
TinyChart: Efficient Chart Understanding with
Visual Token Merging and Program-of-Thoughts Learning

Liang Zhang∗†
Renmin University of China

Beijing, China
zhangliang00@ruc.edu.cn

Anwen Hu∗
Alibaba Group
Beijing, China

huanwen.haw@alibaba-inc.com

Haiyang Xu
Alibaba Group

Hangzhou, China
shuofeng.xhy@alibaba-inc.com

Ming Yan
Alibaba Group

Hangzhou, China
ym119608@alibaba-inc.com

Yichen Xu
Renmin University of China

Beijing, China
xu_yichen@ruc.edu.cn

Qin Jin‡
Renmin University of China

Beijing, China
qjin@ruc.edu.cn

Ji Zhang
Alibaba Group

Hangzhou, China
zj122146@alibaba-inc.com

Fei Huang
Alibaba Group

Hangzhou, China
f.huang@alibaba-inc.com

ABSTRACT
Charts are important for presenting and explaining complex data
relationships. Recently, multimodal large language models (MLLMs)
have shown remarkable capabilities in various chart understand-
ing tasks. However, the sheer size of these models in terms of
parameters and computational requirements limits their use in
resource-constrained environments. In this paper, we present Tiny-
Chart, an efficient MLLM for chart understanding with only 3B
parameters. TinyChart overcomes two key challenges in efficient
chart understanding: (1) reduce the burden of learning numeri-
cal computations through a Program-of-Thoughts (PoT) learning
strategy, which trains the model to generate Python programs for
numerical calculations, and (2) reduce lengthy vision feature se-
quences produced by the vision transformer for high-resolution
images through a Vision Token Merging module, which gradually
merges most similar vision tokens. Extensive experiments demon-
strate that our 3B TinyChart achieves SOTA performance on a
variety of chart understanding benchmarks including ChartQA,
Chart-to-Text, Chart-to-Table, OpenCQA, and ChartX. It outper-
forms several chart understanding MLLM with up to 13B parame-
ters such as ChartLlama and ChartAst, and close-sourced general-
purpose MLLM GPT-4V on ChartQA. It also demonstrates its supe-
rior efficiency with higher throughput during inference due to a
smaller model scale and more efficient vision encoding. Our code
and model are available at https://github.com/X-PLUG/mPLUG-
DocOwl/tree/main/TinyChart.

1 INTRODUCTION
As an important information source, charts can intuitively visualize
data in various visual presentation forms and have become an
indispensable part of information dissemination, business decision-
making, and academic research [16]. With the rapid growth of
multimodal data, automatically comprehending charts has become

∗Authors contributed equally.
†Work done during an internship at Alibaba Group.
‡Corresponding author.

3.14 it/s

1.47 it/s

1.94 it/s

(a)

(b)

Figure 1: Our TinyChart-3B outperforms several 13B MLLMs
on a variety of chart understanding benchmarks (a), while
achieving larger inference throughput (b).

a pressing need and received increasing attention from the research
community [3, 10, 34, 35]. Recently, Multimodal Large Language
Models (MLLMs) have shown strong capability in comprehending
images and following instructions [5, 6, 25, 29, 30, 39, 53, 55, 59].
Based on these MLLMs, some recent works [10, 14, 34, 35] further
build chart understanding models by collecting and constructing
versatile chart comprehension datasets and performing supervised
fine-tuning.

However, despite their remarkable success, current chart under-
standing models still face three main limitations: (1) Considerable
amount of parameters makes training and deployment challenging.
For example, ChartLlama [10] is a model with 13 billion parameters,
which is hard to deploy on a single consumer GPU with less than

ar
X

iv
:2

40
4.

16
63

5v
1

 [
cs

.C
V

]
 2

5
A

pr
 2

02
4

https://github.com/X-PLUG/mPLUG-DocOwl/tree/main/TinyChart
https://github.com/X-PLUG/mPLUG-DocOwl/tree/main/TinyChart

Preprint. Liang Zhang, Anwen Hu, Haiyang Xu, Ming Yan, Yichen Xu, Qin Jin, Ji Zhang, and Fei Huang

26GB of VRAMs. (2) They are prone to errors when tackling ques-
tions involving numerical calculations [35], which are difficult to
directly answer without any reasoning steps. (3) They struggle with
efficiently encoding for high-resolution images since the standard
vision transformer would produce lengthy feature sequences.

To overcome such limitations in chart understanding, we propose
an efficient and powerful MLLM, namely TinyChart. As shown
in Figure 1, through the efficient visual encoding and Program-
of-Thoughts learning strategy, TinyChart achieves state-of-the-art
performances on various chart understanding benchmarks with
only 3B parameters, while excelling in faster inference throughput.

For efficient visual encoding, we propose to merge visual tokens
based on the observation that chart images often contain large areas
of color and white spaces. Inspired by [2], we adopt a parameter-
free Visual Token Merging module inside each vision transformer
layer, which aggregates themost similar visual tokens and gradually
reduces the length of the visual feature sequence, thus making it
possible to efficiently encode high-resolution chart images. This
enables the model to maintain high-resolution chart image input
while controlling the computation load.

Moreover, inspired by [4], we propose Program-of-Thoughts
learning that enhances the model’s ability to resolve mathematical
problems. According to statistics on ChartQA [32], 42% of questions
for charts require numerical answers, and most existing models
struggle to perform numerical question answering [27, 35]. To learn
chart understanding more efficiently, we train the model to gener-
ate Python programs for the computation problems step by step.
The programs are then passed to a Python interpreter to produce
the final answer. To support Program-of-Thoughts learning, we
further construct the ChartQA-PoT dataset based on ChartQA [32].
The QA pairs in our ChartQA-PoT are constructed in two ways:
(1) Template-based PoT construction, which generates questions
and programs by filling in the manually written templates based
on chart data. (2) GPT-based PoT construction, which leverages
gpt-3.5-turbo [38] to generate programs based on human-written
questions. Experimental results show that Program-of-Thoughts
learning can significantly improve the question-answering, espe-
cially numerical question answering ability of TinyChart.
The main contributions of this work are as follows:
• We introduce TinyChart, an efficient multimodal chart under-
standing model, which outperforms several 13B MLLMs and
achieves state-of-the-art performances on a variety of chart
understanding benchmarks, while excelling in faster inference
speed at the same time.

• We propose a Program-of-Thoughts (PoT) learning strategy to en-
hance the model in learning numerical calculation and carefully
build a PoT dataset ChartQA-PoT.

• We adopt Visual Token Merging for efficient vision encoding,
which significantly reduces the length of vision feature sequences
and enables the model to encode high-resolution chart images
with constrained computing resources.

2 RELATEDWORK
2.1 Chart Understanding
Chart understanding requires the model to comprehend chart con-
tents and accomplish related tasks specified by the instructions.

This field encompasses low-level recognition tasks, such as data
extraction [26], and high-level tasks, such as question-answering
(QA) [19, 32, 36], summarization [21, 37], and re-rendering [10].
As charts often contain OCR text pivotal for data interpretation,
and many instructions require the model to perform numerical
calculations, chart understanding demands robust text recognition
capabilities and computational reasoning from the model. Early
approaches [9, 13, 26, 36, 44, 58] rely on pipeline methods that use
off-the-shelf OCR tools or component detectors to transform charts
into data tables and other textual representations. They then employ
language models to complete the specified tasks. These pipeline
approaches, limited by their inability to optimize jointly, were ham-
pered by error accumulation. Recent studies [10, 27, 28, 33–35] have
shifted towards end-to-end methods based on multimodal large
language models. These studies adopt the structure of multimodal
large language models [25, 29, 30, 53, 55] and enhance chart un-
derstanding abilities through supervised fine-tuning [40] with sub-
stantial chart instruction data [10, 34, 35]. Although these models
demonstrate improvement in performance, their extensive parame-
ter size prevents them from being easily trained or deployed under
resource-constrained scenarios. In this paper, we demonstrate that
a 3B MLLM is enough to achieve state-of-the-art performance on
several chart understanding tasks. Meanwhile, it has been well ob-
served that these models are prone to numerical errors [27, 34, 35].
Though Meng et al. [35] try to construct executable command lines
in JSON format based on a template to eliminate numerical errors,
we argue that it is insufficient to fully address this issue for two rea-
sons: 1) The executable command lines in JSON format produced
by Meng et al. [35] relies on a specific computational backend,
which limits their potential versatility. 2) Template-based programs
can only cover rather limited scenarios. Instead, we construct the
Program-of-Thoughts learning dataset with the combination of both
templates and GPT-generated programs. This allows the model to
more effectively learn how to solve numerical problems.

