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Abstract

In the study of quantum state transfer, one is interested in being able to transmit a quantum state
with high fidelity within a quantum spin network. In most of the literature, the state of interest is
taken to be associated with a standard basis vector; however, more general states have recently been
considered. Here, we consider a general linear combination of two vertex states, which encompasses
the definitions of pair states and plus states in connected weighted graphs. A two-state in a graph X
is a quantum state of the form eu ` sev, where u and v are two vertices in X and s is a non-zero real
number. If s “ ´1 or s “ 1, then such a state is called a pair state or a plus state, respectively.

In this paper, we investigate quantum state transfer between two-states, where the Hamiltonian is
taken to be the adjacency, Laplacian or signless Laplacian matrix of the graph. By analyzing the spec-
tral properties of the Hamiltonian, we characterize strongly cospectral two-states built from strongly
cospectral vertices. This allows us to characterize perfect state transfer (PST) between two-states in
complete graphs, cycles and hypercubes. We also produce infinite families of graphs that admit strong
cospectrality and PST between two-states that are neither pair nor plus states. Using singular values
and singular vectors, we show that vertex PST in the line graph of X implies PST between the plus
states formed by corresponding edges in X. Furthermore, we provide conditions such that the con-
verse of the previous statement holds. As an application, we characterize strong cospectrality and PST
between vertices in line graphs of trees, unicyclic graphs and Cartesian products.

Keywords: strong cospectrality, perfect state transfer, two-states, pair states, plus states, line graph

MSC2010 Classification: 05C50; 81P45; 05C76; 15A18; 81Q10

1 Introduction

The first implementation of a continuous-time quantum walk through a quantum computer was considered
almost three decades ago [FG98]. This was done by evolving a quantum state through a decision tree.
Later work [Bos03] used spin chains to transmit a quantum state within a quantum computer. Decision
trees, chains, and more general quantum spin networks can be modelled by graphs whose vertices and
edges represent qubits and their interactions in the network, respectively [God12].

To any vertex u of a graph, we can associate a vector eu, called a vertex state, with all entries equal
to zero except the uth entry being equal to one. Typically one is interested in quantifying the accuracy
of quantum state transfer between vertices u and v at time t; this is measured by the squared modulus
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of the pu, vqth entry of the time-dependent transition matrix Uptq “ e´itM of the graph, where M is the
Hamiltonian representing the physical dynamics of the system, often taken to be the adjacency matrix
or the Laplacian matrix, and to a lesser extent the signless Laplacian or normalized Laplacian. There is
perfect state transfer (PST) between vertices u and v at time t if there exists a unit complex number γ such
that Uptqev “ γeu. In other words, if |eT

u Uptqev|2 “ 1. A relaxation of perfect state transfer is pretty
good state transfer: for any ε ą 0 there exists a corresponding time tε such that |eT

u Uptεqev|2 “ 1 ´ ε.
Note that eu is a pure quantum state (a normalized vector in Cn), which is often identified with the

outer product eueT
u , called a density matrix. However, there are many other possible pure states: one

may consider pure states associated to vertices u and v of the form s “ αeu ` βev, for some complex
coefficients satisfying |α|2 ` |β|2 “ 1 and then consider the corresponding density matrix ssT. More
generally, the density matrix associated with a mixed quantum state cannot be described by a single vector:
it can only be written as a convex combination of density matrices of pure states.

Most work on quantum state transfer focused on vertex states. Recently, quantum state transfer be-
tween pair states (quantum states of the form eu ´ ev) relative to the Laplacian matrix was explored in
[CG20]. In the same paper, quantum state transfer between plus states (quantum states of the form eu ` ev)
relative to the signless Laplacian matrix was also investigated. Apart from vertex, pair and plus states, there
are many density matrices arising from pure states that can be taken to be the initial state of the system in
the continuous quantum walk on the graph. For instance, for the path P5 on five vertices with middle vertex
u and end vertices v and w, PST occurs between eu ´ 2ev and eu ´ 2ew (Theorem 42). This particular
example motivates us to extend the analysis of quantum state transfer between pair or plus states to the
more general concept of two-states.

In this paper, we define two-states—states of the form eu ` sev for some 0 ‰ s P R. We develop tools
for studying problems arising from quantum state transfer between two-states, with particular emphasis
on strong cospectrality between two-states, PST between two-states, and the relation between perfect plus
state transfer of edges in a graph relative to the signless Laplacian and PST between corresponding vertices
in the line graph relative to the adjacency matrix. In Section 2, we analyze strong cospectrality between
two-states. In particular, we explore the basic properties of eigenvalue supports of two-states and give a
lower bound on the size of the eigenvalue support of an arbitrary two-state (Proposition 6). Moreover,
we provide necessary and sufficient conditions for a transitivity phenomenon to occur between strongly
cospectral pairs of two-states (Theorems 7 and 8). We also investigate the role of automorphisms in
strong cospectrality, and prove a property of strongly cospectral two-states analogous to that of strongly
cospectral vertices, which is that any automorphism that fixes one must also fix the other (Lemma 9).
Strong cospectrality is a prerequisite for high probability state transfer, and so we anticipate that our results
on strongly cospectral two-states will underpin future work on topics such as perfect and pretty good state
transfer, besides being of independent interest. In Section 3, we characterize strongly cospectral two-states
built from strongly cospectral vertices, and provide infinite families of graphs that admit or do not admit
strong cospectrality between specific pairs of two-states. By adapting known results about periodicity
and PST between vertex states, we obtain a characterization of periodicity and PST between two-states
in Section 4. We also present basic constructions of two-states that admit PST (Propositions 36, 37 and
39). In Section 5, we characterize PST between two-states in complete graphs, cycles and hypercubes. For
cycles, only those of order four and eight admit PST between two-states. In particular, we show that for a
cycle order four, there are infinitely many pairs of two-states, that are neither pair nor plus states, that admit
PST (Theorem 50(ii)). Meanwhile for a cycle of order eight, only plus states admit PST (Theorem 50(iv)).
This complements the result of Chen and Godsil about pair state transfer in cycles [CG20, Theorem 7.3].
We also show that pairs of two-states exhibiting PST are only obtained from pairs of antipodal vertices
in a hypercube (Theorem 56). Section 6 is devoted to exploring the relationship between the existence
of PST between plus states formed by edges in a graph relative to the signless Laplacian matrix, and the
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existence of PST between the corresponding vertices in the line graph relative to the adjacency matrix. We
utilize the singular values and singular vectors of the incidence matrix of a graph to characterize strong
cospectrality (Proposition 60) and PST (Theorem 67) in the line graph. As an application, we completely
characterize strong cospectrality and PST between vertices in line graphs of trees and unicyclic graphs.
Finally, we characterize strong cospectrality (Theorem 82) and PST (Theorem 84) between vertices in the
line graphs of Cartesian products in Section 7. Taken together, our results broaden the literature on pair
and plus states, establishing new instances of PST between two-states, while developing techniques that
will facilitate future research on this topic.

2 Strong cospectrality

Throughout, we assume that X is a connected undirected weighted graph with positive real edge weights,
possible loops, vertex set VpXq and edge set EpXq. We denote an edge in X incident to u and v by tu, vu.
If X has no loops, then we say that X is simple, and if all edge weights are equal to one, then we say that X
is unweighted. We denote the adjacency, Laplacian, and signless Laplacian matrices of X by ApXq, LpXq,
and QpXq, respectively. If X is clear from the context, we will simply write these matrices as A, L and Q.
We also let M be either A, L or Q. Denote the set of distinct eigenvalues of M by σpMq. Since M is a
real symmetric matrix, we can write M in its spectral decomposition as

M “
ÿ

λPσpMq

λEλ, (1)

where Eλ is the orthogonal projection matrix onto the eigenspace associated with λ.
Let u and v be two vertices in X. The eigenvalue support of u, denoted σupMq, is the set

σupMq “ tλ P σpMq : Eλeu ‰ 0u,

where 0 is the all-zeros vector. Vertices u and v are said to be cospectral if pEλqu,u “ pEλqv,v for each
λ P σupMq, parallel if Eλeu and Eλew are parallel vectors for each λ P σupMq, and strongly cospectral if
Eλeu “ ˘Eλev for each λ P σupMq. In the case of strong cospectrality, one can define the sets

σ`
u,vpMq “ tλ P σpMq : Eλeu “ Eλev ‰ 0u and σ´

u,vpMq “ tλ P σpMq : Eλeu “ ´Eλev ‰ 0u.

If u and v are cospectral, then they have the same eigenvalue support and Uptqu,u “ Uptqv,v for all t.
Two vertices are strongly cospectral if and only if they are cospectral and parallel [GS17, Lemma 4.1].
Thus, if u and v are strongly cospectral, then we have σupMq “ σvpMq “ σ`

u,vpMq Y σ´
u,vpMq. Strong

cospectrality is a necessary condition for PST [Cou14] and for pretty good state transfer [God12], and has
therefore become an important property of interest.

A two-state is a state of the form eu ` sew, where u ‰ w and s P Rzt0u. Throughout this paper,
we implicitly assume that s ‰ 0 for any vector of form eu ` sew. In particular, a two-state is a plus
state if s “ 1 and a pair state if s “ ´1. Note that if q, r P Rzt0u, then we may write the state
qeu ` rew “ qpeu ` sewq, where s “ r

q . Hence, to analyze states of the form qeu ` rew, it suffices to
consider the two-states of the form eu ` sew. Similar to the vertex case, the eigenvalue support of the
two-state eu ` sew, denoted σuwpMq, is the set

σuwpMq “ tλ P σpMq : Eλpeu ` sewq ‰ 0u.

Definition 1. Let s P Rzt0u and u, v, w, x P VpXq be such that eu ` sew and ev ` sex are linearly
independent. The two-states eu ` sew and ev ` sex are strongly cospectral in X if for each λ P σuwpMq,

Eλpeu ` sewq “ ˘Eλpev ` sexq.

3



Note that if eu ` sew and ev ` sex are strongly cospectral, then they have the same eigenvalue support,
which can be partitioned into the following sets

σ`
uw,vxpMq “ tλ P σpMq : Eλpeu ` sewq “ Eλpev ` sexq ‰ 0u

and
σ´

uw,vxpMq “ tλ P σpMq : Eλpeu ` sewq “ ´Eλpev ` sexq ‰ 0u.

The linear independence of eu ` sew and ev ` sex ensures that σ`
uw,vxpMq and σ´

uw,vxpMq are non-empty.
For vertex states, |σupMq| ě 2 for any u P VpXq. If we add that u is involved in strong cospectrality

with another vertex, then |σupMq| ě 3 whenever |VpXq| ě 3. For two-states, |σuvpMq| ě 1, and
|σuvpMq| “ 1 if and only if eu ` sew is an eigenvector for M. If we add that eu ` sew is involved in
strong cospectrality with another two-state, then Definition 1 guarantees that |σuvpMq| ě 2.

The union of eigenvalue supports of all vertex states in a graph equals σpMq. However, this is not
true for two-states. For instance, if X is simple, then 0 is an eigenvalue of L with associated orthogonal
projection matrix E0 “ 1

|VpXq|
J|VpXq| where Jn denotes the n ˆ n all-ones matrix, and so E0peu ´ evq “ 0

for any u, v P VpXq. Hence, the union of the eigenvalue supports of all pair states in a graph relative to L
is contained in σpLqzt0u. The same applies to M whenever the all-ones vector 1 is an eigenvector of M
associated with a simple eigenvalue.

From the two observations above, the size and union of eigenvalue supports are two properties that
highlight some fundamental differences between vertex states and two-states.

2.1 Eigenvalue supports

We denote the automorphism group of a graph X by AutpXq. The next proposition displays properties of
eigenvalue supports when an automorphism is applied on the vertices of the graph.

Proposition 2. Let ψ P AutpXq. The following hold.

(i) The eigenvalue support of eu ` sew is given by

σuwpMq “ tλ P σupMq Y σwpMq : Eλeu ‰ ´sEλewu . (2)

(ii) If ψpu, wq “ pv, xq, then the eigenvalue supports of eu ` sew and ev ` sex are equal.

(iii) If u and w are cospectral, then the eigenvalue support of eu ` sew is a subset of σwpMq. In partic-
ular, if ψpuq “ w and s R t˘1u, then σuwpMq “ σwpMq.

