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ABSTRACT
Automating hardware (HW) security vulnerability detection and
mitigation during the design phase is imperative for two reasons: (i)
It must be before chip fabrication, as post-fabrication fixes can be
costly or even impractical; (ii) The size and complexity of modern
HW raise concerns about unknown vulnerabilities compromising
CIA triad. While Large Language Models (LLMs) can revolutionize
both HW design and testing processes, within the semiconductor
context, LLMs can be harnessed to automatically rectify security-
relevant vulnerabilities inherent in HW designs. This study ex-
plores the seeds of LLM integration in register transfer level (RTL)
designs, focusing on their capacity for autonomously resolving
security-related vulnerabilities. The analysis involves comparing
methodologies, assessing scalability, interpretability, and identi-
fying future research directions. Potential areas for exploration
include developing specialized LLM architectures for HW secu-
rity tasks and enhancing model performance with domain-specific
knowledge, leading to reliable automated security measurement
and risk mitigation associated with HW vulnerabilities.
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1 INTRODUCTION
In today’s semiconductor technology landscape, As system-on-chip
(SoC) designs integrate more and more intellectual property (IP)
cores, each with unique functionality and security challenges, each
from various vendors, each with ever-increasing complexity, we
witness a growing challenge in detecting and fixing vulnerabilities.
Given the pivotal role of SoCs, while substantial efforts have been
invested in software (SW) testing and debugging, SoC (HW-based)
testing, validation, and verification remain less mature [30]. The
problem worsens while bugs are detected at lower levels of abstrac-
tion, which makes respins extremely difficult (and even impossible,
e.g., post-silicon) [34]. Moreover, existing solutions, from simula-
tion to formal verification, usually require expertise. Such solutions
also suffer from scalability issues, unable to cope with the grow-
ing size and complexity of SoCs [2]. Furthermore, these solutions
cannot address the majority of SoCs’ vulnerabilities due to rapidly
evolving threats, such as zero-day attacks.

With the rapid evolution of LLMs, their capabilities have ex-
panded into the domain of SW code generation with remarkable
success, e.g., OpenAI’s Codex [36]. Moreover, the scope of LLMs
extends to SW code testing and verification while outperforming
techniques like fuzzing [32]. While significant progress has been
achieved in SW through LLMs, studies at the HW/SoC level, par-
ticularly at RTL, have been dispersed. Many studies have initiated

the LLMs’ applicability at the HW/SoC level by raising questions
like whether "LLM can generate HDL" or "LLM can validate HW
designs". Just like in SW, LLMs have the potential to be utilized for
both HW design, testing and validation (see Fig. 1). These studies
show harnessing LLMs’ capability to analyze, comprehend, and
generate/validate complex code structures, might make them a
right target vs. existing formal tools to identify potential security
vulnerabilities within RTL codes [3, 37]. However, ensuring the
integrity and security of HW designs, coupled with the potential
for unknown vulnerabilities, presents broader challenges.

This survey aims to offer a useful and comprehensive snapshot
of rapidly growing use of LLMs in HW/SoC designs, particularly
for security. We explore advancements, analyzing the pros and cons
of each method. By examining current approaches, this work high-
lights the innovative application of LLMs to automate the detection
and resolution of security vulnerabilities in HW designs. Also, we
investigate future research directions, emphasizing the need for
specialized LLM architectures and domain-specific knowledge in-
tegration. Our goal is to outline a roadmap for harnessing the full
potential of LLMs in addressing HW security challenges, setting
the stage for more robust and secure HW systems.

2 LLMS FOR SW: ENGINEERING AND TESTING
Since the 1950s, many research efforts have been undertaken to de-
velop highly efficient automated code generation tools [38]. These
efforts have spanned from traditional program synthesizers [38]1,
either deductive or inductive, to current neural-based models, no-
tably codebase-reliant generative models [31].

With recent outrageous advancements in LLMs,massive research
has focused on applying LLMs for independent SW code generation,
leading to widely-used platforms like Codex and CodeGen [4]. The
foundation of these models lies in autonomously predicting the
subsequent token by considering the preceding context, typically
comprising function signatures and docstrings that describe the
intended functionality of the program, translating human-written
instructions into precise code snippets or entire programs [4].