2.2 Multimodal Large Language Model
Multimodal large language models (MLLM) exhibit strong capa-
bilities in visual understanding and instruction following [39, 46].
They typically comprise transformer-based visual encoders, large
language models, and vision-language connectors [5, 29, 30, 53–
55, 59, 61]. These models are generally trained on extensive general
image-text data for cross-modal alignment and instruction fine-
tuning. Although some studies have showcased a degree of OCR
capability in these multimodal large language models [31, 60], their
performance on document and chart understanding benchmarks
remains suboptimal due to their low input resolution [6, 52]. Efforts
in the general document domain have attempted to improve the
fine-grained understanding capabilities of MLLMs by increasing
resolution [1], segmenting images [6, 15, 25, 52], utilizing frequency
domain signals [8], and introducing additional high-resolution en-
coders [12]. However, these models often suffer from low efficiency,
primarily due to the excessive length of the high-resolution visual
sequences. The visual token merging method adopted in this paper
can significantly reduce the length of visual feature sequences and
relax the computational requirements with high-resolution input.

TinyChart: Efficient Chart Understanding with
Visual Token Merging and Program-of-Thoughts Learning Preprint.

Vision-Language
Connector

Answer: 0.57

Large Language
Model

Entity | Sales | Orders | Shopping basket
Toys | 34% | 13% | 18%
Baby | 10% | 13% | -3%

In March, online sales of children’s goods have increased
compared to February. The most significant increase in
sales occurred in the category of toy for which online
sales increased by 34 percent …

What is the difference between Lamb and Corn?
Question Answering

Generate underlying data table for the chart.
Chart-to-Table

Direct Answer:
0.57
Program-of-Thought Answer:
Get the value of Lamb, set to Y_1
Y_1=103.7
Get the value of Corn, set to Y_2
Y_2=103.13
Subtract Y_2 from Y_1, set to Subtract
Subtract=np.subtract(Y_1, Y_2)
Set Subtract to Answer
Answer=Subtract

Write a summary for the chart.
Chart-to-Text

Redraw this chart with matplotlib
Chart Redrawing

Visual Token Merging

High Resolution Image

Instruction

TinyChart Output

Patchfy Vision Transformer
Encoder

Figure 2: Overview of TinyChart.

741

852

963

VisualToken
M
erging

FFN

SelfAttention

Vision Transformer Layer x N

Step 1

Divide tokens
into two sets

Step 2

Draw one edge
between the most
similar tokens
across two sets

Step 3

Only keep the most
similar r edge
(r=2 in this case)

Step 4
Merge the tokens
with edges.

(a) (b)

Visual Token Merging

Figure 3: (a) Vision transformer layer with Visual Token Merging. (b) Process of the Visual Token Merging.

3 TINYCHART
3.1 Model Architecture
Figure 2 shows the overview framework of our proposed TinyChart.
It follows the typical architecture of the multimodal large language
model (MLLM), which consists of a vision transformer encoder, a
vision-language connector, and a large language model. To encode
high-resolution visual input effectively, we insert the visual token
merging module inside each vision transformer layer.

3.1.1 Vision Transformer Encoder. The vision transformer encoder
aims to encode chart images into vision features. A standard vision
transformer [7] first resizes the input image 𝐼 into a fixed resolution
and crops the image into patches. Then the patches are treated as
vision tokens and processed with transformer encoder layers [48].

Suppose the input image 𝐼𝑁×𝑁 is in resolution 𝑁 × 𝑁 , and the
patch size is 𝑃 × 𝑃 , the length of vision tokens would be (𝑁 //𝑃)2.
Since the standard transformer layer does not reduce the sequence
length, the vision transformer finally produces a vision feature in
length (𝑁 //𝑃)2. In practice, when 𝑁 is large, the vision feature can
be very long and inefficient for the language model to handle.

Visual TokenMerging Since key information (such as OCRwords)
in a chart can be unrecognizable in low-resolution images [15],
high-resolution input is essential for chart understanding. How-
ever, charts typically contain a large number of color blocks and
blank spaces, where patches are visually similar. To achieve effi-
cient and effective chart understanding, we apply Visual Token
Merging [2] in each transformer layer. The process of Visual Token
Merging is shown in Figure 3. By merging the 𝑟 most similar token

Preprint. Liang Zhang, Anwen Hu, Haiyang Xu, Ming Yan, Yichen Xu, Qin Jin, Ji Zhang, and Fei Huang

PoT Answer
Get the values of 'Good' and 'Bad' assessments for
each year, set to Good and Bad respectively
Good=[62, 54, 65, 59, 32, 13]
Bad=[36, 45, 35, 41, 67, 87]
Calculate the absolute difference between Good and
Bad for each year, set to Diff
Diff=np.abs(np.subtract(Good, Bad))
Find the index that maximizes Diff, set to MaxIndex
MaxIndex=np.argmax(Diff)
Get the year corresponding to MaxIndex, set to
Answer
Answer=2010+MaxIndex

Question
What is the average value of Bad?
PoT Answer
Get the values of all Bad
Y = [36, 45, 35, 41, 67, 87]
Calculate average, set to Avg
Avg = np.mean(Y)
Set to Answer
Answer = Avg

Fill-in <placeholders>
<legend-label>: Bad
<legend-value>: [36,45, …]

Question
Which year has the most divergent opinions
about Brazil's economy?

Template Question
What is the average value of <legend-label>?
Template PoT Answer
Get the values of all <legend-label>
Y = <legend-values>
Calculate average, set to Avg
Avg = np.mean(Y)
Set to Answer
Answer = Avg

data table

Human-written Templates Template-based PoT

GPT-based PoT

GoodBadYear

62362010

54452011

65352012

59412013

32672014

13872015

gpt-3.5-turbo

Figure 4: The demonstration of constructing Template-based PoT (upper half) and GPT-based PoT (lower half) in the ChartQA-
PoT dataset.

pairs, it reduces the length of the vision feature by 𝑟 in each layer.
We measure the similarity between two tokens using the cosine
distance between Keys from self-attention following [2]. As shown
in the lower part of Figure 3, Vision Token Merger finds the top-𝑟
similar token pairs through bipartite graph matching. It first divides
the vision tokens into two disjoint sets. Then, for each token in one
set, it finds the most similar tokens in the other set and draws an
edge between the two tokens. After that, it only keeps the top-𝑟
most similar edges and merges the features of the two endpoints
through average pooling. Note that not only spatially adjacent vi-
sual tokens are subject to merging. Non-adjacent tokens can also be
merged if they belong to different subsets and are similar enough.

Proportional attention The visual token merging operation ag-
gregates tokens with a similar feature into one. Therefore, it will
reduce the proportion of this visual feature in the attention cal-
culation in the following transformer layer, since the number of
this feature has decreased. To solve this issue, we let the attention
operation consider the actual number of patches 𝑠 represented by
each token as follows:

Attention = softmax
(
𝑄𝐾⊤
√
𝑑

+ log 𝑠
)
𝑉 (1)

Where𝑄 ,𝐾 ,𝑉 denotes the query, key, and value of self-attention
which are linear projected from the hidden states [48]. By adding
log 𝑠 inside softmax, the token that merged from 𝑠 patches are
duplicated by 𝑠 times in the attention calculation [2].

3.1.2 Vision-Language Connector. The vision language connector
aims to project the vision features into the embedding space of
the large language model. Following [29, 61], we implement the

vision-language connector as a multiple-layer perceptron with one
hidden layer and GeLU [11] activation.

3.1.3 Large Language Model. The large language model aims to
comprehend both visual features and language instructions, and
then generate responses to accomplish chart understanding tasks. It
is implemented as a transformer decoder [48]with a causal attention
mask. The training objective of the model is language modeling.
Assuming the visual features is 𝑉 , the language instruction is 𝐿,
and the response is 𝑅, then the loss function is defined as follows:

L =
1
𝑇

𝑇∑︁
𝑖=1

LLM(𝑅𝑖 |𝑉 , 𝐿, 𝑅<𝑖) (2)

Where 𝑇 is the number of tokens in 𝑅. Note that we only calculate
loss over tokens in the responses following the supervised fine-
tuning setting in [29].

3.2 Program-of-Thoughts Learning
Program-of-Thoughts (PoT) learning aims to enhance the learning
efficiency of models for numerical computation. In PoT learning,
the model is trained to generate executable Python codes as the
target of a question. The final answer is obtained by executing the
code with a Python interpreter. Compared to short answers that
only contain the calculated values, the Python code includes natural
language comments and multi-step reasoning processes, offering a
form of learning closely aligned with the pre-training of the large
language model.

TinyChart: Efficient Chart Understanding with
Visual Token Merging and Program-of-Thoughts Learning Preprint.

ChartQA-PoT Dataset To support PoT learning on chart under-
standing, we construct the ChartQA-PoT dataset based on the train-
ing split of ChartQA [32]. ChartQA-PoT contains 140,584 (question,
PoT answer) pairs. Each PoT answer consists of multiple lines of
Python code. We provide natural language comments for almost all
code lines to explain their behaviors. We employ two approaches
for constructing (question, PoT answer) pairs: Template-based PoT,
and GPT-based PoT.