Proof. Since (i) and (ii) are immediate, we only prove (iii). Cospectrality between u and w implies that
σupMq “ σwpMq. Thus, (i) yields σuwpMq Ď σwpMq. Now, let P be the permutation matrix that
represents ψ. Since Eλ “ PTEλP and Peu “ ew, we obtain Eλpeu ` sewq “ 0 if and only if

PTEλPeu ` sEλew “ PTEλew ` sEλew “ pPT ` sIqEλew
p˚q
“ 0.

Since PT is a permutation matrix, all eigenvalues of PT are unit complex numbers. Thus, if s R t˘1u, then
PT ` sI is a full rank matrix, so p˚q holds if and only if Eλew “ 0. Equivalently, σuwpMq “ σwpMq.

By Proposition 2(iii), if X is vertex-transitive, then the eigenvalue support of eu ` sew is equal to
σpMq for any two of vertices u and w in X whenever s R t˘1u.

For a distance-transitive graph with pairs of vertices tu, wu and tv, xu having the same distances, the
eigenvalue supports of eu ` sew and ev ` sex are equal by Proposition 2(ii). In particular, for an edge-
transitive graph, the eigenvalue supports of eu ` sew and ev ` sex are equal for edges tu, wu and tv, xu.

We now prove the following result that generalizes [CG20, Theorem 8.3].
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Proposition 3. Let X be a bipartite graph with bipartition B1 and B2 with u, v P B1 and w, x P B2. Then
eu ´ sew and ev ´ sex are Laplacian strongly cospectral if and only if eu ` sew and ev ` sex are signless
Laplacian strongly cospectral. In this case, σ`

uw,vxpLq “ σ`
uw,vxpQq and σ´

uw,vxpLq “ σ´
uw,vxpQq.

Proof. If S be the diagonal matrix with pSqa,a “ 1 if a P B1 and pSqa,a “ ´1 otherwise, then Q “ S´1LS.
Thus, Eλ is an orthogonal projection matrix for the eigenvalue λ of L if and only if S´1EλS is an orthogonal
projection matrix for the eigenvalue λ of Q. Since Speu ´ sewq “ eu ` sew and Spev ´ sexq “ ev ` sex,
we have Eλpeu ´ sewq “ ˘Eλpev ´ sexq if and only if EλSpeu ` sewq “ ˘EλSpev ` sexq.

Remark 4. From Proposition 3, it follows that in a bipartite regular graph with bipartition B1 and B2,
strong cospectrality (resp., PST) between eu ´ sew and ev ´ sex is equivalent to strong cospectrality
(resp., PST) between eu ` sew and ev ` sex whenever u, v P B1 and w, x P B2.

Proposition 3 does not hold when u, w P B1. For the following graph, the plus states peu ` ewq and
pev ` exq are signless Laplacian strongly cospectral where the pair states peu ´ ewq and pev ´ exq are
not Laplacian strongly cospectral.

u

v

w

x

Figure 1: A counter-example of Proposition 3 when u, w P B1

Proposition 5. If eu ` sew is an eigenvector for M, then eu ` sew cannot exhibit strong cospectrality with
another two-state in X.

Proof. If eu ` sew is a θ-eigenvector for M, then Eλpeu ` sewq “ 0 for each λ P σuvpMqztθu. Thus,
|σuvpMq| “ 1, and so eu ` sew cannot be strongly cospectral with another two-state by Definition 1.

We also include a lower bound on the size of the eigenvalue support of eu ` sev.

Proposition 6. If eu ` sev is not an eigenvector for M and dpu, vq is the distance between u and v in X,
then

|σuvpMq| ě

R

dpu, vq

2

V

.

Proof. Let M be I ` A, Q or rI ´ L for some r greater than the maximum degree in X. Then M is a non-
negative matrix with positive diagonal entries. Since eu ` sev is not an eigenvector for M, the supports of
the vectors Mjpeu ` sevq are strictly increasing for j P t0, . . . , r

dpu,vq

2 s ´ 1u, and are linearly independent.
Finally, since Mjpeu ` sevq “

ř

j λjEjpeu ` sevq, it follows that the span of tEλpeu ` sevq : λ P σpMqu

has dimension at least r
dpu,vq

2 s.

2.2 Transitivity

In [CG20, Theorem 6.1], it was shown that if ea ´ eu and eb ´ ev admit Laplacian PST and eu ´ ew and
ev ´ ex admit Laplacian PST, then tea ´ ew, eb ´ exu also admit Laplacian PST. Therefore, if ea ´ eu
and eb ´ ev are strongly cospectral, and eu ´ ew and ev ´ ex are strongly cospectral, then it may happen
that ea ´ ew and eb ´ ex are also strongly cospectral. We call this transitivity of strongly cospectral pair
states. The following result characterizes this phenomenon.
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Theorem 7. Let tea ´ eu, eb ´ evu and teu ´ ew, ev ´ exu be strongly cospectral pairs. Then ea ´ ew
and eb ´ ex are strongly cospectral if and only if

(i) σ`
au,bvpMq “ σ`

uw,vxpMq and σ´
au,bvpMq “ σ´

uw,vxpMq, and

(ii) Eλea ‰ Eλew for at least one λ in σ`
au,bvpMq and at least one λ P σ´

au,bvpMq.

In this case,

σ`
aw,bxpMq “ tλ P σ`

au,bvpMq : Eλea ‰ Eλewu and σ´
aw,bxpMq “ tλ P σ´

au,bvpMq : Eλea ‰ Eλewu.

Proof. Suppose ea ´ ew and eb ´ ex are strongly cospectral, so that σawpMq “ σbxpMq. We first show
that Condition (i) is necessary. By way of contradiction, suppose λ P σ`

au,bvpMq X σ´
uw,vxpMq. Then

Eλpea ´ euq “ Eλpeb ´ evq ‰ 0 and Eλpeu ´ ewq “ ´Eλpev ´ exq ‰ 0, and so adding these two
equations yields

Eλpea ´ ewq “ Eλpeb ´ exq ´ 2Eλpev ´ exq “ ´Eλpeb ´ exq ` 2Eλpeb ´ evq.

As Eλpev ´ exq ‰ 0, we get Eλpea ´ ewq ‰ Eλpeb ´ exq, and since Eλpeb ´ evq ‰ 0, it follows that
Eλpea ´ ewq ‰ ´Eλpeb ´ exq. Thus, ea ´ ew and eb ´ ex are not strongly cospectral, a contradiction.
Thus, (i) holds, and (ii) is immediate from the fact that σ`

aw,bxpMq and σ´
aw,bxpMq are non-empty sets.

Conversely, suppose (i) and (ii) hold. By our assumption in (i), σaupMq “ σbvpMq “ σuwpMq “

σvxpMq. Hence, if λ R σaupMq, then Eλpea ´ euq “ Eλpeb ´ evq “ Eλpeu ´ ewq “ Eλpev ´ exq “ 0,
which in turn implies that Eλpea ´ ewq “ Eλpeb ´ exq “ 0. Thus, σawpMq Ď σaupMq. Now, note that
if σ`

au,bvpMq “ σ`
uw,vxpMq, then Eλpea ´ ewq “ Eλpeb ´ exq ‰ 0 provided Eλea ‰ Eλew. Similarly, if

σ´
au,bvpMq “ σ´

uw,vxpMq, then Eλpea ´ ewq “ ´Eλpeb ´ exq ‰ 0 provided Eλea ‰ Eλew. This shows
that ea ´ ew and eb ´ ex are strongly cospectral.

For two-states other than pair states, we present a sufficient condition for transitivity.

Theorem 8. Let tea ` seu, eb ` sevu and teu ` sew, ev ` sexu be strongly cospectral pairs of two-states
with s ‰ ´1. If all of the following conditions hold, then ea ` sew and eb ` sex are strongly cospectral.

(i) σ`
au,bvpMq “ σ`

uw,vxpMq and σ´
au,bvpMq “ σ´

uw,vxpMq.

(ii) Eλeu “ Eλev for all λ P σ`
au,bvpMq, and Eλeu “ ´Eλev for all λ P σ´

au,bvpMq.

(iii) Eλea ‰ ´sEλew for at least one λ in σ`
au,bvpMq and at least one λ P σ´

au,bvpMq.

In this case,

σ`
aw,bxpMq “ tλ P σ`

au,bvpMq : Eλea ‰ ´sEλewu and σ´
aw,bxpMq “ tλ P σ´

au,bvpMq : Eλea ‰ ´sEλewu.

Proof. Conditions (i)-(iii) and the fact that Eλpea ` sewq “ Eλpea ` seuq ` Eλpeu ` sewq ´ ps ` 1qEλeu
yield the desired result.

2.3 Automorphisms

The following result is an analogue of [GS17, Corollary 6.4].

Lemma 9. Suppose ψ P AutpXq and eu ` sew and ev ` sex are strongly cospectral. If s ‰ 1 and ψ fixes
u and w, then it also fixes v and x. If s “ 1 and ψ fixes the set tu, wu, then it fixes the set tv, xu.
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Proof. By assumption, Ejpeu ` sewq “ ˘Ejpev ` sexq. Let P be a permutation matrix that represents
ψ P AutpXq so that Ppeu ` sewq “ eu ` sew. Since PTEjP “ Ej for each j, we have

Ejpev ` sexq “ ˘Ejpeu ` sewq “ ˘PTEjPpeu ` sewq “ ˘PTEjpeu ` sewq “ PTEjpev ` sexq.

Since the Ej’s sum to identity, the above equation yields Ppev ` sexq “ ev ` sex.

Lemma 9 tells that for a pair of strongly cospectral two-states, any automorphism that fixes one two-
state must fix the other one too.

Next, we show that graph automorphisms can help build pairs of two-states that exhibit transitivity
using pairs of strongly cospectral vertices. The following result follows from the fact that PTEjP “ Ej for
each j whenever P represents an automorphism ψ of a graph.

Proposition 10. Let ψ P AutpXq such that ψpa, bq “ pu, vq. If a and b are strongly cospectral vertices
in X, then tea ` seu, eb ` sevu are strongly cospectral pairs with σ`

au,bvpMq “ σ`
a,bpMq and σ´

au,bvpMq “

σ´
a,bpMq.

Example 11. Let X be an even cycle or a hypercube. Then two vertices are strongly cospectral if and only
if they are antipodal in X. As X is distance transitive, for any pairs ta, bu and tu, vu of strongly cospectral
vertices, the two-states ea ` seu and eb ` sev are strongly cospectral.

3 Strongly cospectral two-states from strongly cospectral vertices

In this section, we characterize strong cospectrality between two-states of the form eu ` sew and ev ` sex,
where either tu, wu, tu, vu, tu, xu or tw, xu are strongly cospectral pairs of vertices.

3.1 The two-states eu ` sew and ev ` sex

We begin by determining strong cospectrality between two-states that are linear combinations of strongly
cospectral vertices.

Theorem 12. Let tu, vu and tw, xu be disjoint pairs of strongly cospectral vertices. Then eu ` sev and
ew ` sex are strongly cospectral if and only if for each λ P σupMq, there is some δ P t˘1u such that
$

’

&

’

%

Eλeu “ δEλew, if λ P σ`
u,vpMq X σ`

w,xpMq and s ‰ ´1, or λ P σ´
u,vpMq X σ´

w,xpMq and s ‰ 1
Eλeu “

δp1`sq

1´s Eλew, if λ P σ´
u,vpMq X σ`

w,xpMq and s R t˘1u

Eλeu “
δp1´sq

1`s Eλew, if λ P σ`
u,vpMq X σ´

w,xpMq and s R t˘1u.
(3)

Moreover, if eu ` sev and ew ` sex are strongly cospectral, then σupMq “ σwpMq and σ`
uv,wxpMq (resp.,

σ´
uv,wxpMq) is the set of all λ’s in (3) that yield δ “ 1 (resp., δ “ ´1). The following also hold.

(i) Suppose s P t˘1u and σs
uvpMq denote σ`

u,vpMq if s “ 1 and σ´
u,vpMq if s “ ´1. Then the two-

states eu ` sev and ew ` sex are strongly cospectral if and only if σs
uvpMq “ σs

wxpMq and for some
non-empty proper subset S of σs

uvpMq,

Eλeu “ Eλew for all λ P S and Eλeu “ ´Eλew for all λ P σs
uvpMqzS . (4)

In this case, σ`
uv,wxpMq “ S and σ´

uv,wxpMq “ σs
uvpMqzS .