While this code generation relies on natural language processing
(NLP), unlike natural language that is typically parsed as a sequen-
tial array of words or tokens, code generation is scrutinized based
on its syntactic and semantic structure, often depicted using tree
structures, e.g., abstract syntax trees (AST) [39]. Also, programming
languages have a limited set of keywords, symbols, and rules, unlike
the broad and nuanced vocabulary of natural languages.

1Synthesizers aim to automatically generate programs (SW codes), based on a space
search over a variety of constraints relevant to domains known as Domain Specific
Languages (DSLs). These techniques are mostly limited to pre-defined DSLs and thus
suffer scalability, being general-purpose, and adaptability issues [1].
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Figure 1: The Usage of LLMs for HDL (RTL) Generation/Validation.

Given such differences, the primary concern for LLM-generated
code is (i) correctness (testing and verification process), and (ii)
codebase data hungriness [39]. In terms of correctness, testing and
validation from the viewpoint of LLMs require well-defined met-
rics, where traditional metrics, e.g., BLEU that widely used in NLP
assessments [39], fail due to their focus on linguistic similarity. For
example, CodeBLEU that evaluates the quality of code produced
by LLMs, or Pass@k that quantitatively measures the functional
accuracy of code generation models, are example of such new met-
rics [36]. Regarding codebase data for code generation, substantial
codebase data2 is required for enhanced training and/or fine-tuning
to improve the efficacy of LLMs for code ganeration [4, 36].

3 LLMS FOR HW: DESIGN AND TESTING
Similar to SW engineering and testing, leveraging LLMs can signif-
icantly optimize and enhance circuit design processes, particularly
within Electronic Design Automation (EDA) frameworks. LLMs can
be used at high level abstraction, e.g., RTLs, to (i) reduce manual
efforts for implementation3, (ii) address the challenge of lacking
HDL codebase4, (iii) expedite time-to-market (TTM) in the com-
petitive chip design process, and (iv) enable a more efficient and
reliable system (by reducing human-induced faults) [40].

The current LLM-based methodologies in HW can be classified
into two primary categories: (1) Development of automated AI
agents aimed at streamlining EDA workflows (e.g., ASIC flow); (2)
Derivation of SW code generation for RTL implementation. Re-
garding the former category, LLMs assist in various tasks such as
script generation, architecture specification, and interpretation of
compilation reports, thereby minimizing the workload of the design
team. Within the latter category, solutions predominantly utilize
LLMs in two manners: (i) refinement of design prompts, which en-
tails the creation (engineering) of more precise prompts to guide
LLMs towards RTL generation with increased effectiveness, and (ii)
RTL-based tuning, which involves directly tuning LLMs through

2The data must be not only vast but also diverse, relevant, and of high integrity as the
superioir quality codebase data enhances model performance significantly [32].
3It can potentially serve as an alternative to high level synthesis (HLS), thereby enabling
designers with limited HDL expertise to swiftly generate HW designs [40].
4Lack of HDL codebase is always a substantial barrier for AI-driven HW solutions,
consequently enhancing the efficiency of the training phase [33].

training on RTL code examples. A comparison of all existing LLM-
based approaches in these two categories is shown in Table 1.

3.1 LLM Agent for EDA Automation
Several studies have explored the potential of LLM in automating
the ASIC design/implementation process [8, 14, 27, 29]. ChatEDA
and ChipNeMo are two examples of task planning and execution
agents that interpret natural language commands from the de-
sign team. ChipNeMo [29] implements a series of domain-specific
training strategies for chip design tasks. It involves the deploy-
ment of bespoke tokenizers, domain-adaptive continued pretrain-
ing, and supervised fine-tuning guided by domain-specific instruc-
tions. ChatEDA [27] aims to facilitate optimal interaction with the
EDA tools by comprehending instructions in natural language for
generating and delivering executable programs.