3.2.1 Template-based PoT. Based on the chart images in ChartQA,
we construct template-based (question, PoT answer) pairs. As il-
lustrated in the upper half of Figure 4, the Template-based PoT is
constructed based on human-written templates containing place-
holders for both questions and code. The template questions involve
common numerical operations such as calculating the sum, average,
minimal, and maximum values. We adopt the 40 template questions
proposed by PlotQA [36] and manually write their corresponding
template Python code to solve them. As shown in the top-left part of
Figure 4, the template code consists of several variable assignment
operations with NumPy [47] functions to perform calculations. The
beginning steps usually involve extracting the relevant data from
the chart and assigning them to variables. The final computed result
is stored in a variable named "Answer". For each placeholder in
the template, we identify all possible values from the data table
of the chart and randomly select one to fill in the placeholder. Af-
ter removing incorrect or unreasonable filled-ins using rule-based
methods, we finally successfully construct 119,281 (question, PoT
pairs) over 17,498 images from ChartQA.

3.2.2 GPT-based PoT. Although the template-based method allows
for the construction of a large number of question-answer pairs,
the diversity of these pairs is limited due to the fixed templates.
To improve the generalization ability of PoT learning, we have
additionally built GPT-generated PoT data by leveraging the pow-
erful command-following and code-generation capabilities of large
language models. Specifically, we prompt gpt-3.5-turbo [38] to
generate PoT answers similar to the template PoT format for ques-
tions annotated in ChartQA using in-context examples. As shown
in Figure 4, since gpt-3.5-turbo does not accept image input,
we also provide the data table corresponding to the chart as text
input to gpt-3.5-turbo. We screen the quality of the generated
PoT answers by running them through a Python interpreter. If
the annotated PoT answer can not run on the Python interpreter,
or if the answer obtained is different from the annotated one in
ChartQA, then the corresponding PoT Answer is deleted. In the
end, we construct 21,303 (question, PoT Answer) pairs on 15,521
chart images.

3.3 Multitask Learning
We perform multitask learning to train our TinyChart model. We
collect a chart understanding dataset that contains 1.36M samples
for supervised fine-tuning. It covers various chart understanding
tasks including chart question answering, chart-to-text generation,
chart-to-table generation, and chart instruction following. Table 1
shows the collection of our training dataset.Wemix data in different
tasks together to jointly train the model, and use task-specified
instructions to enable the model to differentiate between them.

Table 1: Datasets used for training TinyChart. The bench-
mark datasets consist of basic chart understanding evalua-
tions including QA, summary, and chart-to-table generation.
Note that in ablation studies, we only use the benchmark
datasets for training due to limited computational resources.

Dataset Benchmark Samples

Chart question answer
ChartQA [32] ✓ 28,299
ChartQA-PoT ✓ 140,584
PlotQA [36] 157,070
DVQA [19] 200,000
OpenCQA [20] 5,407

Chart-to-text generation
Pew [21] ✓ 7,892
Statista [21] ✓ 29,589
OpenCQA [20] 5,407
Vistext [45] 11,171
ChartSumm [42] 75,255
Chart2Text-8k [37] 7,862

Chart-to-table generation
ChartQA [32] ✓ 19,373
PlotQA [36] 190,720
Chart2Text-8k 8,305
DVQA [19] 300,000
Statista [21] 29,589

Chart instruction following
ChartLlama [10] 148,398

Total 1,364,921

The training objective is language modeling on response tokens
as presented in Eq.2. Note that in ablation studies, we train solely
with benchmark datasets due to limited computational resources.

4 EXPERIMENT
4.1 Implementation Details
TinyChart is initialized from TinyLlava [61], which utilizes the
SigLIP [57] as the vision encoder and Phi-2 [23] as the large lan-
guage model. The origin input resolution of the vision encoder is
384×384. We extend the input resolution to 512×512 and 768×768
and apply visual token merging with 𝑟 = 20 and 𝑟 = 84 in each
transformer layer respectively. We train the entire model for 3
epochs with a batch size of 512. The learning rate is set to 1𝑒 − 4,
with a warmup in the beginning 3% steps, and then decays to 0 at
the end of training. The total training process costs 3 days on 32
Tesla V100 GPUs with 32 GB VRAMs.

4.2 Evaluation Benchmarks
ChartQA ChartQA [32] aims to generate a short answer to the
question based on the chart content. It includes a lot of questions
that require numerical calculation. We report the relaxed accuracy
that allows numerical errorwithin 5% as themetric following [10, 32,

Preprint. Liang Zhang, Anwen Hu, Haiyang Xu, Ming Yan, Yichen Xu, Qin Jin, Ji Zhang, and Fei Huang

Table 2: Main results on chart-related benchmarks. The inference throughput is evaluated on the ChartQA test with a batch
size of 1 on V100 32GB.

Model #Parameters Resolution Inference
Throughput

ChartQA Chart-to-Text Chart-to-Table OpenCQA

Aug. Hum. Avg. BLEU4 RMS𝐹1 BLEU4

Close source models
GPT-4V [39] - - - - - 78.50 - - -
Gemini-Ultra [46] - - - - - 80.80 - - -
Qwen-VL-Max [1] - - - - - 79.80 - - -
Deplot+Codex [26] 1.3B+175B - - 91.00 67.60 79.30 - 87.22 -

Open source models
Llava1.5 [29] 13B 336×336 1.94 it/s 72.96 37.68 55.32 7.16 48.95 -
Qwen-VL [1] 9.6B 448×448 1.65 it/s 78.90 44.30 61.60 - - -
UReader [52] 7B 224×224(×20) 1.67 it/s 79.42 39.12 59.30 - - -
DocOwl1.5 [15] 8B 448×448(×9) 1.56 it/s 91.38 49.62 70.50 - - -
ChartInstruct [34] 7B - - 87.76 45.52 66.64 13.83 - 15.59
ChartLlama [10] 13B 336×336 1.94 it/s 90.36 48.96 69.66 14.23 90.00 -
ChartAst [35] 13B 448×448 1.47 it/s 93.90 65.90 79.90 15.50 91.60 15.50

TinyChart@512 3B 512×512 3.65 it/s 93.60 72.16 82.88 17.93 92.93 19.62
TinyChart@768 3B 768×768 3.14 it/s 93.86 73.34 83.60 17.18 93.78 20.39

35]. Note that our TinyChart with Program-of-Thoughts learning
can perform ChartQA in the following four settings:
• Direct: the model produces short answers directly.
• PoT: the model produces Python code. The answer is then calcu-
lated through the Python interpreter.

• Combine: the model produces Python code for questions that
require calculation, and Direct answers for others. We determine
whether a question requires calculation with a simple rule-based
keyword detector. If the question contains one of the calculative
keywords1, the detector will treat it as a computational question
and prompt the model to generate a PoT answer. Otherwise, the
model is instructed to produce a Direct answer. Additionally,
if the generated program of a calculative question encounters
syntax errors, we let the model produce Direct answers for this
question in the Combine setting.

• Oracle We further introduce the Oracle setting for ChartQA
evaluation. Under this setting, we always choose the correct one
between the Direct and PoT answers after evaluating under both
settings. It is the upper bound of the combination across the two
answers.

We evaluate TinyChart under the Combine setting by default.

Chart-to-Text Chart-to-Text aims to generate a chart summariza-
tion based on chart content. We evaluate the model with the Pew
benchmark [21], and report BLEU4 [41] as the metric.

Chart-to-Table Chart-to-Table aims to extract the underlying data
table presented by the chart. We evaluate the performance of Chart-
to-Table with the data table annotation provided by ChartQA [32]
following [10, 35]. We report RMS𝐹1 [26] as the metric.

1sum, mean, average, ratio, mode, divide, dividing, differ, subtract, add, division,
times, absolute, minus, exceed, below, less, fewer, bigger, biggest, greater, higher, longer,
tallest, lowest, number, how many colors, what is the value

OpenCQA Different from ChartQA, OpenCQA [20] evaluates the
ability of models to generate free-form answers to the chart-related
questions. We report BLEU4 [41] as the metric following [34, 35].

ChartX ChartX [51] is a recently proposed benchmark that con-
tains more chart types. We evaluate the ChartX cognition tasks
since they are more challenging. It covers Question Answering,
Chart Description Generation, Chart Summary Generation, and
Chart Redrawing. We report the GPT-Accuracy for QA and GPT-
score for the remaining 3 tasks as the metrics following ChartX [51].

4.3 Main Results
Table 2 shows an extensive comparison between TinyChart and ex-
isting multimodal large language models on 4 chart understanding
benchmarks. Our TinyChart model achieves state-of-the-art perfor-
mance on ChartQA, Chart-to-Text, Chart-to-Table, and OpenCQA,
while excels in larger inference throughput. Specifically, with the
input resolution set at 768×768, TinyChart achieves an accuracy
of 83.60 on ChartQA [32], surpassing several closed-source models
including GPT-4V, Gemini-Ultra, and Qwen-VL-Max [1]. It also
outperforms previous open-source SOTA ChartAst [35] on chart
understanding.

