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OBSTRUCTION CLASSES FOR MODULI SPACES OF SHEAVES AND

LAGRANGIAN FIBRATIONS

DOMINIQUE MATTEI AND REINDER MEINSMA

Abstract. We investigate obstruction classes of moduli spaces of sheaves on K3 surfaces.

We extend previous results by Căldăraru, explicitly determining the obstruction class and its

order in the Brauer group. Our main theorem establishes a short exact sequence relating

the Brauer group of the moduli space to that of the underlying K3 surface. This provides a

criterion for when the moduli space is fine, generalizing well-known results for K3 surfaces.

Additionally, we explore applications to Ogg–Shafarevich theory for Beauville–Mukai systems.

Furthermore, we investigate birational equivalences of Beauville–Mukai systems on elliptic K3

surfaces, presenting a complete characterization of such equivalences.
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1. Introduction

For a K3 surface S with Mukai vector v and polarisation H, one can construct the moduli
spaceMH(v) ofH-Gieseker semistable sheaves with Mukai vector v. It is a hyperkähler manifold
of dimension v2 + 2, which is deformation equivalent to a Hilbert scheme of points on a K3
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2 D. MATTEI AND R. MEINSMA

surface, provided H is generic [GH96; OGr97; Huy06; BM14a; BM14b]. These moduli spaces
provide some of the most important examples of hyperkähler manifolds, and their geometry is
a subject of great interest.

The moduli space MH(v) is generally a coarse moduli space. That is, there is not always a
universal sheaf E on S ×MH(v) for which E|S×[F ] ≃ F for all [F ] ∈ MH(v). The obstruction
to the existence of a universal sheaf is a Brauer class on MH(v). More precisely, there is a
unique Brauer class α ∈ Br(MH(v)) for which there exists a (1⊠ α)-twisted universal sheaf on
S ×MH(v). This Brauer class is called the obstruction class of MH(v). If we assume v2 = 0,
then MH(v) is a K3 surface, and in this setting the obstruction class was computed explicitly
in terms of cohomology by Căldăraru in his PhD thesis [Căl00]. His results showed that there
exists a short exact sequence

(1.1) 0 → 〈α〉 → Br(MH(v)) → Br(S) → 0,

and his very precise description of α also tells us the order of α in Br(MH(v)). The order of α
equals the so-called divisibility of the Mukai vector v, which is a number that is easy to compute
in practice.

Before we explain our main result, let us briefly note some of the applications of Căldăraru’s
work. Firstly, since a universal sheaf on S ×MH(v) exists if and only if the obstruction class
α is trivial, it is a direct consequence of (1.1) that MH(v) is fine if and only if the divisibility
of v is 1. This is important partially because of its implications for the derived categories of S
and MH(v). Short exact sequence (1.1) is obtained from the well-known short exact sequence
[Muk87, Proposition 6.4]

(1.2) 0 → T (S) → T (MH(v)) → Z/div(v)Z → 0,

which shows that T (S) is Hodge isometric to T (MH(v)) if and only if MH(v) is a fine moduli
space. Recall the Derived Torelli Theorem for K3 surfaces:

Theorem 1.1 (Derived Torelli Theorem). [Muk87; Orl03] Let X and Y be two K3 surfaces.
The following are equivalent:

i) There is an equivalence Db(X) ≃ Db(Y );
ii) There is a Hodge isometry T (X) ≃ T (Y );
iii) The K3 surface Y is isomorphic to a fine moduli space of sheaves on X.

The main goal of this paper is to extend Căldăraru’s results about Brauer groups to higher-
dimensional moduli spaces of sheaves. Our main result is the following theorem. For a K3
surface S, we denote by N(S) := H0(S,Z) ⊕ NS(S) ⊕ H4(S,Z) the extended Néron–Severi
lattice.

Theorem 1.2 (See Theorem 4.5). Let S be a K3 surface, and let v ∈ N(S) be a Mukai vector
of square v2 > 0. Let H ∈ NS(S) be a generic polarisation on S, and write M :=MH(v). Then
there is a short exact sequence

0 → 〈α〉 → Br(M) → Br(S) → 0,

where α is the obstruction class for M to be a fine moduli space of sheaves on S. Moreover, the
order of α in Br(M) is equal to the divisibility of v in N(S).
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Theorem 1.2 should be compared to [KK24, Proposition 6.6], where the obstruction class is
computed for four-dimensional moduli spaces of twisted sheaves using a different method which
only applies in dimension four.

Theorem 1.2 is completely analogous to (1.1). In particular, it also allows us to easily
determine whether a given moduli space is fine or not.

Let us say a few words on the proof of Theorem 1.2. The proof is very closely related to
Căldăraru’s proof in the case v2 = 0. Some modifications are needed in the higher-dimensional
setting. Most notably, short exact sequence (1.2) has no analogue in the higher-dimensional
setting, as in this case there is always a Hodge isometry T (S) ≃ T (M). The way to derive (1.1)
from (1.2) is by using the fact that Br(S) ≃ Hom(T (S),Q/Z) ≃ T (S)∗ ⊗Q/Z for a K3 surface
S. However, this is not the case for higher-dimensional moduli spaces of sheaves on S. In this
case, there is a certain subgroup T ′(M) ⊂ T (S)∗, introduced in [HM23], for which there exists
an isomorphism Br(M) ≃ T ′(M) ⊗ Q/Z. The quotient T (S)∗/T ′(M) is cyclic of order div(v),
thus there is a short exact sequence

0 → T ′(M) → T (S)∗ → Z/div(v)Z → 0,

which gives rise to the short exact sequence of Theorem 1.2.
The proof that the kernel of the short exact sequence of Theorem 1.2 is generated by the

obstruction class goes via a deformation argument very similar to Căldăraru’s argument in
the two-dimensional case. However, there are differences between our approach and his in the
deformation argument as well. If M is a fine two-dimensional moduli space of sheaves on S, then
Mukai’s and Orlov’s work shows that the Fourier–Mukai equivalence associated to the universal
sheaf on S ×M is a Hodge isometry H̃(S,Z) ≃ H̃(M,Z), where H̃(S,Z) denotes the Mukai
lattice. If, on the other hand, M has dimension dimM > 2, then such a statement does not
hold, but we could achieve the same result using the Mukai pairing on H∗(M,Q), which was
introduced by Căldăraru in [Cal03], which was later superseded by Căldăraru and Willerton in
[CW10].

Applications. Let us now explain some applications of Theorem 1.2. Firstly, one can apply
(1.1) in Ogg–Shafarevich theory for elliptic K3 surfaces. For an elliptic K3 surface with a section
S → P1, one can consider the Tate–Shafarevich group Ш(S) consisting of elliptic K3 surfaces
X → P1 with a fixed isomorphism between the Jacobian fibration J0(X) → P1 and S → P1.
Such elliptic K3 surfaces are called torsors of S → P1. The Tate–Shafarevich group of an elliptic
K3 surface with a section is naturally isomorphic to its Brauer group, with the isomorphism
being given by sending a torsor X → P1 to the obstruction to the existence of a universal sheaf
on the product X × S by [Căl00, Theorem 4.4.1]. This description of the isomorphism

(1.3) Ш(S) ≃ Br(S)

was used for example in [MS24] to study derived equivalences between elliptic K3 surfaces.
Tate–Shafarevich groups were recently generalised to the higher-dimensional case [Mar14;

AR23; HM23]. For our applications, we rely on the new theory of Tate–Shafarevich groups
introduced in [HM23]. For S a K3 surface, and C → |H| a complete, generically smooth linear

system with H2 = 2g − 2 ≥ 0, we may consider the relative Picard varieties Pic
d
(C/|H|) :=

ML(0,H, d + 1 − g), where d ∈ Z, and L ∈ NS(S) is a generic polarisation. These relative

Picard varieties are called Beauville–Mukai systems, and we usually denote them by Pic
d

to
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keep notation light. For d = 0, the generic fibre Pic
0
η is an abelian variety, and the Tate–

Shafarevich group Ш(S,H), introduced in [HM23], parametrises those torsors of Pic
0
η which

compactify to moduli spaces of (twisted) sheaves on S.
We prove that, for any d ∈ Z, there is a short exact sequence

0 → Z/nZ → Ш(S,H) → Br(Pic
d
) → 0,

where

n =
div(H)

gcd(div(H), d+ 1− g)
.

Somewhat surprisingly, the morphism Ш(S,H) → Br(Pic
0
) is generally not an isomorphism,

but instead has a cyclic kernel of order 2 if the Picard rank of S is 1. This is surprising because
it contrasts with the isomorphism (1.3) for elliptic K3 surfaces. On the other hand, we have an

isomorphism Ш(S,H) ≃ Br(Pic
g−1

). This isomorphism may be seen as a higher-dimensional
analogue of (1.3). Indeed, for an elliptic K3 surface S → P1 with fibre class F ∈ NS(S), we
have Ш(S,F ) ≃ Ш(S) by [HM23, §5.1]. In this case, we have F 2 = 2g−2 = 0, hence g−1 = 0.

This means that we have an equality Pic
g−1

= Pic
0
, and Pic

0
= J0(S) by definition. Moreover,

since S is an elliptic K3 with a section, we have J0(S) ≃ S, see [Huy16, §11.4] for details. Thus

the isomorphism Ш(S,F ) ≃ Br(Pic
g−1

) is another incarnation of (1.3).
Moreover, using our explicit computation of the obstruction class of Theorem 1.2, we show

that for any d ∈ Z, the morphism Ш(S,H) → Br(Pic
d
) maps the class [Pic

1
] to the obstruction

αd ∈ Br(Pic
d
) to the existence of a universal sheaf on S × Pic

d
. Using this fact, we explain

that a result by Addington, Donovan and Meachan [ADM16] should be seen as an analogue to
a result by Donagi and Pantev [DP08], see Theorem 5.4 and Theorem 5.5, respectively.

Lastly, we study birational equivalence of moduli spaces of sheaves on elliptic K3 surfaces.
From Beckmann’s work on derived equivalence for such moduli spaces [Bec22], we derive the
following theorem.

Theorem 1.3 (See Theorem 5.13). Let S be an elliptic K3 surface with a section, and let M
be a moduli space of sheaves on S of dimension 2n. Then the following are equivalent:

i) M is a fine moduli space.

ii) M is birational to the Hilbert scheme S[n].
iii) M is derived equivalent to the Hilbert scheme S[n].

In particular, if M is a non-fine moduli space of sheaves on S, then M is not derived equivalent
to S[n].