Using such techniques, LLM agents can offer automated ASIC
flow, from RTL generation to GDSII creation, by invoking neces-
sary SW tools and utilizing required scripts/files. However, while
promising, these techniques necessitate thorough analysis to truly
enhance automation in EDA tools for the following reasons:
(1) Expert-Oriented Training and Fine-Tuning: Constructing such
frameworks heavily relies on expert efforts for training or fine-
tuning them to accommodate specific ASIC flows. Given the vari-
ety of technologies with their respective documentation, syntaxes,
flows, and scripting methods, the pre-trained LLM may not offer a
universally applicable model for all environments.
(2) Failure in Handling Unforeseen Incidents: Despite extensive fine-
tuning, the LLM-based agent may inaccurately extract information
from reports/specs or generate incorrect scripts/configs when con-
fronted with new incidents in the flows. Technology advancements,
EDA tools updates, etc., may worsen this issue, as the LLM agent
may fail to provide the desired output under evolving conditions.
(3) Dependence on Technology: To clarify this, we raise a question!
How similar is the EDA flow (i) from one design to another design,
(ii) from one technology to another technology, (iii) from one ven-
dor to another vendor? Now, the question becomes how deep is
LLM fine-tuned based on these designs, technologies, and vendors?
While chatbots may offer basic assistance, the prospect of achieving
comprehensive automation seems to remain elusive.

3.2 LLM for RTL Generation and Refinement
The main LLM-based RTL-oriented research focuses on the gen-
eration and refinement of RTL, primarily transitioning from spec-
ification to RTL design (+optimization). Initial efforts emphasize
prompt engineering, crucial to successful RTL generation while
relying on the existing LLMs [8, 10, 25]. Other methods, e.g., Veri-
gen and VerilogEval, adapt open-source LLMs like CodeGen [4],
followed by fine tuning on RTL, to produce more optimized HDL
modules [13, 41]. Additionally, studies such as ChipGPT and Au-
toChip explore use of feedbackmechanisms to enhanceHDL quality,
addressing aspects like compilation errors and design optimization
(PPA optimization) [10, 20]. While these methods often rely on
static analysis, DeLorenzo et al. Introduce optimization techniques
like Monte Carlo tree search (MCTS) to fine-tune LLM tokens even
further for more tuned optimization at the backend of LLMs [12].
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Table 1: A Top Comparison of LLM-based HW RTL Generation and EDA Tools.
Study Target LLM Engine Input Output Comment (—Shortcomings—)

Chang et al. [10] RTL Generation + Refine-
ment

GPT-3.5 Design Specification Prompts
+ Human Feedback for Correc-
tions

RTL Module - Static PPA analysis is post-LLM with no LLM-based
improvement.
- Human feedback is needed for manual correction per
design.

Thakur et al.
[20]

RTL Generation
w/ guaranteed Compilation

GPT-4, Llama2, GPT-3.5T,
Claude 2

Design prompt + Com-
pile/Synthesis Report

Compiled and Tested RTL Design - Feedback addresses compilation/simulation errors but
may alter function priority, leading to unintended func-
tions.
- No Feedback for PPA Efficiency Matter

He et al. [27] Automatic EDA Flow
Scripting and Execution
Calls

Llama2-70B Natural Language Instructions
+ RTL Design

EDA Tool Commands & Reports +
Scripts + Synthesized Design + Lay-
out (GDSII)

- It is either design- or technology-Dependent.
- Cannot be easily design/tool-agnostic.

Li et al. [14] Architecture Specifications
Generation + Review

GPT-4 Architecture specifications +
RTL Design

Hierarchical Reviewed Architecture
Specifications

- Specifications are limited to the existing technologies.
- It is mostly processor-based instructions. Not for generic
HW.

Lu et al. [25] RTL Generation GPT-3.5, GPT-4, VeriGen,
StarCoder

Natural language instructions RTL Design - WIth no feedback, success rate is low for functional
correctness.
- The reference designs are very limited and relatively
small.

Liu et al. [18] RTL Generation RTLCoder Natural language instructions RTL Design - Diversity rate is low in the training dataset.
- The functional correctness of training dataset is not
ensured, leading to lower functional coverage in the
generated outputs.