7



(ii) Suppose s R t˘1u and σ`
u,vpMq “ σ`

w,xpMq. Then the two-states eu ` sev and ew ` sex are
strongly cospectral if and only if u, v, w and x are pairwise strongly cospectral vertices. In this
case, σ`

uv,wxpMq “ σ`
uwpMq and σ´

uv,wxpMq “ σ´
uwpMq.

(iii) Suppose s R t˘1u and σ`
u,vpMq ‰ σ`

w,xpMq. If the two-states eu ` sev and ew ` sex are strongly
cospectral, then u and w are not strongly cospectral.

Proof. Since u and v are strongly cospectral, we get

Eλpeu ` sevq “

#

p1 ` sqEλeu, if λ P σ`
u,vpMq

p1 ´ sqEλeu, if λ P σ´
u,vpMq.

(5)

Thus, Eλpeu ` sevq “ δEλpew ` sexq if and only if (3) holds. The second statement is also immediate
from (3). To prove (i), it suffices to show the case s “ ´1, and the case s “ 1 follows similarly. If
s “ ´1, then the eigenvalue support of eu ´ ev is σ´

u,vpMq. For eu ´ ev and ew ´ ex to be strongly
cospectral, their eigenvalue supports must coincide, so that σ´

u,vpMq “ σ´
w,xpMq, and the existence of the

set S in (4) is necessary to guarantee that both σ`
uv,wxpMq and σ´

uv,wxpMq are non-empty. The converse is
straightforward. Next, the assumption in (ii) implies that σ´

u,vpMq X σ`
w,xpMq “ σ`

u,vpMq X σ´
w,xpMq “ ∅,

and so (3) implies that eu ` sev and ew ` sex are strongly cospectral if and only if Eλeu “ δEλev for all
λ P σupMq. This yields (ii). Finally, since s ‰ 0, we get 1`s

1´s ‰ ˘1, and so (iii) holds.

Remark 13. For disjoint pairs of strongly cospectral vertices tu, vu and tw, xu, Theorem 12 requires that
u and w are parallel for eu ` sev and ew ` sex to be strongly cospectral.

We utilize Theorem 12 to rule out strong cospectrality of two-states in distance-regular graphs.

Example 14. Let X be an antipodal distance-regular graph such that for each u P VpXq, there is a
unique v P VpXq at maximum distance from u. Now, let tu, vu and tw, xu be pairs of vertices in X that
are at maximum distance, where u R tw, xu. From [CG16, Lemma 3.2.2], tu, vu and tw, xu are strongly
cospectral pairs of vertices. Since u and w are not antipodal vertices, they are not strongly cospectral,
and because they are cospectral, it follows that they are not parallel. By Remark 13, we conclude that the
two-states eu ` sev and ew ` sex are not strong cospectral .

The next example provides an infinite families of graphs containing disjoint pairs of strongly cospectral
vertices tu, vu and tw, xu such that eu ` sev and ew ` sex are strongly cospectral.

Example 15. Consider Pn with end vertices a and b such that λ ´ θ ‰ 2 for any two eigenvalues λ and θ
of A. Let c and d be the vertices of P2 and consider X “ Pn□P2. Since all eigenvalues of Pn are simple,
all eigenvalues of X are also simple. Consider the corner vertices u “ pa, cq, v “ pa, dq, w “ pb, cq,
and x “ pb, dq of X. As the automorphisms of X act transitively on its corners, it follows that these
vertices are cospectral, and hence pairwise strongly cospectral. Since there exist ψ1, ψ2, ψ3 P AutpXq

such that ψ1pu, vq “ pw, xq, ψ2pu, wq “ pv, xq and ψ3pu, xq “ pw, vq, we get σ`
u,vpAq “ σ`

w,xpAq,
σ`

u,wpAq “ σ`
v,xpAq and σ`

u,xpAq “ σ`
w,vpAq. Applying (i) and (ii) of Theorem 12, we conclude that

teu ` sev, ew ` sexu, teu ` sew, ev ` sexu and teu ` sex, ew ` sevu are strongly cospectral pairs of
two-states. This fact also holds for L, and because X is bipartite, it also holds for Q.

Next, we examine strong cospectrality between the two-states eu ` sew and ev ` sex where tu, vu and
tw, xu are strongly cospectral pairs of vertices.
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Theorem 16. Let tu, vu and tw, xu be disjoint pairs of strongly cospectral vertices. The two-states eu `

sew and ev ` sex are strongly cospectral if and only if the sets σ`
u,vpMq X σ´

w,xpMq and σ´
u,vpMq X σ`

w,xpMq

are both empty. Moreover, if eu ` sew and ev ` sex are strongly cospectral, then

σ`
uw,vxpMq “ σ`

u,vpMq Y σ`
w,xpMq and σ´

uw,vxpMq “ σ´
u,vpMq Y σ´

w,xpMq.

Proof. By assumption, Eλeu “ ˘Eλev for λ P σupMq, and sEλew “ ˘sEλex for λ P σwpMq. If
λ P σ`

u,vpMq Y σ`
w,xpMq, then Eλpeu ` sewq “ Eλpev ` sexq ‰ 0. If λ P σ´

u,vpMq Y σ´
w,xpMq, then

Eλpeu ` sewq “ ´Eλpev ` sexq ‰ 0. If λ P σ`
u,vpMq X σ´

w,xpMq, then Eλpeu ` sewq ‰ ˘Eλpev ` sexq;
otherwise, we would have Eλev “ 0 or Eλex “ 0. From these observations, the result is immediate.

Corollary 17. Let tu, vu and tw, xu be disjoint pairs of strongly cospectral vertices with σupMq “

σwpMq. Then eu ` sew and ev ` sex are strongly cospectral if and only if σ`
u,vpMq “ σ`

w,xpMq.

We end this subsection with infinite families of graphs containing disjoint pairs of strongly cospectral
vertices tu, vu and tw, xu such that eu ` sew and ev ` sex are also strongly cospectral.

Example 18. Let tu, vu and tw, xu be disjoint pairs of strongly cospectral vertices in Qn. As Qn is
distance-transitive, eu ` sew and ev ` sex are strongly cospectral by Proposition 10.

Example 19. Consider X “ Pn□P2 in Example 15 with corners u “ pa, cq, v “ pa, dq, w “ pb, cq, and
x “ pb, dq that are pairwise strongly cospectral with σ`

u,vpMq “ σ`
w,xpMq, where a, b and c, d are end

vertices of Pn and P2, respectively. As σupMq “ σwpMq, Corollary 17 yields strong cospectrality between
eu ` sew and ev ` sex.

3.2 The two-states eu ` sew and ev ` sew

We now characterize strong cospectrality between two-states whose corresponding tails are the same vertex
and one of the two-states is a linear combination of strongly cospectral vertices.

Theorem 20. Let u and w be strongly cospectral vertices and suppose v P VpXqztu, wu. Then eu ` sew
and ev ` sew are strongly cospectral if and only if the following two conditions hold.

(i) Either Eλev “ Eλew or Eλev “ p´2s ´ 1qEλew, whenever λ P σ`
u,wpMq.

(ii) Either Eλev “ ´Eλew or Eλev “ p´2s ` 1qEλew, whenever λ P σ´
u,wpMq.

Moreover, if eu ` sew and ev ` sew are strongly cospectral, then

σ`
uw,vwpMq “ tλ P σwpMq : Eλev “ ˘Eλewu and σ´

uw,vwpMq “ tλ P σwpMq : Eλev “ p´2s ˘ 1qEλewu.

Proof. Since u and w are strongly cospectral, (5) yields Eλpeu ` sewq “

#

p1 ` sqEλew, if λ P σ`
u,wpMq

ps ´ 1qEλew, if λ P σ´
u,wpMq

.

Combining this with the fact that eu ` sew and ev ` sew are strongly cospectral if and only if Eλpev `

sewq “ ˘Eλpeu ` sewq yields the desired result.

Now, if we add that v and w are strongly cospectral in Theorem 20, then σ´
uw,vwpMq “ ∅ whenever

eu ` sew and ev ` sew are strongly cospectral. Since this cannot happen, we get the following result.

Corollary 21. If u, v and w are three distinct pairwise strongly cospectral vertices, then eu ` sew and
ev ` sew are not strongly cospectral.
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Next, we investigate strong cospectrality between two-states eu ` sew and ev ` sew with u strongly
cospectral to v.

Corollary 22. Let u and v be strongly cospectral vertices and suppose w P VpXqztu, vu. Then eu ` sew
and ev ` sew are strongly cospectral if and only if σ´

u,vpMq X σwpMq “ ∅. In this case,

σ`
uw,vwpMq “ tλ P σ`

u,vpMq Y σwpMq : Eλeu ‰ ´sEλewu and σ´
uw,vwpMq “ σ´

u,vpMq.

Proof. Applying Theorem 16 with w “ x and noting that σ`
w,xpMq “ σwpMq and σ´

w,xpMq “ ∅ yields
the desired result.

The following result is a consequence of Corollary 22.

Corollary 23. Let u and v be strongly cospectral vertices. If w P VpXqztu, vu such that σupMq “ σwpMq,
then eu ` sew and ev ` sew are not strongly cospectral.

Proof. The condition that σupMq “ σwpMq violates Corollary 22, and so the result is immediate.

To illustrate Corollary 23, recall that a weighted walk-regular graph X is a simple weighted-regular
graph such that pAkqu,u “ pAkqv,v for any positive integer k and for any two vertices u and v in X. Thus,
the vertices in a weighted walk-regular graph are pairwise cospectral. Vertex-transitive and distance-
regular graphs are well-known examples of unweighted walk-regular graphs.

Corollary 24. Let X be a weighted walk-regular graph so that σwpMq “ σpMq for each w P VpXq. If
u and v are strongly cospectral vertices in X and w P VpXqztu, vu, then eu ` sew and ev ` sew are not
strongly cospectral by Corollary 23. This applies to M “ A, L, Q because X is regular.

3.3 The two-states eu ` sew and ev ` seu

The following result is straightforward.

Proposition 25. Let u, v, w P VpXq. Then eu ` sew and ev ` seu are strongly cospectral if and only if
for each λ P σuwpMq, either (i) p1 ´ sqEλeu “ Eλpev ´ sewq or (ii) p1 ` sqEλeu “ ´Eλpev ` sewq, and
the equations in (i) and (ii) hold for at least one λ P σuwpMq. Moreover, σ`

uw,vupMq and σ´
uw,vupMq are

the subsets of σuwpMq such that (i) and (ii) hold, respectively.

If v “ w in Proposition 25, then we get the following result.

Proposition 26. Let s R t˘1u. Then the two-states eu ` sew and ew ` seu are strongly cospectral if and
only if u and w are strongly cospectral. In this case, σ`

uw,wupMq “ σ`
u,wpMq and σ´

uw,wupMq “ σ´
u,wpMq.

If we add that u and w are strongly cospectral in Proposition 25, then obtain the following.

Corollary 27. Let u and w be strongly cospectral vertices. Then eu ` sew and ev ` seu are strongly
cospectral if and only if the following two conditions hold.

(i) Either (a) Eλew “ Eλev or (b) p1 ` 2sqEλew “ ´Eλev, whenever λ P σ`
u,wpMq.

(ii) Either (a) p´1 ` 2sqEλew “ ´Eλev or (b) Eλew “ Eλev, whenever λ P σ´
u,wpMq.

Moreover, if eu ` sew and ev ` seu are strongly cospectral, then σ`
uw,vupMq (resp., σ´

uw,vupMq) is the set
of all λ’s satisfying (i)(a) and (ii)(b) (resp., (i)(b) and (ii)(b)).

The following remark is similar in spirit to Remark 13.
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Remark 28. If u and w are strongly cospectral vertices, then Theorem 20 and Corollary 27 require that
u and v are parallel for the pairs teu ` sew, ev ` sewu and teu ` sew, ev ` seuu to be strong cospectral.

Example 29. Let X be an antipodal distance-regular graph such that for each u P VpXq, there is a unique
v P VpXq at maximum distance from u. Now, let tu, vu and tw, xu be pairs of vertices in X that are at
maximum distance, where u R tw, xu. By Example 14, u and w are not parallel. Applying Remark 28, we
get that teu ` sev, ew ` sevu and teu ` sev, ew ` seuu are not strongly cospectral pairs .

4 State transfer between two-states

A continuous-time quantum walk with respect to M is determined by the unitary matrix

UMptq “ e´itM,

called the transition matrix relative to M. Using (1), we may write the above equation as

UMptq “
ÿ

λPσpMq

e´itλEλ.

