ O(1) eV in the SM unambiguously.
The solution also favors the normal ordering of the neutrino masses over the inverted one, and links
the large electroweak symmetry restoration, i.e., new physics scale to the small neutrino mass.

I. INTRODUCTION

It has been a long pursuit in particle physics to understand the flavor structure of the Standard Model (SM).
We proposed recently [1–3] that analyticity imposes additional dynamical constraints on the SM parameters beyond
the Lagrangian level, which can account for the mass hierarchy and the distinct mixing patterns between quarks
and leptons. Take the mixing of the neutral leptonic states µ−e+ and µ+e− as an example, where the muon is
treated as being heavy with the invariant mass squared s, and the electron is regarded as being massless. The mixing
amplitude governed by the leading-order (LO) box diagrams must respect a dispersion relation formulated in the s
complex plane. It was argued that the mixing phenomenon will disappear, if the electroweak symmetry of the SM is
restored at a high energy scale Λ [4, 5]. The composite Higgs model described in [6] provides a suitable platform for
the argumentation; the electroweak group in their model is broken at a scale much lower than the condensate scale,
implying the existence of a symmetric phase which we refer to. The disappearance of the mixing at s > Λ2 was taken
as the LO input to the dispersion relation, and the corresponding solution at low s < Λ2, i.e., in the symmetry broken
phase, was found to effectively bind the neutrino masses and the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix
elements involved in the box diagrams.

Several important observations were extracted from the dispersive constraints on the neutrino masses and the
PMNS matrix elements [1]. The neutrino mass ordering, whose various scenarios have not been discriminated ex-
perimentally, has remained unsettled in neutrino physics [7]. It was noticed that the neutrino masses in the normal
ordering (NO), instead of in the inverted ordering (IO) or quasi-degenerate spectrum, match the observed PMNS
matrix elements. The neutrino mixing angles larger than the quark ones were attributed to the inequality of the mass
ratios, m2

2/m
2
3 ≫ m2

s/m
2
b , where m2 (m3) is the second-generation (third-generation) neutrino mass and ms (mb)

is the s (b) quark mass. The combination with the dispersive analysis of the τ−e+-τ+e− mixing further demands
unequivocally the mixing angle θ23 ≈ 45◦ in accordance with its measured value around the maximal mixing. We
emphasize that the above observations are established without resorting to specific new ingredients beyond the SM
(for recent endeavors on this topic, refer to [8–16]). The only required assumption is the restoration of the electroweak
symmetry at a high energy scale. The successful explanation on part of the SM flavor structure thus also sheds light
on potential new physics models.

Precisely speaking, our previous study explored the connection between the mixing angles and the ratios of the
neutrino masses, instead of the absolute values of the neutrino masses [17]. Therefore, one of the key issues in
neutrino physics, i.e., the smallness of the neutrino masses, has not been addressed. As a follow-up, we include
loop corrections to the LO formalism, which arise from exchanges of additional neutral and charged scalars in the
electroweak symmetric phase. The solution to the dispersion relation for the µ−e+-µ+e− mixing with the high-energy
inputs up to three loops generates a tiny neutrino mass scale in the SM via the equation

m2
ν

√
ln

m2
W

m2
ν

≈
√
3

128π2

m2
µm

2
e

v2
, (1)

with the W boson mass mW , the muon (electron) mass mµ (me) and the vacuum expectation value (VEV) v of the
Higgs field. Compared to the well-known seesaw mechanism [18], the VEV v plays the role of a heavy Majorana
neutrino mass in suppressing neutrino masses relative to charged lepton masses. Equation (1) leads to mν ∼ O(1)
eV unambiguously, which, as an order-of-magnitude estimate, is compatible with the upper bound on the neutrino
mass mν < 0.9 eV at 90% CL from the the endpoint spectrum of the tritium β-decay measured by the KATRIN
Collaboration [19].
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We also find from the solution that the tiny neutrino mass hints a large electroweak symmetry restoration Λ
through the order-of-magnitude formula

ln
Λ

mW
∼ O(1)

√
ln

m2
W

m2
ν

, (2)

where O(1) denotes a coefficient of order of unity. In other words, the small neutrino mass is indeed linked to a new
physics scale [20]. As mentioned before, we have demonstrated [1] that the neutrino masses in the NO satisfies better
the LO dispersive constraints from the mixing of neutral leptonic states, compared to the IO. We examine whether
this postulation sustains its validity by deriving the constraint under the multi-loop input,

U∗
µ1Ue1(m3 −m1) + U∗

µ2Ue2(m3 −m2) = O

(
m2

ν

v

)
≈ 0, (3)

with the PMNS matrix elements Uµi and Uei and the first-generation neutrino mass m1. It will be shown that Eq. (3)
confirms the preference on the fitted parameters associated with the NO. The discrimination is mainly due to the
different CP phases determined for the two possible mass orderings.

The rest of the paper is organized as follows. We recapture our framework [1] in Sec. II, and present the real
part of the mixing amplitude in the symmetric phase and the imaginary part in the broken phase. The two pieces
are substituted into the dispersion relation respected by the mixing amplitude in Sec. III to construct the solution.
Equations (1)-(3) are established, and their physical implications are elaborated. Section IV contains the conclusion
and outlook. The real part of the mixing amplitude is evaluated up to three loops in the Appendix.

