2404.16629v1 [cs. AR] 25 Apr 2024

arxXiv

Implementing and Optimizing the Scaled Dot-Product
Attention on Streaming Dataflow

Gina Sohn Nathan Zhang Kunle Olukotun
ginasohn@stanford.edu stanfurd@stanford.edu kunle@stanford.edu
Stanford University Stanford University Stanford University

Stanford, USA
Abstract

Transformer models serve as the backbone of many state-of-
the-art language models, and most use the scaled dot-product
attention (SDPA) mechanism to capture relationships be-
tween tokens. However, the straightforward implementation
of SDPA has quadratic compute and memory complexity
with respect to the sequence length. On processor archi-
tectures such as GPUs and TPUs, there is a robust body of
prior work. However, little work has been performed on
non-processor architectures.In this work, we show how the
architecture and execution model of Streaming Dataflow
Accelerators can help tackle this challenge. We first define
abstract hardware that adopts a streaming execution model,
and we implement a cycle-accurate simulator of the abstract
hardware using the Dataflow Abstract Machine simulation
framework. Second, we implement the naive SDPA algorithm
on this abstract hardware and show it requires linear (O(N))
intermediate memory. Third, we then modify the naive al-
gorithm, taking inspiration from prior processor-oriented
works, by reordering the multiplication and division oper-
ations. Finally, we map the modified algorithm to abstract
hardware, and confirm that the implementation computes
SDPA at full throughput while only using a constant amount
(O(1)) of intermediate memory.

1 Introduction

Transformer models [19] are widely used for various lan-
guage, audio, and vision tasks. Over time, researchers have
discovered that long sequence lengths are essential to captur-
ing long-range dependencies and process high-resolution im-
ages [2, 4, 14]. However, scaled dot-product attention (SDPA),
the core operation in most transformer models, has quadratic
memory complexity with respect to the sequence length.
There has been a wide range of work to tackle this challenge,
such as approximate attention [1, 9, 10], using alternative
mixing mechanisms [7, 8], and optimizations to reduce reads
and writes between different levels in the memory hierar-
chy [5, 6]. However, these works almost uniformly targeted
processor-like architectures such as CPUs, TPUs, and GPUs.

In this work, we will instead implement and optimize
the attention algorithms on streaming dataflow accelerators.
Streaming dataflow accelerators are array architectures of
reconfigurable compute and memory units. As shown in Fig-
ure 1, its execution model spatially maps the operations in

Stanford, USA

Stanford, USA

KT \'

Q =—> —P[Mask)—}‘Soﬂmcx}—bbmpoui}—b Matmul

T (Tile 3 i i]
{ R) {]
PCU| | |PMU PMUJ PCU ; PCU| !

Mask | Softmax

Figure 1. An abstract diagram of the architecture and exe-
cution model for streaming dataflow accelerators

the computation graph to hardware units by configuring the
compute and memory units accordingly. It then pipelines
the execution between different operations. Some examples
of streaming dataflow accelerators include Coarse-grained
Reconfigurable Architectures [3, 12] and Reconfigurable
Dataflow Architectures [16, 18]. The streaming dataflow par-
adigm provides several performance benefits. First, it enables
exploiting a high degree of parallelism due to dataflow exe-
cution and deeply pipelined execution. Second, it requires
less memory footprint and bandwidth as operation fusion
reduces off-chip memory accesses due to intermediate data.

To elucidate how the streaming execution model can re-
duce the memory complexity of the attention algorithm, we
first define an abstract streaming dataflow accelerator based
on Parallel Patterns [15]. We then map the attention algo-
rithm to the abstract hardware and show that the implemen-
tation achieves linear memory complexity for intermediate
data. Lastly, we apply algorithmic changes inspired by prior
work on other architectures, and provide an implementation
of SDPA that requires only a constant amount of intermedi-
ate memory.

2 The Abstract Streaming Dataflow
Hardware
Prior work has shown that Parallel Patterns can simplify the

generation process of optimized configurations for config-
urable hardware [11, 15, 16]. Our abstract hardware consists

Beanington et al.

Node Behavior

Map (f: func)

Applies the function f to every element in the input stream

Reduce (n: Int) (init: T) (f: func)

Reduces across n element in the input stream using the given function.
The output will be enqueued to the output stream after n elements are reduced.
init is the initial value of the accumulator.

MemReduce (n: Int) (init: Mem([T]) (f: func)

Similar to Reduce, but executes higher order reduction on memory elements
instead of scalar values.

