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Abstract

Transformer models serve as the backbone of many state-of-
the-art language models, and most use the scaled dot-product
attention (SDPA) mechanism to capture relationships be-
tween tokens. However, the straightforward implementation
of SDPA has quadratic compute and memory complexity
with respect to the sequence length. On processor archi-
tectures such as GPUs and TPUs, there is a robust body of
prior work. However, little work has been performed on
non-processor architectures.In this work, we show how the
architecture and execution model of Streaming Dataflow
Accelerators can help tackle this challenge. We first define
abstract hardware that adopts a streaming execution model,
and we implement a cycle-accurate simulator of the abstract
hardware using the Dataflow Abstract Machine simulation
framework. Second, we implement the naive SDPA algorithm
on this abstract hardware and show it requires linear (O(N))
intermediate memory. Third, we then modify the naive al-
gorithm, taking inspiration from prior processor-oriented
works, by reordering the multiplication and division oper-
ations. Finally, we map the modified algorithm to abstract
hardware, and confirm that the implementation computes
SDPA at full throughput while only using a constant amount
(O(1)) of intermediate memory.

1 Introduction

Transformer models [19] are widely used for various lan-
guage, audio, and vision tasks. Over time, researchers have
discovered that long sequence lengths are essential to captur-
ing long-range dependencies and process high-resolution im-
ages [2, 4, 14]. However, scaled dot-product attention (SDPA),
the core operation in most transformer models, has quadratic
memory complexity with respect to the sequence length.
There has been a wide range of work to tackle this challenge,
such as approximate attention [1, 9, 10], using alternative
mixing mechanisms [7, 8], and optimizations to reduce reads
and writes between different levels in the memory hierar-
chy [5, 6]. However, these works almost uniformly targeted
processor-like architectures such as CPUs, TPUs, and GPUs.

In this work, we will instead implement and optimize
the attention algorithms on streaming dataflow accelerators.
Streaming dataflow accelerators are array architectures of
reconfigurable compute and memory units. As shown in Fig-
ure 1, its execution model spatially maps the operations in
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Figure 1. An abstract diagram of the architecture and exe-
cution model for streaming dataflow accelerators

the computation graph to hardware units by configuring the
compute and memory units accordingly. It then pipelines
the execution between different operations. Some examples
of streaming dataflow accelerators include Coarse-grained
Reconfigurable Architectures [3, 12] and Reconfigurable
Dataflow Architectures [16, 18]. The streaming dataflow par-
adigm provides several performance benefits. First, it enables
exploiting a high degree of parallelism due to dataflow exe-
cution and deeply pipelined execution. Second, it requires
less memory footprint and bandwidth as operation fusion
reduces off-chip memory accesses due to intermediate data.

To elucidate how the streaming execution model can re-
duce the memory complexity of the attention algorithm, we
first define an abstract streaming dataflow accelerator based
on Parallel Patterns [15]. We then map the attention algo-
rithm to the abstract hardware and show that the implemen-
tation achieves linear memory complexity for intermediate
data. Lastly, we apply algorithmic changes inspired by prior
work on other architectures, and provide an implementation
of SDPA that requires only a constant amount of intermedi-
ate memory.

2 The Abstract Streaming Dataflow
Hardware
Prior work has shown that Parallel Patterns can simplify the

generation process of optimized configurations for config-
urable hardware [11, 15, 16]. Our abstract hardware consists
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Node Behavior

Map (f: func)

Applies the function f to every element in the input stream

Reduce (n: Int) (init: T) (f: func)

Reduces across n element in the input stream using the given function.
The output will be enqueued to the output stream after n elements are reduced.
init is the initial value of the accumulator.

MemReduce (n: Int) (init: Mem([T]) (f: func)

Similar to Reduce, but executes higher order reduction on memory elements
instead of scalar values.

Repeat (n: Int)

Repeats every scalar in the input stream n times.

Scan (n: Int) (init: T) (updt: func) (f: func)

On every new input element, update the state using the updt function.
The state is initialized to the init value after scanning every n elements.
On every input element, apply the function f and dequeue to the output stream.

Table 1. The nodes in our abstract hardware based on Parallel Patterns.

of nodes such as Map, Reduce, and Scan (Table 1). Each
node can be further lowered to a configuration of the physi-
cal compute and memory units. To verify the functional cor-
rectness of the implementation and confirm it uses a linear
amount of intermediate memory without any performance
loss, we develop a cycle-accurate simulator for each node in
the abstract hardware using the Dataflow Abstract Machine
simulation framework [20].