We find that previous models performed poorly on the ChartQA
human subset, with none of them achieving over 70%. In contrast,
the performance on the ChartQA-augmentation has approached
93.9%. This is because the questions posed by human annotators
involve more computational problems [32] and are more challeng-
ing. By leveraging the Program-of-Thoughts learning, TinyChart
achieves performance of 73.34% on ChartQA-human, which is an
improvement of 7.44% over the previous state-of-the-art Char-
tAst [35]. This demonstrates the effectiveness of our proposed
learning method based on the Program-of-Thoughts.

We observed that models with higher input resolutions generally
perform better on chart understanding tasks. However, encoding

TinyChart: Efficient Chart Understanding with
Visual Token Merging and Program-of-Thoughts Learning Preprint.

Table 3: Performance on ChartQA under different settings.

Model ChartQA

Direct PoT Oracle Combine

ChartLlama [10] 69.66 - - -
ChartAst [35] 75.10 - - 79.90

TinyChart@512 76.92 79.64 88.76 82.88
TinyChart@768 76.36 80.84 89.12 83.60

Table 4: ChartQA performance on Calculative (Cal.) and Non-
calculative (Non-cal.) questions.

Model Setting ChartQA

Cal. (761) Non-cal. (1739) Total (2500)

TinyChart@768 Direct 56.64 84.99 76.36
TinyChart@768 PoT 78.98 81.66 80.84
TinyChart@768 Combine 80.42 84.99 83.60

high-resolution charts leads to a decrease in inference speed (e.g.,
Qwen-VL vs. Llava1.5, DocOwl1.5 vs. UReader, ChartAst vs. ChartL-
lama). By leveraging visual token merging, TinyChart is able to
accept higher-resolution input images with a limited increase in
computing demands, thus achieving better performance. Due to
the smaller model size and the efficient visual token merging strat-
egy, TinyChart achieves significantly larger inference throughput
compared to previous models. In summary, these results demon-
strate that TinyChart can achieve efficient chart understanding
with enhanced performance and faster inference.

ChartQA performance under different settings. Table 3 shows
the performance comparison under different settings. Note that the
performance of ChartAst under the Combine setting is from Meng
et al. [35], which leverages a combination of Direct answer and
executive JSON to produce the final answer. The results indicate
that our TinyChart model could achieve SOTA performance on the
Direct answer. By combining with PoT answers, TinyChart could
make further improvements. In addition, since the combination of
Direct and PoT answers is very simple, the performance under the
Combine setting falls behind the Oracle setting a lot. Further study
can be conducted to better combine the two answers.

Calculative and non-calculative questions. We divide the ques-
tions in ChartQA test set [32] into two categories: calculative ques-
tions (761 of 2500) and non-calculative questions (1739 of 2500) by
checking whether they contain calculative keywords mentioned
above. Table 4 shows the performance of TinyChart@768 on these
two types of questions under different settings. We observe that PoT
significantly improves the performance on calculative questions
compared to Direct settings (78.98 vs. 56.64) and thus it shows over-
all performance gains (80.84 vs. 76.36). And the simple combination
of Direct and PoT strategies further makes improvements.

Evaluation on ChartX. To further assess the generalizability of
TinyChart, we compare our model with end-to-end General MLLM

Table 5: Evaluation results on ChartX [51].

Model ChartX Cognition

QA Summary Description Redrawing

General MLLM
Llava1.5 17.19 1.48 1.29 0.75
GPT-4V 33.04 3.17 3.12 2.63

Chart MLLM
ChartLlama 13.80 1.04 1.02 0.94
ChartAst 30.99 0.33 1.03 0.82
TinyChart@768 33.35 1.53 1.64 1.89

and ChartMLLMonChartX-Cognition benchmark [51], since it cov-
ers visually diverse chart types. We use TinyChart@768 to perform
inference on ChartX without additional fine-tuning. As shown in
Table 5, benefiting from our Program-of-Thoughts learning method,
TinyChart achieves a 33.35 GPT-Accuracy on the QA task, even
surpassing the GPT-4V model. Though it falls behind GPT-4V in
Summary, Description, and Redrawing tasks, TinyChart still per-
forms better than open-source Chart MLLMs including ChartLlama
and ChartAst. It indicates that TinyChart has a strong capability to
generalize across various chart types.

4.4 Ablation Studies
To verify the effectiveness of visual token merging and program-
of-thoughts learning, we conduct ablation studies in Table 6.

Ablation on PoT learning. The upper block in Table 6 shows the
performance of the model with and without the use of Program-of-
Thoughts training data. Comparing Row 2 with Row 1, we observe
that training solely with template-based PoT improves the model’s
ability to generate direct answers (71.12 vs. 70.72). This improve-
ment is attributed to PoT learning enhances the model’s reasoning
abilities. At this point, the PoT answers produced by the model are
less accurate than direct answers (55.44 vs. 71.12), which may be
due to the inability of template-based PoT to cover all questions.
However, when we ask the model to generate PoT answers for
questions that require calculation and combine with direct answers,
it outperforms solely direct answers (73.00 vs. 71.12). This indicates
that PoT answers have advantages in computational problems. After
incorporating GPT-based PoT into training, the performance of PoT
answering surpasses direct answering (76.88 vs. 72.44), and both
direct (72.44 vs. 71.12) and combined answering (79.48 vs. 73.00)
show further improvements. These results confirm the effectiveness
of our proposed Program-of-Thoughts learning method, suggesting
that it not only strengthens the model’s computational capabilities
but also enhances overall problem-solving capability.

Ablation on Visual Token Merging. The middle block in Table 6
compares the performance with and without using visual token
merging when the input resolution is 512×512, and with different
numbers of tokens to merge in each layer. Comparing Row 4 and
Row 3, increasing the input resolution from 384 to 512 significantly
improves the model’s performance on three chart understanding

Preprint. Liang Zhang, Anwen Hu, Haiyang Xu, Ming Yan, Yichen Xu, Qin Jin, Ji Zhang, and Fei Huang

Table 6: Ablation study. We train the models only using benchmark datasets in this experiment.

Row Resolution GPT
PoT

Template
PoT

Visual Patch
Merge

Visual
Length

Inference
Throughput

ChartQA Chart2Text Chart2Table

Direct PoT Combine BLEU4 RMS𝐹1
1 384×384 × × × 729 3.73 it/s 70.72 - - 17.10 85.80
2 384×384 × ✓ × 729 3.73 it/s 71.12 55.44 73.00 17.04 87.68
3 384×384 ✓ ✓ × 729 3.73 it/s 72.44 76.88 79.48 16.67 87.30

4 512×512 ✓ ✓ × 1,296 2.38 it/s 74.08 79.64 81.72 17.32 89.76
5 512×512 ✓ ✓ 𝑟=12 984 2.84 it/s 73.24 77.72 80.52 16.54 88.26
6 512×512 ✓ ✓ 𝑟=15 906 3.26 it/s 72.52 78.60 80.04 16.96 88.01
7 512×512 ✓ ✓ 𝑟=20 776 3.65 it/s 73.36 78.84 80.76 16.57 87.81

8 768×768 ✓ ✓ × 2,916 OOM - - - - -
9 768×768 ✓ ✓ 𝑟=84 732 3.14 it/s 73.24 77.72 81.04 16.43 88.90

Figure 5: Visual token merging visualization. Top 10 groups with the most merged tokens are outlined in different colors.

benchmarks, demonstrating that high resolution is crucial for com-
prehending chart images. However, a direct increase in resolution
leads to a substantial drop in the inference throughput (2.38 it/s vs.
3.73 it/s). The reason is that, given high-resolution images, the stan-
dard vision transformer produces a lengthy visual feature sequence
that is then processed by the large language model. This brings
considerable computational expenses. By adopting the visual token
merging, we can control the length of the visual feature sequence
by regulating the number of tokens to merge at each layer, and,
thereby achieving efficient high-resolution encoding. When set-
ting 𝑟=20, we attain an inference throughput nearly equal to that
with an input resolution of 384×384 (3.65 it/s vs. 3.73 it/s), while
providing the performance benefits of higher resolutions.

Extending to higher resolution. To further highlight the advan-
tages of visual token merging, we increase the input resolution to
768 in the bottom block of Table 6. At this point, the length of the
visual feature sequence is 2,916, which could not be trained using
32GB V100 due to insufficient VRAM. However, after employing the
visual token merging module with 𝑟=84, the input sequence length
is reduced to 732 and we can perform training normally. In this set-
ting, the model’s inference throughput is 3.14 it/s, and demonstrates
a certain performance advantage in ChartQA (81.04 vs. 80.76) and
Chart-to-Table (88.90 vs. 87.81). It illustrates that by utilizing visual
token merging, we are able to leverage higher-resolution chart im-
ages under constrained resources, thereby improving performance.

4.5 Visualization
To investigate the effects of visual token merging, we visualized the
token merging results at the final layer of the vision transformer.
In Figure 5, we visualize the top ten groups with the largest num-
bers of tokens. Each group is outlined with a different color. The
visualization reveals that these largest groups typically correspond
to blank or colored areas. By compressing these areas down to a
single token for encoding, our visual token merging module can
thus reduce the length of the encoded sequence without losing
much information, thereby achieving efficient visual encoding.