The equivalence ii) ⇐⇒ iii) was already noted by Beckmann in [Bec22, §9]. The inclusion
of item i) is an application of Theorem 1.2. Theorem 1.3 rules out the possibility of general-

ising the Derived Torelli Theorem to higher-dimensional hyperkähler manifolds of K3[n]-type
using the transcendental lattice. More precisely, we obtain the following corollary, which gives
counterexamples to a question raised in [KK24, Problem 1.1] and in [PR23, Question 2].

Corollary 1.4. There exist moduli spaces of sheaves M and M ′ on the same K3 surface for
which there is a Hodge isometry T (M) ≃ T (M ′), but which are not derived equivalent.
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We also apply our results on birational equivalence for moduli spaces of sheaves to Beauville–
Mukai systems. Our main result in this direction is the following theorem, which fully describes
birational equivalences of Beauville–Mukai systems in this setting.

Theorem 1.5 (See Theorem 5.16). Let S be an elliptic K3 surface with a section. Let C → |H|
be a generically smooth complete linear system on S, and let H2 = 2g − 2 > 0. The following
are equivalent:

i) Pic
d

is birational to Pic
e
.

ii) The obstruction classes of Pic
d

and Pic
e

have the same order.

iii) The Mukai vectors of Pic
d

and Pic
e

have the same divisibility. More precisely, we have
gcd(div(H), d + 1− g) = gcd(div(H), e + 1− g).

The implication i) =⇒ ii) is a general fact about birational moduli spaces [Bec22, Proof of
Lemma 9.10]. The equivalence ii) ⇐⇒ iii) is an easy consequence of Theorem 1.2, and the
implication ii) =⇒ i) uses our explicit computation of the obstruction class.

Acknowledgements. We warmly thank Mauro Varesco, Giacomo Mezzedimi, Daniel Huy-
brechts, and Lenny Taelman for helpful discussions and interest in our work. We are also
thankful to Evgeny Shinder for many useful comments on an earlier draft of this paper. We
would also like to express our gratitude to Nick Addington for incredibly helpful discussions
about Lagrangian fibrations. The second author wishes to thank the Hausdorff Center for
Mathematics in Bonn for their hospitality and inspiring academic environment during his stay
in the final two years of his PhD.

2. Lattices and Brauer groups

2.1. Lattices. Our primary source for lattice theory is [Nik80]. A lattice is a free, finitely
generated abelian group L paired with a symmetric non-degenerate bilinear form b : L×L→ Z.
We define the corresponding quadratic form q(x) = b(x, x). We always denote x · y for b(x, y)
and x2 for q(x). We call a lattice L even if x2 is even for every x ∈ L. For our considerations,
all lattices are presumed to be even.

A morphism of lattices between (L, b) and (L′, b′) is a group homomorphism f : L → L′

that preserves the bilinear forms, i.e., that satisfies b(x, y) = b′(f(x), f(y)) for all x, y ∈ L. A
bijective morphism between lattices is called an isometry. The group of isometries L ≃ L is
denoted O(L).

A lattice embedding N →֒ L is a primitive embedding if the quotient L/N is torsion-free.
Additionally, a vector v ∈ L is primitive if 〈v〉 →֒ L is a primitive embedding.

Definition 2.1. For any vector v ∈ L, the number

div(v) := gcdu∈L (u · v)
is called the divisibility of v.

The dual of a lattice L is the group L∗ := Hom(L,Z). We can characterise the dual as a
subgroup of L⊗Q as follows:

(2.1) L∗ ≃ {x ∈ L⊗Q | ∀y ∈ L : x · y ∈ Z} ⊆ L⊗Q.
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Via this characterisation, L∗ acquires a bilinear form taking values in Q. There is a natural
embedding L →֒ L∗ given by

ℓ 7→ (ℓ · −).

The quotient L∗/L = AL is called the discriminant group of L. If the discriminant group is
trivial, we call L unimodular. There is a natural quadratic form q : AL → Q/2Z induced by the
quadratic form on L∗. The pair (AL, q) is usually called the discriminant lattice (even though
it is a finite group). Any isometry f : L ≃ L induces an isometry of rational quadratic forms
L⊗Q ≃ L⊗Q, which induces an isometry of the discriminant lattice f : AL ≃ AL. This gives
a natural group homomorphism

O(L) → O(AL).

Note that there is a natural embedding

(2.2) iL : AL →֒ L⊗Q/Z,

induced by (2.1). If we denote by fQ/Z : L ⊗ Q/Z ≃ L ⊗ Q/Z the isomorphism induced by
f ∈ O(L), then

iL ◦ f = fQ/Z|iL(AL).

For any primitive sublattice N →֒ L, we denote

iN,L : AN →֒ N ⊗Q/Z →֒ L⊗Q/Z.

Lemma 2.2. Let L be a unimodular lattice, and let N →֒ L be a primitive sublattice. Write
T := N⊥ ⊂ L for the orthogonal complement. Then, in L⊗Q/Z, we have

(T ⊗Q/Z) ∩ (N ⊗Q/Z) = iT,L(AT ) = iN,L(AN ).

Proof. Suppose x ∈ (T⊗Q/Z)∩(N⊗Q/Z). Then there exist λ ∈ T⊗Q and v ∈ N⊗Q such that
x ≡ λ (mod L) and x ≡ v (mod L). In particular, we have λ−v ≡ 0 (mod L). For any integral
vector ζ ∈ T , we have λ · ζ = (λ − v) · ζ ∈ Z, so that λ ∈ T∨. This means that x ∈ iT,L(AT ).
By a similar argument, we have x ∈ iN,L(AN ). This shows that (T ⊗ Q/Z) ∩ (N ⊗ Q/Z) is
contained in iT,L(AT ) and iN,L(AN ).

The other two inclusions follow from a standard argument, c.f. [Muk87, Proposition 6.4].
We include it here for completeness. Let λ ∈ iT,L(AT ). Since it is clear that λ ∈ T ⊗Q/Z, we
must show that λ ∈ N ⊗Q/Z. By slight abuse of notation, we also denote by λ any lift to T∨.
Since T is a primitive sublattice of L and L is unimodular, there is a surjective map L → T∨.
That is, there exists a vector x ∈ L such that x · ζ = λ · ζ for every ζ ∈ T . In particular,
x − λ is orthogonal to T , and thus v := x − λ ∈ N ⊗ Q. Therefore we have λ + v ∈ L, hence
λ ≡ −v (mod L), and we obtain λ ∈ N ⊗ Q/Z. The final remaining inclusion is completely
analogous. �

Remark 2.3. Lemma 2.2 induces an isomorphism of groups AT ≃ iT,L(AT ) = iN,L(AN ) ≃ AN ,
which is an isomorphism of quadratic forms AT (−1) ≃ AN [Nik80, Proposition 1.6.1].

Lemma 2.4. [Nik80, Proposition 1.6.1] Let L be a unimodular lattice, let N →֒ L be a primitive
sublattice and write T := N⊥ ⊂ L. Suppose g ∈ O(N) and h ∈ O(T ). Then g and h induce the
same isometry on iN,L(AN ) = iT,L(AT ) if and only if there is an isometry f : L ≃ L preserving
N and T , that satisfies f |N = g and f |T = h.
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One lattice which is of particular importance is the so-called hyperbolic lattice U , which is
the rank 2 lattice given by the symmetric bilinear form

(
0 1

1 0

)
.

This the even unimodular lattice with the lowest rank, which makes it very versatile, see for
example the following two lemmas.

Lemma 2.5. [Nik80, Proposition 1.14.1] Let L be a unimodular lattice, and let N →֒ L be a
primitive sublattice. If there exists an embedding U ⊂ N⊥, then for any g ∈ O(N), there exists
an isometry f : L ≃ L such that f |N = g.

Proof. Write T = N⊥. By assumption, there is an orthogonal decomposition T = U ⊕ T ′

for some lattice T ′. We have AT ≃ AU ⊕ AT ′ ≃ AT ′ , since U is unimodular. In particular,
rk(T ) = rk(T ′) + 2 ≥ ℓ(AT ′) + 2. Combined with [Nik80, Theorem 1.14.2], this implies that
the homomorphism O(T ) → O(AT ) is surjective. Choose h ∈ O(T ) such that h induces the
same isomorphism on iT,L(AT ) as g, then by Lemma 2.4 there exists an isometry L ≃ L which
restricts to g on N . �

Lemma 2.6. [GHS07, Proposition 3.3] Let L = U ⊕ U ⊕ L′ be a lattice containing two copies
of the hyperbolic plane. Let v, u ∈ L be two primitive vectors such that

i) v
div(v) =

u
div(u) ∈ AL,

ii) u2 = v2.

Then there is an isometry f : L ≃ L such that f = idAL
and such that f(v) = u.

If N →֒ L is an embedding of lattices of finite index, then we say that L is an overlattice of
N . In this case, there is a sequence of embeddings N →֒ L →֒ L∗ →֒ N∗, which exhibits L/N
as a subgroup of AN , which is isotropic for the quadratic form on AN .

2.2. Lattices of hyperkähler manifolds. If S is a complex projective K3 surface, the cup
product turns H2(S,Z) into an even, unimodular lattice isometric to ΛK3 = U⊕3 ⊕ E8(−1)⊕2,
where U is the hyperbolic lattice, and E8 is the unique even, unimodular, positive-definite
lattice of rank 8, see for example [BPV12, §VIII.1] for more details.

The lattice H2(S,Z) carries a natural Hodge structure, which is of K3 type, meaning that it
is of weight 2 and H2,0(S) ≃ Cσ. We call an integral Hodge structure which admits a lattice
structure a Hodge lattice.

The integral (1, 1)-part of H2(S,Z) is called the Néron–Severi lattice NS(S) := H1,1(S,Z).
The orthogonal complement T (S) = NS(S)⊥ ⊆ H2(S,Z) is called the transcendental lattice.
Equivalently, T (S) is the smallest primitive sublattice of H2(S,Z) such that T (S)C contains
H2,0(S), see for example [Huy16, §3.2.2].

The full integral cohomology group H∗(S,Z) = H0(S,Z) ⊕ H2(S,Z) ⊕ H4(S,Z), admits a
lattice structure given by

(r, l, s) · (r′, l′, s′) = l · l′ − rs′ − sr′.

It also inherits a Hodge from H2(S,Z) and we call the resulting Hodge lattice the Mukai lattice,

and denote it by H̃(S,Z). We define the extended Néron-Severi lattice of S as the (1, 1)-part
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of H̃(S,Z):

N(S) := H̃1,1(S,Z) = H0(S,Z)⊕NS(S)⊕H4(S,Z).

As a lattice, we have N(S) ≃ NS(S)⊕ U.

Definition 2.7. [MS24] For a vector v ∈ N(S), we call the element av := v
div(v) ∈ AN(S) the

Căldăraru class of v. The element ωv ∈ AT (S) corresponding to av via the natural isomorphism
AT (S)(−1) ≃ AN(S) is called the transcendental Căldăraru class of v.