Let u, v, w, x P VpXq such that u ‰ w, v ‰ x and pu, wq ‰ pv, xq. We say that perfect state transfer
(PST) occurs between the two-states eu ` sew and ev ` sex if

Upτqpeu ` sewq “ γpev ` sexq (6)

for some time τ ą 0 and unit γ P C. If u “ v and w “ x in p6q, then we say that the two-state ev ` sex is
periodic. The minimum positive time such that PST occurs between eu ` sew and ev ` sex is called the
minimum PST time, and the minimum positive time such that eu ` sew is periodic is called the minimum
period. Note that PST between two-states at time τ implies that both are periodic at time 2τ. Moreover,
the minimum PST time between a pair of two-states is half of their minimum period.

We say that eu ` sew is a fixed two-state if eu ` sew is an eigenvector for M. Note that eu ` sew is
fixed if and only if σuwpMq has size one. Moreover, if eu ` sew is fixed, then

Uptqpeu ` sewq “ γpeu ` sewq for all t,

where γ “ e´itλ and λ is the eigenvalue of M with associated eigenvector eu ` sew. Consequently, a
fixed two-state cannot be involved in periodicity and PST. Thus, we limit our discussion of periodicity and
PST to two-states that are not eigenvectors associated with M. Since we deal with connected graphs, a
standard basis vector cannot be an eigenvector M, and so eu for any u P VpXq cannot be a fixed state.
This fact highlights the difference between two-state transfer and vertex state transfer.

4.1 Periodicity

We say that a set S Ă R with at least two elements satisfies the ratio condition if

λj ´ λk

λℓ ´ λm
P Q

for any λj, λk, λℓ, λm P S with λℓ ‰ λm. If |S | “ 2, then S automatically satisfies the ratio condition. In
what follows, we denote the characteristic polynomial of M in the variable x by ϕpM, xq. The following
theorem follows directly from Theorems 7.6.1, 9.1.1 and 9.5.1 in [CG21].
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Theorem 30. The two-state eu ` sew is periodic in X if and only if σuwpMq satisfies the ratio condition.
If we add that σuwpMq is closed under taking algebraic conjugates, then eu ` sew is periodic in X if and
only if either

(i) all eigenvalues in σuwpMq are integers, or

(ii) there is a square-free integer ∆ ą 1 such that all eigenvalues in σuwpMq are quadratic integers in
Qp

?
∆q, and the difference of any two eigenvalues in σuwpMq is an integer multiple of

?
∆.

In particular, if s is rational and ϕpM, xq has integer coefficients, then eu ` sew is periodic in X if and
only if conditions (i) or (ii) hold.

Corollary 31. If σupMq Y σwpMq satisfies the ratio condition, then eu ` sew is periodic in X for all s.

Proof. The corollary follows immediately from Proposition 2(i) and Theorem 30.

In particular, if both u and w are periodic at time τ then so is eu ` sew for all s. We now give an infinite
family of graphs that have periodic pair states but no periodic vertices. Let X be a conference graph on n
vertices, where

?
n R Z. Now X is regular with valency k “ n´1

2 and the (adjacency) eigenvalue support
of each vertex is

"

k,
´1 `

?
n

2
,

´1 ´
?

n
2

*

.

Hence X has no periodic vertices. Since Ek “ 1
n J, we have Ekpeu ´ ewq “ 0 and σuw satisfies the ratio

condition. Therefore the pair state eu ´ ew is periodic. This also applies to L and Q because X is regular.
From Theorem 30, the following is immediate.

Corollary 32. Let eu ` sew be periodic in X. If σuwpMq is closed under taking algebraic conjugates,
then |λ ´ µ| ě 1, for λ, µ P σuwpMq.

Corollary 7.7.1 of [CG21] states that, when M “ A, graphs with periodic vertices are rare. We are
ready to show a similar statement about periodic two-states.

Corollary 33. For M “ A and s ą 0, there are only finitely many connected integer-weighted graphs
with maximum valency at most k that contain a periodic two-state eu ` sew which is not an eigenvector of
A.

Proof. Let r be the covering radius of tu, wu in X. Then tpI ` Aqjpeu ` sewq : j “ 0, . . . , ru is a linearly
independent set in the span of tEλpeu ` sewq : λ P σuwu. Hence r ă |σuw|. The spectral radius of A is
at most k and it follows from Corollary 32 that |σuw| ď 2k ` 1. There are only finitely many graphs with
maximum degree k and the covering radius of tu, wu bounded above by 2k.

Corollary 33 does not apply when s ă 0. The following infinite family of trees tTn : n ě 0u is a
special case of Pal’s construction [Pal24]. Each tree in this family has maximum degree 3 with PST from
eu ´ ew to ev ´ ex, hence eu ´ ew and ev ´ ex are periodic two-states.

We close this subsection with the following result, which will be used in Section 5.

Proposition 34. Let u and w be cospectral vertices in X. If eu ` sew is periodic at time τ, then either
s P t˘1u or both u and w are periodic in X at time τ.

Proof. By assumption, Upτqpeu ` sewq “ γpeu ` sewq for some unit γ P C. Comparing the uth and wth

entries of this equation gives us Upτqu,u ` sUpτqu,w “ γ and sUpτqw,w ` Upτqu,w “ sγ, respectively.
Therefore, Upτqu,u “ Upτqw,w implies Upτqu,wps2 ´ 1q “ 0, from which the conclusion is immediate.
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Figure 2: Tn

4.2 Perfect state transfer

Adapting [Cou14, Theorem 2.4.4] yields a characterization of PST between two-states.

Theorem 35. Let X be a weighted graph with possible loops and suppose σuwpMq is closed under taking
algebraic conjugates. The two-states eu ` sew and ev ` sex exhibit perfect state transfer in X if and only
if all of the following conditions hold.

(i) The two-states eu ` sew and ev ` sex are strongly cospectral. Let λ1 P σ`
uw,vxpMq.

(ii) The elements in σuwpMq are either all integers or all quadratic integers. Moreover, there is a square-
free integer ∆ ě 1 such that all eigenvalues in σuwpMq are quadratic integers in Qp

?
∆q, and the

difference of any two eigenvalues in σuwpMq is an integer multiple of
?

∆.

(iii) Let g “ gcd
´!

λ1´λj
?

∆
: λj P σuwpMq

)¯

. Then λj P σ`
uw,vxpMq if and only if

λ1´λj

g
?

∆
is even.

Moreover, the minimum PST time between eu ` sew and ev ` sex is τ0 “ π
g

?
∆

.

The following result can be viewed as a strengthening of Proposition 10.

Proposition 36. Suppose perfect state transfer occurs between u and v. If ψ P AutpXq such that
ψpu, vq “ pw, xq, then perfect state transfer occurs between vertices w and x, and between the pairs
of two-states teu ` sew, ev ` sexu and teu ` sex, ev ` sewu, at the same time.

Proof. By assumption, Upτqeu “ γev for some unit γ P C. If P represents ψ, then Uptq “ PTUptqP,
Peu “ ew and Pev “ ex, which then gives us Upτqew “ γex so that Upτqpeu ` sewq “ γpev ` sexq.
Since Upτqew “ γex is equivalent to Upτqex “ γew, we also have Upτqpeu ` sexq “ γpev ` sewq.

The following is an analogue of Corollary 22 for PST.

Proposition 37. Suppose perfect state transfer occurs between u and v at time τ and w is periodic at τ.
Then eu ` sew and ev ` sew admit perfect state transfer at time τ if and only if σ`

u,vpMq X σwpMq ‰ ∅.

Proof. By assumption, Upτqpeu ` sewq “ e´itλev ` se´itµew for some λ P σ`
u,vpMq and µ P σwpMq.

Now, eu ` sew and ev ` sew admit perfect state transfer at time τ if and only if Upτqpeu ` sewq “ γpev `

sewq for some unit γ P C. Equivalently, γpev ` sewq “ e´iτλpev ` seiτpλ´µqewq. Since ev ` sew is real,
the preceding equation holds if and only if γ “ e´iτλ and λ “ µ; that is, σ`

u,vpMq X σwpMq ‰ ∅.

Example 38. Consider P3 with vertices u, v and w, where w is the degree-two vertex. With respect to A, w
is periodic at τ “ π?

2
and PST occurs between u and v at time τ. Since σ`

u,vpAq “ σwpAq “ t˘
?

2u, we
see from Proposition 37 that PST occurs between eu ` sew and ev ` sew at time τ. As a generalisation, we
also consider G “ P□k

3 , the kth Cartesian power of P3, for any k ě 1. According to the fact that [CDD`05]
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UGptq “
Âk

i“1 UP3ptq, for any time t, we deduce that the vertices pu, . . . , uq and pv, . . . , vq exhibit PST
and pw, . . . , wq is periodic at time τ. Furthermore, since k

?
2 is the largest simple eigenvalue of G, it

follows that
k
?

2 P σ`

pu,...,uq,pv,...,vq
pAq X σpw,...,wqpAq.

Therefore, according to Proposition 37, the two-states epu,...,uq ` sepw,...,wq and epv,...,vq ` sepw,...,wq admit
PST at τ. This provides an infinite family of graphs admitting PST between two-states.

Next, we have the following result which can be viewed as a stronger version of Proposition 26.

Proposition 39. Suppose u and w are two vertices in X. The following hold.

(i) Let s P t˘1u. Perfect state transfer occurs between eu ` sew and ew ` seu if and only if they are
periodic at the same time.

(ii) Let s R t˘1u. Perfect state transfer occurs between eu ` sew and ew ` seu if and only if it occurs
between u and w at the same time.

Proof. Note that PST between eu ` sew and ew ` seu is equivalent to Upτqpeu ` sewq “ γpew ` seuq

for some unit γ P C. Since s P t˘1u, the statement (i) is straightforward. Since the converse of (ii)
is straightforward, it suffices to prove the forward direction. Suppose PST occurs between eu ` sew and
ew ` seu. Then Theorem 35(i)-(iii) hold. In particular, eu ` sew and ew ` seu are strongly cospectral,
and so Proposition 26 implies that u and w are strongly cospectral with σ`

uw,wupMq “ σ`
u,wpMq and

σ´
uw,wupMq “ σ´

u,wpMq. Since Theorem 35(ii)-(iii) applies to σ`
uw,wupMq and σ´

uw,wupMq, they also apply
to σ`

u,wpMq and σ´
u,wpMq. Applying [Cou14, Theorem 2.4.4] yields PST between u and w at the same

time. This proves (ii).

Note that in Proposition 39(i), the states eu ` sew and ew ` seu are either equal or opposite in sign
whenever s P t˘1u. Hence, to avoid conflating PST and periodicity, we will not consider PST between
the two-states eu ` sew and ew ` seu whenever s P t˘1u.

5 Special classes

We now investigate PST between two-states in complete graphs, cycles and hypercubes.

5.1 Complete graphs

Recall that for a complete graph Kn, we have σpLq “ t0, nu, where 0 is simple with eigenvector 1 and n has
multiplicity n ´ 1 with eigenvectors e1 ´ ej for all j P t1, . . . , nu. Consequently, σuwpLq “ tnu whenever
s “ ´1, or n “ 2 and s “ 1, and σuwpLq “ t0, nu otherwise. Thus, the following is straightforward.

Lemma 40. Let n ě 2. The two-state eu ` sew is periodic in Kn if and only if either (i) n “ 2 and s ‰ ˘1
or (ii) n ě 3 and s ‰ ´1. In both cases, ρ “ 2π

n .

Since En “ I ´ 1
n Jn in Kn, we get Enpeu ` sewq “ eu ` sew ´ 1`s

n 1. Thus, if tu, wu ‰ tv, xu, then
Enpeu ` sewq ‰ ˘Enpev ` sexq. Invoking Theorem 35 yields the following result.

Theorem 41. No pair of two-states in Kn of the form eu ` sew and ev ` sex exhibit perfect state transfer.
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5.2 Weighted P5

Let ω ą 0 and consider the weighted path P5pωq with vertex set t1, 2, 3, 4, 5u and edges tj, j ` 1u for
j P t1, 2, 3, 4u (see Figure 3). The eigenvalues of ApP5pωqq are

λ1 “ 0, λ2 “ ω, λ3 “ ´ω, λ4 “
a

ωpω ` 2q and λ5 “ ´
a

ωpω ` 2q. (7)

ω ?
ω

?
ω ω

Figure 3: The weighted path P5pωq

Theorem 42. In P5pωq, perfect state transfer occurs between e3 ´ 2?
ω

e1 and e3 ´ 2?
ω

e5 at time π
ω .