II. FORMALISM

Consider the mixing of the neutral leptonic states L−
L ℓ

+
L and L+

Lℓ
−
L , where L (ℓ) stands for a massive (light) charged

lepton and L labels the left-handedness. The right-handedness will be labeled by R below. Before the electroweak
symmetry breaking, all particles are massless, and leptons are in their flavor eigenstates. The mixing occurs through
exchanges of charged or neutral scalars among leptons, whose strengths are characterize by the Yukawa couplings.
The Yukawa matrix elements are not all independent, so the discussion of the mixing in the symmetric phase will
be more tedious, if it is based on the Yukawa matrices. A more transparent picture is attained by implementing
the fermion field transformations adopted in the symmetry broken phase. The standard unitary transformation of
fermion fields from the flavor eigenstates with the superscript f to the mass eigenstates reads

ν
(f)
L = UννL, ν

(f)
R = VννR, ℓ

(f)
L = UℓℓL, ℓ

(f)
R = VℓℓR, (4)

which diagonalizes the Yukawa matrices with the superscript d

Y (d)
ν = U†

νYνVν , Y
(d)
ℓ = U†

ℓ YℓVℓ, (5)

and defines the PMNS matrix

U = U†
ℓUν . (6)

The relevant Lagrangian in the symmetric phase is then given by

Y (d)
ν ν̄L(−ϕ̄0)νR + Y

(d)
ℓ ℓ̄Lϕ

0ℓR + Y (d)
ν ℓ̄′Lϕ

−νR + Y
(d)
ℓ ν̄′Lϕ

+ℓR + h.c., (7)

after the fermion field transformation, where the real component of ϕ0 in the first two terms corresponds to the SM
Higgs boson. The imaginary component of ϕ0 and the charged scalars ϕ± in the last two terms disappear after the
symmetry breaking, and turn into the longitudinal components of weak gauge bosons. Equation (7) indicates that
the Yukawa matrices have been diagonalized, but the charged scalar currents persist in the symmetric phase. Note
that the left-handed charged leptons ℓ′L, which couple to the right-handed neutrinos νR via charged scalar currents,
differ from the physical mass eigenstates ℓL. The same differentiation applies to ν′L and νL. The relations between
them are governed by the PMNS matrix in Eq. (6),

ℓL = Uℓ′L, νL = U†ν′L; (8)

namely, the left-hand sides are the linear combinations of the right-hand sides weighted by the PMNS matrix elements.
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FIG. 1: Box diagram with the two vertical wavy lines representing W bosons.

The external neutral states L−
L ℓ

+
L and L+

Lℓ
−
L are formed by the charged leptons in the broken phase, so their

first emissions are composed of real neutral scalars or weak gauge bosons. As the magnitude of the L invariant
mass exceeds the restoration scale, internal leptons become massless, and start to exchange imaginary neutral scalars
and charged scalars. The L−

L ℓ
+
L -L

+
Lℓ

−
L mixing must involve exchanges of charged scalars ϕ± or W± bosons in the

symmetric phase. The Yukawa matrices associated with charged scalar emissions are also diagonal with Y
(d)
ℓ for the

ℓR → ν′L transition and Y
(d)
ν for the νR → ℓ′L transition. When a right-handed neutrino νR emits a charged scalar

ϕ+ and transits to a left-handed charged lepton ℓL, which is one of the components of ℓ′L according to Eq. (8), the
emission is characterized by a PMNS matrix element. The same PMNS matrix element is associated with the W+

boson mission in the νL → ℓL transition. This coincidence is expected, since a charged scalar is equivalent to the
longitudinal component of a W boson.

The dispersion relation for the mixing amplitude Π(s) ≡ M(s)− iΓ(s)/2 is quoted as [21, 22]

M(s) =
1

2π

∫ R

ds′
Γ(s′)

s− s′
+

1

2πi

∫
CR

ds′
Π(s′)

s′ − s
, (9)

where s is the mass squared of the heavy charged lepton L, and M(s) and Γ(s)/2 represent the real and imaginary
parts of the mixing amplitude, respectively. The contour consists of one horizontal path below the branch cut along
the positive real axis, another horizontal path above the branch cut, and a circle CR of large radius R. The invariant
mass squared s is located in a deep Euclidean region inside the large circle, far away from the branch cut, and its
magnitude is above the restoration scale Λ2. We decompose the mixing amplitude into a sum over various intermediate
neutrino channels,

Π(s) =

3∑
i,j=1

λiλjΠij(s) + · · · ≡
3∑

i,j=1

λiλj

[
Mij(s)−

i

2
Γij(s)

]
+ · · · , (10)

where λi ≡ U∗
LiVℓi is the product of the PMNS matrix elements, and · · · denote the contributions proportional to

higher powers of λi,j . Because an intermediate state can be identified experimentally in principle, the contribution
from each channel with the lowest power of λiλj satisfies its own dispersion relation,

Mij(s) =
1

2π

∫ R

ds′
Γij(s

′)

s− s′
+

1

2πi

∫
CR

ds′
Πij(s

′)

s′ − s
, (11)

in which the lower bound of s′ for the dispersive integral of Γij(s
′) will be specified later.

A. Real Contribution

We calculate the real part of the mixing amplitude in the symmetric phase, and collect the detail in the Appendix.
As elucidated above, the external states L−

L ℓ
+
L and L+

Lℓ
−
L exchange only two W bosons at one-loop level as depicted

by the box diagram in Fig. 1. The real contribution from the box diagrams with the massless internal neutrinos νiL,
νjL and two massless W bosons is written as

M
(1)
ij (s) = − 1

16π2

(
g

2
√
2

)4
4

s
, (12)
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FIG. 2: Two-loop diagram with exchanges of a neutral scalar, a charged scalar and a W boson in sequence from left to right.

(a) (b)

FIG. 3: (a) Three-loop diagram with exchanges of neutral, charged, charged and neutral scalars in sequence from left to right.
(b) Three-loop diagram with exchanges of a W boson, two neutral scalars and a W boson in sequence from left to right.

which is of O(g4), g being the weak coupling. The above expression is independent of intermediate states, such that
the summation over all intermediate channels vanishes owing to the unitarity condition

∑
i U

∗
LiUℓi = 0. The absence

of the mixing dynamics in the symmetric phase has been adopted as the input in our previous LO analysis [1].
At two-loop level, the heavy charged lepton L−

L can first emit a Higgs boson, transiting to a right-handed charged

lepton L−
R, which then emits a charged scalar ϕ−, transiting to a left-handed neutrino νiL. At last, this νiL becomes

the external charged lepton ℓ−L in the external state L+
Lℓ

−
L by emitting a W+ boson as illustrated in Fig. 2. All the

above internal particles are massless. The Higgs boson vertex carries the Yukawa coupling, i.e., the diagonal element

of the Yukawa matrix in Eq. (7), (Y
(d)
ℓ )LL/

√
2 = mL/v. The charged scalar vertex is characterized by the PMNS

matrix element U∗
Li and the Yukawa coupling (Y

(d)
ℓ )LL =

√
2mL/v according to the Lagrangian in Eq. (7), and the W

boson vertex contains the PMNS matrix element Uℓi and the weak coupling g. The combination of U∗
Li and Uℓi forms

the PMNS factor λi. The couplings associated with the emissions from the external charged lepton ℓ+L , the internal

right-handed charged lepton ℓ+R, and the internal left-handed neutrino νjL are assigned in a similar way, which gives
rise to another PMNS factor λj . This contribution, unlike Eq. (12), is counted as O(g2) and the fourth power in the
Yukawa couplings for charged leptons.