If X is a complex projective hyperkähler manifold, the second cohomology group H2(X,Z)
also carries a lattice structure, given by the Beauville–Bogomolov–Fujiki (BBF ) form q [Bea83;
Bog96; Fuj87]. It is important to note that, unlike in the case for K3 surfaces, H2(X,Z) is not
unimodular if dim(X) > 2 in all the currently known deformation types [Rap08].

Similarly to the case of K3 surfaces, we write NS(X) ⊂ H2(X,Z) forH1,1(X,Z), and T (X) :=
NS(X)⊥.

We are mostly interested in hyperkähler manifolds of K3[n]-type, that is, hyperkähler man-
ifolds that are deformation equivalent to the Hilbert scheme of n points on a K3 surface.
Assuming n ≥ 2, we have

H2(X,Z) ≃ U⊕3 ⊕ E8(−1)⊕2 ⊕ 〈−2n − 2〉.

2.3. Brauer groups of hyperkähler manifolds. For basic facts about Brauer groups, we
refer to [CS21].

Definition 2.8. An Azumaya algebra A on a scheme X is a sheaf of OX-algebras, which is
étale locally isomorphic to the sheaf of matrix algebras Mn×n(O).

We say that two Azumaya algebras A, B are Br-equivalent if there exist locally free sheaves
E , F on X such that

(2.3) A⊗ End(E) ≃ B ⊗ End(F).

The set of isomorphism classes of Azumaya algebras carries a natural group structure given
by the tensor product, and Br-equivalence is compatible with this group structure [Gro68,
Theorem 5.1].

Definition 2.9. The Brauer group Br(X) of X is the group of Br-equivalence classes of Azu-
maya algebras of X.

Now, let X be a complex smooth projective variety.

Definition 2.10. The cohomological Brauer Group of X is the group H2
ét(X,Gm), or, equiva-

lently, H2(X,O×
X )tors.

The fact that H2
ét(X,Gm) and H2(X,O×

X )tors are isomorphic is a consequence of the fact that
H2(X,Gm) is torsion, see [Huy16, Remark 18.1.4ii)], combined with the Kummer sequence, see
[Huy16, Remark 11.5.13].

It is a result by De Jong and Gabber that the Brauer group is naturally isomorphic to the
cohomological Brauer group, see [CS21, §4.2].

Under the additional assumption that H3(X,Z) = 0, it follows from the exponential sequence
that there is an isomorphism
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(2.4) Br(X) ≃ H2(X,Z)

NS(X)
⊗Q/Z.

For this reason, as in [HM23], we write

(2.5) T ′(X) :=
H2(X,Z)

NS(X)
.

We note that the additional assumption that H3(X,Z) = 0 is satisfied for hyperkähler

manifolds of K3[n]-type. This follows from [Göt02, Equation (2.1)] and [Mar07, Theorem 1].
There is a well-defined injective group homomorphism T ′(X) → T (X)∗ given by

(2.6) [ξ] 7→ (ξ · −)|T (X).

Since T (X) ⊂ H2(X,Z) is a primitive sublattice, the restriction map H2(X,Z)∗ → T (X)∗ is
surjective. This means that if H2(X,Z) is unimodular, i.e. if H2(X,Z) ≃ H2(X,Z)∗, then for
any element f ∈ T (X)∗, there exists a vector ξ ∈ H2(X,Z) such that f(t) = ξ ·t for all t ∈ T (X).
In this case, the morphism (2.6) is an isomorphism. Recall that H2(S,Z) is unimodular if S is
a K3 surface, hence the above discussion proves the following well-known lemma.

Lemma 2.11. Let S be a K3 surface. Then there is an isomorphism

Br(S) ≃ T (S)∗ ⊗Q/Z ≃ Hom(T (S),Q/Z).

To summarise, for a K3 surface S, there are natural isomorphisms

(2.7) Br(S) ≃ H2
ét(S,Gm) ≃ H2(S,O×

S )tors ≃ T ′(S)⊗Q/Z ≃ Hom(T (S),Q/Z),

and we refer to each of these groups as the Brauer group of S.
On the other hand, if X is a hyperkähler manifold of K3[n]-type, for some n ≥ 2, then

H2(X,Z) is never unimodular, and generally we have T ′(X) 6≃ T (X)∗, and hence the Brauer
group of X, which is isomorphic to T ′(X) ⊗ Q/Z by (2.4), is generally not isomorphic to
Hom(T (X),Q/Z).

3. Moduli spaces

3.1. Moduli spaces of sheaves on K3 surfaces. In the following, we denote v(E) =
ch(E)

√
tdX for a sheaf E ∈ Coh(X) on a projective variety X. The following theorem, based

on the pioneering work of Mukai [Muk87], is well known and due to many authors [GH96;
Huy06; OGr97]. A more general version can be found in [BM14b; BM14a].

Theorem 3.1. Let S be a K3 surface and v ∈ H̃(S,Z) a primitive Mukai vector. For H a
generic polarization, there exists a (possibly empty) coarse moduli space MH(v) of H-Gieseker
stable coherent sheaves E with v(E) = v. Moreover:

(1) MH(v) is empty if v2 < −2,
(2) if v = (r,D, s) satisfies v2 ≥ −2 and either

(a) r > 0,
(b) r = 0, D effective,
(c) r = D = 0, s > 0,

then MH(v) is a projective hyperkähler manifold of K3[n]-type, where 2n = v2 + 2.
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Given v as in Theorem 3.1(2), a polarization H such that MH(v) is smooth is called v-generic.
When no confusion is possible, we write M(v) instead of MH(v). It turns out that two choices
H,H ′ of v-generic polarization give rise to two birationally equivalent moduli spaces MH(v)
and MH′(v) [BM14a, Theorem 1.1].

Let S be a K3 surface and fix a primitive Mukai vector v ∈ N(S). For a v-generic polarisation
H, we write M = MH(v). Recall that M is a priori only a coarse moduli space, meaning that
there is not necessarily a universal sheaf on S ×M . However, twisted universal sheaves and
quasi-universal sheaves always exist, and we recall some basic facts about them now. Our basic
reference for twisted sheaves is [Căl00].

Definition 3.2. Let αM ∈ Br(M) be some Brauer class. A (1⊠αM )-twisted universal sheaf is
a (1 ⊠ αM )-twisted sheaf U on S ×M such that U|S×[E] ≃ E for all [E ] ∈ M . If αM is trivial,
we simply call U a universal sheaf on S ×M . If a (1 ⊠ αM )-twisted universal sheaf exists, we
call αM the obstruction to the existence of a universal sheaf.

We will see in Definition/Proposition 3.4 that, unlike universal sheaves, twisted universal
sheaves always exist. Moreover, the Brauer class αM is unique, and therefore we call it the
obstruction class. We state this result in the relative setting, as we will need to be able to deal
with families of moduli spaces in the next sections.

Proposition 3.3. [HL10] Let f : S → T be a projective morphism of schemes of finite type
over C with connected fibres. Let OS(1) be a relatively ample line bundle on S. Then for any
polynomial P there exists a coarse relative moduli space M := MS/T (P ) → T for the functor

M : (Sch/T)◦ → Sets

which associates to a T -scheme X → T the set of isomorphism classes of T -flat families of
stable sheaves on the fibres of S ×T X → X with Hilbert polynomial P . In particular, for any
t ∈ T , we have

Mt ≃MSt
(P ).

Definition/Proposition 3.4. [Căl00, Proposition 3.3.2] In the notation of Proposition 3.3,
there exists a unique Brauer class αM ∈ Br(M) such that there is a (1⊠αM)-twisted universal
sheaf on S ×T M. This Brauer class is called the obstruction to the existence of a universal
sheaf on S×T M. For any point t ∈ T , this twisted universal sheaf restricts to a (1⊠αt)-twisted
universal sheaf on St ×Mt, hence αt is the obstruction to the existence of a universal sheaf on
St ×Mt.

The main goal of this paper is to compute the obstruction Brauer class of a moduli space of
sheaves on a K3 surface. The first result in this direction is the following.

Proposition 3.5. [HL10, Theorem 4.6.5] Let S be a K3 surface with primitive Mukai vector
v ∈ N(S) and v-generic polarisation H. If div(v) = 1, then MH(v) is a fine moduli space.

Our main theorem implies the converse of Proposition 3.5, c.f. Corollary 4.6.
Now, we fix S, v,H such that M :=MH(v) is non-empty and smooth. Moreover, we assume

v2 ≥ 2 so that the dimension of M is at least 4. We denote by p, resp. q the projection from
S ×M to M , resp. to S. Let αM be the obstruction to the existence of a universal sheaf on
S×M , and let E be a (1⊠αM )-twisted universal sheaf. There exists an α−1

M -twisted locally free
sheaf F of finite rank ρ on M by [Căl00, Theorem 1.3.5]. Now U := E ⊗p∗F is a quasi-universal
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sheaf of similitude ρ on S ×M . This means that E ⊗ p∗F is an M -flat untwisted sheaf on
S × M with the property that for any [F ] ∈ M , we have U|S×[F ] ≃ F⊕ρ. We consider the
Fourier–Mukai transform

ΦU∨

: Db(S) −→ Db(M)

F 7−→ Rp∗(q
∗F ⊗ U∨)

.

This Fourier–Mukai transform depends on the choices of E and F . However, if U and V are two
quasi-universal sheaves on S ×M , then there exist vector bundles E and F on M such that
U ⊗ p∗E ≃ V ⊗ p∗F by [Muk87, Appendix 2].

Definition 3.6. Let S be a K3 surface with primitive Mukai vector v ∈ N(S) for which v2 ≥ 2.
Let H be a v-generic polarisation, and write M :=MH(v). Let U be a quasi-universal sheaf on
S ×M of similitude ρ. The normalised cohomological Fourier–Mukai transform

ϕ := 1
ρϕ

v(U∨) : H∗(S,Q) −→ H∗(M,Q)

x 7−→ 1
ρp∗ (q

∗x⊗ v(U∨)) ,

is called the Mukai morphism.

Note that the Mukai morphism is also dependent on the choice of quasi-universal sheaf. More
precisely, let F be a vector bundle on M and write U ′ = U⊗p∗F . Let ϕ′ be the Mukai morphism
corresponding to U ′, then

ϕ′(x) =
ch(F )

rk(F )
ϕ(x).

In particular, if we only consider the degree 2 part, we find

[ϕ′(x)]2 = [ϕ(x)]2 +
c1(F )

rk(F )
[ϕ(x)]0.

Lemma 3.7. [Muk87, Proof of Theorem 1.5], [OGr97] For any x ∈ H∗(S,Q), we have

[ϕ(x)]0 = −x · v.
In particular, whenever x ∈ v⊥ ⊂ H∗(S,Q), [ϕ(x)]2 is independent of the choice of quasi-
universal sheaf.