Proof. The associated eigenvectors of the eigenvalues in (7) are v1 “ r1, 0, ´
?

ω, 0, 1sT, v2 “ r´1, ´1, 0, 1, 1sT,
v3 “ r´1, 1, 0, ´1, 1sT, v4 “ r

?
ω,

?
ω ` 2, 2,

?
ω ` 2,

?
ωsT and v5 “ r

?
ω, ´

?
ω ` 2, 2, ´

?
ω ` 2,

?
ωsT.

Now, let s “ ´ 2?
ω

. From these eigenvectors, one can check that the two-states e3 ` se1 and e3 ` se5 are

strongly cospectral with σ`
31,35pAq “ t0u and σ´

31,35pAq “ t˘ωu. Consequently,

Upπ{ωqpe3 ` se1q “

´

E1 ` eip π
ω qωE2 ` eip π

ω qp´ωqE3

¯

pe3 ` se1q

“ pE1 ´ E2 ´ E3q pe3 ` se1q “ pE1 ` E2 ` E3q pe3 ` se5q “ e3 ` se5,

which yields the desired result.

5.3 Cycles

In this subsection, we completely charaterize PST between two-states in Cn for n ě 4. Without loss of
generality, we deal with the Laplacian case. The eigenvalues of LpCnq are

λj “ 2 ´ 2 cosp2jπ{nq

for j P t0, 1, . . . , t n
2 uu with associated eigenvectors vj and vn´j, where

vk “
1

?
n

„

1
´

e2πi{n
¯k ´

e2πi{n
¯2k

¨ ¨ ¨

´

e2πi{n
¯pn´1qk

ȷT

, for k “ 0, . . . , n ´ 1.

Here we recall a useful result from [CDE`21] that if u and v are strongly cospectral in Cn, then n is even,
σ`

u,vpLq “ tλk P σpLq | k evenu and σ´
u,vpLq “ tλk P σpLq | k oddu. Furthermore, we also remark the

following fact that is used throughout this subsection.

Remark 43. Let 4 ď n ď 17. We see from [WZ93] that the degree of the minimal polynomial of
cosp2π{nq is one only for n “ 4, 6, and is two only for n “ 5, 8, 10, 12.

Since a two-state involved in PST is necessarily periodic, we narrow our focus on periodic two-states.
Suppose that eu ` sew is periodic. Since any pair of two vertices is a cospectral pair, we see from Propo-
sition 34 that (i) s “ ˘1 or (ii) s ‰ ˘1 implies that two vertices are periodic.

Let us first consider the latter case.
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Proposition 44. Let s ‰ ˘1. A two-state eu ` sew is periodic Cn if and only if n “ 4, 6. In particular,
eu ` sew is periodic with ρ “ π whenever n “ 4, and ρ “ 2π whenever n “ 6.

Proof. Since Cn is vertex-transitive, σupLq “ σpLq “ t n
2 u ` 1. We find from Corollary 32 that t n

2 u ` 1 ď 5
implies n ď 9. Examining σupLq satisfying Theorem 30, the conclusion follows.

The characterization of PST between pair states or plus states is given in [CG20] for the case that at
least one of the states corresponds to an edge. In this case, C4 is the only one allowing PST between pair
states and plus states. We shall complete the characterization. We first consider periodicity of pair states
and plus states.

Lemma 45. Let e1 ` sew be a two-state in Cn for 2 ď w ď n
2 ` 1. Let 1 ď j ď t n

2 u. If s “ ´1 and
pw ´ 1qj{n R Z, then λj P σ1wpMq. Furthermore, if s “ 1 and pw ´ 1qj{n ´ 1

2 R Z, then λj P σ1wpMq.

Proof. We will prove it by contrapositive. Suppose that Eλj pe1 ´ ewq “ 0, which is equivalent to pvjvT
j `

vn´jvT
n´jqpe1 ´ ewq “ 0. Then eT

1 pvjvT
j ` vn´jvT

n´jqpe1 ´ ewq “ 0, which is equivalent to cosp2πpw ´

1qj{nq “ 1. Hence, pw ´ 1qj{n P Z. Similarly, if Eλj pe1 ` ewq “ 0, then pw ´ 1qj{n ´ 1
2 P Z.

Lemma 46. Let eu ` sew be a two-state in Cn. Suppose that u and w are not strongly cospectral. Then
λ0, λ1 P σuwpLq for s “ 1, and λ1, λ2 P σuwpLq for s “ ´1.

Proof. Clearly, λ0 P σuwpLq for s “ 1, and λ0 R σuwpLq for s “ ´1. We may assume u “ 1 and
2 ď w ă n

2 ` 1. Since 0 ă w´1
n ă 1

2 and ´ 1
2 ă w´1

n ´ 1
2 ă 0, the conclusion follows from Lemma 45.

Proposition 47. A two-state eu ` ew is periodic at time ρ in Cn if and only if one of the following hold:

(i) If u and w are not antipodal, then pn, ρq “ p4, πq or pn, ρq “ p6, 2πq.

(ii) If u and w are antipodal, then pn, ρq “ p4, π{2q, pn, ρq “ p6, 2π{3q, pn, ρq “ p8, πq or pn, ρq “

p12, 2πq.

Proof. Suppose that e1 ` ew is periodic in Cn at time ρ for some 2 ď w ď n
2 ` 1. Assume that 1 and w

are not strongly cospectral. From Lemma 46, λ0, λ1 P σuwpLq. Then λ1 “ 2 cos
` 2π

n

˘

must be an integer.
So, n “ 4 or n “ 6. Now assume that u and w are strongly cospectral. Then λ2 P σuwpLq “ σ`

u,wpLq.
Since λ2 is an integer, we have n P t4, 6, 8, 12u.

Let us examine times for periodicity for n “ 6. If w “ 2 then σuwpLq “ t0, 1, 3u and ρ “ 2π. If
w “ 3 then σuwpLq “ t0, 1, 3, 4u which yields ρ “ 2π. If w “ 4 then σuwpLq “ t0, 3u which yields
ρ “ 2π{3. One can verify the remaining cases.

Proposition 48. A two-state eu ´ ew is periodic in Cn if and only if one of the following conditions hold.

n ρ distance between u and w
4 π 2
5 2π{

?
5 1 or 2

6 2π 1
6 π 2
6 2π{3 3
8 π{

?
2 4
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Proof. Suppose that u and w are not strongly cospectral. From Lemma 46, λ1, λ2 P σuwpLq. From
Corollary 32, 1 ď λ1 ´ λ2 “ 2 pcos p2π{nq ´ cos p4π{nqq. This yields n ă 12. From Theorem 30, λ1
and λ2 both are either integers or quadratic integers. It follows from Remark 43 that n P t4, 5, 6u. (For
n “ 8, λ1 “

?
2 and λ2 “ 0; for n “ 10, λ1 ´ λ2 “ 1.)

Assume that u and w are strongly cospectral. Then n is even and σuwpLq “ σ´
u,wpLq. Since σuwpLq ě

2, we have n ě 6. Then λ1, λ3 P σuwpLq. We see that 1 ď λ1 ´ λ3 “ 2 pcos p2π{nq ´ cos p6π{nqq. This
yields n ă 18. As done above, it can be seen that n P t6, 8u.

One can find the times for periodicity.

We introduce some result for strongly cospectral states in Cn.

Lemma 49. Let u and w be antipodal in Cn for n even and n ě 4. There is no two-state of form ev ´ ex
that is strongly cospectral with eu ´ ew. Moreover, eu ` ew and ev ` ex are strongly cospectral if and
only if v and x are antipodal and the distance between u and v is n{4; in particular, σ`

uw,vxpLq “ tλk P

σuwpLq | k ” 0 pmod 4qu and σ´
uw,vxpLq “ tλk P σuwpLq | k ” 2 pmod 4qu.

Proof. We may assume that u “ 1 and w “ n
2 ` 1. Let s “ ´1. Note that λ1 P σ1wpLq. Suppose Eλ1pe1 ´

sewq “ ˘Eλ1pev ´ sexq. Taking eT
1 on both sides, 2 “ ˘ pcos p2πpv ´ 1q{nq ´ cos p2πpx ´ 1q{nqq . It

follows that tv, xu “ tu, wu.
Let s “ 1. If eu ` ew and ev ` ex are strongly cospectral, then it follows from Lemma 9 that without

loss of generality, v “ n
4 ` 1 and x “ 3n

4 ` 1. Note that σuwpLq “ σ`
u,wpLq “ tλ0, λ2, . . . , λ2t n

4 uu. For the
converse, one can verify that given λj P σuwpLq, eT

k Eλj e1 “ ˘eT
k Eλj e n

4 `1 for 1 ď k ď n, and establish
the remaining result.

We now characterize two-states in Cn that exhibit PST. We recall that regarding PST between pair or
plus states, it is enough to consider non-edges.

Theorem 50. Let u P VpCnq. Perfect state transfer occurs between two-states in Cn if and only if

(i) n “ 4, between eu ` seu`1 and eu`2 ` seu`3 with minimum PST time τ0 “ π
2 ,

(ii) n “ 4, between eu ` seu`2 and eu`2 ` seu for all s R t˘1u with minimum PST time τ0 “ π
2 ,

(iii) n “ 4, between eu ` eu`2 and eu`1 ` eu`3 with minimum PST time τ0 “ π
4 , or

(iv) n “ 8, between eu ` eu`4 and eu`2 ` eu`6 with minimum PST time τ0 “ π
2 .

Proof. Since periodicity is a requirement for PST, it suffices to check which cases in Propositions 44, 47
and 48 yield PST. We may assume that u “ 1 and 2 ď w ď t n

2 u ` 1.

Case 1: n “ 4. By examining the orthogonal projection matrices for C4, one can verify that the folloiwng
is the only strongly cospectral two-states: (a) e1 ` se2 and e3 ` se4; (b) e1 ` se3 and se1 ` e3 for s R

t˘1u; or (c) e1 ` e3 and e2 ` e4. For the case (a), we have the following subcases: σ´
12,34pLq “ t2u;

σ`
12,34pLq “ t4u if s “ ´1; σ`

12,34pLq “ t0u if s “ 1; and σ`
12,34pLq “ t0, 4u otherwise. For the case

(b), σ`
13,31pLq “ t0, 4u and σ´

13,31pLq “ t2u. For the last case (c), σ`
13,24pLq “ t0u and σ´

13,24pLq “ t4u.
Applying Theorem 35 yields the results (i)–(iii).

Case 2: n “ 5. Examining the orthogonal projection matrices, it can be seen that pair states corresponding
to non-edges are not strongly cospectral.

Case 3: n “ 8 and n “ 12. Consider C8. From Lemma 49, it suffices to consider pair of plus states
e1 ` e5 and e3 ` e7. Moreover, σ`

15,37pLq “ t0, 4u and σ`
15,37pLq “ t2u. Invoking Theorem 35 yields PST

at τ0 “ π
2 . In this way, it can be seen that there is no PST between two-states in C12.

17



Case 4: n “ 6. As done in Case 3, we can find that there is no PST between pair states and between plus
states. It suffices to show that e1 ` se2, e1 ` se3, and e1 ` se4 are not involved in PST.

• By Proposition 10, e1 ` se2 and e4 ` se5 are strongly cospectral . In this case, σ`
12,45pLq “ t0, 3u

and 1 P σ´
12,45pLq. Applying Theorem 35(iii), there is no PST between e1 ` se2 and e4 ` se5.

Examining the orthogonal projection matrices associated with λ P t3, 4u yields no other two-state
is strongly cospectral with e1 ` se2.

• The same argument above yields e1 ` se3 as the only two-state that is strongly cospectral with
e4 ` se6. Since 3 P σ`

13,46pLq and 1 P σ´
12,45pLq, there is no PST between e1 ` se3 and e4 ` se6.

• Since vertices 1 and 4 are antipodal, the only two-state strongly cospectral with e1 ` se4 is e4 ` se1.
But as C6 has no PST, Proposition 39(ii) implies that PST does not occur between these two-states.

Combining all subcases above yields no PST between two-states in C6.

Combining the above cases completes the proof.