There are other two-loop diagrams of course. For instance, an additional photon or Z boson can be exchanged
between the charged leptons in Fig. 1, or a W boson can proceed a hadronic decay, splitting into a quark-antiquark
pair. These diagrams, being of higher orders in the electroweak coupling, are classified as radiative corrections to
Fig. 1. To have them in the real part of the mixing amplitude, the corresponding diagrams must be added to the
imaginary part for a consistent construction of the dispersion relation. We will not consider these contributions in
the present order-of-magnitude investigation. The boson exchanges in the sequence of W−, ϕ+ and ϕ0, opposite to
that displayed in Fig. 2, are allowed. The diagram involving a ϕ0ϕ0ϕ+ϕ− four-scalar vertex and a W boson exchange
also exists at O(g2). For our purpose, we compute only Fig. 2 in the Appendix, and the result reads

M
(2)
ij (s) = −

(
1

16π2

)2(
g

2
√
2

)2
m2

Lm
2
ℓ

v4
4

s
. (13)

The above formula, vanishing the summation over all intermediate channels, implies that the mixing phenomenon in
the symmetric phase is still off at two-loop level. Note that the lepton mass dependence has been introduced via the

Yukawa matrix Y
(d)
ℓ , though all internal particles are massless in the symmetric phase.

We then extend the evaluation to three-loop level, at which there are even more diagrams. The contribution from
exchanges of two W bosons and two charged scalars, being proportional to the PMNS factor to the fourth power,
should be discarded. The diagram with exchanges of two photons (or two Z bosons) and two W bosons stands for
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a higher-order correction in the electroweak coupling to Fig. 1, and is thus neglected. The contribution of Fig. 3(a)
with two Higgs bosons and two charged scalars is proportional to O(g0) and the eighth power in the Yukawa couplings
for charged leptons, different from Eqs. (12) and (13). At the same order, a Higgs boson can attach to L−

L and ℓ−L
and another can attach to ℓ+L and L+

L ; the two Higgs bosons in the above diagram can cross each other; the external
leptonic states can interact via two Higgs bosons and a ϕ+ϕ+ϕ−ϕ− four-scalar vertex. Figure 3(b) with two W bosons
and two neutral scalars [27], being proportional to (g4) and the fourth power in the Yukawa couplings for neutrinos,
also constitutes a higher-order correction to Fig. 1. Nevertheless, it produces the first piece of contributions dependent
on intermediate neutrino masses, so that the summation over all intermediate channels does not vanish because of∑

i U
∗
LiUℓi(Y

(d)
ν )2ii ̸= 0. Therefore, the reasoning for the disappearance of the mixing phenomenon in the symmetric

phase [1] holds to an extremely high precision in view of the tininess of Y
(d)
ν .

We estimate only the O(g0) contribution from Fig. 3(a) in the Appendix for our order-of-magnitude analysis,
obtaining

M
(3)
ij (s) ≈ 1

64

(
1

16π2

)3
m4

Lm
4
ℓ

v8
3

s
. (14)

The contribution from Fig. 3(b) is also needed for discriminating the neutrino mass orderings in the next section, but
its explicit expression is not crucial. We summarize the real part of the mixing amplitude in the symmetric phase
from Eqs. (12), (13) and (14),

Mij(s) ≈ − 1

16π2

[
4

(
g

2
√
2

)4

+
1

4π2

(
g

2
√
2

)2
m2

Lm
2
ℓ

v4
− 3

64

(
1

16π2

)2
m4

Lm
4
ℓ

v8
+O

(
g4

m2
im

2
j

v4

)]
1

s
, (15)

where the last term is associated with Fig. 3(b). Equation (15) will be inserted into the left-hand side of the dispersion
relation in Eq. (11).

B. Imaginary Contribution

The neutral leptonic states L−
L ℓ

+
L and L+

Lℓ
−
L mix through the box diagrams with two W boson exchanges in the

broken phase. To coordinate with the derivation of the real part Mij(s) in the previous subsection, we sum up the
contributions to the imaginary part Γij(s) from all possible cuts on the internal lines in the box diagrams. This
treatment differs from that in our earlier work [1], where only the two internal neutrino lines were cut. It makes sense,
since such an intermediate state can be identified experimentally in principle, and the corresponding real part vanishes
at LO owing to the unitarity of the PMNS matrix. The box diagrams induce the (V −A)(V −A) and (S−P )(S−P )
structures, which ought to be handled separately. We concentrate on the former, which contributes [23, 24]

Γij(s) =
G2

F

16π

′∑
k

Γk
ij(s),

Γk
ij(s) =

∫ αu
k

αl
k

dα

(
4m4

W +m2
im

2
j

)
Fk(α)− 4m2

im
2
jm

2
W + 2s

[
αm2

i + (1− α)m2
j

]
m2

W

(m2
W −m2

i )(m
2
W −m2

j )
, (16)

with the notation
∑′

k ≡
∑2

k=1 −
∑4

k=3 and the intermediate neutrino masses mi and mj .
The functions Fk take the forms

F1(α) = αm2
i + (1− α)m2

j − α(1− α)s,

F2(α) = m2
W − α(1− α)s,

F3(α) = αm2
W + (1− α)m2

j − α(1− α)s,

F4(α) = αm2
i + (1− α)m2

W − α(1− α)s, (17)
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whose vanishing fixes the upper and lower bounds of the integration variable α,