Proof. Let ω ∈ H2n(M,Z) be the fundamental cocycle. Let ΦU∨

: Db(S) → Db(M) be the

Fourier–Mukai transform with kernel U∨, and let ϕv(U∨) : H∗(S,Q) → H∗(M,Q) be the corre-

sponding cohomological Fourier–Mukai transform, i.e. ϕv(U∨) = ρ ·ϕ. In the notation of [Cal03],
it follows that we have

[ϕv(U∨)(x)]0 = (ϕv(U∨)(x), ω) = (x, ϕ
v(U∨)
L (ω)),

where ϕ
v(U∨)
L = ϕv(U) is the left-adjoint of ϕv(U∨). On the other hand, we have ϕ

v(U∨)
L (ω) =

v(ΦU (Ot)) = ρv for any t ∈ M . Hence we obtain [ϕ(x)]0 = 1
ρ [ϕ

v(U∨)(x)]0 = 1
ρ(x, ρv) = −x · v,

as claimed. �

Theorem 3.8. [OGr97; Yos01] Let S be a K3 surface, and let v ∈ N(S) be a primitive Mukai
vector with v2 > 0. Let H be a v-generic polarisation, and denote M := MH(v). Let ϕ :
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H∗(S,Q) → H∗(M,Q) be the Mukai morphism from Definition 3.6. Then ϕ induces a Hodge
isometry

H∗(S,Z) ⊃ v⊥
∼−→ H2(M,Z)

x 7−→ [ϕ(x)]2.

Here, [ϕ(x)]2 denotes the degree 2 part of ϕ(x). Moreover, this Hodge isometry is independent
of the choice of a quasi-universal sheaf on S ×M .

When v2 = 0, M is a K3 surface, and the theorem holds if one replaces v⊥ by v⊥/v [Muk87,
Theorem 1.5].

3.2. The obstruction class of a two-dimensional moduli space. In this subsection, let S
be a K3 surface with Mukai vector v ∈ N(S). Moreover, we assume that v2 = 0. In this case, the
moduli space M :=MH(v) is a K3 surface, where H is a v-generic polarisation. In this setting,
Căldăraru computed the obstruction class αM explicitly as a class in Hom(T (M),Q/Z) ≃
Br(M). We now give a brief summary of his results.

Recall that the Mukai morphism is a Hodge isometry v⊥/v ≃ H2(M,Z). Since we have

T (S) ⊂ v⊥ ⊂ H̃(S,Z), and v /∈ T (S), the Mukai morphism induces an embedding of Hodge
lattices T (S) →֒ T (M). Moreover, the quotient T (M)/T (S) is finite and cyclic. There is a
natural embedding T (M)/T (S) ⊂ AT (S). Via this embedding, T (M)/T (S) is generated by the
transcendental Căldăraru class of v, denoted ωv by [Muk87, Proposition 6.4] (see Definition
2.7). This defines a Brauer class αM on M as the composition

(3.1) αM : T (M) → T (M)/T (S) ≃ Z/div(v)Z,

where the isomorphism T (M)/T (S) ≃ Z/div(v)Z is the one that maps ωv to −1 ∈ Z/div(v)Z.

Theorem 3.9. [Căl00] The Brauer class αM of equation (3.1) is the obstruction to the existence
of a universal sheaf on S ×M .

The description of the obstruction Brauer class αM of Theorem 3.9 is useful because it is so
explicit. For example, it is essential in [MS24] to study Fourier–Mukai partners of elliptic K3
surfaces. Unfortunately, the description uses the fact that Br(M) ≃ Hom(T (M),Q/Z), which
is only the case when M is a K3 surface. Another, equivalent, way to view αM is as follows.

Consider the short exact sequence

(3.2) 0 → T (S) → T (M) → 〈ωv〉 → 0,

which induces the following short exact sequence by taking duals:

(3.3) 0 → T (M)∗ → T (S)∗ → Z/div(v)Z → 0.

Since v ∈ H̃(S,Z) is primitive, and H̃(S,Z) is unimodular, it follows that the divisibility of

v in H̃(S,Z) is 1. That is, there exists a vector u ∈ H̃(S,Z) with the property that u · v = 1.
We claim that

(u · −)|T (S) ∈ T (S)∗,

which is the image of u under the natural surjection H̃(S,Z) → T (S)∗, induces a generator
of T (S)∗/T (M)∗. This is proven in Lemma 4.1 in a more general setting. We abuse notation
slightly and write u for (u · −)|T (S). Let us write w ∈ T (M)∗ for the element which maps to
div(v) · u ∈ T (S)∗.
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Note that taking the tensor product of (3.3) with Q/Z yields:

(3.4) 0 → Z/div(v)Z → Br(M) → Br(S) → 0.

The kernel of (3.4) is generated by

w

div(v)
∈ Br(M),

and this is precisely the obstruction class αM of Theorem 3.9, see [Căl00] and [MS24].
Note that the order of αM in Br(M) is equal to the divisibility div(v) of v in N(S). We can

see this from short exact sequence (3.4), since the kernel is generated by the obstruction class.
We can also use (3.1) to find the order of αM , since (3.1) exhibits αM as a surjective group
homomorphism αM : T (M) → Z/div(v)Z.

Corollary 3.10. [Căl00] Let S be a K3 surface with primitive Mukai vector v ∈ N(S) and
v-generic polarisation H. The moduli space MH(v) is fine if and only if div(v) = 1.

3.3. Moduli spaces of lattice-polarised K3 surfaces. In this section, we collect some basic
facts about moduli spaces of lattice polarised K3 surfaces. Our main reference is [Dol95]. An
important technical result in this section is Lemma 3.16, which is used to prove the main result
of Section 4.2 below.

Definition 3.11. For a lattice T of signature (2, n), we define the period domain ΩT of T to
be one of the two connected components of

(3.5)
{
σ ∈ P(T ⊗ C) | σ2 = 0 and σ · σ > 0

}
.

The orthogonal group O(T ) acts naturally on the set (3.5), and we write

O+(T ) := {σ ∈ O(T ) | σ(ΩT ) = ΩT }
for the subgroup of O(T ) consisting of isometries that preserve the connected component ΩT .
The index of O+(T ) ⊂ O(T ) is two.

Let N be an even lattice of signature (1, ρ−1) for some 1 ≤ ρ ≤ 20. Suppose that there exists
precisely one O(ΛK3)-orbit of primitive embeddings N →֒ ΛK3. This is the case for example
when ρ ≤ 10 by [Nik80, Theorem 1.14.4]. An N -marked K3 surface is a pair (S, j) consisting
of a K3 surface S and a primitive embedding j : N →֒ NS(S). An isomorphism of N -marked
K3 surfaces (X, i), (Y, j) is an isomorphism f : X ≃ Y such that i = f∗ ◦ j.

A marked K3 surface is a pair (S, φ) consisting of a K3 surface S and an isometry φ :
H2(S,Z) ≃ ΛK3. Fix an embedding N ⊂ ΛK3. If (S, φ) is a marked K3 surface such that
N ⊂ φ(NS(S)), then (S, φ−1|N ) is an N -marked K3 surface.

Let T = N⊥ ⊂ ΛK3 be the orthogonal complement. We write

Õ+(T ) := ker
(
O+(T ) → O(AT )

)
.

If (S, j) is a N -marked K3 surface, then there exists a marking φ : H2(S,Z) ≃ ΛK3 such that
the period of the marked K3 surface (S, φ), i.e. [φ(H2,0(S,C))], lies in ΩT . Moreover, two

isomorphic N -marked K3 surfaces give rise to periods which lie in the same Õ+(T )-orbit.

Definition 3.12. We denote

FT := Õ+(T ) \ ΩT .
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Theorem 3.13. [Dol95, §3] The quotient FT is the coarse moduli space of N -marked K3
surfaces. The moduli space FT is an equidimensional quasi-projective variety of dimension
20− ρ.

Let S be a K3 surface, and let v ∈ N(S) be a primitive Mukai vector. Write v = (r,E, s) for
some r, s ∈ Z and E ∈ NS(S). Let H ∈ NS(S) be an ample divisor. Let M be the saturation
of 〈H,E〉 in NS(S). That is, M = (〈H,E〉 ⊗Q) ∩NS(S) is the smallest primitive sublattice of
NS(S) which contains 〈H,E〉. Fix any marking φ : H2(S,Z) ≃ ΛK3. Write L := φ(M) ⊂ ΛK3

and e = φ(E), h = φ(H). A point in the moduli space FL⊥ corresponds to an L-marked K3
surface (X, i) for which the vector (r, i(e), s) ∈ N(X) is a Mukai vector, which we denote by
i(v). We wish to show that the locus in FL⊥ of L-marked K3 surfaces (X, i) for which the
Mukai vector i(v) has divisibility 1 is dense.

From the definition of the period domain, it follows that we have

ΩS = ΩT ∩ P(S ⊗ C),

for any primitive sublattice S ⊂ T . By a slight abuse of notation, we write FS ⊂ FT for the
image of ΩS along the natural projection ΩT ։ FT . If we have rk(S) + 1 = rk(T ), then FS is
a divisor in FT .

Remark 3.14. Fix a primitive sublattice N ⊂ ΛK3 of signature (1, ρ − 1) and write S = N⊥.
For a point [ℓ] ∈ ΩS , we denote by NSℓ the integral (1, 1)-part of the Hodge lattice of K3
type whose underlying lattice is ΛK3 and whose (2, 0)-part is ℓ. It is a well-known fact that,
for a very general point [ℓ], we have NSℓ = N . To see this, suppose that [ℓ] ∈ ΩN satisfies
N 6⊂ NSℓ . Then it follows from the definitions that [ℓ] ∈ ΩNS⊥

ℓ

⊂ ΩS . Recall that we have

dim(ΩNS⊥
ℓ

) = rk(NS⊥ℓ )− 2 < dim(ΩS) = rk(S) − 2. Since there are countably many chains of

primitive embeddings N →֒ L →֒ ΛK3, it follows that the points of ΩS for which N is a proper
sublattice of NSℓ form a union of countably many lower-dimensional subvarieties of ΩS . Thus,
the very general point of ΩS satisfies N = NSℓ, as required.

Suppose now that we have another primitive sublattice L ⊂ ΛK3 of signature (1, ρ) which
is not equal to N as a sublattice of ΛK3, and write T = L⊥. By the above discussion, a very
general point of ΩT has NSℓ = L. In particular, we have ΩT 6= ΩS. To rephrase this, if N and
L are two primitive sublattices of ΛK3, then we have ΩN⊥ = ΩL⊥ if and only if L = N .