Repeat (n: Int)

Repeats every scalar in the input stream n times.

Scan (n: Int) (init: T) (updt: func) (f: func)

On every new input element, update the state using the updt function.
The state is initialized to the init value after scanning every n elements.
On every input element, apply the function f and dequeue to the output stream.

Table 1. The nodes in our abstract hardware based on Parallel Patterns.

of nodes such as Map, Reduce, and Scan (Table 1). Each
node can be further lowered to a configuration of the physi-
cal compute and memory units. To verify the functional cor-
rectness of the implementation and confirm it uses a linear
amount of intermediate memory without any performance
loss, we develop a cycle-accurate simulator for each node in
the abstract hardware using the Dataflow Abstract Machine
simulation framework [20].

3 Standard Attention Implementation

Inside the Transformer model, three matrices Q, K, and V are
generated based on the input sequence and weights. Given
that there are N tokens in the input sequence where each
token is a d-wide vector, the shape of Q,K, and V is N X d,
and the attention algorithm can be expressed as follows:

Sij

S = QKT, P =softmax(S) = ﬁ,

0=PV (1)

The algorithm produces N?-sized intermediate matrices S
and P, leading to a time and memory complexity quadratic
to the sequence length. However, on a streaming execution
model, it is possible to implement the same algorithm to
have a sub-quadratic, in other words, asymptotically lower,
memory complexity without any algorithmic changes. This
starts from the observation that the attention algorithm can
be decomposed into row-wise operations. Given that §; is
the i-th row of the Q matrix, Equation 1 can be decomposed
into row-wise operations as follows (5, p;, 0; are the i-th row
of matrix S, P, O respectively) :

Sij

m, o, =piV (2

§5i=GK', P =softmax(s;) =
The rows of matrix Q can be streamed into compute units
that execute the operations in Equation 2, and the computa-
tion between different rows can be pipelined. This has the
effect of fusing operations to compute each row of the output

matrix O. Therefore, the memory complexity for interme-
diate data will reduce to the required intermediate data to
compute a single row.

The mapping of the attention algorithm to our abstract
hardware can be found in Figure 2. We configure each node
as shown in the figure and set the depth of the short FIFOs
to two and the long FIFO to N + 2. We compare this with the
baseline, where all the FIFOs are set to have infinite depth
(this will be the peak throughput scenario). We confirmed
that the implementation in Figure 2 only requires O(N) in-
termediate memory while running in full throughput. More
detailed experiment results can be found in the case study
in the Dataflow Abstract Machine work [20].

4 Memory-free Attention Implementation

By modifying the algorithm, we can further obtain an im-
plementation that requires a constant amount (= O(1)) of
intermediate memory. In the previous section, the reason
why we need a O(N)-long FIFO is that there are two paths
from the second Map unit to the third Map unit with differ-
ent latencies. The path that contains a row-wise reduction
produces the output only after processing the last element in
the row, and the following Map unit performs an element-
wise operation on the pair of inputs from each path. The
other path needs a deep FIFO that can contain the outputs
from the second Map unit until the reduction path produces
its output to avoid deadlock. Therefore, when the consumer
performs an element-wise operation with the inputs from
each path, the two divergent paths should have matched
latency to avoid introducing this long FIFO.

This can be done by (1) reordering the division operation
in softmax with the following matrix multiplication based
on the distributive law, (2) using the running sum instead
of the row-wise sum during the softmax operation, and (3)
rescaling by the difference between the old running sum and
latest running sum during the scalar reduction in softmax
and the vector reduction in the matrix multiplication. For this
implementation, we use softmax with scaling [6, 10, 13, 17],

Implementing and Optimizing the Scaled Dot-Product Attention on Streaming Dataflow

Reduce (N) (0]
(f:acc,x {D} Repeat (N)
K T - acc + x) |4

Map Reduce (d) (0)) Map Map Map Reduce (N) (0]
o= oy Al T I o L TIFes" oIy o by e
- Xx:y) - acc+x) y ->xy) - acc+x)

Figure 2. Implementation of attention using Parallel Patterns. The depth of the short FIFOs is set to 2, and the depth of the
Long FIFO is set to N + 2. Each node can be mapped to a configuration of a set of compute and memory units in a streaming

dataflow hardware.