αu,l
1 =

1

2s

[
s−m2

i +m2
j ±

√
s2 − 2s(m2

i +m2
j ) + (m2

i −m2
j )

2
]
,

αu,l
2 =

1

2s

[
s±

√
s2 − 4sm2

W

]
,

αu,l
3 =

1

2s

[
s−m2

W +m2
j ±

√
s2 − 2s(m2

W +m2
j ) + (m2

W −m2
j )

2
]
,

αu,l
4 =

1

2s

[
s−m2

i +m2
W ±

√
s2 − 2s(m2

i +m2
W ) + (m2

i −m2
W )2

]
. (18)

The indices k = 1, 2, 3 and 4 correspond to the intermediate states with two real neutrinos, two real W bosons, the
real neutrino of mass mi and one real W boson, and the real neutrino of mass mj and one real W boson, respectively.
The thresholds for the dispersive integral in Eq. (11) are then set to the values tk = (mi +mj)

2, 4m2
W , (mi +mW )2

and (mj +mW )2, respectively.
It is observed that the linear growth of Γij(s) at large s [1] in the broken phase cancels among the cuts in Eq. (16).

The cancellation is so strong, that Γij(s) turns out to decrease like 1/s asymptotically. It is not hard to realize this
strong cancelation; the functions Fk in Eq. (17), as well as the upper and lower bounds of α in Eq. (18), become
identical in the s → ∞ limit. The real part Mij(s) in Eq. (15) and the aforementioned decrease of Γij(s) at high
s manifest that the mixing amplitude Πij(s) goes down like 1/s. Hence, the contour integral from the big circle
diminishes with the radius R, and the large s′ region does not contribute to the dispersive integral in Eq. (11). This
fact is also reflected by the R independence of Mij(s) on the left-hand side of Eq. (11). Although the behavior
of Γij(s) in the transition region between the symmetry broken and restored phases is unknown, physical insights
can be extracted from the convergent dispersive integral. First, we remove the interval above the restoration scale,
Λ2 < s′ < R, motivated by the disappearance of the R dependence. The restoration scale, representing an order-
of-magnitude concept, can mimic the uncertainty associated with the transition region. The integration is then
performed with the known integrand Γij(s

′) in Eq. (16), which is valid within the interval tk < s′ < Λ2.
Keeping only the terms that survive in the large Λ2 limit, we expand the dispersive integral as

1

2π

′∑
k

∫ Λ2

tk

ds′
Γk
ij(s

′)

s− s′
≈ −G2

Fm
4
W

16π2

[
1 +

mimj

m2
W

ln
Λ2

m2
W

−
m2

im
2
j

m4
W

(
ln

m2
W

mimj
− 1

4

)]
2

s
, (19)

where the approximation 1/(s − s′) ≈ 1/s for s ≫ Λ2 has been applied, and those suppressed by higher powers
of mi,j/mW have been dropped for clarity. To proceed further, we recast the above expression, by employing the

relations GF =
√
2g2/(8m2

W ) and mW = gv/2, into

1

2π

′∑
k

∫ Λ2

tk

ds′
Γij(s

′)

s− s′
≈ − 1

16π2

[
4

(
g

2
√
2

)4

+ 2

(
g

2
√
2

)2
mimj

v2
ln

Λ2

m2
W

−
m2

im
2
j

v4

(
ln

m2
W

mimj
− 1

4

)]
1

s
. (20)

It is noticed that powers of mW have compensated some of the weak coupling, and the expansions on both sides of
Eq. (11), i.e., in Eqs. (15) and (20), coincide perfectly in powers of g. In particular, the uncertainty from the transition
region shows up only in the O(g2) term. Adding more photons, Z bosons and Higgs bosons to the box diagrams
just introduces higher-order corrections to Eq. (20), which will be ignored in the present order-of-magnitude setup,
as stated in the previous subsection.

III. SOLUTION

We are ready to acquire information on neutrino masses from Eq. (11), given the real piece Mij(s) in the symmetric
phase and the imaginary piece Γij(s) in the broken phase. Our framework is appropriate for the mixing of heavy-light
systems, like µe and τe. This claim is justified by the connections among the PMNS matrix elements discovered in our
previous work [1]; the ratio U∗

µ1Ue1/(U
∗
µ2Ue2) of the PMNS matrix elements for the µe mixing and U∗

τ1Ue1/(U
∗
τ2Ue2)

for the τe mixing are roughly equal, except the opposite signs of their imaginary parts. Such a prediction for heavy-
light systems agrees well with the outcomes of global fits [7]. However, the ratio U∗

τ1Uµ1/(U
∗
τ2Uµ2) for the τµ mixing

does not follow the same pattern, suggesting that τµ should not be regarded as a heavy-light system. The distinction
is natural in view of the charged lepton masses; a muon is about 200 times heavier than an electron, while a τ lepton
is only 17 times heavier than a muon.
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We have shown in Sec. IIA that Mij(s) in the symmetric phase is proportional to the masses of the external
charged leptons. To probe how small a typical neutrino mass can be, we consider the µe mixing, and set mi,j in
Eq. (20) to a common mass scale mν . As seen shortly, the value of mν determined from the dispersion relation is of
order eV, so that there is no need to differentiate which generation of neutrinos this typical scale is assigned to; an
eV scale is much higher than the measured mass differences reflected by ∆m2

21 ≡ m2
2 −m2

1 = (7.55+0.20
−0.16)× 10−5 eV2

and ∆m2
32 ≡ m2

3 −m2
2 = (2.424± 0.03)× 10−3 eV2 from the global fit [25]. We establish a solution to the dispersion

relation by equating the terms in Eqs. (15) and (20) with the same powers of the weak coupling g, for g can vary
freely in a mathematical viewpoint. It is immediately found that the first, i.e., O(g4), terms in Eqs. (15) and (20) are
the same. We emphasize that this equality is insensitive to the behavior of Γij(s) in the transition region, namely,
independent of the symmetry restoration scale.