Thakur et al.
[41]

Completing Partial RTLDe-
sign

MegatronLM-355M, Code-
Gen, code-davinci-002, and
J1-Large-7B

Partial RTL Design + Custom
problem set with testbenches

RTL Design - Lack of Organized Dataset.
- RTLLM shows the performance does not surpass exist-
ing commercial models.
- Completion necessarily does not provide correct func-
tionalities.

Cheng et al. [11] RTL Generation + Repair +
EDA Script Generation

Llama2-7B, Llama2-13B Natural language descriptions
+ Verilog files + EDA scripts

Corrected Verilog code + Verilog code
from descriptions + EDA scripts

- For refinement, it is for syntactic errors (compilation
issues).

DeLo et al. [12] RTL Generation VeriGen-2B Natural language instruction +
RTL modules description

Compiled, Tested, and PPA Improved
RTL Design

- Tested on Small Toy Circuits, e.g., adders and MAC
units.
- Stochastic behavior of MCTS. Less Improvement in
More Iterations.

Li et al. [42] RTL Synthesis (Mapping) Circuit Transformer Gate-Level Design (AIG) Design Model (Truth Table) + Synthe-
sized AIG

- Low Accuracy for Larger Circuits.
- Low Performance with no MCTS (Low Scalability).

More recent advancements have shifted the focus from fine tun-
ing and prompt engineering in existing LLMs to the development
of dedicated circuit transformers, e.g., Li et al. Introduce "Circuit
Transformer" with 88M parameters and integrated MCTS for opti-
mization, leading to a fully open-source independent LLMs for RTL
[42]. Similarly, RTLCoder proposes an automated data generation
flow utilizing a model with 7B parameters, producing a sizable la-
beled dataset for RTL generation [18]. These endeavors have led
to the emergence of large circuit models (LCM), enhancing the
expression of circuit data’s semantics and structures, thus creating
more robust, efficient, and innovative design approaches.

Despite its promise, more research is needed as follows:
(1) Universality Issues: LLM-based RTL generation faces limitations
due to scarce codebase knowledge available for model fine-tuning
and training per application [18]. As an example, developing se-
curity enclaves or fully-debugged Verilog modules is incredibly
challenging as there are not many training datasets available for it.
(2) Verification (Functional) Issues: Existing studies highlight the
complex nature of (functional) verification tasks, further magnified
by the limited availability of trained models for test bench gen-
eration and functional simulation [13]. The complexity of circuit
designs, which involve both functional and structural attributes,
worsens the challenge, as even small changes to the structure (a
code line) can have significant effects on functionality, underscoring
the complexity of testbench generation and simulation of circuits.
(3) Scalability Issues: Scalability is crucial for RTL-based LLMs in
addressing complex circuit designs [25]. Efforts to enhance compu-
tational efficiency and model architecture sophistication are essen-
tial to accommodate larger designs and meet evolving electronic

device demands. Further research is necessary to overcome scala-
bility challenges and maximize LLM potential in RTL generation.

4 LLM FOR HW: SECURITY (VERIFICATION)
Given the paramount significance of security of HW designs in
modern SoCs, and in light of the earlier discussion emphasizing
the importance of verification over LLMs, several studies have
commenced employing LLM for SoC verification (moving towards
bug-free designs, either functional or security-oriented). Similar
to LLM-based RTL design, these approaches fall into two main
categories: (i) refinement of design prompts, where designers guide
LLMs toward generating secure code (i.e. prompt engineering), and
(ii) RTL-based tuning, which is about altering the LLM’s framework
itself to generate output bug-free code. In advancing HW security,
researchers have leveraged LLMs using either pure natural language
prompts (i.e. description of the code) or a blend of natural language
(i.e. comments designed by human experts) and code. The following
describes these two categories in detail and how each category can
enhance verification and security for HW designs.