Reduce () (0) educe (N) (0)
r (f:acc,x Repeat (N) (f:ace,x Repeat (N)
K I> max(acc, x), —acc+x) -l 174
Map Reduce (d) (0) Map I I I I I Map Map Map [Reduce (N) (0)
- (f: z, (f : ace, Mep (Fxy ryo X (fixy (f:accx
Q)'[l]> gpaeey '[l]"v-m) et o |l gk G

(@)

Reduce (N) (0)
r I (f:acc,x m Repeat (N)
K max(ace) 1 Reduce (N) (0)
‘ (f:acc, (x,y) Repeat (N)
—acc-x+y)
Map Reduce (d) (0) Map Map Map
(f : acc.x fox o) I I I .ee I I _ffxf% (f:x.y—»f)
Yy
—

;

Q=»|u:xy
- acc +x)
MemReduce (N) (6)

—xy)
(f:ace, (x,y),Z
S acc-x+z-y)

|4

(b)

KT Reduce (N) (0)
‘ (f:acc, (x,y) 'm'b Repeat (N)
> acc-x+y)
Scan (N) (-Inf)
- N.lap Reulluce @ (updt: acc,x —» max(acc, x)) Map x
Q (f;f'y (f:accx f :accx— f:x,y—--)
—xy) - acc+x) (evce-max(aces) gr-max(aces))) y
MemReduce (N) (0)
(f:acc, (x,y),z
| m—)| > acc-x+2z-y)

(C)

Figure 3. Implementations of algorithms using Parallel Patterns. (a) The attention algorithm using softmax with scaling. (b)

The attention algorithm with reordered division. (c) The memory-free-attention algorithm.

which is widely used in practice for better numerical stability. GivenVj <0 r;; =0and l:j =0, forall i > 0:

The modified algorithm can be described as:
Z rij = Tigj-1) * Aij +eij 5
sii= Y Qik - ki (3) - . 5
e Lij = Lij-) - Dij +eij - 0
GivenVj <0 m;; = —oo, forall i > 0: —>'_5i_N ©)
L=
TiN

In the attention algorithm using softmax with scaling
(Figure 3(a)), there are two pairs of divergent paths with un-
balanced latency due to the row-wise reduction. The second

mjj = max(mi(j—l),sij)
Ay = eMiu-nTmi 4

eij = T

pair of unbalanced paths are handled by reordering the divi-
sion operation in softmax and the matrix multiplication. As
shown in Figure 3(b), by making the matrix multiplication’s
reduction happen in parallel with the row-wise summation,
it balances the latency of both paths and eliminates the O(N)-
long FIFO.

The first pair of unbalanced paths remaining in Figure 3(b)
can be eliminated using a running max instead of the row-
wise max. As the following operations are reductions, the
difference between the latest running max and the running
max at the point when each element was accumulated can
be adjusted by rescaling the accumulated values. This, in
turn, eliminates the deep FIFO by converting the reduction
operation into an element-wise scan operation.

The implementation in Figure 3(c) is simulated by config-
uring each node in our simulator accordingly and setting the
depth of the short FIFOs to two. This is compared with the
baseline, where all the FIFOs are set to have infinite depth
(this will be the peak throughput scenario). We confirmed
that this implementation only requires O(1) intermediate
memory to run in full throughput. More detailed experi-
ment results can be found in the case study in the Dataflow
Abstract Machine paper [20].

References

[1] Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The
long-document transformer. arXiv preprint arXiv:2004.05150, 2020.

[2] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877-1901, 2020.

[3] Alex Carsello, Kathleen Feng, Taeyoung Kong, Kalhan Koul, Qiaoyi Liu,
Jackson Melchert, Gedeon Nyengele, Maxwell Strange, Keyi Zhang,
Ankita Nayak, et al. Amber: A 367 gops, 538 gops/w 16nm soc with a
coarse-grained reconfigurable array for flexible acceleration of dense
linear algebra. In 2022 IEEE Symposium on VLSI Technology and Circuits
(VLSI Technology and Circuits), pages 70-71. IEEE, 2022.

[4] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma,
Gaurav Mishra, Adam Roberts, Paul Barham, Hyung Won Chung,
Charles Sutton, Sebastian Gehrmann, Parker Schuh, Kensen Shi, Sasha
Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay,
Noam Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob Austin, Michael
Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Levskaya,
Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny Zhou, Daphne
Ippolito, David Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiri-
donov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick,
Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat,
Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr Polozov,
Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern,
Douglas Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm: Scaling
language modeling with pathways, 2022.

[5] TriDao. Flashattention-2: Faster attention with better parallelism and
work partitioning. arXiv preprint arXiv:2307.08691, 2023.