Proposition 3.15. Let L ⊂ ΛK3 be a sublattice of signature (1, ρ − 1). Assume that ρ ≤ 9.
Suppose that {Ln}n∈N is a set of pairwise non-isometric lattices of rank (1, ρ), and for each
n ∈ N, we have a chain of primitive embeddings L →֒ Ln →֒ ΛK3. Then the set

⋃

n∈N

FL⊥
n

is dense in FL⊥ .

Proof. We first show that we have FL⊥
n
6= FL⊥

m
whenever m 6= n. We prove this by contradiction.

Suppose that we have FL⊥
m
= FL⊥

n
for some m,n ∈ N with m 6= n. Then we have

⋃

g∈Õ+(L⊥)

g(ΩL⊥
n
) ∩ ΩL⊥

m
= ΩL⊥

m
.
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Note that for any g ∈ Õ+(L⊥), the subspace g(ΩL⊥
n
) ∩ ΩL⊥

m
has codimension 1 or 0 in ΩL⊥

m
.

Since Õ+(L⊥) is countable, this means that there is a g ∈ Õ+(L⊥) such that g(ΩL⊥
n
)∩ΩL⊥

m
has

codimension 0, i.e. for which we have g(ΩL⊥
n
) = ΩL⊥

m
. Since g(ΩL⊥

n
) = Ωg(L⊥

n ), it follows from

Remark 3.14 that we have g(L⊥
n ) = L⊥

m. Since we have g ∈ Õ+(L⊥), we may extend g to an
isometry f : ΛK3 ≃ ΛK3 with f |L = idL. Moreover, since g(L⊥

n ) = L⊥
m, we have f(Ln) = Lm,

i.e. f restricts to an isometry Ln ≃ Lm, which is a contradiction with the assumption that Ln

and Lm are non-isometric.
To conclude, we use [MP23, Theorem 3.8]: The Euclidian closure of the union

⋃

n

FL⊥
n

is contained in a Shimura subvariety of FL⊥ . Since all subspaces FL⊥
n

have codimension 1, this
Shimura subvariety has to be all of FL⊥ . �

Lemma 3.16. Let (S, φ) be a marked K3 surface. Let v = (r,E, s) ∈ N(S) be a primitive
Mukai vector, and let H ∈ S be an ample divisor. Write h = φ(H) and e = φ(E). Let L ⊂ ΛK3

be the saturation of the sublattice 〈h, e〉. We consider the L-marked K3 surface (S, φ−1|L) as an
element of the moduli space FL⊥. Then the set of points [(X, i)] ∈ FL⊥ for which

(3.6) divN(X)(i(v)) = 1,

where i(v) := (r, i(e), s), is dense in FL⊥ .

Proof. Let e = me0 with e0 primitive (in particular, gcd(r,m, s) = 1 since v is primitive). We
claim that there exists a vector u ∈ ΛK3 such that u·e0 = 1 and the lattice 〈h, e, u〉 has signature
(1, 2). Indeed, let N = U ⊕ E8. Fix any primitive embedding L →֒ N , which is possible by
[Nik80, Corollary 1.12.3]. Since rk(L) ≤ 10, the primitive embedding L →֒ ΛK3 is unique up to
the action of O(ΛK3). Therefore, we may assume that L is a sublattice of N ⊂ ΛK3. Since N
is unimodular and e0 is primitive, there exists a vector u ∈ N such that e0 · u = 1. Now, for
any d ∈ E8 ⊂ N⊥ ⊂ ΛK3, write ud = u+ d, and let Ld = 〈L, ud〉 ⊂ ΛK3. If d is primitive, then
Ld ⊂ ΛK3 is a primitive sublattice. Moreover, by computing the discriminant of Ld, we see that
Ld is not isometric to Ld′ whenever d2 6= (d′)2. Now, for any n ∈ N, let dn ∈ E8 be a primitive
vector with d2n = 2n. Then {Ln}n∈N is a set of pairwise non-isometric lattices satisfying the
assumptions of Proposition 3.15, and therefore ∪nFL⊥

n
is dense in FL⊥ . Note that for any n ∈ N

and any point [(X, i)] ∈ FL⊥
n
, we have divN(X)(i(v)) = 1, as required. �

We now provide a proof for the following proposition, previously noted by Mukai [Muk87]
and Căldăraru [Căl00].

Proposition 3.17. Let S be a K3 surface, let v = (r,E, s) ∈ N(S) be a primitive Mukai vector
and let H be a v-generic polarisation. Then there exists a proper, smooth morphism S → T of
schemes of finite type over C with connected fibres, such that for all i ∈ Z, and all t ∈ T , we
have an identification

(3.7) H i(St,Z) ≃ H i(S,Z).
and such that:

i) There exists a point 0 ∈ T such that S0 ≃ S.
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ii) The vector vt ∈ H̃(St,Z) corresponding to v along (3.7) is contained in N(St) for all
t ∈ T .

iii) For all t ∈ T , Ht ∈ H2(St,Z) is a v-generic polarisation.
iv) There exists a point 1 ∈ T such that divN(S1)(v) = 1.

Moreover, there is a smooth, proper family M → T with the following properties:

v) For all t ∈ T , there exists an isomorphism Mt ≃MHt
(vt).

vi) There is a Brauer class α ∈ Br(M) and a (1 ⊠ α)-twisted sheaf E on S ×T M which
restricts to a twisted universal sheaf on each fibre St ×Mt.

Proof. Choose any marking φ : H2(S,Z) ≃ ΛK3 and let h = φ(H), e = φ(E), and let L be
the saturation of 〈h, e〉 in ΛK3. Then (S, φ−1|L) is an L-marked K3 surface, hence it represents
a point 0 ∈ FL⊥ . Let 0 ∈ T ⊂ FL⊥ be a small open neighbourhood, and let S → T be
the tautological family of K3 surfaces. By shrinking T , for example until it is contractible,
we may assume that we have the identifications (3.7). Moreover, by shrinking T further, we
may assume that Ht is ample, and that Ht is vt-generic for all t ∈ T [Bri08]. Note that Ht

and vt are automatically algebraic, since we have T ⊂ FL⊥ . The existence of the relative
moduli space M → T and the relative twisted universal sheaf follows from Proposition 3.3 and
Definition/Proposition 3.4. Part iv) follows from Lemma 3.16. �

4. Identifying the obstruction

In this section, we compute the obstruction Brauer class for a higher-dimensional moduli
space of sheaves on a K3 surface in terms of the Mukai vector. One of the main points of
interest is that we compute the order of the obstruction class precisely.

4.1. Brauer groups of moduli spaces. In this section, let S be a K3 surface with primitive
Mukai vector v ∈ N(S). Assume v2 > 0. Let H ∈ NS(S) be a v-generic polarisation, and
write M :=MH(v). The main goal of this subsection is to show that there is an exact sequence
resembling (3.4) in this setting. We note that, since the Mukai morphism induces a Hodge
isometry v⊥ ≃ H2(M,Z), we have T (S) ≃ T (M), hence there is no short exact sequence of
the form (3.2). Instead, the correct first step is to recreate short exact sequence (3.3) using the
group

T ′(M) :=
H2(M,Z)

NS(M)

from (2.5).

Lemma 4.1. Let S, v, H, and M be as above. Then there is a short exact sequence

(4.1) 0 → T ′(M) → T (S)∗ → Z/div(v)Z → 0.

Let u ∈ H̃(S,Z) such that u · v ≡ 1 (mod div(v)), then the image of u under the projection
H2(S,Z) → T (S)∗ is a generator for the cokernel.

Proof. The Mukai morphism is a Hodge isometry H2(M,Z) ≃ v⊥ ⊂ H̃(S,Z) by Theorem 3.8.
This induces an embedding of Hodge structures

(4.2) T ′(M) ≃ v⊥

(v⊥)1,1
→֒ H̃(S,Z)

N(S)
≃ T (S)∗.
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It follows from a straightforward computation that the cokernel of this embedding is generated
by u: for any class x ∈ H̃(S,Z) such that x · v = λ, we have (x − λu) · v ≡ 0 (mod div(v)).
Therefore, there exists an algebraic class y ∈ N(S) such that y · v = (x − λu) · v. Therefore,
we have x − λu − y ∈ v⊥, hence x and λu induce the same element in T (S)∗/T ′(M). Since
div(v)u − z ∈ v⊥ for any z ∈ N(S) with v · z = div(v), we obtain that u has order div(v) in
T (S)∗/T ′(M). �

Let w ∈ T ′(M) be the vector which maps to div(v) · u ∈ T (S)∗. Using the description of
Br(M) as Br(M) ≃ T ′(M)⊗Q/Z from (2.4), Lemma 4.1 immediately implies the following.

Proposition 4.2. There is a short exact sequence

0 →
〈

w

div(v)

〉
→ Br(M) → Br(S) → 0.

We will see in the next section that w
div(v) is precisely the Brauer class of M that obstructs

the existence of a universal sheaf on S ×M .
The following lemma gives us another way to view the obstruction class in terms of the Mukai

morphism.

Lemma 4.3. Let ϕ : H̃(S,Q) → H∗(M,Q) be the Mukai morphism from Definition 3.6. Con-

sider the vector [ϕ(u)]2 ∈ H2(M,Q), where u ∈ H̃(S,Z) is as in Lemma 4.1. Then the Brauer
class on M induced by [ϕ(u)]2 along the composition

H2(M,Q) → T ′(M)⊗Q → T ′(M)⊗Q/Z ≃ Br(M)

is precisely w
div(v) . Moreover, this is independent of the choice of a quasi-universal sheaf on

S ×M and the choice of u.

Proof. The fact that [ϕ(u)]2 induces the Brauer class w
div(v) is a straightforward chase through

the identifications. We check that the Brauer class [ϕ(u)]2 is independent of our choice of quasi-
universal sheaf U . Recall that if U ′ is any other quasi-universal sheaf on S ×M , then there
exist vector bundles E and F on M such that U ⊗ p∗E ≃ U ′ ⊗ p∗F by [Muk87, Appendix 2].
For F ∈ Coh(M) we have

[ϕU∨⊗p∗F (u)]2 = [ϕU∨

(u)]2 + [ϕU∨

(u)]0 ·
c1(F)

rkF .

Since
c1(F)

rkF ∈ NS(M)⊗Q,

this shows that the class of [ϕ(u)]2 in Br(M) ≃ T ′(M)⊗Q/Z does not depend on the choice of
U .

Now we check that [ϕ(u)]2 is independent of the choice of u. Suppose that we have u′ ∈
H̃(S,Z) such that u · v = u′ · v ≡ 1 (mod div(v)). Then (u − u′) · v ≡ 0 (mod div(v)).