3 Standard Attention Implementation

Inside the Transformer model, three matrices Q, K, and V are
generated based on the input sequence and weights. Given
that there are N tokens in the input sequence where each
token is a d-wide vector, the shape of Q,K, and V is N X d,
and the attention algorithm can be expressed as follows:

Sij

S = QKT, P =softmax(S) = ﬁ,

0=PV (1)

The algorithm produces N?-sized intermediate matrices S
and P, leading to a time and memory complexity quadratic
to the sequence length. However, on a streaming execution
model, it is possible to implement the same algorithm to
have a sub-quadratic, in other words, asymptotically lower,
memory complexity without any algorithmic changes. This
starts from the observation that the attention algorithm can
be decomposed into row-wise operations. Given that §; is
the i-th row of the Q matrix, Equation 1 can be decomposed
into row-wise operations as follows (5, p;, 0; are the i-th row
of matrix S, P, O respectively) :

Sij

m, o, =piV (2

§5i=GK', P =softmax(s;) =
The rows of matrix Q can be streamed into compute units
that execute the operations in Equation 2, and the computa-
tion between different rows can be pipelined. This has the
effect of fusing operations to compute each row of the output

matrix O. Therefore, the memory complexity for interme-
diate data will reduce to the required intermediate data to
compute a single row.

The mapping of the attention algorithm to our abstract
hardware can be found in Figure 2. We configure each node
as shown in the figure and set the depth of the short FIFOs
to two and the long FIFO to N + 2. We compare this with the
baseline, where all the FIFOs are set to have infinite depth
(this will be the peak throughput scenario). We confirmed
that the implementation in Figure 2 only requires O(N) in-
termediate memory while running in full throughput. More
detailed experiment results can be found in the case study
in the Dataflow Abstract Machine work [20].

4 Memory-free Attention Implementation

By modifying the algorithm, we can further obtain an im-
plementation that requires a constant amount (= O(1)) of
intermediate memory. In the previous section, the reason
why we need a O(N)-long FIFO is that there are two paths
from the second Map unit to the third Map unit with differ-
ent latencies. The path that contains a row-wise reduction
produces the output only after processing the last element in
the row, and the following Map unit performs an element-
wise operation on the pair of inputs from each path. The
other path needs a deep FIFO that can contain the outputs
from the second Map unit until the reduction path produces
its output to avoid deadlock. Therefore, when the consumer
performs an element-wise operation with the inputs from
each path, the two divergent paths should have matched
latency to avoid introducing this long FIFO.

This can be done by (1) reordering the division operation
in softmax with the following matrix multiplication based
on the distributive law, (2) using the running sum instead
of the row-wise sum during the softmax operation, and (3)
rescaling by the difference between the old running sum and
latest running sum during the scalar reduction in softmax
and the vector reduction in the matrix multiplication. For this
implementation, we use softmax with scaling [6, 10, 13, 17],
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Figure 2. Implementation of attention using Parallel Patterns. The depth of the short FIFOs is set to 2, and the depth of the
Long FIFO is set to N + 2. Each node can be mapped to a configuration of a set of compute and memory units in a streaming

dataflow hardware.
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Figure 3. Implementations of algorithms using Parallel Patterns. (a) The attention algorithm using softmax with scaling. (b)

The attention algorithm with reordered division. (c) The memory-free-attention algorithm.

which is widely used in practice for better numerical stability. GivenVj <0 r;; =0and l:j =0, forall i > 0:

The modified algorithm can be described as:
Z rij = Tigj-1) * Aij +eij 5
sii= Y Qik - ki (3) - . 5
e Lij = Lij-) - Dij +eij - 0
GivenVj <0 m;; = —oo, forall i > 0: —>'_5i_N ©)
L=
TiN

In the attention algorithm using softmax with scaling
(Figure 3(a)), there are two pairs of divergent paths with un-
balanced latency due to the row-wise reduction. The second

mjj = max(mi(j—l),sij)
Ay = eMiu-nTmi 4

eij = T



pair of unbalanced paths are handled by reordering the divi-
sion operation in softmax and the matrix multiplication. As
shown in Figure 3(b), by making the matrix multiplication’s
reduction happen in parallel with the row-wise summation,
it balances the latency of both paths and eliminates the O(N)-
long FIFO.

The first pair of unbalanced paths remaining in Figure 3(b)
can be eliminated using a running max instead of the row-
wise max. As the following operations are reductions, the
difference between the latest running max and the running
max at the point when each element was accumulated can
be adjusted by rescaling the accumulated values. This, in
turn, eliminates the deep FIFO by converting the reduction
operation into an element-wise scan operation.

The implementation in Figure 3(c) is simulated by config-
uring each node in our simulator accordingly and setting the
depth of the short FIFOs to two. This is compared with the
baseline, where all the FIFOs are set to have infinite depth
(this will be the peak throughput scenario). We confirmed
that this implementation only requires O(1) intermediate
memory to run in full throughput. More detailed experi-
ment results can be found in the case study in the Dataflow
Abstract Machine paper [20].
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