The equality of the third, i.e., O(g0), terms in Eqs. (15) and (20) leads to Eq. (1), where mL, mℓ and mi,j have
been replaced by the muon mass mµ, the electron mass me, and the typical neutrino mass mν , respectively. The
constant 1/4 is negligible relative to the logarithmic term ln(m2

W /m2
ν). Equation (1), arising from the convergent

part of the dispersive integral, does not depend on the restoration scale either. It then designates a small mass scale
for neutrinos unambiguously,

mν ≈ 3 eV, (21)

with the inputs mW ≈ 80 GeV, mµ ≈ 0.1 GeV, me ≈ 0.5 MeV and v ≈ 250 GeV [7]. Note that this low mass scale
mν ∼ O(1) eV is demanded by the internal consistency the SM dynamics, whose origin is quite different from the
seesaw mechanism [18] as stated in the Introduction. Our order-of-magnitude estimate is not far beyond the upper
bound on the neutrino mass mν < 0.9 eV at 90% CL measured by the KATRIN Collaboration [19]. We mention that
their measurement is independent of cosmological models and does not rely on assumptions whether a neutrino is a
Dirac or Majorana particle.

Next we equate the second, i.e., O(g2), terms in Eqs. (15) and (20), reaching

m2
ν ln

Λ

mW
≈ 1

16π2

m2
µm

2
e

v2
, (22)

whose combination with Eq. (1) yields Eq. (2). It is stressed that Eq. (2) is independent of the masses mL and mℓ of
the external charged leptons. Because of the uncertain behavior of Γij(s) in the transition region, we have regarded
the coefficient on the right-hand side of Eq. (2) as being of O(1). Unfortunately, the value of the restoration scale
Λ inferred from Eq. (2) is sensitive to the O(1) coefficient, so no definite result can be obtained (for a very crude
guesstimate, Eq. (21) corresponds to Λ ≳ O(100) TeV via Eq. (2)). Instead, we highlight the essential indication
that the large electroweak symmetry restoration, i.e., new physics scale is tied to the tiny neutrino mass. A precise
prediction for the new physics scale can be achieved by exploring Γij(s) in the transition region and by calculating
exact multi-loop contributions to Mij(s) in the symmetric phase.

At last, we sum both Eq. (15) and (20) over all intermediate channels, and check whether the constraint on the
PMNS matrix elements and the neutrino mass orderings in our previous LO analysis [1] is maintained. Only the
O(m2

im
2
j/v

4) term in Eq. (15), which depends on the intermediate neutrino masses, survives the summation under

the unitarity of the PMNS matrix. The summation for Eq. (20) is dominated by the second term of O(mimj/v
2).

The elimination of λ3 = −λ1 − λ2 by means of the unitarity condition produces

ln
Λ2

m2
W

[λ1(m3 −m1) + λ2(m3 −m2)]
2 =

∑
i,j

O

(
m2

im
2
j

v2

)
≈ 0, (23)

which leads to Eq. (3) trivially irrespective of the restoration scale Λ; the O(mimj) coefficient of ln(Λ2/m2
W ) must

diminish to match the right-hand side of O(m2
im

2
j/v

2).
To facilitate the discussion, we quote the PMNS matrix in the Chau-Keung parametrization [26],

UPMNS =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13

 , (24)

with the notations s12 ≡ sin θ12, c12 ≡ cos θ12, etc. for the mixing angles, and the CP phase δ. The products of the
PMNS matrix elements then read

λ1 = −c12c13
(
s12c23 + c12s23s13e

−iδ
)
, λ2 = s12c13

(
c12c23 − s12s23s13e

−iδ
)
. (25)
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Defining r = λ1/λ2, we require the cancellation between the real parts of r(m3 − m1) and (m3 − m2) according to
Eq. (3),

Rer(m3 −m1) + (m3 −m2) ≈ 0, (26)

and the small imaginary part of r(m3 −m1), i.e., a small sδ ≡ sin δ.
It is easy to verify that the mixing angles θ12 = (34.5+1.2

−1.0)
◦, θ13 = (8.45+0.16

−0.14)
◦ and θ23 = (47.7+1.2

−1.7)
◦, and the

CP phase δ = (218+38
−27)

◦ from the global fit [25] in the NO scenario meet better the above requirements, compared

to θ12 = (34.5+1.2
−1.0)

◦, θ13 = (8.53+0.14
−0.15)

◦, θ23 = (47.9+1.0
−1.7)

◦ and δ = (281+23
−27)

◦ in the IO one [25]. We set θ12, θ13 and
θ23 to their central values owing to their small errors, and vary δ within its 1-σ range. Equation (26) can be satisfied
by cδ < 0 (Rer > −1) and m3 −m1 > 0 for the NO, and by cδ > 0 (Rer < −1) and m3 −m1 < 0 for the IO. The
whole range of δ for the NO is allowed, for the resultant Rer takes values between −0.9 and −0.7, while δ in the IO
case is restricted to (270◦, 304◦). We then have sδ ≈ −(0.62+0.35

−0.43) from the NO, whose magnitude could be much
lower than that of sδ ∈ (−1,−0.83) from the IO. The latter narrow range is attributed to that δ for the IO is about
3π/2, so the amount of errors similar to the NO case causes minor variation of sδ. Our solution favors negative cδ
and diminishing sδ, i.e., δ ∼ 180◦, close to that derived in a seesaw model with right-handed neutrino masses being
dynamically generated by strong horizontal gauge interactions [13].

IV. CONCLUSION

We have proposed a viable explanation on the extremely small neutrino masses, which comes as a straightforward
extension of our continuous efforts in understanding the SM flavor structure. Dispersion relations, which analytical
physical observables must obey, bind interactions at various scales, and enforce stringent constraints on the SM
parameters. The assumption for the existence of an electroweak symmetric phase grants such a bond between the
dynamics above and below the symmetry restoration scale. We have taken into account the contributions to the
mixing of neutral leptonic states up to three loops in the symmetric phase, which arise from the exchanges of neutral
and charged scalars and W bosons. The standard box diagrams responsible for the mixing in the symmetry broken
phase involve the neutrino masses and the PMNS matrix elements. It was then demonstrated that the dispersion
relation for the µ−e+-µ+e− mixing demands a typical neutrino mass scale mν at eV order in the SM unambiguously.
It is much lower than a lepton mass because of the huge suppression factor mℓ/v formed by the lepton mass and the
electroweak scale. At two-loop level, the dispersion relation hints that the large electroweak symmetry restoration,
i.e., new physics scale is linked to the small neutrino mass.