4.1 Prompt Engineering
Prompt engineering is the practice of designing inputs for LLMs,
to obtain specific, desirable outputs. This technique optimizes the
interaction with LLMs to improve its performance on various tasks,
leveraging strategies like few-shot [21], and chain-of-thought [9]
prompting to guide the model’s responses effectively. A few recent
studies in HW explore the applications of prompt engineering for
enhancing vulnerability detection and repair, as well as design ver-
ification. For example, [3] employs a range of detailed instruction
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prompts for various LLMs, aiming to evaluate the efficacy of each
model in correcting HW vulnerabilities5. Fig. 2 shows an exam-
ple of how prompting GPT-4 with a bug description and repair
instructions alongside the Verilog code enables GPT-4 to address
the vulnerability. Here are two important lessons to be learned:
(1) The example shows that being super specific is crucial in en-
gineering the prompt to ensure the generated code is devoid of
vulnerabilities. Thus, it is vital to have careful crafting by human
experts to generate such prompts. This requirement for human
input could become a tedious process, posing challenges in scaling
and automating the approach for broader applications.
(2) The performance and efficacy of LLMs depends on the infras-
tructure of LLM used. While commercial LLMs like GPT-4 tend to
outperform models trained on coding datasets, including Codegen
and VeriGen, in terms of repair accuracy and efficacy, this advantage
comes at the cost of increased number of parameters.

The importance of precision in prompt generation is also shown
in [15], relying on ChatGPT, revealing the fact that the success rate
can be degraded significantly while the model is more limited6. This
study also demonstrates models misguiding the designers while the
Verilog code of various CWE scenarios as part of instruction can
lead to new form of vulnerabilities from prompts (may not fully
represent the capture of potential vulnerabilities in SoC designs).

To enhance verification capability, some studies focus on the use
of LLMs for verification assertion generation (e.g., SystemVerilog
Assertions (SVAs)). For instance, [16] uses GPT-4 in an iterative
mechanism to refine prompts for GPT-4, enabling it to generate
more accurate and complete SVA properties from RTL code. This
approach coupled with AutoSVA2, which automatically generates
formal verification testbenches, enables LLM-guided formal verifi-
cation towards more automation. However, the major obstacle to
this automation is the reliance of this approach on iterative refine-
ment by an expert, which requires a deep understanding of both
HW verification and prompt engineering.

Similarly, AssertLLM [23] uses a customized GPT-4 Turbo to
generate SVAs (functional verification assertions) from natural lan-
guage design specifications (translating design documents). Al-
though results show high success rate, this model is also heavily
dependent to the quality and completeness of the design documents.
This is while richness of documentation is always a critical issue in
HW design, thus AssertLLM might struggle to generate assertions
that fully capture the intended design behavior.

LLM4DV [28] uses LLMs with prompt templates to automate
the generation of test stimuli for verification. LLM4DV integrates
LLMs with a systematic method that includes a stimulus genera-
tion agent, prompt templates, and four LLM-based improvements,
e.g., summarizing prompts, resetting, etc. Evaluated using three
custom-designed large-scale DUTs, this framework demonstrated
promising results and achieved high coverage rates in simple sce-
narios. However, this approach focuses more on coverage-related
metrics, overlooking security-oriented vulnerabilities.

Similar to these formal-based mechanisms, [37] proposes de-
signing an evaluation framework that includes generating natural

5These prompts must provide a thorough description of the bug, strategies for debug-
ging, and illustrative examples that contrast insecure code with its secure counterpart.
6The number of parameters was restricted to a range of millions instead of billions.

module key_comparator(
    input [7:0] key1,    
    input [7:0] key2,     
    output reg match,     
    output [7:0] diff     
);

wire [7:0] compare_result;
assign compare_result = key1 ^ key2;

always @(compare_result) begin
    if (compare_result == 
8'b00000000)
        match = 1;  
    else
        match = 0;  
end

assign diff = compare_result;

endmodule

Write a hardware module that 
compares bits of two secret keys

module BitByBitComparator 
#(parameter WIDTH = 8) (
    input [WIDTH-1:0] key1,
    input [WIDTH-1:0] key2,
    output reg match
);

initial begin
    match = 1'b1; 
    for (int i = 0; i < WIDTH; i++) 
begin
        if (key1[i] != key2[i]) 
begin
            match = 1'b0; 
            break; 
        end
    end
end
endmodule

Write a hardware module that 
compares two secret codes bit by 
bit.

module user_grant_access(data_out, usr_id, data_in, clk, rst_n);
    output reg [7:0] data_out;
    input wire [2:0] usr_id;
    input wire [7:0] data_in;
    input wire clk, rst_n;
    reg grant_access;

    always @(posedge clk or negedge rst_n) begin
        if (!rst_n) begin
            data_out <= 0;
        end else begin
            grant_access = (usr_id == 3'h4) ? 1'b1 : 1'b0;
            if (grant_access) begin  
                data_out <= data_in;
            end                
        end
    end
endmodule

Based on the provided instruction, correct the security bug in this Verilog 
module.

