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Abstract 

 

Estimation of the optical properties of scattering media such as tissue is important in diagnostics as well 

as in the development of techniques to image deeper. As light penetrates the sample scattering events 

occur that alter the propagation direction of the photons in a random manner leading degradation of 

image quality. The distribution of the scattered light does, however, give a measure of the optical 

properties such as the reduced scattering coefficient and the absorption coefficient. Unfortunately, 

inverting scattering patterns to recover the optical properties is not simple, especially in the regime where 

the light is partially randomized. Machine learning has been proposed by several authors as a means of 

recovering these properties from either the back scattered or the transmitted light. In the present paper, 

we train a general purpose convolutional neural network RESNET 50 with simulated data based on 

Monte Carlo simulations. We show that compared with previous work our approach gives comparable 

or better reconstruction accuracy with training on a much smaller dataset. Moreover, by training on 

multiple parameters such as the intensity distribution at multiple planes or the exit angle and spatial 

distribution one achieves improved performance compared to training on a single input such as the 

intensity distribution captured at the sample surface. While our approach gives good parameter 

reconstruction, we identify factors that limit the accuracy of the recovered properties, particularly the 

absorption coefficient. In the light of these limitations, we suggest how the present approach may be 

enhanced for even better performance. 

 

Introduction 

 

The optical properties of biological tissues play a vital role in medical and biological diagnostic and 

therapeutic applications. When tissue interacts with light it is scattered or randomized as it propagates 

and, furthermore, when absorption of the light takes place the incoming photons are annihilated. 

Knowledge of the detailed properties of light scattering is very important if one wants to ‘unscramble’ 

the light; that is to restore, for instance, a sharp focus within the tissue. The effect of absorption is, 

naturally, not reversible, but, nevertheless, knowledge of its value is important to understand limitations 

on, for instance, penetration depth. While one may want to correct for the effect of tissue scattering there 

are cases where one simply wants to be able to characterize the tissue properties so that, one can make a 

distinction between different tissue types and pathologies [1]. From the point of view of fundamental 

optical physics measuring the scattering properties is important such as in the determination of the range 

of the angle memory effect [2] and the regions of validity of the diffusion approximation [3]. 

Unfortunately, a recent review by our group looking at the optical properties of skin has shown that the 

literature is inconsistent between different authors and in many cases the conditions under which the data 
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was obtained is often ill-defined [4].  

 

Tissue can be characterized by three key optical properties the scattering coefficient, 𝜇𝑠 , absorption 

coefficient, 𝜇𝑎 , and anisotropy factor, 𝑔 . As a light beam propagates through tissue, the scattering 

coefficient describes the number of scattering events that occur per unit distance, a scattering event is 

when the propagation direction of a photon is altered due to the presence of a scattering center. Different 

scattering events have different effects and this may be represented by the anisotropy coefficient which 

is defined as the mean of the cosine of the angular deviation caused by the scattering. A value of 𝑔 = 0 

implies isotropic scattering, whereas values close to 1 indicates that the scattering is mainly in the forward 

direction, for tissue this value is typically between 0.8 and 0.99 [4]. Numbers close to 1 mean that on 

average each scattering event introduces only a small deviation in the direction of the photons.  When 

many random scattering events occur the direction of the light becomes randomized, when this occurs 

the values of 𝜇𝑠 and 𝑔 cannot be separated and are described with a single parameter, the reduced 

scattering coefficient, 𝜇𝑠
′ = 𝜇𝑠(1 − 𝑔). In essence, this is saying that when the details of the scattering 

events are lost due to randomization the effective of scattering can be bundled into a single parameter 

which is the product of the number of scattering events and their strength, 1 − 𝑔 .  The absorption 

coefficient gives the absorption per unit distance and the number of photons decays as exp −𝜇𝑎𝑥  where 

𝑥 is the propagation distance. 