The calculation presented in the Appendix confirmed that the disappearance of the mixing phenomenon in the
symmetric phase, argued in our previous publication based on the unitarity of the PMNS matrix, holds to high
precision, up to corrections of O(m4

ν/v
4). In other words, the first nonvanishing contribution which survives the

summation over all intermediate channels stars at three-loop level. It is thus expected that the dispersive constraint
on the neutrino masses and the PMNS matrix elements with the loop corrections still prefers the NO over the IO.
The pivot for discriminating the neutrino mass orderings is played by the CP phase, which got distinct results in the
global fits for the NO and the IO. Since it is challenging to determine the neutrino mass spectrum experimentally, our
theoretical attempt should be worthwhile. The above summaries the solution to the dispersion relation for the mixing
of heavy-light leptonic systems. We admit that our approach is preliminary, accurate only to orders of magnitude,
and needs to be refined in the future. In principle, more definite predictions for the neutrino masses and for the new
physics scale can be made by exploring the imaginary piece Γij(s) in the transition region and by computing complete
multi-loop contributions to the real piece Mij(s) in the symmetric phase.

We affirm that the current formalism for generating a small neutrino mass cannot be extended to the quark case,
simply due to strong interaction among quarks. The strong coupling gs ≳ 1 is much larger than most of the quark
Yukawa couplings, even greater than the top Yukawa coupling, such that the loop corrections discussed in this work
are overwhelmed by QCD ones. For example, the two neutral scalars in Fig. 3(a) for the mixing between the neutral
quark states cū and c̄u can be replaced by two gluons. The resultant contribution then dominates over the former one
by a factor g4sv

4/(m2
cm

2
u) ≫ 1 with the charm (up) quark mass mc (mu). It is obvious that Eq. (1) is not justified.

In this sense, the origin of the tiny neutrino mass traces back to the fact that a neutrino participates only weak and
scalar interactions. Combining the present and previous observations, we conjecture that the mass hierarchy inherent
in the SM, from the neutrino masses up to the electroweak scale, and the distinct quark and lepton mixing patterns,
may be accommodated by means of the internal consistency of the SM dynamics. This understanding also points to
possible new physics scenarios above the electroweak symmetry restoration scale, such as the composite Higgs model,
which will be explored in forthcoming papers.
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Appendix A: MIXING AMPLITUDE UP TO THREE LOOPS IN SYMMETRIC PHASE

1. One Loop

The box-diagram contribution, including both the real and imaginary parts, has been computed in [24]. We set
the intermediate neutrino masses to zero, and then take the mW → 0 limit to get the leading real contribution in
the symmetric phase shown in Eq. (12). The dispersion relation at O(g4) is then verified by Eqs. (15) and (20). To
reduce the load for two-loop and three-loop calculations, we propose a simplified scheme below. The amplitude from
the box diagram in Fig. 1 for the L−ℓ+-L+ℓ− mixing with massless intermediate particles is written as

−iM =
1

2

(
−ig

2
√
2

)4 ∫
d4l

(2π)4
ūℓγν(1− γ5)i(̸ p− ̸ l)γµ(1− γ5)uLv̄ℓγµ′(1− γ5)(−i) ̸ lγν′(1− γ5)vL(−i)2gνν

′
gµµ

′

(l2 + iϵ)2[(p− l)2 + iϵ]2
. (A1)

The PMNS matrix elements have been suppressed, the spin factor 1/2 comes from the definition of the neutral leptonic

state, the coupling −ig/(2
√
2) is associated with a weak vertex, and the tensors gνν

′
and gµµ

′
are from the massless

W boson propagators. Strictly speaking, the aforementioned mW → 0 limit urges that we start with a massive mW

boson propagator,

−i
gµµ

′ − lµlµ
′
/m2

W

l2 −m2
W

, (A2)

involving an additional longitudinal polarization. Here we employ a massless W boson propagator directly for sim-
plification.

The Fierz identity is inserted into Eq. (A1) to factorize the lepton currents,

M = −1

4

(
g

2
√
2

)4

ūℓγ
α(1− γ5)uLv̄ℓγ

β(1− γ5)vLi

∫
d4l

(2π)4
tr[γµγαγ

µ ̸ lγνγβγν (̸ p− ̸ l)(1 + γ5)]

(l2 + iϵ)2[(p− l)2 + iϵ]2
. (A3)

If we work on the (S −P )(S −P ) structure, the term (1− γ5)⊗ (1− γ5) in the Fierz identity will need to be inserted
too, and the derivation will be more cumbersome. To extract the (V − A)(V − A) current, we delete the current
product ūℓγ

α(1−γ5)uLv̄ℓγ
β(1−γ5)vL, and contract the remaining piece by the projector gαβ/4. The projector should

be (gαβ − pαpβ/p2)/3 to avoid the (S − P )(S − P ) component. However, we have confirmed that gαβ/4 reproduces
Eq. (12) from Eq. (A1) with massless W boson propagators. This simpler scheme will be applied to the evaluations
of two-loop and three-loop diagrams for an order-of-magnitude estimate. We acquire from Fig. 1

M = 2

(
g

2
√
2

)4

i

∫
d4l

(2π)4
l · (p− l)

(l2 + iϵ)2[(p− l)2 + iϵ]2
=

2

16π2

(
g

2
√
2

)4
1

s
, (A4)

with s = p2, which is assumed to be in the Euclidean region.
We have quoted the imaginary contribution of the box diagrams in the broken phase from [24] as stated in Sec. II.