Therefore, there is an algebraic class x ∈ H̃(S,Z) such that x · v = (u − u′) · v. This means
that u−u′ − x ∈ v⊥. This implies that [ϕ(u− u′ − x)]2 ∈ H2(M,Z) is integral, so in particular
it vanishes in Br(M). Since ϕ is a morphism of Hodge structures, ϕ(x) is algebraic, and we
obtain [ϕ(u)]2 − [ϕ(u′)]2 = −[ϕ(x)]2 = 0 ∈ Br(M). �
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4.2. Obstruction classes. The main goal of this section is to prove Theorem 4.5, which com-
putes the obstruction Brauer class explicitly when M is a higher-dimensional moduli space of
sheaves. Our strategy for proving Theorem 4.5 is very similar to the proof of [Căl02, Theorem
1.1], but some modifications need to be made to the proof in our setting. The main idea behind
the proof is the following result by Căldăraru.

Theorem 4.4. [Căl02, Theorem 4.1] Let f : X → T be a proper, smooth morphism of analytic
spaces. Let E be a locally free α-twisted sheaf on X. Assume that α|X0

is trivial, so that
E0 := E|X0

can be glued to an untwisted sheaf on X0. Assume that for all t ∈ T , we have
H i(X,Z) ≃ H i(Xt,Z). Then

α = − c1(E0)
rk(E0)

∈ H2(X,Z)

NS(X)
⊗Q/Z.

Theorem 4.5. Keeping the notation as in Lemma 4.1 and Proposition 4.2, the Brauer class
w

div(v)
∈ Br(M)

is the obstruction to the existence of a universal sheaf on S ×M .

Proof. We write v = (r,E, s) ∈ N(S). Let S → T and M → T be the families of K3 surfaces
and moduli spaces of Proposition 3.17, and let α ∈ Br(M) be the Brauer class, and E the
(1 ⊠ α)-twisted universal sheaf on S ×T M from the same token. We identify S0 ≃ S and
M0 ≃M .

Pick a locally free α−1-twisted sheaf F on M of rank ρ. Fix U := E ⊗ p∗F , which is a
relative quasi-universal sheaf on S ×T M of similitude ρ. For t ∈ T , we consider the induced
Fourier-Mukai transforms

Φt := ΦU∨
t : Db(St) → Db(Mt)

and morphisms of Hodge structures:

ϕt := ϕ(1/ρ)v(U∨
t
) : H∗(St,Q) → H∗(Mt,Q)

x 7→ 1
ρ · p∗ (v(U∨

t ) · q∗(x)) .
satisfying v (Φt(−)) = ρϕt (v(−)). By shrinking T , we may assume that ϕt is a constant map
on t.

Let u ∈ H̃(S,Z) be a vector such that u · v = 1 (mod div(v)). Note that the class [ϕ0(u)]2 ∈
H2(M,Q) induces a Brauer class on M via the natural surjection

H2(M,Q) → T ′(M)⊗Q → T ′(M)⊗Q/Z ≃ Br(M).

By a slight abuse of notation, we also denote this Brauer class by [ϕ0(u)]2. By Lemma 4.3, we
wish to prove that

α|M = [ϕ0(u)]2 ∈ Br(M).

On the fibre over 1 ∈ T , the Brauer class α1 vanishes by Proposition 3.5, so that E1 is a
universal sheaf. In particular, Φ′ := ΦE∨

1 and ϕ′ := ϕv(E∨
1
) are well-defined. For any G ∈ Db(S)

and x ∈ H̃(S,Q), we have Φ1(G) = Φ′(G) ⊗F∨
1 and

(4.3) ϕ1(x) = ϕ′(x)
ch(F∨

1 )

ρ
,
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due to the projection formula. In particular, we have

[ϕ1(u)]2 = [ϕ′(u)]2 + [ϕ′(u)]0 ·
−c1(F1)

ρ
.

Since this equation is purely topological, it also holds on the fibre at 0. We know by Theorem
4.4 that

α|M =
c1(F1)

ρ

(recall that F is α−1-twisted).
Firstly, note that we have [ϕ′(u)]0 = −1 as a consequence of Lemma 3.7, since we are assuming

that u · v = 1.
Secondly, we show that [ϕ′(u)]2 is integral. For this, we first show that we can find a line

bundle L on S1 and choose u = v(L).
Indeed, since the divisibility of v in N(S1) is 1, we can find a divisor D ∈ NS(S1) such that

gcd(r,D · E, s) = 1. Let L = OS1
(D). Then v(L) = (1,D, D

2

2 − 1), and we have v(L) · v =

−r · (12D2 − 1)− s+D ·E. Note that r and s are divisible by divN(S)(v), hence by replacing D
by mD for some m ∈ Z we obtain v(L) · v ≡ 1 (mod divN(S)(v)).

We now show that, by replacing L with L(k) := L ⊗OS1
(k) for k ≫ 0, we may assume that

G := Φ′(L) is locally free. It suffices to show that Rjp∗(q
∗L(k) ⊗ E∨

1 ) = 0 for all j > 0 and
k ≫ 0. For any point [K] ∈M1, we have natural maps

Rjp∗(q
∗L(k)⊗ E∨

1 )[K] → Hj(S1,K ⊗ L(k)).
By boundedness of M1, all these cohomology groups vanish for all [K] ∈M1, j > 0 and k ≫ 0,
which in turn implies that the Rjp∗(q

∗L(k)⊗ E∨
1 )[K] vanish as well.

Note that this completes the proof, since we have

[ϕ′(u)]2 = [v(G)]2 = [c1(G)] ∈ H2(M1,Z).

�

Corollary 4.6. Let S be a K3 surface and let v ∈ N(S) be a Mukai vector with v2 > 0. Let H
be a v-generic polarisation of S. Then the moduli space MH(v) is fine if and only if div(v) = 1.

For isotropic Mukai vectors, the conclusion of Corollary 4.6 follows immediately from the
work of Căldăraru [Căl00], but it also follows directly from the Derived Torelli Theorem 1.1.
In the higher-dimensional case, the fact that MH(v) is fine whenever div(v) = 1 was already
known, c.f. Proposition 3.5. The new part of Corollary 4.6 is that the divisibility of the Mukai
vector is 1 for higher-dimensional fine moduli spaces.

5. Beauville–Mukai systems

Let S be a K3 surface, and let H ⊂ S be a smooth, irreducible curve of genus g > 0, whose
class in NS(S) is primitive. Let C → |H| be the universal curve over the linear system |H|.
This means that, for any [C] = x ∈ |H|, there is an isomorphism Cx ≃ C. For d ∈ Z, consider
the Mukai vector

(5.1) vd := (0,H, d + 1− g).
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For a vd-generic polarisation H ′ ∈ NS(S), we write Md = MH′(vd). Note that a line bundle L
of degree d on a smooth, irreducible curve C ∈ |H| satisfies

v(i∗L) = (0,H, d + 1− g),

where i : C →֒ S is the inclusion. Therefore, we have an inclusion

Picd(Csm/|H|sm) →֒Md,

where Csm → |H|sm is the restriction of the universal curve to the locus of smooth curves in
|H|. For this reason, we usually denote

Pic
d
(C/|H|) :=Md.

To keep the notation light, we often omit C/|H| from the notation if this cannot lead to confu-
sion. Note that, since H is primitive in NS(S), the Mukai vector vd ∈ N(S) is primitive for all

d ∈ Z. Hence, by Theorem 3.1, Pic
d

is a smooth hyperkähler manifold of K3[g]-type.
Note that there is a natural morphism

f : Pic
d −→ |H|

[F ] 7−→ Supp(F),

which is a Lagrangian fibration. Moreover, for a smooth curve C ∈ |H|, the fibre of f over C
is isomorphic to Picd(C).

Letting η ∈ |H| be the generic point, the generic fibre Pic
0
η is an abelian variety over

Spec(C(η)), and for any d ∈ Z, the generic fibre Pic
d
η is a torsor under Pic

0
η.

Define ζH : ANS(S) → Z/div(H)Z by

ζH(a) = a ·H (mod div(H)),

where a denotes the image of a ∈ NS(S)∗ in ANS(S). We note that this map is well-defined,

since for any a′ ∈ NS(S)∗ such that a′ = a, there exists a class x ∈ NS(S) such that a′ + x = a,
hence a ·H = (a′ + x) ·H = a′ ·H (mod div(H)). Recall from Lemma 2.2 that we may view
AT (S) ≃ ANS(S)(−1) as a subgroup of T (S)⊗Q/Z via the inclusion T (S)∗ →֒ T (S)⊗Q.

Definition 5.1. [HM23] The Tate–Shafarevich group of the pair (S,H) is the group

Ш(S,H) :=
T (S)⊗Q/Z

ker(ζH)
.

The reason Ш(S,H) is called the Tate–Shafarevich group is that it parametrises certain

torsors of the abelian variety Pic
0
η. It generalises the Tate–Shafarevich group of an elliptic K3

surface. More precisely, if S → P1 is an elliptic K3 surface that admits a section, and F ∈ NS(S)
denotes the fibre class of the elliptic fibration, then there is an isomorphism Ш(S,F ) ≃ Ш(S)
[HM23, §5.1].

For any d ∈ Z, the Beauville–Mukai system Pic
d → |H| defines an element of Ш(S,H). For

details, we refer to [HM23, Example 4.14]. The element of Ш(S,H) corresponding to Pic
d

is
the element induced by

(5.2)
−d

div(D)
·D ∈ ANS(S) ⊂ T (S)⊗Q/Z,
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where D ∈ NS(S) is a divisor with div(D) = D ·H. Such a divisor exists and can be constructed
as follows. Let u ∈ H2(S,Z) be a class that satisfies u · H = 1. This class exists since H is
primitive and H2(S,Z) is unimodular. Also by unimodularity, there exists a divisor D ∈ NS(S),
and an integer m ∈ Z such that u·E = D

m ·E for all E ∈ NS(S). Moreover, we have D
m ∈ NS(S)∗,

since u is an integral vector, hence m ≤ div(D). On the other hand, from D
m ·H = 1, it follows

that we have m = D ·H, hence m ≥ div(D), and we find m = div(D).

Remark 5.2. Let us briefly explain our choice of D above. For simplicity, assume d = 1. In
the notation of [HM23], for any vector bundle E on S of rank r and determinant L, there exists
an isomorphism

Pic1
∼−→ Picd

′

End(E)

F 7−→ F ⊗ E
where d′ = 1 + L · H/r. Moreover, the class [End(E)] ∈ SBr(S) corresponds to the class
(1/r) · L ∈ NS(S) ⊗ Q/Z. Therefore, for any divisor D ∈ NS(S), one can pick L = −D and
r = D · H to get an isomorphism Picd ≃ Pic0

End(E). However, End(E) only defines a class in

Ш(S,H) if [End(E)] lies in the image of ANS(S) ⊂ NS(S)⊗Q/Z, i.e. if (−1/D·H) ∈ Z[1/div(D)],
equivalently D ·H = div(D).