 

There are several methods to measure the optical properties of a tissue. For ex-vivo measurement, the 

Integrating Sphere Spectrophotometry method [5] is relatively mature and quite widely deployed. This 

method measures the reflected light, transmitted light and unscattered light and the result is used to 

calculate the tissue optical properties. In ex-vivo measurement, however, the impact of water loss can be 

significant so these measurements do not always translate well into an in-vivo setting. For in-vivo 

measurement, there are methods like Diffuse Reflectance Spectroscopy (DRS) [6] and Spatial Frequency 

Domain Imaging (SFDI) [7]. DRS determines the optical properties of opaque samples by measuring the 

reflected light over a range of wavelengths. The light is transmitted through an optical fiber to illuminate 

the sample. The reflected light is captured by a probe and passed into a spectrometer. Monte Carlo 

simulations are often used for data interpretation. SFDI projects multiple patterns with well-defined 

spatial frequencies onto the sample, a camera then captures the reflected light normal to the sample. The 

amplitude and phase information of the intensity modulation of the reflected light is extracted from the 

collected images, and the optical properties of the sample are calculated through light transmission 

models such as diffusion approximation or Monte Carlo simulation. Although DRS and SFDI are well 

accepted methods for measuring optical properties, both methods require specialist equipment and 

careful calibration and the recovered values are strongly dependent on the validity of the optical model 

and are sensitive to ambient light [8]. Moreover, in most cases these methods do not reveal the anisotropy 

factor, g. 

 

There have been several works aimed at improving the extraction of tissue optical properties using 

machine learning, often in combination with Monte Carlo simulations. One of the very earliest works 

reporting the use of neural networks to recover optical properties was presented in 1992 where the errors 

in the recovered properties were of the order of 45% which is perhaps hardly surprising since as a single 

hidden layer with 4 neurons was used [9]. Another early paper using a single layer neural network was 

published in 1994 [10], a principal aim of this paper was to use a network to speed up the very slow 
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simulations available at the time. The network was trained on values from diffusion theory and most of 

the optical properties were recovered to better than 10% error. The limitation of the training in the 

diffusion regime meant that thin samples less than the mean free path could not be recovered and the 

values of anisotropy factor and scattering coefficient were always combined into the reduced scattering 

coefficient. Generally, more recent papers use Monte Carlo simulation which provides a statistical 

solution to simulate light propagation based on the tissue properties such as thickness, refractive index, 

scattering and absorption coefficient, and anisotropy, to provide the ground truth needed for training [11]. 

The approach is to use Monte Carlo simulations to generate large amounts of data to train neural networks. 

The trained neural network can then predict the optical properties of biological tissues by analyzing the 

distribution of the transmission and/or backscattered photons, for example, from the Monte Carlo 

simulations. As early as 2009 Warncke et al. [12] recognized that the limitations of the diffusion 

approximation could be potentially addressed by using neural networks to improve data recovery from 

scattering media. These authors used a fiber optic delivery and detection system to generate the results 

and used the outputs to recover the parameters. Each simulation contained 1 million simulated photons 

and 3000 data sets were used. A simple network with no more than three hidden layers was used, 

presumably due to the limitations in machine learning at the time. The approach was used to predict 

𝜇𝑎 with a 28% RMSE and 𝜇𝑠
′  with a 9% RMSE. In 2011, Zhang et al., [13] trained a Genetic Algorithm 

Optimized Back Propagation (GA-BP) neural network and achieved accuracy for the parameters of 

around 2%. In 2013 Jager et al. processed Monte Carlo simulation results, training different networks 

for different regimes, with an accuracy of 6% for the reduced scattering coefficient and 3% for absorption 

[14]. In 2021, Hokr and Bixler [11] trained a fully connected neural network using around 300,000 Monte 

Carlo simulation results for each data set, with 2.5 x105 photons simulated in each data set. The neural 

network has one input layer with 21 neurons, three hidden layers with 150 neurons and one output layer 

with three neurons. The input of the neural network was formatted into 21 input moments. The relative 

errors were about 15% for 𝜇𝑎 and 30% for 𝜇𝑠. It should be pointed out that the range of the input 

parameters used was exceptionally wide. Chang and Pramanik [15] combined physical insight into 

machine learning and demonstrated that this gave an improvement in the prediction accuracy achieved. 

  

In the present work we use Monte Carlo simulations to provide the ground truth and try to incorporate 

data that encompasses some of the essential physics of the propagation process. Moreover, since our 

input data is in the form of two dimensional maps we utilize a more advanced deep learning network 

RESNET-50 [16] to recover the data. Compared to [11] we apply the image data at an additional plane 

as well as a network more attuned to extraction of parameters from image data. With this additional plane 

we aim to supply the network with information on the exit angle of the photon and not simply exit 

position. 