It is reminded that the analysis in [24] was conducted for the mixing of neutral quark states. A quark possesses
degrees of freedom from colors, and the box diagrams with vertical W boson lines (in Fig. 1) and with horizontal W
boson lines have different color factors, 1 for the former and 3 for the latter. Since a color factor can vary arbitrarily
in a mathematical viewpoint, each box diagram respects its own dispersion relation. We will take advantage of this
fact for the leptonic state mixing, combining the above two box diagrams in the way the same as in the quark case,
although a lepton has no color charge. The contribution from the second box diagram with horizontal W boson lines
turns out to be identical to Eq. (A4) but with an opposite sign. The combination of the two box diagrams then yields
Eq. (12). We do not include the diagram with the two W bosons in the second diagram crossing each other, because
it obeys a separate dispersion relation with different branch cuts; the two intermediate neutrinos of unequal masses
cannot be on shell simultaneously in this case.
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2. Two Loops

The two-loop diagram in Fig. 2 contributes in the symmetric phase

−iM =
1

2

(
−i

mL

v

)(
−i

√
2mL

v

)(
−i

mℓ

v

)(
−i

√
2mℓ

v

)(
−ig

2
√
2

)2 ∫
d4l1
(2π)4

∫
d4l2
(2π)4

× ūℓγµ(1− γ5)i(̸ p− ̸ l2)i(̸ p− ̸ l1)uLv̄ℓ(−i) ̸ l1(−i) ̸ l2γν(1− γ5)vL
(p− l2)2(p− l1)2l21l

2
2

i

l21

i

(l2 − l1)2
−igµν

(p− l2)2
, (A5)

where the Yukawa couplings for the neutral and charged scalar emissions have been specified in Sec. II. Inserting the
Fierz identity to factorize the lepton currents and contracting the remaining part by the projector gαβ/4, we have

M = −m2
Lm

2
ℓ

v4

(
g

2
√
2

)2 ∫
d4l1
(2π)4

∫
d4l2
(2π)4

l1 · l2(p− l2) · (p− l1)

((p− l2)2)2(p− l1)2(l21)
2l22(l2 − l1)2

. (A6)

We first work out the integration over l1 under the Feynman parametrization,∫
d4l1
(2π)4

l1 · l2(p− l2) · (p− l1)

(l21)
2(p− l1)2(l2 − l1)2

= 6

∫ 1

0

dv

∫ 1−v

0

du(1− u− v)

∫
d4l1
(2π)4

l1 · l2(p− l2) · (p− l1)

[l21 − 2up · l1 + us− 2vl2 · l1 + vl22]
4
. (A7)

The variable change l1 → l1 + up+ vl2 and the Wick rotation lead the above integral to

iπ2

(2π)4

∫ 1

0

dv

∫ 1−v

0

du(1− u− v)

{
(up+ vl2) · l2(p− l2) · [(1− u)p− vl2]

[v(1− v)l22 − 2uvp · l2 + u(1− u)s]2

− (p− l2) · l2
2[v(1− v)l22 − 2uvp · l2 + u(1− u)s]

}
. (A8)

We then turn to the integration over l2. The first piece in Eq. (A8) gives, under the Feynman parametrization,

I1 =

∫
d4l2
(2π)4

(up+ vl2) · l2(p− l2) · [(1− u)p− vl2]]

l22((p− l2)2)2[v(1− v)l22 − 2uvp · l2 + u(1− u)s]2

=

∫ 1

0

dw

∫ 1−w

0

dt
24tw

v2(1− v)2

∫
d4l2
(2π)4

(up+ vl2) · l2(p− l2) · [(1− u)p− vl2]

{l22 − 2tp · l2 − 2uwp · l2/(1− v) + ts+ u(1− u)ws/[v(1− v)]}5
. (A9)

The variable change

l2 → l2 +

(
t+

uw

1− v

)
p (A10)

brings Eq. (A9) into

I1 =
iπ2

(2π)4

∫ 1

0

dw

∫ 1−w

0

dt
2tw

(1− v)2
A(B +D) + (B − C)D + 3D2

D3
, (A11)

with the functions

A =

(
u

v
+ t+

uw

1− v

)(
t+

uw

1− v

)
s

B =

(
1− t− uw

1− v

)(
1− u

v
− t− uw

1− v

)
s

C =

(
u

v
+ 2t+

2uw

1− v

)(
1 +

1− u

v
− 2t− 2uw

1− v

)
s

4

D =

[
t+

u(1− u)w

v(1− v)

]
s−

(
t+

uw

1− v

)2

s. (A12)

We calculate the second term in Eq. (A8) in a similar way,

I2 =
1

2

∫
d4l2
(2π)4

(l2 − p) · l2
l22((p− l2)2)2[v(1− v)l22 − 2uvp · l2 + u(1− u)s]

=

∫ 1

0

dw

∫ 1−w

0

dt
6t

2v(1− v)

∫
d4l2
(2π)4

(l2 − p) · l2
{l22 − 2tp · l2 − 2uwp · l2/(1− v) + ts+ u(1− u)ws/[v(1− v)]}4

.(A13)
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The same variable change in Eq. (A10) generates

I2 =
iπ2

(2π)4

∫ 1

0

dw

∫ 1−w

0

dt
t

2v(1− v)

2D − E

D2
, (A14)

with the function

E =

(
1− t− uw

1− v

)(
t+

uw

1− v

)
s. (A15)

At last, the contribution from Fig. 2 reads

M = −m2
Lm

2
ℓ

v4

(
g

2
√
2

)2
iπ2

(2π)4

∫ 1

0

dv

∫ 1−v

0

du(1− u− v)(I1 + I2)

=
m2

Lm
2
ℓ

v4

(
g

2
√
2

)2(
1

16π2

)2
2

s
, (A16)

where the integrations over the Feynman parameters u, v, t and w are carried out numerically. The result from
the diagram with horizontal boson lines is has the same expression but with an opposite sign. Following the special
combination of the two diagrams, we arrive at Eq. (13).