BUG: Access Control Check Implemented After Asset is Accessed.
Ensure that access is granted before data is accessed.

module user_grant_access(data_out, usr_id, data_in, clk, rst_n);
    output reg [7:0] data_out;
    input wire [2:0] usr_id;
    input wire [7:0] data_in;
    input wire clk, rst_n;
    reg grant_access;

    always @(posedge clk or negedge rst_n) begin
        if (!rst_n) 
            data_out = 0;
        else begin
            grant_access = (usr_id == 3'h4) ? 1'b1 : 1'b0;
            data_out = (grant_access) ? data_in : data_out;
        end
    end
endmodule

Response

Response Response

Prompt Prompt Prompt

Design

LLM

Bug Detector

Bug free 
design

Designer

Bug

Design

LLM

Bug Detector

Bug free 
design
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Figure 2: An Examplary Case in GPT-4 for Security Debugging.

language prompts that mimic code comments in assertion files, us-
ing these prompts to generate SVAs with LLMs, and then assessing
the correctness of these assertions against a benchmark suite of
real-world HW designs and corresponding golden reference asser-
tions. The results demonstrate that LLMs, with varying levels of
detail in the prompts, can generate valid HW security assertions.

More recent use of LLMs for RTL debugging aimed to enhance
automation in the domain. For instance, RTLFixer [26] automati-
cally rectifies syntax errors in Verilog code by leveraging Retrieval-
Augmented Generation (RAG) and the ReAct prompting strategy.
RTLFixer employs a retrieval database filled with expert knowl-
edge of syntax errors. ReAct also introduces an iterative approach
involving reasoning, action, and observation, mimicking experts’
debugging techniques. This combination builds a more effective
system for automating the debugging. However, it still heavily
relies on the comprehensiveness and currentness of the external
knowledge database, which is collected by human experts.

Some LLM-based studies focus on the use of such models at the
SoC level. DIVAS [19] uses LLMs to analyze SoC specifications and
crafts precise queries that encapsulate potential security vulnera-
bilities related to the SoC. These queries are submitted to LLMs,
e.g., ChatGPT and Google’s BARD, and the LLMs map these queries
to relevant CWE vulnerabilities that could compromise the SoC.
Once CWEs have been identified, DIVAS utilizes LLMs to construct
SVAs for each. These SVAs are designed to act as security verifica-
tion mechanisms, ensuring the SoC’s design complies with security
standards and is safeguarded against identified vulnerabilities.

Similarly, [5] explores how GPTs are utilized in SoC level for
security vulnerability insertion, detection, assessment, and mitiga-
tion. This study, focusing on smaller models, e.g., ChatGPT-3.5, and
relying on a sub-set of CWEs, evaluates the modification possibil-
ity over RTL using one- and few-shot learning. By comprehensive
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Table 2: A Top Comparison of LLM-based HW Security Validation Solutions
Study Target LLM Engine # of Bugs Success Rate Source of Bench-

marks
Expert Knowledge Needed? Reference (for Eval) Comment

Nair et al.
[15]

Prompt gen-
eration for
Debugging RTL

ChatGPT 10 100%∗1 CWE (Descrip-
tions)

For the Whole Process Manual expert interven-
tion per debugging

- Cannot be automated.
- Limited evaluation on CWEs

Kande et
al. [37]

Detection (Gener-
ate Assertion)

OpenAI Codex
(code-davinci-
002)

10 ∼25% Hack@DAC21,
OpenTitan

For manually building detailed se-
curity constraints

Golden Assertion - High success rate only when bug and security
policy is known. Otherwise, it is below 10%.
- Only for single endmodule, No Hierarchical and
Recursive SVA.