 

The network was trained with 37500 data sets randomly sampled over the range of reduced scattering 

coefficients and absorption coefficients. 7500 samples were used for both validation and testing. The 

range of values chosen to recover the parameters was taken from values likely to be seen with real tissue 

samples [4], [17]. The range of 𝜇𝑠
′  was between 0.5 and 2.8 mm-1  𝜇𝑎 values were between 0.01 and 

1.65 mm-1 g was between 0.8 and 0.99. The sample thickness used in the simulations was 0.118 mm 

which meant that for some of the reduced scattering coefficients the thickness was within the transfer 

mean free path and some were outside. This is discussed in more detail in the Summary and Conclusions. 
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A very significant aspect of our work is that each dataset only contained 40000 photons compared to 

250000 in [11] and 106 in [15], in addition, we used far fewer datasets. We believe that the RESNET 

architecture is particularly well suited to finding patterns in the data and ignoring noise, so we can extract 

more useful information for each simulated photon. 

 

In previous works authors used data from a single plane conjugate with the sample surface-possibly after 

conversion of the data to moments [11], however, when considering the physics of the scattering process 

it is intuitively likely that the both the angle of the emerging photons as well as the intensity distribution 

give important information about the scattering properties. To this end we trained the network on different 

inputs, selected to consider exit angle and position separately and also combined, and assessed their 

relative performance.  

 

Figure 1 (a) shows a planar view of the random walk of a photon passing through the scattering medium. The path 

is shown in solid red in the medium and dashed outside where it does not deviate (b) coordinate system defining 

angles that photon emerges. 

Figure 1 shows one particular example of the path of a single photon passing through the scattering 

medium before emerging. The scattering, of course, occurs in all three dimensions, so the expectation of 

the intensity distribution emerging from the sample is distributed evenly around the azimuth, 𝜙. The 

angle of emergence is shown by the dashed red line in Figure 1b and 𝜙 is the angle of the Ozd plane 

(azimuth) to the x-axis and 𝜃 is the angle to the z-axis. 

 

To investigate the effectiveness of different metrics to recover the scattering properties we tried different 

combinations of input parameters. These are given below: 

 

1. Output angles represented as a two dimensional density map plotted as 𝜙 and 𝜃, this is ‘Angle’ 

in the tables.  

2. Two dimensional Intensity density at plane 1 of Figure 1a. (Surface) 

3. Two dimensional map with intensity represented as a single radial density and a combined angle 

parameter that combines both 𝜙 and 𝜃, namely sin 𝜙 cos 𝜃. (Angle+Position in the tables) 

4. Two dimensional intensity densities at two planes 1 and 2 separated by 5 mm. (2D_5 in the 

tables) 
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In practice, measuring the angle is not so straightforward without the use of some wavefront sensor such 

a Shack Hartmann [18], which generally has limited spatial resolution. For this reason we used two inputs 

at planes 1 and 2 (Figure 1a) as these are practically much easier to measure and the change in intensity 

distribution between these two planes would encompass exit angle information. The position of plane 2 

was varied and while the results for the scattering coefficients were not very sensitive to the exact 

separation a value of 5mm between plane 1 and plane 2 gave good results for the reduced scattering 

parameter (we discuss whether it optimum for absorption later), hence the notation 2D_5.  

 

In order to make the predictions of the optical parameters we trained three different types of networks (1) 

to estimate both absorption and scattering (‘one model two predictions’), (2) to estimate scattering only 

and (3) to estimate absorption only. The final two are ‘one model one prediction’. Clearly the loss 

function for each of the cases are slightly different. 

 

For two parameters 
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For scattering only 
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For absorption only 
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1

𝑛
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Where 𝑛 is the batch size (16 in this case) and the superscripts p and GT refer to the predicted and 

groundtruth values respectively. s and a refer to the reduced scattering and absorption coefficients 

respectively. The i are the individual values in the batch. 

 

One Model, Two Predictions 

Angle 4.007% 4.792% 4.648% 0.586% 

Surface 3.424% 3.793% 3.568% 0.455% 

Angle + Position 2.305% 2.598% 2.428% 0.299% 

2D_5 2.253% 2.976% 2.875% 0.617% 

One Model, One Prediction 

Angle 3.551% 4.753% 4.760% 1.043% 

Surface 3.229% 3.604% 3.426% 0.364% 

Angle + Position 2.687% 3.704% 3.118% 1.699% 

2D_5 2.142% 2.279% 2.259% 0.124% 

Table 1 shows the estimation errors (calculated as the mean modulus of the relative error) for the reduced 

scattering coefficient for our networks with different inputs. 
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One Model, Two Predictions 