For now, let us note that [Pic
1
] corresponds to the image of u ∈ H2(S,Z) along the compo-

sition
H2(S,Z) → T (S)∗ → T (S)⊗Q/Z.

Remark 5.3. The element (5.2), corresponding to [Pic
d
] ∈ Ш(S,H), is trivial if and only if d

is a multiple of div(H). Indeed, since div(D) = D ·H = k div(H) for some k, we have

ζH

( −dD
div(D)

)
=

−ddiv(D)

div(D)
= −d ∈ Z/div(H)Z.

This means that Pic
d
η and Pic

e
η are isomorphic Pic

0
η-torsors if and only if d−e ≡ 0 (mod div(H)).

Notice that, in particular, [Pic
1
] = [−D/div(D)] has order div(H).

5.1. A Donagi–Pantev type result. Recall the following result by Addington, Donovan, and
Meachan:

Theorem 5.4. [ADM16] Let S be a K3 surface with NS(S) = 〈H〉, where H is ample. Then
for any d, e ∈ Z, there is an equivalence

Db(Pic
d
, αe

d) ≃ Db(Pic
e
, α−d

e ).

The main goal of this subsection is to exhibit this result as a higher-dimensional generalisation
of a result by Donagi and Pantev of [DP08]. This is done by Corollary 5.9 below. The statement
and proof of Corollary 5.9 heavily rely on our explicit computation of the obstruction class in
Theorem 4.5.

5.1.1. Twisted derived equivalences of elliptic K3 surfaces. First, we briefly recall the results of
Donagi and Pantev. Their results hold more generally for elliptic surfaces S → P1 whose fibres
have at worst I1-singularities, but we restrict our attention to elliptic K3 surfaces. Let S → P1

be an elliptic K3 surface which admits a section. Recall that the Tate–Shafarevich group Ш(S)
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of S parametrises pairs (X → P1, φ), where X → P1 is an elliptic K3 surface, and φ : J0(X) ≃ S
is an isomorphism over P1 which preserves the chosen sections, see [Huy16, §11.5] for details.
Elements of Ш(S) are called S-torsors. Moreover, there is a canonical isomorphism

(5.3) Ш(S) ≃ Br(S).

This isomorphism can be understood as follows. Suppose (X → P1, φ) is an S-torsor. Then
φ exhibits S as a coarse moduli space of sheaves on X, hence there is a unique Brauer class
αX ∈ Br(S) which is the obstruction to the existence of a universal sheaf on X × S by Defini-
tion/Proposition 3.4. The isomorphism (5.3) is given by

Ш(S) −→ Br(S)

(X → P1, φ) 7−→ αX

.

Moreover, short exact sequence (3.4) takes the following form in this setting:

0 → 〈αX〉 → Br(S) → Br(X) → 0,

and via (5.3), this sequence may be interpreted as the sequence

(5.4) 0 → 〈[(X → P1, φ)]〉 → Ш(S) → Br(X) → 0.

Let (Y → P1, ψ) ∈ Ш(S) be another S-torsor, and denote by αY ∈ Br(X) the image of
[(Y → P1, ψ)] ∈ Br(S) in Br(X). Similarly, we denote by αX ∈ Br(Y ) the image of αX .

Theorem 5.5. [DP08] Keeping the notation as above, there is an equivalence

Db(X,αY ) ≃ Db(Y, αX
−1).

5.1.2. Tate–Shafarevich groups of Beauville–Mukai systems. We now turn our attention back
to Beauville–Mukai systems. Let S be a K3 surface. For M a smooth moduli space of sheaves
on S, recall that there is a natural chain of inclusions T (S) →֒ T ′(M) →֒ T (S)∗. We denote
A := T ′(M)/T (S), and consider it as a subgroup of AT (S) ≃ T (S)∗/T (S). Using this, we obtain
the short exact sequence

(5.5) 0 → A→ T (S)⊗Q/Z → T ′(M)⊗Q/Z → 0,

where A is embedded in T (S)⊗Q/Z using the inclusion A ⊂ AT (S) →֒ T (S)⊗Q/Z.

Proposition 5.6. Let S be a K3 surface, and let H ⊂ S be a smooth, irreducible curve whose

class in NS(S) is primitive, and such that H2 = 2g−2 ≥ 2. If we take M = Pic
d

in short exact
sequence (5.5), we obtain the short exact sequence:

(5.6) 0 → A

ker(ζH)
→ Ш(S,H) → Br(Pic

d
) → 0.

Moreover, the kernel is cyclic of order

div(H)

div(vd)
=

div(H)

gcd(div(H), d+ 1− g)
.

Here, vd is the Mukai vector of Pic
d
, see (5.1).
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Proof. Recall from the previous section that we have

Im(T ′(Pic
d
) →֒ T (S)∗) = {a ∈ T (S)∗ | a · vd ∈ div(vd)Z} .

This implies that ker(ζH) ⊂ A, hence short exact sequence (5.6) is obtained from (5.5) by taking
the quotient with ker(ζH) and using the third isomorphism theorem. Choose any a ∈ A such
that a · vd = div(vd). We claim that a generates A/ ker(ζH). Let b ∈ A be any other element,
then we can write b ·H = div(vd) ·k for some k ∈ Z. Since ka− b ∈ A satisfies (ka− b)(H) = 0,
it follows that ka = b in A/ ker(ζH). This shows that a generates A/ ker(ζH). Moreover, the
order of a is precisely div(H)/div(vd). �

Corollary 5.7. In the notation of Proposition 5.6, we have an isomorphism

Ш(S,H) ≃ Br(Pic
g−1

).

Proof. Since vg−1 = (0,H, 0) it follows that div(vg−1) = div(H), and now the statement follows
from Proposition 5.6. �

Corollary 5.7 is slightly surprising. One might have expected an isomorphism between

Ш(S,H) and Br(Pic
0
), as is the case when H2 = 0. Instead, if the Picard rank of S is 1,

we have a short exact sequence

0 → Z/2Z → Ш(S,H) → Br(Pic
0
) → 0

by Proposition 5.6. Note, however, that if H2 = 0, we have g = 1, so that Pic
0
= Pic

g−1
.

Therefore, Corollary 5.7 is a generalisation of the well-known isomorphism Ш(S) ≃ Br(S) for
an elliptic K3 surface S with a section.

Since we have, for any d ∈ Z, a surjective group homomorphism Ш(S,H) → Br(Pic
d
), it is

an important question what the preimages of the obstruction class are. We answer this question
in the following proposition, using Theorem 4.5.

Proposition 5.8. For any d ∈ Z, the group homomorphism Ш(S,H) → Br(Pic
d
) of Proposi-

tion 5.6 satisfies

[Pic
1
] 7→ αd,

where αd ∈ Br(Pic
d
) is the obstruction to the existence of a universal sheaf on S × Pic

d
.

Proof. Recall that the element [Pic
1
] ∈ Ш(S,H) is the image of the element

u ∈ T (S)⊗Q/Z,

where u ∈ H2(S,Z) is a class with u · H = 1. We show that the image of u in Br(Pic
d
) is

precisely the obstruction class. Consider the chain of surjections

T (S)⊗Q/Z ։ T ′(Pic
d
)⊗Q/Z ։ T (S)∗ ⊗Q/Z.

≃ Br(Pic
d
) ≃ Br(S)

Since u ∈ T (S)∗, it follows that the image of u in Br(Pic
d
) is in the kernel of the map Br(Pic

d
) →

Br(S), which is generated by αd. From u · vd = 1, it follows that u maps to αd by Theorem
4.5. �

We can now see how Theorem 5.4 resembles Theorem 5.5.
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Corollary 5.9. Let S be a K3 surface of Picard rank 1. Let H ∈ NS(S) be an ample generator,

and let d, e ∈ Z. Denote by αd ∈ Br(Pic
e
), resp. αe ∈ Br(Pic

d
) the images of [Pic

d
], resp. [Pic

e
]

in Br(Pic
e
), resp. Br(Pic

d
). Then there is an equivalence

Db(Pic
d
, αe) ≃ Db(Pic

e
, αd

−1).

Proof. By Proposition 5.8, we have αd = αd
e ∈ Br(Pic

e
), and αe = αe

d ∈ Br(Pic
d
). Combining

this with Theorem 5.4 proves the result. �

It is an interesting open question whether Corollary 5.9 holds more generally. For example,
when we consider the twisted Picard varieties of [HM23], or when we drop the assumption that
ρ = 1.

5.2. Birational equivalence of moduli spaces. In this subsection, we study birational equiv-
alences of moduli spaces of sheaves on elliptic K3 surfaces with a section. More specifically, we
study the birational geometry of Beauville–Mukai systems on such K3 surfaces. Theorem 5.16
below fully classifies which Beauville–Mukai systems over elliptic K3 surfaces are birational.
This classification uses our explicit computation of the obstruction class.

It is a well-known fact that a K3 surface S admits an elliptic fibration with a section if and
only if there is an isotropic class F ∈ NS(S) of divisibility 1, see for example [Huy16, Remark
3.2.13 and §11.4]. This is equivalent to the existence of an embedding U ⊂ NS(S). In this case,
the lattice N(S) ≃ NS(S)⊕U admits an embedding U⊕2 ⊂ N(S), so that we may apply Lemma
2.6 to N(S).

The main result about the birational geometry of MH(v) is the Markman’s Birational Torelli

Theorem. We write Λ̃ := U ⊕ ΛK3 = U⊕4 ⊕ E8(−1)⊕2. Note that, as an abstract lattice, Λ̃

is isometric to the Mukai lattice of any K3 surface. For any hyperkähler variety of K3[n]-type,
there is a natural O(Λ̃)-orbit iX of embeddings H2(X,Z) →֒ Λ̃ [Mar11].

Theorem 5.10 (Birational Torelli Theorem). [Mar11, Corollary 9.9] Let X and Y be hy-

perkähler varieties of K3[n]-type. The following are equivalent:

i) X and Y are birational,
ii) There is a Hodge isometry H2(X,Z) ≃ H2(Y,Z) making the following diagram commute:

H2(X,Z) //

��

H2(Y,Z)

��

Λ̃ // Λ̃,

where the vertical arrows are embeddings contained in the orbits iX and iY , respectively.

If M =MH(v) is a moduli space of sheaves on a K3 surface S, then the orbit of embeddings

H2(M,Z) →֒ Λ̃ is the one containing the following embedding:

(5.7) H2(M,Z) ≃ v⊥ →֒ H̃(S,Z) ≃ Λ̃.