5.4 Hypercubes

In this subsection, we completely characterize strongly cospectrality and PST between two-states.
The hypercube Qn of order n is a Cayley graph for Zn

2 with connection set C that consists of standard
basis vectors. Note the vertex set is Zn

2 . For each a P Zn
2 , the corresponding eigenvector xa is given by

pxaqv “ p´1qaTv, for v P Zn
2 . (8)

with eigenvalue n ´ 2wtpaq where wtpaq is the number of ones in a. These eigenvectors are orthogonal.

Proposition 51. Let X be a graph, and let Eλ be the orthogonal projection matrix associated to eigenvalue
λ. Suppose that v1, . . . vk are linearly independent orthogonal eigenvectors where k is the multiplicity of
λ. Then Eλpeu ` sewq “ Eλpev ` sexq if and only if vT

j peu ` sewq “ vT
j pev ` sexq for 1 ď j ď k.

Furthermore, Eλpeu ` sewq “ ´Eλpev ` sexq if and only if vT
j peu ` sewq “ vT

j pev ` sexq for 1 ď j ď k.

Proof. Let uj be the normalized vector of vj for 1 ď j ď k. Then Eλ “
řk

j“1 ujuT
j . Since uT

r us “ 0 for
r ‰ s, the conclusion follows.

Lemma 52. Suppose that eu ` sew and ev ` sex are strongly cospectral in Qn. Then u ` w ` v ` x “ 0.

Proof. Suppose that Eλpeu ` sewq “ ˘Eλpev ` sexq for each eigenvalue λ of A. Then

xT
a peu ` sewq “ ˘xT

a pev ` sexq, for a P Zn
2 . (9)

The equation must be of the form p1 ` sq “ ˘p1 ` sq or p1 ´ sq “ ˘p1 ´ sq. It follows that aTu ` aTw
and aTv ` aTx have the same parity for all a P Zn

2 , that is, aTpu ` w ` v ` xq “ 0. This completes the
proof.

Note that if two vertices are strongly cospectral in Qn, then they are antipodal.

Corollary 53. Suppose that eu ` sew and ev ` sex are strongly cospectral in Qn. If two distinct vertices
among u, w, v, x are not antipodal, then u, w, v, x are distinct and they are not pairwise antipodal. If two
vertices are antipodal, then the other vertices are identical or antipodal.
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Lemma 54. Let u, w, v, x be distinct vertices in Qn for n ě 3. Suppose that no two vertices among them
are strongly cospectral. Then eu ` sew and ev ` sex are strongly cospectral if and only if s “ 1, n “ 3
and without loss of generality, u “ 000, w “ 110, v “ 100 and x “ 010.

Proof. Suppose that eu ` sew and ev ` sex are strongly cospectral. By Lemma 52, we may assume that
by abuse of notation, u “ 0 ¨ ¨ ¨ 0 and tw, v, xu “ tc1, c2, c3u where

c1 “ 100 1 ¨ ¨ ¨ 1 0 ¨ ¨ ¨ 0 0 ¨ ¨ ¨ 0, c2 “ 010 0 ¨ ¨ ¨ 0 1 ¨ ¨ ¨ 1 0 ¨ ¨ ¨ 0, c3 “ 110 1 ¨ ¨ ¨ 1 1 ¨ ¨ ¨ 1 0 ¨ ¨ ¨ 0

and c1 ` c2 ` c3 “ 0. For k “ 0, . . . , n, it follows from Proposition 51 with (8) and (9) that we have

1 ` sp´1qaTw “ p´1qaTv ` sp´1qaT x for all a P Zn
2 with wtpaq “ k, or (10)

1 ` sp´1qaTw “ ´pp´1qaTv ` sp´1qaT xq for all a P Zn
2 with wtpaq “ k. (11)

Let s ‰ ˘1. Then we necessarily have either 1 “ p´1qaTv for a P Zn
2 with wtpaq “ 1, or 1 “

´p´1qaTv for a P Zn
2 with wtpaq “ 1. Since v contains 0 and 1 both, there exist x and y with weight 1

such that p´1qxTv “ 1 and p´1qyTv “ ´1, which is a contradiction.
Let s “ 1 and n ě 4. Choose a1 “ 1000 ¨ ¨ ¨ 0 and a2 “ 00010 ¨ ¨ ¨ 0. If w “ c2, then 1 ` p´1qaT

1 w “

´pp´1qaT
1 v ` p´1qaT

1 xq “ 2, but 1 ` p´1qaT
1 w “ p´1qaT

1 v ` p´1qaT
1 x “ 2. Pick b1 “ 11100 ¨ ¨ ¨ 0, b2 “

11010 ¨ ¨ ¨ 0 and b3 “ 10110 ¨ ¨ ¨ 0. Similarly, one can find contradictions for w “ c1 through b2 and b3 and
for w “ c3 through b1 and b3.

Let s “ ´1. Choose x1 “ 1100 ¨ ¨ ¨ 0, x2 “ 1010 ¨ ¨ ¨ 0 and x3 “ 0110 ¨ ¨ ¨ 0. One can verify that for
any choices of w, v, x from c1, c2, c3, there exist two elements in ta1, a2, a3u such that one satisfies (10)
and the other does (11). This is a contradiction.

Finally, let s “ 1 and n “ 3. One can check that w “ 110 is the only case satisfying (10) and (11).

Proposition 55. Let u, w, v, x be vertices in Qn for n ě 3. Then eu ` sew and ev ` sex are strongly
cospectral if and only if one of the following holds:

(i) n “ 3 and without loss of generality, u “ 000, w “ 110, v “ 100 and x “ 010.

(ii) s ‰ ˘1, u and w are antipodal, v “ w and x “ u.

(iii) u and v are antipodal, and w and x are antipodal.

Proof. From Corollary 53, we only need to consider two cases: u, w, v, x are not pairwise antipodal, and
there are two antipodal vertices. The former case is complete in Lemma 54. We shall complete the latter.

We now suppose that u and w are strongly cospectral. From Corollary 53, v and x are strongly spectral.
If one of v and x is identical with one of u and w, then three vertices are pairwise antipodal, which does
not occur in Qn. Hence, we only need to consider two cases: (a) v, x R tu, wu and (b) v “ w and x “ u
with s ‰ ˘1. For (a), by Example 14, eu ` sew and ev ` sex are not strongly cospectral. For (b), by
Proposition 26, eu ` sew and ew ` seu are strongly cospectral.

Assume that u and v are strongly cospectral. Then w and x are strongly cospectral. By Example 18,
eu ` sew and ev ` sex are strongly cospectral.

Theorem 56. Let u, w, v, x be vertices in Qn for n ě 3. Then eu ` sew and ev ` sex exhibit PST at time
τ if and only if one of the following hold:

(i) τ “ π
2 , s ‰ ˘1, u and w are antipodal, v “ w and x “ u.

(ii) τ “ π
2 , u and v are antipodal, and w and x are antipodal.
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Proof. Suppose that eu ` sew and ev ` sex exhibit PST. Then they are necessarily strongly cospectral.
Consider the first case in Proposition 55. From σ`

uw,vxpAq “ t3, 1u and σ´
uw,vxpAq “ t´1, ´3u, we find

that there is no PST between them. Since there is vertex PST between antipodal vertices in Qn at time π
2 ,

the conclusion follows.

6 Line graphs

In this section, we assume that X is a simple connected unweighted graph. The line graph ℓpXq of X is the
graph whose vertex set consists of edges of X, and two vertices are adjacent if and only if corresponding
edges in X are incident. When X exhibits perfect plus state transfer between ea ` eb and ec ` ed for
some ta, bu, tc, du P EpXq, a natural question arises: does the line graph ℓpXq exhibit PST between the
corresponding vertices, and vice versa? Our goal is to provide an answer to this question.

Suppose X has n vertices and m edges. The incidence matrix of X is an n ˆ m matrix R “ rRi,js,
where Ri,j is 1 if vertex vi is incident to edge ej, and 0 otherwise. Then the signless Laplacian of X is
Q “ A ` D “ RRT, where D is the degree matrix of X, and the adjacency matrix of ℓpXq is Aℓ “

RTR ´ 2I. We can see that spectral properties such as singular values and singular vectors of Q and Aℓ

are completely determined by the matrix R. Moreover, each column of R can be written as a plus state
form. Thus, it is natural to study the relation between perfect plus state transfer of edges in X in terms of
Q and perfect state transfer of vertices in ℓpXq in terms of Aℓ.

Consider

UℓpXqptq “ expp´itAℓq “ expp´itpRTR ´ 2Iqq “ expp2itq
8
ÿ

k“0

p´itqk

k!
pRTRqk.

It follows that

RUℓpXqptq “ αptqUXptqR, (12)

UℓpXqptqRT “ αptqRTUXptq, (13)

where αptq “ expp2itq. Note |αptq| “ 1.
We say that two edges ta, bu and tc, du in X are strongly cospectral if the plus states ea ` eb and

ec ` ed are strongly cospectral in X.
To avoid confusion, for an edge ta, bu of X, we use fab to denote the vector of order m whose entry at

the vertex of ℓpXq corresponding to ta, bu is 1, and is zero elsewhere. Note that Rfab “ ea ` eb.

Theorem 57. Let ta, bu, tc, du P EpXq. If ℓpXq exhibits perfect state transfer between two vertices ta, bu

and tc, du, then X exhibits perfect plus state transfer between ea ` eb and ec ` ed.

Proof. Since ℓpXq admits perfect state transfer between ta, bu and tc, du, we have

UℓpXqptqfab “ γfcd (14)

for some γ P C with |γ| “ 1. Let R be the incidence matrix of X, and αptq “ expp2itq. Note Rfab “

ea ` eb and Rfcd “ ec ` ed. From (14), we have RUℓpXqptqfab “ γRfcd. Using (12), we find that

UXptqpea ` ebq “ αptq´1γpec ` edq.

Therefore, our desired result is obtained.
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Remark 58. The converse of Theorem 57 does not hold in general. It was found in [Cao21] that the 3-
cube, which is bipartite, exhibits perfect plus state transfer between two distinct edges at time π

2 . However,
its line graph does not exhibit strong cospectrality and therefore there is no time for which PST occurs (see
Example 81).

We can, however, characterize when the converse of Theorem 57 holds. To do this, we begin by investi-
gating strong cospectrality. Let Eλ be the orthogonal projection matrix onto the eigenspace corresponding
to eigenvalue λ of Q. Since λ ´ 2 is an eigenvalue of the adjacency matrix Aℓ, we define Fλ´2 to be
the orthogonal projection matrix onto the corresponding eigenspace. Suppose that λ ą 0. A left-singular
vector u of R for

?
λ, which is an eigenvector of Q associated to λ, can be expressed as Rv “

?
λu for

some right singular vector v, which is an eigenvector of Aℓ associated to λ ´ 2. Moreover, RTu “
?

λv.
This implies that

λFλ´2 “ RTEλR, λEλ “ RFλ´2RT.

Remark 59. To avoid confusion, we use a slightly different notation for eigenvalue supports of vertices in
line graphs. Consider an edge ta, bu of a graph X. We use σta,bupAℓq to denote the eigenvalue support of
the vertex ta, bu in ℓpXq. We shall also use σfab pAℓq to denote the same eigenvalue support.

Proposition 60. Let ta, bu, tc, du P EpXq. For a non-zero eigenvalue λ of Q, we have Eλpea ` ebq “

˘Eλpec ` edq if and only if Fλ´2fab “ ˘Fλ´2fcd. This implies that if v “ ta, bu and w “ tc, du are
strongly cospectral, then

σ`
ab,cdpQq ´ t0u “ σ`

v,wpAℓ ` 2Iq ´ t0u, σ´
ab,cdpQq ´ t0u “ σ´

v,wpAℓ ` 2Iq ´ t0u.

Proof. Let λ be a non-zero eigenvalue of Q. Suppose that Eλpea ` ebq “ ˘Eλpec ` edq. We can see that

λFλ´2fab “ RTEλRfab “ RTEλpea ` ebq “ ˘RTEλpec ` edq “ ˘RTEλRfcd “ ˘λFλ´2fcd.

Conversely, suppose that Fλ´2fab “ ˘Fλ´2fcd. Then,

RTEλpea ` ebq “ RTEλRfab “ Fλ´2fab “ ˘Fλ´2fcd “ ˘RTEλRfcd “ ˘RTEλpec ` edq.

Pre-multiplying both sides by R, we have QEλpea ` ebq “ ˘QEλpec ` edq. Considering the spectral
decomposition of Q, we obtain Eλpea ` ebq “ ˘Eλpec ` edq. Therefore, the conclusion follows.