Angle 9.309% 12.298% 12.771% 1.349% 

Surface 5.693% 7.234% 6.930% 1.623% 

Angle + Position 3.431% 4.730% 4.690% 1.044% 

2D_5 6.884% 9.646% 9.894% 2.094% 

One Model, One Prediction 

Angle 11.164% 11.980% 11.936% 0.588% 

Surface 5.114% 6.141% 6.135% 0.510% 

Angle + Position 3.658% 4.864% 4.544% 0.930% 

2D_5 8.299% 9.686% 9.711% 1.089% 

Table 2 shows the estimation absorption coefficient (calculated as the mean modulus of the relative error) 

for our networks with different inputs. 

 

In order to validate the capacity of the network for each of the 4 types of input parameters we trained 8 

networks for each set of input parameters and evaluated their performance on the test set. The reason to 

perform these tests was primarily to ensure that the training was consistent, which appears to be the case 

since the standard deviation of the errors between networks is much smaller than the mean value. 

Moreover, we trained networks to recover both the reduced scattering and absorption separately (2 and 

3 above) and simultaneously (1). There is no conclusive evidence that the network performs better when 

it only has a single parameter to retrieve. 

 

It is clear that measuring the angle alone gives the poorest reconstruction of the reduced scattering and 

absorption, whereas the angle and position gives the best result for both parameters. As explained earlier 

our rationale for using the two plane surface measurement is that it contains similar information to ‘angle 

and position’; this seems to be borne out for the reduced scattering measurement where it performs 

comparably to ‘angle and position’. For absorption, the ‘angle and position’ outperforms all 

measurements but the two plane measurement performs worse than a single plane for absorption. This 

result was a little surprising and is the subject of investigation. We believe that one of the most important 

parameters for the network is the number of photons emerging and the field of view of the second plane 

is such that many of the emerging photons are not collected (over a large range of simulated values we 

can lose as many >5% photons propagating from plane 1 to plane 2). We are examining the effect of 

reducing the separation between planes 1 and 2 to see if this improves the situation. 

 

Summary and conclusions 

  

The present paper presents some preliminary results showing the utility of a general purpose network 

RESNET50 for the extraction of optical parameters. The network recovers results with comparable or 

better accuracy relative to previous bespoke networks and recovers the results with a much smaller 

number of input photons in the training set compared to previous works. In ongoing work we will 
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examine how changing the photon numbers impacts the accuracy of the reconstruction.  

 

In addition, we explored the benefits of using different input parameters in the training set. In general, 

using both angle and radial exit position gave the best results. We used two planes of intensity distribution 

as a proxy for both angle and intensity distribution and showed that combining two planes gave 

considerably better results for reconstruction of the reduced scattering parameter. The use of the second 

plane, if anything, degraded the accuracy of the estimate of the absorption coefficient. We believe this is 

because the second plane has not collected all the photons emerging at plane 1, we will report on this 

effect later publications. 

 

We employed different networks to extract absorption and scattering separately and also both together. 

It appears that there is no obvious degradation in performance when the model is asked to extract both 

parameters simultaneously. This is not unexpected as the complexity of the RESNET 50 network is such 

that we would expect that it could easily configure itself to complete both tasks. 

 

In the present work, we have tried to extract the reduced scattering coefficient and the absorption 

coefficient, in future work we see how well the scattering coefficient and the anisotropy factor may be 

extracted separately. We believe this study will give more insight into the process by which the photons 

are randomized. This is the reason the sample thickness was chosen so that some of the cases were within 

the transport mean free path (TMFP) and others were well outside this value. The TMFP gives a measure 

of the randomization of the outgoing photons, within the TMFP there are many unscattered photons 

emerging, whereas the number diminishes exponentially so that at 10 TMFPs the number of photons is 

less than 1 in 104. Well beyond TMFP, we do not expect the scattering and the anisotropy to be separable. 

It is possible that performance can be optimized by two networks, i) tuned to operate in the small 

scattering regime where 𝜇𝑠
′  may not fully describe the scattering process and ii) operating in the large 

scattering regime where scattering and anisotropy factor are not separable. 

 

In summary, the RESNET architecture provides a convenient and powerful means to extract optical 

parameters and compared to previous literature we can extract parameters with a relatively small input 

training set, and by incorporating angle and position information the accuracy of predicting the scattering 

parameters is improved.  
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