4.6 Case study
We conduct case studies with TinyChart when conducting chart
question answering, chart-to-table, chart-to-text, and chart redraw-
ing in Figure 6, 7, 8, and 9.

Chart Question Answering. In Figure 6, we present a case study
on ChartQA. As shown in Figure 6 (a-c), much key information
within the chart is provided by visually situated texts within the
image, which requires the model to have the ability to process
high-resolution images. Since ChartLlama only supports 336 reso-
lutions, it struggles to retrieve accurate information in these charts.
In contrast, thanks to the visual token merging, our TinyChart
can accept higher-resolution inputs without introducing excessive
computations. Thus it can successfully find clues related to the
questions. Meanwhile, ChartLlama suffers from numerical errors

TinyChart: Efficient Chart Understanding with
Visual Token Merging and Program-of-Thoughts Learning Preprint.

Question:What is land use per 100 kilocalories by
Mutton & Goat Meat production?
GTAnswer: 20.98
ChartLlama: 19.85
TinyChart Direct: 20.98

Question: Is the percentage value of "STEM"
segment 52?
GTAnswer: Yes
ChartLlama: No
TinyChart Direct: Yes

Question: How many countries are represented
in the chart?
GTAnswer: 4
ChartLlama: 3
TinyChart Direct: 4

Question: Find out the average of the bottom two
countries ?
GTAnswer: 51.04
ChartLlama: 49.5
TinyChart Direct: 51.95

TinyChart PoT: 51.045

Get the values of all
'Scheduled teaching time
that teachers are in the
classroom', set to Y
Y=[93.45, 89.89, 58.09, 44]
Sort Y in ascending
order, set to Y
Y=np.sort(Y)
Get the bottom two
values from Y, set to Y
Y=Y[:2]
Calculate the mean of Y,
set to Answer
Answer=np.mean(Y)

Question:What is the difference between
Asians and Whites degree distribution?
GTAnswer: 22
ChartLlama: 21
TinyChart Direct: 22

TinyChart PoT: 22

Get the values of all
'Values' in the chart, set
to Y
Y=[15, 22, 41, 63]
Get the difference
between the value of
Asians and Whites, set to
Subtract
Subtract=np.subtract(Y[3],
Y[2])
Calculate the absolute
value of Subtract, set to
Answer
Answer=np.abs(Subtract)

(a) (b) (c)

(d) (e)

Figure 6: Case studies on ChartQA. We compare TinyChart@768 with ChartLlama.

Characteristic | More than 10 times a day |
2-10 times a day | Once a day | Less often
than daily
AB | 19% | 42% | 14% | 25%
C1 | 24% | 40% | 19% | 16%
C2 | 25% | 41% | 17% | 17%
DE | 34% | 38% | 14% | 14%

TinyChart: Input: Generate underlying data table for the chart.Input: Generate underlying data table for the chart. TinyChart:

Characteristic | Retail sales share
United States | 42%
Germany | 11%
France | 11%
China | 8%
Italy | 3%
Canada | 3%
United Kingdom | 3%
Switzerland | 3%
Other | 16%

TinyChart:Input: Generate underlying data table for the chart. Input: Generate underlying data table for the chart. TinyChart:

Characteristic | Male | Female
September 2018 | 1.6% | 2.2%
August 2018 | 1.5% | 1.8%
July 2018 | 1.2% | 1.7%
June 2018 | 1.5% | 2.1%
May 2018 | 1.3% | 2.4%
April 2018 | 1.7% | 2.3%
March 2018 | 1.9% | 2.5%
February 2018 | 2.3% | 3.2%
January 2018 | 2.6% | 3.6%
December 2017 | 1.9% | 2.8%
November 2017 | 1.4% | 2.3%
October 2017 | 1.4% | 2.1%

(a) (b)

(c) (d)

Characteristic | Adult total | Adult male | Adult female
2008 | 98.29% | 97.83% | 98.51%
2009 | 98.36% | 97.67% | 98.62%
2010 | 98.28% | 97.65% | 98.56%
2011 | 98.44% | 98.07% | 98.70%
2012 | 98.47% | 98.10% | 98.74%
2013 | 98.43% | 98.06% | 98.70%
2014 | 98.49% | 98.03% | 98.81%
2015 | 98.54% | 98.08% | 98.87%
2016 | 98.59% | 98.17% | 98.86%
2017 | 98.65% | 98.21% | 98.93%
2018 | 98.70% | 98.32% | 98.98%

Figure 7: Examples of chart-to-table extraction of TinyChart@768. The wrong values produced by the model are marked red.

Preprint. Liang Zhang, Anwen Hu, Haiyang Xu, Ming Yan, Yichen Xu, Qin Jin, Ji Zhang, and Fei Huang

Input: Write a summary for this chart.
TinyChart: The share of Americans who
own desktop or laptop computers has
remained relatively stable in recent years,
while the share who own tablet computers
and e-readers has grown. Today, about
three-quarters of U.S. adults (74%) own a
desktop or laptop computer, up from 70%
in early 2014.

Input: Create a brief summarization or extract key
insights based on the chart image.
TinyChart: The chart illustrates the retail and e-
commerce sales figures in four major online
markets: USA, UK, Germany, and France in 2021.
Retail sales dominated in the USA with a value of
4500, followed by the UK with 4000. Germany and
France saw 3500 and 3000 retail sales respectively,
while e-commerce sales were the highest in France
with 4000, and second highest in the USA with
2500.

Input: Create a brief summarization or extract key
insights based on the chart image.
TinyChart: The chart presents the popularity of
various sports in the United States in 2023. Football is
the most popular sport with a 30% popularity rating,
followed by Basketball at 25%. Baseball and Hockey
have a 15% and 10% popularity respectively.
Meanwhile, Golf and Tennis have a 5% and 10%
popularity rating respectively. The least popular sport
is “Other” with a 5% rating.

Input: Create a brief summarization or extract key
insights based on the chart image.
TinyChart: The chart illustrates the sales trends for
online and store sales from 2018 to 2022. It shows
that online sales steadily increased from 500 in 2018
to 1200 in 2022, while store sales also experienced
an increase from 400 in 2018 to 1000 in 2022. The
data indicates that while online sales growth has
been consistently positive, store sales growth has
been relatively slower. This could suggest a shift in
consumer preference or a need for a more extensive
retail network.

(a) (b)

(c) (d)

Figure 8: Cases of chart-to-text generation by TinyChart@768. Correct contents are shown in green and wrong contents are
marked red.

TinyChart:Input: Redraw the chart with Python code.

TinyChart:Input: Redraw the chart with Python code.

TinyChart:Input: Redraw the chart with Python code.

(a) (b)

(c) (d)

TinyChart:Input: Redraw the chart with Python code.

Figure 9: Examples of chart redrawing. We present the resulting image after executing the Python code produced by the model.
The bad case is with the red bounding box.

when faced with calculative questions in Figure 6 (d-e), and our
PoT (Program-of-Thoughts) learning method can accurately solve
these problems. These examples further illustrate the advantages
of our methods.

Chart-to-Table. For chart-to-table extraction, we find that our
TinyChart model can successfully extractive values from several
visually diverse charts in Figure 7 (a-c), thanks to its excellent

text recognition ability with high-resolution input. However, as
shown in Figure 7 (d), the model struggles to estimate the values of
data points in the absence of OCR words. It seems that the model
could make reasonable predictions based on surrounding points,
but hardly provide accurate values based on the coordinate axis.
This indicates that the model still lacks the ability to understand
spatial relationships across large areas.

TinyChart: Efficient Chart Understanding with
Visual Token Merging and Program-of-Thoughts Learning Preprint.

Chart-to-Text. From Figure 8, we observe that the model can un-
derstand the data presented in the chart and generate descriptions
and summaries in natural language. Though it can retrieve the data
values correctly, we find it sometimes produces contents that do
match the chart as shown in Figure 8 (c-d). This may be due to the
inherent limitations of hallucination in MLLMs [24, 43, 49, 50], and
may be alleviated by addressing hallucinations [17, 18, 22, 56].

Chart redrawing. We present four cases of chart redrawing in Fig-
ure 9. As shown in Figure 9 (a-c), our TinyChart model can generate
Python code to redraw visually diverse chart types including lines,
heatmaps, and rings. However, it can be hard to draw unseen chart
types such as 3D bar charts (Figure 9 (d)). This may be mitigated
by improving the coverage of different chart types in training data
through automatic data construction techniques [10, 51].