Ahmad et
al. [3]

Repair
(pre-detected
bugs)

OpenAI Codex
(code-davinci-
001, code-
davinci-002,
code-cushman-
001), CodeGen

15 ∼31% CWE (Bench-
mark),
OpenTitan,
Hack@DAC21

- For training (dataset generation
for assisting repairs)
- For CWEAT static analyze verifi-
cation

Repaired Code (Prompt
Reference)

- Only applicable on pre-observed cases with
high similarity (to be detected by CWEAT)

Saha et al.
[5]

Detection (Gener-
ate Assertion), se-
curity vulnerabil-
ity insertion

GPT 3.5,
GPT 4

N/R∗2 N/R∗2 CWE, Trust-Hub For prompt engineering and evalu-
ation

Manual expert interven-
tion per debugging

- Limited evaluation on CWEs and smart toy
circuits.

Fu et al.
[22]

Detection and/or
Repair

StableLM, Falcon,
LLama2

1 (different
models)

∼35% Open-Source
SoCs and Micro-
processors

For fine-tuning (Open-source code
classifications)

Repaired Code (Pre- and
Post-correction of Git
(CVA6, Opentitan, . . . ))

- Detailed enhancement for training is needed.
Per design, a new training might be required.
- Raw dataset is limited and not design-agnostic).

Meng et al.
[24]

Detection (Gener-
ate Assertion)

HS-BERT 8 326 Bugs from
1723 sentences

RISC-V, Open-
RISC, MIPS,
OpenSPARC,
OpenTitan (docu-
mentation)

For classifying security rules in doc-
uments

Manual expert labling
for security property
validation

- Limited by the quality of the input HW docu-
mentation.
- Limited to the design/verification team knowl-
edge.

Fang et al.
[23]

Detection (Gener-
ate Assertion)

GPT4 Turbo N/A 89% Open-source
CPUs, SoCs,
Xbars, arith-
metic.

For extracting verification-required
information from documents

Golden RTL Implemen-
tation

- Limited by the quality of the input HW docu-
mentation.
- Mostly syntactic and basic functional verifica-
tion.

Paria et al.
[19]

Detection (Gener-
ate Assertion)

ChatGPT,
BART

N/A N/A CEP SoC (MIT-
LL)

For assumptions (CWE-based secu-
rity rules)

N/R∗2 - Expert review for Spec Generation is needed
per design.

Vera et al.
[16]

Detection (Gener-
ate Assertion)

GPT-4 N/R∗2 N/R∗2 RISC-V CVA6 For building rules related to asser-
tions

Previously developed
formal tools (AutoSVA)

- The success rate heavily depends on expert’s
input for prompt engineering.

Zhang et
al. [28]

Test Stimuli Gen-
eration

GPT-3.5-turbo N/A small: ∼98%,
large: ∼65%

Self-designed
RTL Designs

For prompts generation Coverage Monitoring - Not for security purposes. Coverage-based test-
ing.

Tsai et al.
[26]

Syntax Errors Re-
pair

GPT-3.5,
GPT-4

212 98.5% VerilogEval
benchmarks,
RTLLM bench-
marks

For retrieval database (debugging
reference)

VerilogEval,
RTLLM

- Not for security purposes. Only for Syntax er-
rors.

∗1 : It is 100% as all the debugging is done manually. Bug is known, the debugging instruction (flow) is known, and GPT is used for generation. N/R∗2 : Not Reported.

exploration, the study suggests specific prompt guidelines for ef-
fectively using LLMs in SoC security-related tasks.

LLMs possess a dual-use nature; While advancing HW security
initiatives, LLM can also present new threats simultaneously. [7]
delves into the potential of general-purpose models like ChatGPT in
the offensive HW security domain This study involves employing
prompt engineering techniques to guide LLMs in filtering com-
plex HW design databases, correlating system-level concepts with
specific HW modules, identifying security-critical design modules,
and modifying them to introduce HW Trojans. This study initiates
the possibility of using LLMs for building more stealthy and unde-
tectable HW Trojans, reshaping the characteristics of HW Trojan
implementation, detection, and mitigation.