From Proposition 60, we need only check if E0pea ` ebq “ ˘E0pec ` edq and F́ 2eta,bu “ ˘F́ 2etc,du,
in order to see whether strong cospectrality between edges in X is determined by strong cospectrality
between the corresponding vertices in ℓpXq, and vice versa. The next remark will help with this task.

Remark 61. The matrix F́ 2 is the orthogonal projection matrix onto the null space of R, which is the
same as the column space of NNT, where N is a matrix whose columns are linearly independent right
null vectors of R. It follows that for two vertices x and y of ℓpXq, NNTpex ˘ eyq “ 0 if and only if
F́ 2pex ˘ eyq “ 0. Therefore, we do not need to consider orthogonality of null vectors of R. A similar
argument can be applied to E0.

If a graph is not a tree, then the nullity of R is at least m ´ n, making it difficult to analyze F́ 2 when
m becomes large relative to n. Hence, it is natural to first consider trees or unicyclic graphs as they have
fewer edges than other connected graphs. We require the following basic facts.

Lemma 62. [Bap10, Lemma 2.17] Let X be a connected bipartite graph on n vertices, and let ta, bu and
tc, du be edges of X. Then, rankpRq “ n ´ 1 and E0pea ` ebq “ ˘E0pec ` edq “ 0.
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Lemma 63. Let X be a unicyclic graph on n vertices. Then, either X has an odd cycle and rankpRq “ n,
or X has an even cycle and rankpRq “ n ´ 1.

Proof. The matrix R is a square. Hence, from [Bap10, Lemma 2.18], R is singular if and only if the length
of the cycle is even, that is, X is bipartite. Hence, if R is singular, then R must be of rank n ´ 1.

The following result is well-known.

Proposition 64. We have nullitypRq “ 0 if and only if X is either a tree or unicyclic with an odd cycle.

Now, for the case of trees and unicyclic graphs, we present relationships between strong cospectrality
of edges of X and the corresponding vertices in ℓpXq in the following two theorems.

Theorem 65. Let X be a tree, and let ta, bu and tc, du be edges of X. Then, ta, bu and tc, du are strongly
cospectral edges in X if and only if ta, bu and tc, du are strongly cospectral vertices in ℓpXq.

Proof. As trees are bipartite, we observe E0pea ` ebq “ ˘E0pec ` edq from Lemma 62. Since nullitypRq “

0, F́ 2 does not exist. Now the conclusion follows from Proposition 60.

Theorem 66. Let X be a unicyclic graph on n vertices, and let ta, bu and tc, du be edges of X.

(i) Suppose that the cycle of X is of odd length. Then, ta, bu and tc, du are strongly cospectral edges in
X if and only if ta, bu and tc, du are strongly cospectral vertices in ℓpXq.

(ii) Suppose that the cycle of X is of even length. Then, ta, bu and tc, du are strongly cospectral edges in
X and both are either on the cycle or outside of the cycle if and only if ta, bu and tc, du are strongly
cospectral vertices in ℓpXq.

Proof. If the cycle is of odd length, then R is of full rank. Thus from Proposition 60, the first statement is
true. Suppose that the cycle is of even length. Then rankpRq “ n ´ 1. Since X is bipartite, E0pea ` ebq “

˘E0pec ` edq. Let pv1, . . . , vℓ, v1q be the cycle in X for some ℓ ě 4. Let x “ pxkq1ďkďn be given by

xk “

$

’

&

’

%

p´1qkfvk vk`1 if 1 ď k ď ℓ ´ 1,
fvℓ v1 if k “ ℓ,
0 otherwise.

(15)

Then, x is a right-null vector of R. It follows that F́ 2fab “ ˘F́ 2fcd if and only if the corresponding edges
in X are either on the cycle or outside of the cycle. Therefore, the second statement follows.

We are now ready to present the main result of this section.

Theorem 67. Let ta, bu, tc, du P EpXq. Then ℓpXq exhibits perfect state transfer between two vertices
ta, bu and tc, du if and only if all of the following conditions hold:

(i) X exhibits perfect plus state transfer between edges ta, bu and tc, du.

(ii) F́ 2fab “ ˘F́ 2fcd if F́ 2 exists.

(iii) Let v “ ta, bu, w “ tc, du and σabpQq “ tλ1, . . . , λku. Suppose that λ1 is the largest eigenvalue.
One of the following holds:

(iii-1) 0 R σabpQq and ´2 R σvpAℓq.
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(iii-2) 0 P σabpQq, ´2 R σvpAℓq and g ” h pmod 2q, where g “ gcd
´

tλ1 ´ λru
k
r“1

¯

and h “

gcdpg, λ1q. Moreover, either λ1
h is even and 0 P σ`

ab,cdpQq, or λ1
h is odd and 0 P σ´

ab,cdpQq.

(iii-3) 0 R σabpQq, ´2 P σvpAℓq and g ” h pmod 2q, where g “ gcd
´

tλ1 ´ λru
k
r“1

¯

and h “

gcdpg, λ1q. Moreover, either λ1
h is even and ´2 P σ`

v,wpAℓq, or λ1
h is odd and ´2 P σ´

v,wpAℓq.

(iii-4) 0 P σ`
ab,cdpQq, ´2 P σ`

v,wpAℓq.

(iii-5) 0 P σ´
ab,cdpQq, ´2 P σ´

v,wpAℓq.

Proof. Suppose that ℓpXq exhibits perfect state transfer between two vertices ta, bu and tc, du. Obviously,
(ii) follows. From Theorem 57, we obtain (i) and hence, Theorem 35(iii), the so-called parity condition,
holds in terms of Q and Aℓ. We claim that those two parity conditions being true implies (iii). From
Proposition 60, we may only consider the case that 0 belongs to only one of σabpQq and σvpAℓ ` 2Iq,
which is for (iii-2) and (iii-3). Clearly, λ1, . . . , λk are integers so g and h are well-defined. There must
be 1 ď r1 ď k such that pλ1 ´ λr1q{g is odd; otherwise, g would not be the greatest common divisor. If
g “ hc for some even c ě 2, then pλ1 ´ λr1q{h is even and thus one of the parity conditions for Q and Aℓ

fails to hold. Hence, g “ hc for some odd c ě 1. That is, g and h have the same parity. Therefore, our
desired claim is established.

For the proof of the converse, (i) and (ii) imply the strong cospectrality between two vertices ta, bu

and tc, du in ℓpXq; and the parity condition for X together with (iii) implies that for ℓpXq.

Remark 68. If conditions (ii) and (iii) hold, then ℓpXq exhibits perfect state transfer between two vertices
ta, bu and tc, du if and only if X exhibits perfect plus state transfer between edges ta, bu and tc, du.

Corollary 69. Let X be a tree or a unicyclic graph with odd cycle and let ta, bu and tc, du be edges of X.
Then, ℓpXq exhibits perfect state transfer between two vertices ta, bu and tc, du if and only if X exhibits
perfect plus state transfer between edges ta, bu and tc, du.

Proof. Clearly, F́ 2 does not exist. Since E0pea ` ebq “ E0pec ` edq “ 0, the eigenvalue 0 is not in the
eigenvalue support of ea ` eb. Thus the result follows.

Corollary 70. Let X be a unicyclic graph with even cycle and let ta, bu and tc, du be edges of X. Then,
ℓpXq exhibits perfect state transfer between two vertices ta, bu and tc, du if and only if one of the following
hold:

(i) X exhibits perfect plus state transfer between edges ta, bu and tc, du both outside of the cycle.

(ii) X exhibits perfect plus state transfer between adjacent edges ta, bu and tc, du both on the cycle, and
λ1
h is odd, where λ1 and h are defined as in (c-3) of Theorem 67.

(iii) X exhibits perfect plus state transfer between non-adjacent edges ta, bu and tc, du both on the cycle,
and λ1

h is even, where λ1 and h are defined as in (c-3) of Theorem 67.

Proof. Since E0pea ` ebq “ E0pec ` edq “ 0, the eigenvalue 0 is not in the eigenvalue support of ea ` eb.
It follows from (15) that if two edges are outside of the cycle, then F́ 2fab “ F́ 2fcd “ 0; and if two edges
on the cycle are adjacent, then F́ 2fab “ ´F́ 2fcd; and if two edges on the cycle are not adjacent, then
F́ 2fab “ F́ 2fcd. This completes the proof.

The complete bipartite graph K2,4n with n ě 1 exhibits perfect plus state transfer between two edges
sharing one of two vertices with degree 4n in common [Che19]. We will show that ℓpK2,4nq exhibits PST
between corresponding vertices by using Theorem 67.
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Corollary 71. Let n ě 1, and let u and v be the vertices of degree 4n in K2,4n. For any w P VpK2,4nq with
w ‰ u, v, ℓpK2,4nq admits perfect state transfer between vertices tu, wu and tv, wu.

Proof. Since K2,4n is bipartite, we have 0 R σuwpQq by Lemma 62. From [Che19], K2,4n exhibits perfect
plus state transfer between eu ` ew and ev ` ew. Now we shall examine the conditions (ii) and (iii) of
Theorem 67. Since ℓpK2,4nq “ K2□K4n, we can find that F́ 2 can be written as

F́ 2 “

ˆ

1
2

„

1 ´1
´1 1

ȷ˙

b

ˆ

I ´
1

4n
J
˙

.

It follows that ´2 P σ´
x,ypAℓq where x “ tu, wu and y “ tv, wu. Let g “ gcdp2, 4nq and h “

gcdp2, 4n, 4n ` 2q. Then, g “ h “ 2 and 4n`2
2 ” 1 pmod 2q. Hence, (ii) and (iii-3) of Theorem 67

holds. Therefore, the conclusion follows.

u v

w

a b

a b

Figure 4: K2,4 (left) and its line graph (right)

7 Line graphs of Cartesian products

Similar to the previous section, we assume that X is a simple connected unweighted graph. Our goal in
this section is to characterize strong cospectrality and PST in ℓpXq whenever X is a Cartesian product.

Let X “ X1□X2 where X1 and X2 are connected graphs on n1 and n2 vertices with m1 and m2 edges,
respectively. Let R1 and R2 be the incidence matrices of X1 and X2, respectively. We use Eλ and Fλ´2 to
denote the sums of outer products of left-singular and right-singular vectors for singular value

?
λ of R,

respectively. Similarly, we use analogous notation Epiq
µ ’s and Fpiq

µ´2’s to denote the sums of outer products
of left-singular and right-singular vectors, respectively, for the singular value

?
µ of Ri for i “ 1, 2. Note

that Epiq
µ (resp. Fpiq

µ´2) is the orthogonal projection matrix onto the eigenspace of the signless Laplacian
matrix Qi (resp. the adjacency matrix of ℓpXiq) corresponding to eigenvalue µ (resp. µ ´ 2).

Let Ni be a matrix whose columns are linearly independent right null vectors of Ri for i “ 1, 2. Recall
from Remark 61 that for two vertices x and y of X, NNTfx “ ˘NNTfy is equivalent to F́ 2fx “ ˘F́ 2fy.
Hence, we shall use null vectors throughout this section to examine F́ 2fx “ F́ 2fy.

Proposition 72. Let X “ X1□X2. Then, NNT can be written as follows:

NNT “

„

In1 b N2NT
2 ` R1 Ĩr1 RT

1 b Ĩr2 ´R1 Ĩr1 b Ĩr2 RT
2

´ Ĩr1 RT
1 b R2 Ĩr2 N1NT

1 b In2 ` Ĩr1 b R2 Ĩr2 RT
2

ȷ

, (16)

where for i “ 1, 2, Ĩri is an mi ˆ mi diagonal matrix whose diagonal entries consists of rankpRiq ones
and pmi ´ rankpRiqq zeros, if mi ą rankpRiq, so that non-zero columns of Ri Ĩri are linearly independent.
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Proof. From [FTL22], R can be written as

R “
“

In1 b R2 R1 b In2

‰

. (17)

Suppose that x1 and x2 are null vectors of R1 and R2, respectively. Then

R
„

ei b x2
0

ȷ

“ 0, R
„

0
x1 b ej

ȷ

“ 0

for 1 ď i ď n1 and 1 ď j ď n2. Let rankpR1q “ r1 and rankpR2q “ r2. Without loss of generality, we
assume that the first r1 columns of R1 are linearly independent and the first r2 columns of R2 are linearly
independent. For 1 ď i ď r1 and 1 ď j ď r2, we have

R
„

´R1fi b ej
ei b R2fj

ȷ

“ 0.