5 CONCLUSION
This paper introduces TinyChart, a chart understandingMultimodal
Large Language Model with 3 billion parameters. To address the
inefficiency of lengthy visual token sequences with high-resolution
images, TinyChart injects a visual token merging module that
merges similar vision tokens together, thereby enabling efficient en-
coding of high-resolution images. To tackle the challenges of learn-
ing numerical computations, we propose a Program-of-Thoughts
learning method that trains the model to generate Python programs
to answer questions. Our TinyChart model achieves state-of-the-art
(SOTA) performance on multiple chart understanding benchmarks,
surpassing existing 13 billion parameter chart MLLMs, and out-
performs closed-source models like GPT-4V on ChartQA. Exten-
sive ablation studies confirm the effectiveness of our methods. Our
code andmodel are released at https://github.com/X-PLUG/mPLUG-
DocOwl/tree/main/TinyChart.

REFERENCES
[1] Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Jun-

yang Lin, Chang Zhou, and Jingren Zhou. 2023. Qwen-VL: A Versatile Vision-
Language Model for Understanding, Localization, Text Reading, and Beyond.
arXiv:2308.12966 [cs.CV]

[2] Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang, Christoph Fe-
ichtenhofer, and Judy Hoffman. 2023. Token Merging: Your ViT But Faster.
In The Eleventh International Conference on Learning Representations. https:
//openreview.net/forum?id=JroZRaRw7Eu

[3] Jinyue Chen, Lingyu Kong, Haoran Wei, Chenglong Liu, Zheng Ge, Liang Zhao,
Jianjian Sun, Chunrui Han, and Xiangyu Zhang. 2024. OneChart: Purify the
Chart Structural Extraction via One Auxiliary Token. arXiv:2404.09987 [cs.CV]

[4] Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. 2023. Pro-
gram of Thoughts Prompting: Disentangling Computation from Reasoning for
Numerical Reasoning Tasks. Transactions on Machine Learning Research (2023).

[5] Xiaoyi Dong, Pan Zhang, Yuhang Zang, Yuhang Cao, Bin Wang, Linke Ouyang,
Xilin Wei, Songyang Zhang, Haodong Duan, Maosong Cao, et al. 2024. InternLM-
XComposer2: Mastering free-form text-image composition and comprehension
in vision-language large model. arXiv preprint arXiv:2401.16420 (2024).

[6] Xiaoyi Dong, Pan Zhang, Yuhang Zang, Yuhang Cao, Bin Wang, Linke Ouyang,
Songyang Zhang, Haodong Duan,Wenwei Zhang, Yining Li, et al. 2024. InternLM-
XComposer2-4KHD: A Pioneering Large Vision-Language Model Handling Reso-
lutions from 336 Pixels to 4K HD. arXiv preprint arXiv:2404.06512 (2024).

[7] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. 2020. An Image
is Worth 16x16 Words: Transformers for Image Recognition at Scale. CoRR
abs/2010.11929 (2020). arXiv:2010.11929 https://arxiv.org/abs/2010.11929

[8] Hao Feng, Qi Liu, Hao Liu, Wengang Zhou, Houqiang Li, and Can Huang. 2023.
DocPedia: Unleashing the Power of Large Multimodal Model in the Frequency
Domain for Versatile Document Understanding. arXiv preprint arXiv:2311.11810
(2023).

[9] Jiayun Fu, Bin B Zhu, Haidong Zhang, Yayi Zou, Song Ge, Weiwei Cui, Yun
Wang, Dongmei Zhang, Xiaojing Ma, and Hai Jin. 2022. Chartstamp: Robust
chart embedding for real-world applications. In Proceedings of the 30th ACM
International Conference on Multimedia. 2786–2795.

[10] Yucheng Han, Chi Zhang, Xin Chen, Xu Yang, ZhibinWang, Gang Yu, Bin Fu, and
Hanwang Zhang. 2023. Chartllama: A multimodal llm for chart understanding
and generation. arXiv preprint arXiv:2311.16483 (2023).

[11] Dan Hendrycks and Kevin Gimpel. 2016. Bridging Nonlinearities and Stochastic
Regularizers with Gaussian Error Linear Units. CoRR abs/1606.08415 (2016).
arXiv:1606.08415 http://arxiv.org/abs/1606.08415

[12] Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui
Ji, Yan Wang, Zihan Wang, Yuxiao Dong, Ming Ding, et al. 2023. Cogagent: A
visual language model for gui agents. arXiv preprint arXiv:2312.08914 (2023).

[13] Anwen Hu, Shizhe Chen, and Qin Jin. 2021. Question-controlled Text-aware
Image Captioning. In Proceedings of the 29th ACM International Conference onMul-
timedia (Virtual Event, China) (MM ’21). Association for Computing Machinery,
New York, NY, USA, 3097–3105. https://doi.org/10.1145/3474085.3475452

[14] Anwen Hu, Yaya Shi, Haiyang Xu, Jiabo Ye, Qinghao Ye, Ming Yan, Chenliang Li,
Qi Qian, Ji Zhang, and Fei Huang. 2024. mPLUG-PaperOwl: Scientific Diagram
Analysis with the Multimodal Large Language Model. arXiv:2311.18248 [cs.MM]

[15] Anwen Hu, Haiyang Xu, Jiabo Ye, Ming Yan, Liang Zhang, Bo Zhang,
Chen Li, Ji Zhang, Qin Jin, Fei Huang, and Jingren Zhou. 2024. mPLUG-
DocOwl 1.5: Unified Structure Learning for OCR-free Document Understanding.
arXiv:2403.12895 [cs.CV]

[16] Kung-Hsiang Huang, Hou Pong Chan, Yi R. Fung, Haoyi Qiu, Mingyang Zhou,
Shafiq Joty, Shih-Fu Chang, and Heng Ji. 2024. From Pixels to Insights: A Survey
on Automatic Chart Understanding in the Era of Large Foundation Models.
arXiv:2403.12027 [cs.CL]

[17] Qidong Huang, Xiaoyi Dong, Pan Zhang, Bin Wang, Conghui He, Jiaqi Wang,
Dahua Lin, Weiming Zhang, and Nenghai Yu. 2024. OPERA: Alleviating Hal-
lucination in Multi-Modal Large Language Models via Over-Trust Penalty and
Retrospection-Allocation. arXiv:2311.17911 [cs.CV]

[18] Chaoya Jiang, Haiyang Xu, Mengfan Dong, Jiaxing Chen, Wei Ye, Ming
Yan, Qinghao Ye, Ji Zhang, Fei Huang, and Shikun Zhang. 2024. Hallucina-
tion Augmented Contrastive Learning for Multimodal Large Language Model.
arXiv:2312.06968 [cs.CV]

[19] Kushal Kafle, Brian Price, Scott Cohen, and Christopher Kanan. 2018. Dvqa:
Understanding data visualizations via question answering. In Proceedings of the
IEEE conference on computer vision and pattern recognition. 5648–5656.

[20] Shankar Kantharaj, Xuan Long Do, Rixie Tiffany Leong, Jia Qing Tan, Enamul
Hoque, and Shafiq Joty. 2022. OpenCQA: Open-ended Question Answering with
Charts. In Proceedings of the 2022 Conference on Empirical Methods in Natural
Language Processing, Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (Eds.).
Association for Computational Linguistics, Abu Dhabi, United Arab Emirates,
11817–11837. https://doi.org/10.18653/v1/2022.emnlp-main.811

[21] Shankar Kantharaj, Rixie Tiffany Leong, Xiang Lin, AhmedMasry, Megh Thakkar,
Enamul Hoque, and Shafiq Joty. 2022. Chart-to-Text: A Large-Scale Benchmark for
Chart Summarization. In Proceedings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), SmarandaMuresan, Preslav
Nakov, and Aline Villavicencio (Eds.). Association for Computational Linguistics,
Dublin, Ireland, 4005–4023. https://doi.org/10.18653/v1/2022.acl-long.277

[22] Sicong Leng, Hang Zhang, Guanzheng Chen, Xin Li, Shijian Lu, Chunyan Miao,
and Lidong Bing. 2023. Mitigating Object Hallucinations in Large Vision-
LanguageModels throughVisual Contrastive Decoding. arXiv:2311.16922 [cs.CV]

[23] Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar,
and Yin Tat Lee. 2023. Textbooks Are All You Need II: phi-1.5 technical report.
arXiv:2309.05463 [cs.CL]

[24] Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong
Wen. 2023. Evaluating Object Hallucination in Large Vision-Language Models.
In Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing. 292–305.