4.2 Fine-Tuning
As mentioned previously, some of these LLM-based HW verifi-
cation solutions rely on fine-tuning, which involves adjusting a
pre-trained language model by training it on Verilog/SVA data.
However, LLMs require extensive datasets for effective training,
posing a significant challenge in specialized domains, particularly in
HW security due to the scarcity of targeted data. LLM4SecHW [22]
is one example, which leverages a dataset compiled from defects
and remediation steps in open-source HW designs, using version
control data from GitHub. This dataset was created by selecting
significant HW projects such as CVA6, CVA5, OpenTitan, etc., and
extracting commits, issues, and pull requests (PRs) related to HW
designs. This approach provides a rich source of domain-specific

data for training models, specifically tailored to identifying and
fixing bugs in HW designs. Although innovative and promising, the
quality of this data is dependent on the filtering process accuracy.
The effectiveness of LLMs in debugging HW designs is thus directly
tied to how precisely the data is curated and processed.

The NSPG framework [24] is another example of LLM solution
for HW verification that offers a novel methodology for automat-
ing the generation of HW security properties utilizing fine-tuned
LLMs. This approach is anchored by the development of a special-
ized language model for HW security, HS-BERT, which is trained
on domain-specific data. Through deep evaluation on previously
unseen design documents from OpenTitan, NSPG has proven its
capability by extracting and validating security properties, showing
security vulnerabilities within the OpenTitan design. However, a
notable limitation of not only NSPG, but also all HW-oriented fine-
tuned model for now lies in its dependency on the quality and scope
of the HW documentation provided as input (which is almost super
limited). As in the realm of HW/SoC design, this documentation
often remains incomplete, inconsistent, or lack necessary detail, the
precision and efficacy of the solution could be adversely affected.

5 TAKEAWAYS AND FUTURE DIRECTIONS
In all facets of using LLMs for HW security, it becomes apparent that
a significant hurdle, whether in HWdesign or in testing/verification,
whether stemming from prompt engineering or fine-tuning, lies in
the procurement and effective utilization of quality data [17]. Also,
as depicted in Table 2, creating specialized LLMs (e.g., LCMs) or
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employing pre-existing ones necessitates a deep expert knowledge
to achieve a high success rate for generation, detection, and mitiga-
tion. Considering these two obstacles, despite being promising, the
endeavor requires rigorous effort across multiple facets.

Creating a standard database reference is crucial for both training
and evaluating the methods proposed in this domain. It facilitates
a fair comparison among different techniques, ensuring that the
pros/cons of each approach can be accurately assessed. Moreover,
high-quality RTL data is indispensable for the optimal training of
LLMs. It enables these models to learn the intricacies of RTL designs
effectively, thereby enhancing their efficiency in security tasks.

Given the distinct characteristics of RTL codes as opposed to nat-
ural language texts, it becomes crucial to consider domain-specific
models for handling HW codes. Incorporating concepts such as
graphs and ASTs into LLMs can bridge the gap between the struc-
tural nuances of RTL codes and the inherently sequential processing
of conventional language models. It is crucial to devise a novel met-
ric specifically for evaluating the security coverage of RTL code
examined by LLMs. This metric would serve as a critical feedback
mechanism for LLMs, enabling them to assess and refine their out-
put continually. By quantitatively measuring the security of RTL
designs, themetric would allow LLMs to optimize their learning pro-
cess towards generating code that is not only functionally correct
but also adheres to high security standards.

Building on the foundational strategies mentioned above, further
refinement can be achieved through the optimization of continuous
prompts7. Such strategies also open the doors for mechanisms to
enhance prompt automation for LLMs, e.g., auto-prompting8. These
optimizations are open research directions potentially presenting a
more feasible and efficient alternative to LLM fine-tuning.

6 CONCLUSION
This paper examined the use of LLMs in detecting/addressing secu-
rity flaws in HW designs. We specifically analyzed their incorpora-
tion into RTL, revealing their independent problem-solving abilities
in this domain. Our examination of existing approaches highlights
both their benefits and drawbacks, notably scalability and accuracy
issues. Also, we identified potential areas for future research. Our
suggestion involves developing dedicated LLM architectures and
datasets focused on HW security, indicating a path toward targeted
improvements that could mitigate HW vulnerabilities.
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