[6] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré.
Flashattention: Fast and memory-efficient exact attention with io-
awareness. In Advances in Neural Information Processing Systems 35,

[7

—

8

—

[9

—

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

(18]

[19]

[20]

Beanington et al.

2022.

Dan Fu, Simran Arora, Jessica Grogan, Isys Johnson, Evan Sabri
Eyuboglu, Armin Thomas, Benjamin Spector, Michael Poli, Atri Rudra,
and Christopher Ré. Monarch mixer: A simple sub-quadratic gemm-
based architecture. Advances in Neural Information Processing Systems,
36, 2024.

Daniel Y Fu, Tri Dao, Khaled K Saab, Armin W Thomas, Atri Rudra, and
Christopher Ré. Hungry hungry hippos: Towards language modeling
with state space models. arXiv preprint arXiv:2212.14052, 2022.
Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and Francois
Fleuret. Transformers are rnns: Fast autoregressive transformers with
linear attention. In International conference on machine learning, pages
5156-5165. PMLR, 2020.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The
efficient transformer. In International Conference on Learning Repre-
sentations, 2020.

David Koeplinger, Matthew Feldman, Raghu Prabhakar, Yaqi Zhang,
Stefan Hadjis, Ruben Fiszel, Tian Zhao, Luigi Nardi, Ardavan Pedram,
Christos Kozyrakis, and Kunle Olukotun. Spatial: A language and
compiler for application accelerators. In Proceedings of the 39th ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation, 2018.

Kalhan Koul, Jackson Melchert, Kavya Sreedhar, Leonard Truong,
Gedeon Nyengele, Keyi Zhang, Qiaoyi Liu, Jeff Setter, Po-Han Chen,
Yuchen Mei, Maxwell Strange, Ross Daly, Caleb Donovick, Alex
Carsello, Taeyoung Kong, Kathleen Feng, Dillon Huff, Ankita Nayak,
Rajsekhar Setaluri, James Thomas, Nikhil Bhagdikar, David Durst,
Zachary Myers, Nestan Tsiskaridze, Stephen Richardson, Rick Bahr,
Kayvon Fatahalian, Pat Hanrahan, Clark Barrett, Mark Horowitz,
Christopher Torng, Fredrik Kjolstad, and Priyanka Raina. Aha: An
agile approach to the design of coarse-grained reconfigurable accel-
erators and compilers. ACM Trans. Embed. Comput. Syst., 22(2), jan
2023.

Maxim Milakov and Natalia Gimelshein. Online normalizer calculation
for softmax, 2018.

OpenAl Gpt-4 technical report, 2023.

Raghu Prabhakar, David Koeplinger, Kevin J. Brown, HyoukJoong Lee,
Christopher De Sa, Christos Kozyrakis, and Kunle Olukotun. Gener-
ating configurable hardware from parallel patterns. In Proceedings of
the Twenty-First International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’16, page
651-665, New York, NY, USA, 2016. Association for Computing Ma-
chinery.

Raghu Prabhakar, Yaqi Zhang, David Koeplinger, Matt Feldman, Tian
Zhao, Stefan Hadjis, Ardavan Pedram, Christos Kozyrakis, and Kunle
Olukotun. Plasticine: A reconfigurable architecture for parallel paterns.
In Proceedings of the 44th Annual International Symposium on Computer
Architecture, pages 389-402, 2017.

Markus N Rabe and Charles Staats. Self-attention does not need o(n2)
memory. 2021.

Alexander Rucker, Shiv Sundram, Coleman Smith, Matthew Vilim,
Raghu Prabhakar, Fredrik Kjolstad, and Kunle Olukotun. Revet:
A language and compiler for dataflow threads. arXiv preprint
arXiv:2302.06124, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, L. ukasz Kaiser, and Illia Polosukhin. Attention
is all you need. In Advances in Neural Information Processing Systems
30, 2017.

Nathan Zhang, Rubens Lacouture, Gina Sohn, Qizheng Zhang, Fredrik
Kjolstad, and Kunle Olukotun. The dataflow abstract machine simula-
tor framework. In 2024 ACM/IEEE 44th Annual International Sympo-
sium on Computer Architecture (ISCA) (To Appear), 2024.

	Abstract
	1 Introduction
	2 The Abstract Streaming Dataflow Hardware
	3 Standard Attention Implementation
	4 Memory-free Attention Implementation
	References