[25] Ziyi Lin, Chris Liu, Renrui Zhang, Peng Gao, Longtian Qiu, Han Xiao, Han Qiu,
Chen Lin, Wenqi Shao, Keqin Chen, Jiaming Han, Siyuan Huang, Yichi Zhang,
Xuming He, Hongsheng Li, and Yu Qiao. 2023. SPHINX: The Joint Mixing of
Weights, Tasks, and Visual Embeddings for Multi-modal Large Language Models.
arXiv:2311.07575 [cs.CV]

[26] Fangyu Liu, Julian Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi
Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, and Yasemin Altun.
2023. DePlot: One-shot visual language reasoning by plot-to-table translation. In
Findings of the Association for Computational Linguistics: ACL 2023, Anna Rogers,
Jordan Boyd-Graber, and Naoaki Okazaki (Eds.). Association for Computational
Linguistics, Toronto, Canada, 10381–10399. https://doi.org/10.18653/v1/2023.
findings-acl.660

[27] Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Man-
dar Joshi, Yasemin Altun, Nigel Collier, and Julian Eisenschlos. 2023. MatCha:
Enhancing Visual Language Pretraining with Math Reasoning and Chart Deren-
dering. In Proceedings of the 61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), Anna Rogers, Jordan Boyd-Graber,

https://github.com/X-PLUG/mPLUG-DocOwl/tree/main/TinyChart
https://github.com/X-PLUG/mPLUG-DocOwl/tree/main/TinyChart
https://arxiv.org/abs/2308.12966
https://openreview.net/forum?id=JroZRaRw7Eu
https://openreview.net/forum?id=JroZRaRw7Eu
https://arxiv.org/abs/2404.09987
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1606.08415
https://doi.org/10.1145/3474085.3475452
https://arxiv.org/abs/2311.18248
https://arxiv.org/abs/2403.12895
https://arxiv.org/abs/2403.12027
https://arxiv.org/abs/2311.17911
https://arxiv.org/abs/2312.06968
https://doi.org/10.18653/v1/2022.emnlp-main.811
https://doi.org/10.18653/v1/2022.acl-long.277
https://arxiv.org/abs/2311.16922
https://arxiv.org/abs/2309.05463
https://arxiv.org/abs/2311.07575
https://doi.org/10.18653/v1/2023.findings-acl.660
https://doi.org/10.18653/v1/2023.findings-acl.660

Preprint. Liang Zhang, Anwen Hu, Haiyang Xu, Ming Yan, Yichen Xu, Qin Jin, Ji Zhang, and Fei Huang

and Naoaki Okazaki (Eds.). Association for Computational Linguistics, Toronto,
Canada, 12756–12770. https://doi.org/10.18653/v1/2023.acl-long.714

[28] Fuxiao Liu, Xiaoyang Wang, Wenlin Yao, Jianshu Chen, Kaiqiang Song, Sangwoo
Cho, Yaser Yacoob, and Dong Yu. 2023. Mmc: Advancing multimodal chart
understandingwith large-scale instruction tuning. arXiv preprint arXiv:2311.10774
(2023).

[29] Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. 2023. Improved Baselines
with Visual Instruction Tuning. arXiv:2310.03744 [cs.CV]

[30] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. 2024. Visual instruc-
tion tuning. Advances in neural information processing systems 36 (2024).

[31] Yuliang Liu, Zhang Li, Biao Yang, Chunyuan Li, Xucheng Yin, Cheng lin Liu,
Lianwen Jin, and Xiang Bai. 2024. On the Hidden Mystery of OCR in Large
Multimodal Models. arXiv:2305.07895 [cs.CV]

[32] Ahmed Masry, Xuan Long Do, Jia Qing Tan, Shafiq Joty, and Enamul Hoque. 2022.
ChartQA: A Benchmark for Question Answering about Charts with Visual and
Logical Reasoning. In Findings of the Association for Computational Linguistics:
ACL 2022. 2263–2279.

[33] Ahmed Masry, Parsa Kavehzadeh, Xuan Long Do, Enamul Hoque, and Shafiq
Joty. 2023. UniChart: A Universal Vision-language Pretrained Model for Chart
Comprehension and Reasoning. arXiv:2305.14761 [cs.CL]

[34] AhmedMasry, Mehrad Shahmohammadi, Md Rizwan Parvez, Enamul Hoque, and
Shafiq Joty. 2024. ChartInstruct: Instruction Tuning for Chart Comprehension
and Reasoning. arXiv:2403.09028 [cs.CL]

[35] Fanqing Meng, Wenqi Shao, Quanfeng Lu, Peng Gao, Kaipeng Zhang, Yu Qiao,
and Ping Luo. 2024. ChartAssisstant: A Universal Chart Multimodal Language
Model via Chart-to-Table Pre-training and Multitask Instruction Tuning. arXiv
preprint arXiv:2401.02384 (2024). arXiv:2401.02384

[36] Nitesh Methani, Pritha Ganguly, Mitesh M Khapra, and Pratyush Kumar. 2020.
Plotqa: Reasoning over scientific plots. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision. 1527–1536.

[37] Jason Obeid and Enamul Hoque. 2020. Chart-to-Text: Generating Natural Lan-
guage Descriptions for Charts by Adapting the Transformer Model. CoRR
abs/2010.09142 (2020). arXiv:2010.09142 https://arxiv.org/abs/2010.09142

[38] OpenAI. 2023. GPT-3.5-Turbo. https://platform.openai.com/docs/models/gpt-3-
5-turbo.

[39] OpenAI. 2023. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]
[40] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela

Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 2022.
Training language models to follow instructions with human feedback. Advances
in Neural Information Processing Systems 35 (2022), 27730–27744.

[41] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a
method for automatic evaluation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computational Linguistics. 311–318.

[42] Raian Rahman, Rizvi Hasan, Abdullah Al Farhad, Md. Tahmid Rahman Laskar,
Md. Hamjajul Ashmafee, and Abu Raihan Mostofa Kamal. 2023. ChartSumm: A
Comprehensive Benchmark for Automatic Chart Summarization of Long and
Short Summaries. Proceedings of the Canadian Conference on Artificial Intelligence
(jun 5 2023). https://caiac.pubpub.org/pub/ujhjycsw.

[43] Anna Rohrbach, Lisa Anne Hendricks, Kaylee Burns, Trevor Darrell, and Kate
Saenko. 2018. Object Hallucination in Image Captioning. In Proceedings of the
2018 Conference on Empirical Methods in Natural Language Processing. 4035–4045.

[44] Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv
Batra, Devi Parikh, and Marcus Rohrbach. 2019. Towards VQA Models That Can
Read. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR).

[45] Benny Tang, Angie Boggust, and Arvind Satyanarayan. 2023. VisText: A Bench-
mark for Semantically Rich Chart Captioning. In Proceedings of the 61st An-
nual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (Eds.). Asso-
ciation for Computational Linguistics, Toronto, Canada, 7268–7298. https:
//doi.org/10.18653/v1/2023.acl-long.401

[46] Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste
Alayrac, Jiahui Yu, Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth,
et al. 2023. Gemini: a family of highly capable multimodal models. arXiv preprint
arXiv:2312.11805 (2023).

[47] Stefan van der Walt, S. Chris Colbert, and Gael Varoquaux. 2011. The NumPy
Array: A Structure for Efficient Numerical Computation. Computing in Science &
Engineering 13, 2 (2011), 22–30. https://doi.org/10.1109/MCSE.2011.37

[48] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[49] JunyangWang, YuhangWang, Guohai Xu, Jing Zhang, Yukai Gu, Haitao Jia, Ming
Yan, Ji Zhang, and Jitao Sang. 2023. An llm-free multi-dimensional benchmark
for mllms hallucination evaluation. arXiv preprint arXiv:2311.07397 (2023).

[50] Junyang Wang, Yiyang Zhou, Guohai Xu, Pengcheng Shi, Chenlin Zhao, Haiyang
Xu, Qinghao Ye, Ming Yan, Ji Zhang, Jihua Zhu, Jitao Sang, and Haoyu Tang.
2023. Evaluation and Analysis of Hallucination in Large Vision-Language Models.

arXiv:2308.15126 [cs.LG]
[51] Renqiu Xia, Bo Zhang, Hancheng Ye, Xiangchao Yan, Qi Liu, Hongbin Zhou,

Zijun Chen, Min Dou, Botian Shi, Junchi Yan, and Yu Qiao. 2024. ChartX &
ChartVLM: A Versatile Benchmark and Foundation Model for Complicated Chart
Reasoning. arXiv:2402.12185 [cs.CV]

[52] Jiabo Ye, Anwen Hu, Haiyang Xu, Qinghao Ye, Ming Yan, Guohai Xu, Chenliang
Li, Junfeng Tian, Qi Qian, Ji Zhang, Qin Jin, Liang He, Xin Lin, and Fei Huang.
2023. UReader: Universal OCR-free Visually-situated Language Understanding
with Multimodal Large Language Model. In EMNLP (Findings). Association for
Computational Linguistics, 2841–2858.

[53] Qinghao Ye, Haiyang Xu, Guohai Xu, Jiabo Ye, Ming Yan, Yiyang Zhou, Jun-
yang Wang, Anwen Hu, Pengcheng Shi, Yaya Shi, Chenliang Li, Yuanhong Xu,
Hehong Chen, Junfeng Tian, Qi Qian, Ji Zhang, Fei Huang, and Jingren Zhou.
2024. mPLUG-Owl: Modularization Empowers Large Language Models with
Multimodality. arXiv:2304.14178 [cs.CL]

[54] Qinghao Ye, Haiyang Xu,Ming Yan, Chenlin Zhao, JunyangWang, Xiaoshan Yang,
Ji Zhang, Fei Huang, Jitao Sang, and Changsheng Xu. 2023. mPLUG-Octopus:
The Versatile Assistant Empowered by A Modularized End-to-End Multimodal
LLM. In Proceedings of the 31st ACM International Conference on Multimedia.
9365–9367.