Here, the first isometry is the Mukai morphism of Theorem 3.8, and the isometry H̃(S,Z) ≃ Λ̃

is arbitrary. Note that the O(Λ̃)-orbit of the embedding (5.7) is independent of the choice of

isometry H̃(S,Z) ≃ Λ̃.
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Let S be a K3 surface. Recall from Definition 2.7 that for a vector v ∈ N(S), we call
the element av := v

div(v) ∈ AN(S) the Căldăraru class of v, and that the element ωv ∈ AT (S)

corresponding to av via the natural isomorphism AN(S) ≃ AT (S)(−1) is called the transcendental
Căldăraru class of v.

Proposition 5.11. Let S be a K3 surface for which there exists an embedding U ⊂ NS(S). Let
u, v ∈ N(S) be primitive Mukai vectors with u2 = v2 = 2n − 2, n > 1. Then the moduli spaces
M(u) and M(v) are birational if and only if there is a Hodge isometry ψ : T (S) ≃ T (S) such
that ψ(ωv) = ωu.

Proof. Suppose M(u) and M(v) are birational. Then by the Birational Torelli Theorem, there
is a commutative diagram of Hodge isometries:

(5.8) v⊥

��

≃
// u⊥

��

H̃(S,Z)
≃

Φ
// H̃(S,Z).

Denote φ := Φ|N(S) : N(S) ≃ N(S) and ψ := Φ|T (S) : T (S) ≃ T (S), and note that ψ is a Hodge
isometry. Then φ(v) = ±u. Possibly replacing Φ by −Φ, we may assume φ(v) = u. We have
φ(av) = au, hence ψ(ωv) = ωu by Lemma 2.4.

Conversely, suppose ψ : T (S) → T (S) is a Hodge isometry which satisfies ψ(ωv) = ωu. Since

T (S)⊥ = N(S), we may apply Lemma 2.5, and extend ψ to a Hodge isometry Ψ : H̃(S,Z) →
H̃(S,Z). Denote φ := Ψ|N(S) : N(S) ≃ N(S). Since ψ(ωv) = ωu, we have aφ(v) = φ(av) = au.
By Lemma 2.6, there is an isometry ι : N(S) ≃ N(S) which maps φ(v) to u and which acts
trivially on AN(S). In particular, we can extend ι, by the identity on T (S), to a Hodge isometry

Γ : H̃(S,Z) ≃ H̃(S,Z). Now Γ ◦Ψ is a Hodge isometry of H̃(S,Z) which maps v to u, and this
implies by the Birational Torelli Theorem that M(v) and M(u) are birational. �

Proposition 5.12. Let S be a K3 surface for which there exists an embedding U ⊂ NS(S). If
M is a fine(!) 2n-dimensional moduli space of sheaves with Mukai vector v ∈ N(S), then M is
birational to S[n].

Proof. If n = 1, then M is a Fourier–Mukai partner of S by the Derived Torelli Theorem
[Muk87; Orl03]. However, since U ⊂ NS(S), S does not have any non-trivial Fourier–Mukai
partners by [Hos+02, Corollary 2.7(3)]. Therefore, we have M ≃ S, as required.

Now assume n ≥ 2. By Theorem 4.5, we have div(v) = 1. In particular, the Căldăraru class
of v is

av =
v

div(v)
= v = 0 ∈ AN(S).

If u ∈ N(S) is any other Mukai vector with u2 = 2n − 2 and div(u) = 1, then au = 0 as well,
hence M is birational to M(u) by Proposition 5.11. If we let u = (1, 0, 1−n), then M(u) ≃ S[n],

hence M is birational to S[n]. �

Combining Proposition 5.12 with [Bec22, Corollary 9.9] yields the following interesting result,

which provides examples of hyperkähler manifolds of K3[n]-type with Hodge isometric transcen-
dental lattices, but which are not derived equivalent. These are counterexamples to a question
raised in [KK24, Problem 1.1], and a similar question raised in [PR23, Question 2].
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Theorem 5.13. [Bec22] Let S be a K3 surface for which there exists an embedding U ⊂ NS(S).
Let M = MH(v) be a moduli space of sheaves on S of dimension 2n > 2. Then the following
are equivalent.

i) M is a fine moduli space.

ii) M is birational to the Hilbert scheme S[n].
iii) M is derived equivalent to the Hilbert scheme S[n].

In particular, if M is a non-fine moduli space of sheaves, then M is not derived equivalent to
S[n].

The equivalence ii) ⇐⇒ iii) in Theorem 5.13 was already noted by Beckmann in [Bec22].
The addition of item i) is a straightforward application of Theorem 4.5, combined with Propo-
sition 5.12.

Proof. The implication i) =⇒ ii) is Proposition 5.12. We now prove that ii) =⇒ i). Suppose

M is birational to S[n]. Let u = (1, 0, 1−n) ∈ N(S), so that S[n] ≃M(u). Then the divisibility
of v in N(S) is equal to the divisibility of u = (1, 0, 1 − n) in N(S) by Proposition 5.11, hence
M is a fine moduli space by Corollary 4.6. The equality of the divisibilities of v and u is also an
easy consequence of the Birational Torelli Theorem, and does not depend on the existence of a
primitive embedding U ⊂ NS(S). Indeed, by Theorem 5.10, if M and S[n] are birational, there

is a Hodge isometry φ : H̃(S,Z) ≃ H̃(S,Z) which satisfies φ(u) = ±v. Since φ is an isometry,
the divisibilities of u and v are equal.

The implication iii) =⇒ ii) is [Bec22, Proposition 9.9]. The converse, ii) =⇒ iii), is
[Hal21]. �

As an immediate consequence of Theorem 5.13, we obtain the following corollary.

Corollary 5.14. There exist moduli spaces of sheaves M and M ′, on the same K3 surface, for
which there is a Hodge isometry T (M) ≃ T (M ′), but which are not derived equivalent.

For d ∈ Z, let vd = (0,H, d + 1 − g), where H ⊂ S is a smooth, irreducible curve on a (not
necessarily elliptic) K3 surface S, and assume H is primitive in NS(S), and H2 = 2g − 2 ≥ 2.
We write

ad := avd =
vd

div(vd)
for the Căldăraru class of vd.

Lemma 5.15. We have

ad =
H

div(vd)
∈ AN(S).

In particular, for e ∈ Z, we have ad = ae if and only if div(vd) = div(ve).

Proof. By definition,

ad =
1

div(vd)
(0,H, d + 1− g) =

H

div(vd)
+ (0, 0,

d+ 1− g

div(vd)
).

The result follows from the fact that div(vd) divides d+ 1− g. �

Theorem 5.16. Let S be a K3 surface for which there exists an embedding U ⊂ NS(S). Let
H ⊂ S be a smooth irreducible curve with H2 = 2g − 2 and with primitive class in NS(S). Let
d, e ∈ Z. Then the following are equivalent:
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i) Pic
d

is birational to Pic
e
.

ii) The obstruction classes of Pic
d

and Pic
e

have the same order.

iii) The Mukai vectors of Pic
d

and Pic
e

have the same divisibility. More precisely, we have
gcd(div(H), d + 1− g) = gcd(div(H), e + 1− g).

Proof. Note that gcd(div(H), d + 1− g) = div(vd) for all d ∈ Z. The equivalence ii) ⇐⇒ iii)
follows from the fact that the order of αd is equal to div(vd) for all d ∈ Z by Theorem 4.5.

By Proposition 5.11, Pic
d

and Pic
e

are birational if and only if there exists a Hodge isometry
ψ : T (S) ≃ T (S) such that ψ(ωd) = ωe. In this case, the orders of ωd and ωe in AT (S) are equal.
Since the order of ωd equals the order of ad, which is div(vd), this means that div(vd) = div(ve).

Conversely, if div(vd) = div(ve), then ad = ae by Lemma 5.15, and Pic
d

and Pic
e

are
birational by Proposition 5.11. �

Remark 5.17. Theorem 5.16 provides many examples of birational Beauville–Mukai systems

Pic
d

and Pic
e

whose generic fibres are not isomorphic as Pic
0
η-torsors. Indeed, let D ⊂ NS(S)

be a primitive divisor with div(D) > 1, and let L ∈ NS(S) be any ample divisor. Let m be a
large multiple of div(D). Then the general member H of the complete linear system |mL+D|
is a smooth and irreducible curve, and div(H) = k div(D) for some k ≥ 1. Moreover, we
may assume H is primitive, possibly after dividing by a divisor of k. For any d, e ∈ Z such
that gcd(div(H), d + 1 − g) = gcd(div(H), e + 1− g), but such that d 6≡ e (mod div(H)), the

Beauville–Mukai systems Pic
d

and Pic
e

are birational by Theorem 5.16, but their generic fibres

are not isomorphic Pic
0
η-torsors by Remark 5.3.

References

[ADM16] N. Addington, W. Donovan, and C. Meachan. “Moduli spaces of torsion sheaves
on K3 surfaces and derived equivalences”. In: Journal of the London Mathematical
Society 93.3 (2016), pp. 846–865.

[AR23] A. Abasheva and V. Rogov. Shafarevich-Tate groups of holomorphic Lagrangian fi-
brations. 2023. arXiv: 2112.10921 [math.AG].

[Bea83] A. Beauville. “Variétés Kähleriennes dont la première classe de Chern est nulle”. In:
Journal of Differential Geometry 18 (1983), pp. 755–782.

[Bec22] T. Beckmann. Derived categories of hyper-Kähler manifolds: extended Mukai vector
and integral structure. 2022. arXiv: 2103.13382 [math.AG].

[BM14a] A. Bayer and E. Macr̀ı. “MMP for moduli of sheaves on K3s via wall-crossing: nef
and movable cones, Lagrangian fibrations”. In: Inventiones Mathematicae (2014),
pp. 505–590.

[BM14b] A. Bayer and E. Macr̀ı. “Projectivity and birational geometry of Bridgeland moduli
spaces”. In: Journal of the American Mathematical Society 27.3 (2014), pp. 707–752.

[Bog96] F. Bogomolov. “On the Cohomology Ring of a Simple Hyperkähler Manifold (On the
Results of Verbitsky).” In: Geometric and functional analysis 6.4 (1996), pp. 612–
618.

[BPV12] W. Barth, C. Peters, and A. van de Ven. Compact Complex Surfaces. Ergebnisse
der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in
Mathematics. Springer Berlin Heidelberg, 2012. isbn: 9783642967542.

https://arxiv.org/abs/2112.10921
https://arxiv.org/abs/2103.13382


28 REFERENCES

[Bri08] T. Bridgeland. “Stability conditions on K3 surfaces”. In: Duke Mathematical Journal
141.2 (2008).
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