3. Three Loops

The three-loop diagram with four vertical scalar lines in Fig. 3(a) contains the loop integral

−iM =
1

2

(
−i

mL

v

)2(
−i

√
2mL

v

)2 (
−i

mℓ

v

)2(
−i

√
2mℓ

v

)2 ∫
d4l1
(2π)4

∫
d4l2
(2π)4

∫
d4l3
(2π)4

× ūℓi ̸ l3i ̸ l2i(̸ p− ̸ l1)uLv̄ℓ(−i) ̸ l1(−i)( ̸ p− ̸ l2)(−i)( ̸ p− ̸ l3)vL
(p− l1)2(p− l2)2(p− l3)2l21l

2
2l

2
3

i

l21

i

(p− l1 − l2)2
i

(l2 − l3)2
i

l23
. (A17)

We have arranged the loop momentum flows to facilitate the identification of the leading regions for the integral. It is
straightforward to tell that finite l1 gives an important contribution, for both the infrared and ultraviolet regions are
suppressed. Small l2 dominates, in which the integration over l3 develops an infrared logarithmic enhancement. We
thus neglect l2 in the factor p− l1 − l2, such that the integration over l1 is simplified to the one for the box diagram
in Fig. 1, and retain only the terms up to those linear in l2 in the integral over l3. An order-of-magnitude estimate
serves our purpose, so the above approximation is appropriate, without which the handling of three-loop diagrams
would be extremely tedious. The reasoning then motivates the separation of Eq. (A17) into three pieces by inserting
the Fierz identity,

M =
2i

84
m4

Lm
4
ℓ

v8
ūℓγ

α(1− γ5)uLv̄ℓγ
β(1− γ5)vL

×
∫

d4l2
(2π)4

tr[(̸ p− ̸ l2)γλ(1− γ5) ̸ l2γσ(1− γ5)]

(p− l2)2l22

×
∫

d4l1
(2π)4

tr[̸ l1(1− γ5)γσ (̸ p− ̸ l1)(1− γ5)γα]

(p− l1)2(p− l1 − l2)2(l21)
2

×
∫

d4l3
(2π)4

tr[(̸ p− ̸ l3)(1− γ5)γβ ̸ l3(1− γ5)γλ]

(p− l3)2(l23)
2(l2 − l3)2

. (A18)

The integral over l1 is denoted by

J1 =

∫
d4l1
(2π)4

tr[̸ l1(1− γ5)γσ (̸ p− ̸ l1)(1− γ5)γα]

(p− l1)2(p− l1 − l2)2(l21)
2

≈ 2

∫
d4l1
(2π)4

tr[̸ l1γσ (̸ p− ̸ l1)γα(1 + γ5)]

((p− l1)2)2(l21)
2

, (A19)

in the small l2 region. The matrix γ5 does not contribute, because the vectors p and l1 must appear in even powers
after the Feynman parametrization. Equation (A19) becomes

J1 ≈ 24

∫ 1

0

duu(1− u)

∫
d4l1
(2π)4

4u(1− u)pαpσ − gασ[l
2 + 2u(1− u)s]

[l21 − u(1− u)s]4
=

i

π2

pαpσ
s2

, (A20)



12

where the portion proportional to gασ turns out to vanish.
The third integral is computed as

J3 =

∫
d4l3
(2π)4

tr[(̸ p− ̸ l3)(1− γ5)γβ ̸ l3(1− γ5)γλ]

(p− l3)2(l23)
2(l2 − l3)2

(A21)

= 12

∫ 1

0

du

∫ 1−u

0

dv(1− u− v)i

∫
d4l3
(2π)4

×2(up+ vl2)λ[(1− u)p− vl2]β + 2(up+ vl2)β [(1− u)p− vl2]λ − gλβ{l23 + 2(up+ vl2) · [(1− u)p− vl2]}
[l23 − u(1− u)s− v(1− v)l22 + 2uvp · l2]4

,

to which the Feynman parametrization and the variable change l3 → l3 + up+ vl2 have been implemented. Keeping
the terms up to those linear in l2, we get

J3 ≈ i

4π2

∫ 1

0

du

∫ 1−u

0

dv(1− u− v)
2u(1− u)pλpβ − (1− 2u)vl2λpβ + (1− 2u)vpλl2β + gλβ(1− 2u)vp · l2

[u(1− u)s+ v(1− v)l22 − 2uvp · l2]2

≈ i

4π2

[
2pλpβ
s2

ln
s

l22
+ (gλβp · l2 − l2λpβ + pλl2β)

1

sl22

]
. (A22)

To reach the last expression, we have focused on the leading region with small u and v, i.e., on the terms linear in u
and v.

We then work out the integral over l2 in the small l2 region,

J2 =
i

4π2

∫
d4l2
(2π)4

tr[(̸ p− ̸ l2)γλ(1− γ5) ̸ l2γσ(1− γ5)]

(p− l2)2l22

[
2pλpβ
s2

ln
s

l22
+ (gλβp · l2 − l2λpβ + pλl2β)

1

sl22

]
≈ 2i

π2

∫
d4l2
(2π)4

pλlσ2 + lλ2p
σ − gλσl2 · p
sl22

[
2p · l2

s

2pλpβ
s2

ln
s

l22
+ (gλβp · l2 − l2λpβ + pλl2β)

1

sl22

]
, (A23)

where the expansion of the denominator (p − l2)
2 + iϵ ≈ p2 − 2p · l2 + iϵ in powers of l2 has been made. The above

integral reduces to

J2 ≈ 2i

π2

∫
d4l2
(2π)4

1

s2

[
4lσ2 p · l2pβ

sl22
ln

s

l22
+

slσ2 l2β − l22p
σpβ + p · l2pσl2β + p · l2lσ2 pβ − gσβ (p · l2)2

(l22)
2

]

≈ 3

64π4

pσpβ
s

. (A24)

Note that the Wick rotation of the zeroth component of l2 introduces −i, instead of +i, since the pole is located in
the first quadrant as indicated by the denominator p2 − 2p · l2 + iϵ in Eq. (A23). We have restricted the range of the
integration variable to 0 < l22 < s/2 after the Wick rotation in accordance with the soft approximation.

At last, we group all the ingredients together, remove the lepton currents, and contract the remaining part by
gαβ/4, deriving

M ≈ 2i

84
m4

Lm
4
ℓ

v8
gαβ

4

i

π2

pαpσ
s2

3

64π4

pσpβ
s

= − 3

128

(
1

16π2

)3
m4

Lm
4
ℓ

v8
1

s
. (A25)

The combination with the contribution from the diagram with horizontal scalar lines then produces Eq. (14).
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