[55] Qinghao Ye, Haiyang Xu, Jiabo Ye, Ming Yan, Anwen Hu, Haowei Liu, Qi
Qian, Ji Zhang, Fei Huang, and Jingren Zhou. 2023. mPLUG-Owl2: Revolu-
tionizing Multi-modal Large Language Model with Modality Collaboration.
arXiv:2311.04257 [cs.CL]

[56] Zihao Yue, Liang Zhang, and Qin Jin. 2024. Less is More: Mitigating Multimodal
Hallucination from an EOS Decision Perspective. arXiv preprint arXiv:2402.14545
(2024).

[57] Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. 2023. Sig-
moid loss for language image pre-training. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision. 11975–11986.

[58] Liang Zhang, Anwen Hu, Jing Zhang, Shuo Hu, and Qin Jin. 2023. MPMQA:
multimodal question answering on product manuals. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 37. 13958–13966.

[59] Pan Zhang, Xiaoyi Dong Bin Wang, Yuhang Cao, Chao Xu, Linke Ouyang,
Zhiyuan Zhao, Shuangrui Ding, Songyang Zhang, Haodong Duan, Hang Yan,
et al. 2023. Internlm-xcomposer: A vision-language large model for advanced
text-image comprehension and composition. arXiv preprint arXiv:2309.15112
(2023).

[60] Peng Zhang, Yunlu Xu, Zhanzhan Cheng, Shiliang Pu, Jing Lu, Liang Qiao, Yi Niu,
and Fei Wu. 2020. TRIE: end-to-end text reading and information extraction for
document understanding. In Proceedings of the 28th ACM International Conference
on Multimedia. 1413–1422.

[61] Baichuan Zhou, Ying Hu, Xi Weng, Junlong Jia, Jie Luo, Xien Liu, Ji Wu, and
Lei Huang. 2024. TinyLLaVA: A Framework of Small-scale Large Multimodal
Models. arXiv:2402.14289 [cs.LG]

A CHARTQA-POT DETAILS
A.1 Dataset Statistic
We build ChartQA-PoT based on the images and questions in the
training split of ChartQA [32]. ChartQA-PoT consists of two subsets:
Template-based PoT and GPT-based PoT. We present the statistics
over ChartQA-PoT in Table 7. We find that answers provided by
gpt-3.5-turbo are longer than template-based PoT, since they
cover more diverse scenarios.

Table 7: Statistic over ChartQA-PoT

Statistic Template
PoT

GPT
PoT

ChartQA
PoT

Num. of samples 119,281 21,303 140,584
Num. of images 17,498 15,521 18,133
Avg. answer characters 319.38 381.23 328.75
Avg. answer tokens 117.70 136.01 120.48

We further present the first 2-gram words of the questions after
removing stop words in Template-based PoT and GPT-based PoT in
Figure 11. It is observed that GPT-PoT coversmore diverse questions

https://doi.org/10.18653/v1/2023.acl-long.714
https://arxiv.org/abs/2310.03744
https://arxiv.org/abs/2305.07895
https://arxiv.org/abs/2305.14761
https://arxiv.org/abs/2403.09028
https://arxiv.org/abs/2401.02384
https://arxiv.org/abs/2010.09142
https://arxiv.org/abs/2010.09142
https://platform.openai.com/docs/models/gpt-3-5-turbo
https://platform.openai.com/docs/models/gpt-3-5-turbo
https://arxiv.org/abs/2303.08774
https://doi.org/10.18653/v1/2023.acl-long.401
https://doi.org/10.18653/v1/2023.acl-long.401
https://doi.org/10.1109/MCSE.2011.37
https://arxiv.org/abs/2308.15126
https://arxiv.org/abs/2402.12185
https://arxiv.org/abs/2304.14178
https://arxiv.org/abs/2311.04257
https://arxiv.org/abs/2402.14289

TinyChart: Efficient Chart Understanding with
Visual Token Merging and Program-of-Thoughts Learning Preprint.

Instructions to gpt-3.5-turbo

Please generate a list of assignment statements in Python to answer the question of a chart. You can only use the following
operators in each statement: <function_list>a. Do not use any circulation or if-branch. Do not include any unnecessary statement
that is not used. The chart is presented by a data table with color information. Note that the colors are estimated and may not match
the description in the question. You can choose the most possible data if necessary. You must provide a one-line comment before
each assignment statement. The last variable must be Answer. Here are some examples:
Example Input #1:
Chart title: Long-term price index in food commodities, 1850-2015, World, 1934
Chart type: Horizontal bar chart
Chart table:
Food	Long-term price index in food commodities, 1850-2015, World, 1934
:—————————————	————:
Lamb (color: steelblue)	103.7
Corn (color: sienna)	103.13
Barley (color: mediumvioletred)	102.46
Rye (color: tomato)	87.37
Beef (color: sienna)	85.27
Wheat (color: slategray)	83.73
Question: What is the sum of the price index that is greater than 100?
Answer: 309.29
Example Output #1:
Get the values of all ’Long-term price index of each food’, set to Y
Y=[103.7, 103.13, 102.46, 87.37, 85.27, 83.73]
Check whether Y is greater than 100, set to Greater
Greater=np.greater(Y,100)
Find the indices where Greater is True, set to Indices
Indices=np.where(Greater)[0]
Get the values at position Indices, set to Y
Y=np.array(Y)[Indices]
Calculate the sum of all elements in Y, set to Answer
Answer=np.sum(Y)
Input: <target_input>
Output:

afunction_list=[’len’, ’all’, ’any’, ’index’, ’np.sort’, ’np.abs’, ’np.add’, ’np.argmax’, ’np.argmin’, ’np.diff’, ’np.divide’,’np.greater’, ’np.greater_equal’, ’np.less’, ’np.max’,
’np.mean’, ’np.median’, ’np.min’, ’np.subtract’, ’np.sum’, ’np.count_nonzero’, ’np.where’, ’+’, ’-’, ’*’, ’/’, ’>’, ’<’, ’=’]

Figure 10: Instructions used for generating GPT-based PoT.
2024/4/16 16:31 sunburst-simple (1).html

file:///Users/zhangliang/Downloads/sunburst-simple (1).html 1/1

What

d
iff
e
re
n
c
e

ave
rag
e

sum

ratio
total

percentage

m
edian
valueis

highest

Is
s
u
m

va
lu
e

di
ff
er
en
ce

n
u
m
b
e
r

am
ou
nt

In

wh
ich

how

year
what How

many

m
uch

A
c
ro
s
s

A
c
ro
s
s

all

W
h
ic
h

C
h
a
ra
c
te
ris
tic

D
o
e
s

D
o
e
s

v
a
lu
e

W
h
o

(a) Template PoT.

2024/4/16 16:39 gpt_sun.html

file:///Users/zhangliang/Downloads/gpt_sun.html 1/1

What

p
e
rc
e
n
ta
g
e

a
ve
ra
g
e

va
lu
e

to
ta
l

is

diff
er
en
ce

nu
mb
er

est
ima
ted

popu
lation

most

highest
country
global
year
sumrevenueunemployment

projectedmarketyouthsalesgrossfertility
second
sharerationetturnover
lowest
G
D
P

crude
retail
leading

Ho
w

m
an
y

much

W
hich

country

year

region

In

w
hat

w
hich

W
h
o

W
h
o

ca
re
e
r

h
a
s

W
h
e
n

d
id

IsIs

su
m

W
h
a
tfa
n
t

m
o
rta
lity

B
y
B
y

W
h
a
tfl
a
tio
n

ra
te

D
o
e
s

w
h
a
t

A
s
A
s
T
h
e

(b) GPT PoT.

Figure 11: First 2-gram of the questions in ChartQA-PoT after
removing stop words.

for ‘what’ type questions, and questions in Template-based PoT are
more evenly distributed across all question types.

A.2 Instructions for GPT-based PoT
Figure 10 shows the instructions for constructing GPT-based PoT
answers. Note that we prompt gpt-3.5-turbo to provide Python
code consisting of assignment statements and avoid using loops or
judgment statements. This can simplify the program and reduce
syntax errors. We also provide meta information including the chart
title, type, and colors to gpt-3.5-turbo since some questions rely
on this information to answer.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Chart Understanding
	2.2 Multimodal Large Language Model

	3 TinyChart
	3.1 Model Architecture
	3.2 Program-of-Thoughts Learning
	3.3 Multitask Learning

	4 Experiment
	4.1 Implementation Details
	4.2 Evaluation Benchmarks
	4.3 Main Results
	4.4 Ablation Studies
	4.5 Visualization
	4.6 Case study

	5 Conclusion
	References
	A ChartQA-PoT Details
	A.1 Dataset Statistic
	A.2 Instructions for GPT-based PoT