We claim that nullitypRq “ s1n2 ` n1s2 ` r1r2 where s1 “ nullitypR1q and s2 “ nullitypR2q. From
the rank-nullity theorem, we have m1 “ r1 ` s1, m2 “ r2 ` s2. Note that RRT is the signless Laplacian
matrix of X and RRT “ In1 b R2RT

2 ` R1RT
1 b In2 . It follows that any eigenvalue of RRT can be written as

λ ` µ, where λ and µ are eigenvalues of R1RT
1 and R2RT

2 , respectively. Hence, rankpRq “ n1n2 ´ a1a2,
where a1 “ nullitypR1RT

1 q and a2 “ nullitypR2RT
2 q. Since n1 “ r1 ` a1 and n2 “ r2 ` a2, we have

rankpRq “ n1r2 ` n2r1 ´ r1r2. Now we can see that

nullitypRq “n1m2 ` m1n2 ´ rankpRq

“n1m2 ` m1n2 ´ n1r2 ´ n2r1 ` r1r2

“n1m2 ` m1n2 ´ n1pm2 ´ s2q ´ n2pm1 ´ s1q ` r1r2 “ s1n2 ` n1s2 ` r1r2.

Therefore, the conclusion follows.

We will look for an equivalent condition for two vertices x and y of ℓpXq to satisfy NNTfx “

˘NNTfy. To this goal, we present several lemmas.

Lemma 73. Let n ě 3. Let X be a connected graph on n vertices, and rankpRq “ r. For distinct vertices
i and j of X, there exists a matrix R̃ such that it comprises r linearly independent p0, 1q column vectors of
R and ith and jth rows of R̃ are not identical.

Proof. Clearly, r ě 2. Suppose that i and j are adjacent. Since n ě 3, one of i and j has degree more than
1. There exists a 2 ˆ 2 submatrix of R whose rows are indexed by i and j as one of the following:

„

1 1
1 0

ȷ

,
„

1 0
1 1

ȷ

.

Similarly, if i and j are not adjacent, there exists a 2 ˆ 2 submatrix of R whose rows are indexed by i and
j as one of the following:

„

1 0
0 1

ȷ

,
„

0 1
1 0

ȷ

.

Therefore, we obtain the result, as desired.

Lemma 74. Let x1 and x2 be p0, 1q column vectors of the same size, and let y1 and y2 be p0, 1q column
vectors of the same size. Then, x1 b y1 “ x2 b y2 if and only if x1 “ x2 and y1 “ y2.

25



Lemma 75. Suppose X is neither a tree nor a unicyclic graph with odd cycle. Let v be a cut-vertex of X
and suppose there is a component C in X ´ v such that the subgraph X1 induced in X by VpCq Y tvu is a
tree. Then F́ 2fw “ 0 for any vertex w P EpX1q.

Proof. Let X2 be the subgraph induced by VpXq ´ VpCq, and let R2 be its incidence matrix. Since X1 is a
tree, the submatrix of R whose rows and columns are indexed by VpCq and EpX1q, respectively, is of full
rank. It follows that nullitypR2q “ nullitypRq. Therefore, F́ 2 can be expressed as a direct sum so that
the submatrix of F́ 2 whose rows and columns are indexed by EpX1q is the zero matrix.

Let X “ X1□X2 and tx, yu be an edge of X. Then, x “ px1, x2q and y “ py1, y2q for some x1, y1 P

VpX1q and x2, y2 P VpX2q. Regarding tx, yu as a vertex of ℓpXq and labelling the row and column indices
of R as in (17), we can see that

fxy “

$

’

’

’

’

&

’

’

’

’

%

«

0
fx1y1 b ex2

ff

, if x1 „ y1 and x2 “ y2,

«

ex1 b fx2y2

0

ff

, if x1 “ y1 and x2 „ y2.

Proposition 76. Let X “ X1□X2, and tv1, w1u and tv2, w2u be edges of X. Then, NNTfv1w1 “

˘NNTfv2w2 if and only if one of the following holds:

(i) X1 “ K2, fv1w1 “

„

e1 b fi
0

ȷ

, fv2w2 “

„

e2 b fi
0

ȷ

for some 1 ď i ď m2, and N2NT
2 fi “ 0.

(ii) X2 “ K2, fv1w1 “

„

0
fi b e1

ȷ

, fv2w2 “

„

0
fi b e2

ȷ

for some 1 ď i ď m1, and N1NT
1 fi “ 0.

(iii) There exist 1 ď i1 ď n1, 1 ď k1 ď m2, 1 ď i2 ď m1 and 1 ď k2 ď n2 such that fv1w1 “

„

ei1 b fk1

0

ȷ

,

fv2w2 “

„

0
fi2 b ek2

ȷ

, degpi1q “ degpk2q “ 1, and i2 and k1 are the edges incident to i1 and k2,

respectively. Moreover, N1NT
1 fi2 “ 0 and N2NT

2 fk1 “ 0.

Proof. For the proof, we examine the following two cases:

• Without loss of generality, fv1w1 “

„

0
fi1 b ek1

ȷ

and fv2w2 “

„

0
fi2 b ek2

ȷ

for 1 ď i1, i2 ď m1 and

1 ď k1, k2 ď n2 with i1 ‰ i2 or k1 ‰ k2.

• fv1w1 “

„

ei1 b fk1

0

ȷ

and fv2w2 “

„

0
fi2 b ek2

ȷ

for 1 ď i1 ď n1, 1 ď k1 ď m2, 1 ď i2 ď m1 and

1 ď k2 ď n2.

For the first case, we suppose that NNTfv1w1 “ ˘NNTfv2w2 . This is equivalent to
„

´R1 Ĩr1 fi1 b Ĩr2 RT
2 ek1

N1NT
1 fi1 b ek1 ` Ĩr1 fi1 b R2 Ĩr2 RT

2 ek1

ȷ

“ ˘

„

´R1 Ĩr1 fi2 b Ĩr2 RT
2 ek2

N1NT
1 fi2 b ek2 ` Ĩr1 fi2 b R2 Ĩr2 RT

2 ek2

ȷ

.

Applying Lemma 74 to the first row blocks on both sides, we see that R1 Ĩr1 fi1 “ R1 Ĩr1 fi2 and Ĩr2 RT
2 ek1 “

Ĩr2 RT
2 ek2 . Since any two columns of R1 are linearly independent, i1 must equal i2; otherwise, we would
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have R1 Ĩr1 ei1 ‰ R1 Ĩr1 ei2 by a proper choice of ones in Ĩr1 . Then, k1 ‰ k2. If X2 ‰ K2, then from
Lemma 73 we would have Ĩr2 RT

2 ek1 ‰ Ĩr2 RT
2 ek2 by an appropriate choice of Ĩr2 . Hence, X2 “ K2. Let

N1NT
1 fi1 “ x0, Ĩr1 fi1 “ y0, k1 “ 1 and k2 “ 2. Then, the second row blocks on both sides give

x0 b

„

1
0

ȷ

` y0 b

„

1
1

ȷ

“ ˘

ˆ

x0 b

„

0
1

ȷ

` y0 b

„

1
1

ȷ˙

.

It follows that N1NT
1 fi1 “ 0.

We now consider the second case. The equation NNTfv1w1 “ ˘NNTfv2w2 is equivalent to
„

ei1 b N2NT
2 fk1 ` R1 Ĩr1 RT

1 ei1 b Ĩr2 fk1

´ Ĩr1 RT
1 ei1 b R2 Ĩr2 fk1

ȷ

“ ˘

„

´R1 Ĩr1 fi2 b Ĩr2 RT
2 ek2

N1NT
1 fi2 b ek2 ` Ĩr1 fi2 b R2 Ĩr2 RT

2 ek2

ȷ

.

Consider the first row block. Note that ´ Ĩr1 RT
1 fi2 b R2 Ĩr2 ek2 is a p0, ´1q vector. Choosing Ĩr1 and Ĩr2

properly, we have

pei1 b fk1qTpR1 Ĩr1 RT
1 ei1 b Ĩr2 fk1q ě 1, (18)

where the equality holds if and only if i1 is a vertex of degree 1. If N2NT
2 fk1 ‰ 0 then we would have

pei1 b fk1qT
`

ei1 b N2NT
2 fk1 ` R1 Ĩr1 RT

1 ei1 b Ĩr2 fk1

˘

ą 1. Hence, N2NT
2 fk1 “ 0 and the degree of i1 is 1.

Now we have

R1 Ĩr1 RT
1 ei1 b Ĩr2 fk1 “ ˘

´

´R1 Ĩr1 fi2 b Ĩr2 RT
2 ek2

¯

.

From Lemma 74, R1 Ĩr1 RT
1 ei1 “ R1 Ĩr1 fi2 and Ĩr2 fk1 “ Ĩr2 RT

2 ek2 . It follows that i2 is the edge incident to
i1; moreover, k2 is a vertex of degree 1 and k1 is the edge incident to k2. By Lemma 75, N1NT

1 fi2 “ 0.
Exhausting all cases, the proof is complete.

Remark 77. Examining the proof of Proposition 76, we can see that NNTfv1w1 “ NNTfv2w2 if one of (i)
and (ii) holds; and NNTfv1w1 “ ´NNTfv2w2 if (iii) holds.

Let X “ X1□X2. Let u and v be left-singular and right-singular vectors of R1, respectively, corre-
sponding to singular value τ1. We also let x and y be left-singular and right-singular vectors of R2, respec-
tively, corresponding to singular value τ2. Then R1v “ τ1u and R2x “ τ2y. Suppose that τ1 ` τ2 ą 0.
From (17), we have

RTpu b xq “

„

In1 b RT
2

RT
1 b In2

ȷ

pu b xq “

b

τ2
1 ` τ2

2

»

–

τ2?
τ2

1 `τ2
2

pu b yq

τ1?
τ2

1 `τ2
2

pv b xq

fi

fl .

Let λ P σpQ1q and µ P σpQ2q with λ ` µ ą 0. We use Ω`
λ`µ to denote the set of pairs pα, βq, where

α P σpQ1q and β P σpQ2q, such that α, β ą 0 and α ` β “ λ ` µ. It follows that

Fλ`µ´2 “
ÿ

pα,βqPΩ`
λ`µ

1
α ` β

«

β
α R1Fp1q

α´2RT
1 b Fp2q

β´2 R1Fp1q

α´2 b Fp2q

β´2RT
2

Fp1q

α´2RT
1 b R2Fp2q

β´2
α
β Fp1q

α´2 b R2Fp2q

β´2RT
2

ff

` Iλ`µPσpQ1q,
0PσpQ2q

«

0 0
0 Fp1q

λ`µ´2 b Ep2q

0

ff

` I 0PσpQ1q,
λ`µPσpQ2q

«

Ep1q

0 b Fp2q

λ`µ´2 0
0 0

ff

(19)

where IA is the indicator function of an event A.
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Proposition 78. Let X “ X1□X2, and tv1, w1u and tv2, w2u be edges of X. If there exist 1 ď i1 ď n1,

1 ď k1 ď m2, 1 ď i2 ď m1 and 1 ď k2 ď n2 such that fv1w1 “

„

ei1 b fk1

0

ȷ

, fv2w2 “

„

0
fi2 b ek2

ȷ

, then

fv1w1 and fv2w2 are not strongly cospectral.

Proof. Assume to the contrary that fv1w1 and fv2w2 are strongly cospectral in ℓpXq. It follows from (iii)
of Proposition 76 that RT

1 ei1 “ fi2 , RT
2 ek2 “ fk1 . We note that if Fp1q

α´2fi2 ‰ 0 for nonzero α P σpQ1q,

then R1Fp1q

α´2fi2 ‰ 0; similarly, if Fp2q

β´2fk1 ‰ 0 for nonzero β P σpQ2q, then R2Fp2q

β´2fk1 ‰ 0. Note that
RT

1 R1 ´ 2I and RT
2 R2 ´ 2I are the adjacency matrices of ℓpX1q and ℓpX2q, respectively.

Let λ P σfi2
pRT

1 R1q and µ P σfk1
pRT

2 R2q such that λ ` µ ą 0. Then Fλ`µ´2fv1w1 “ ˘Fλ`µ´2fv2w2 .
We can find from (19) that Fλ`µ´2fv1w1 “ ˘Fλ`µ´2fv2w2 is equivalent to

I 0Pσei1
pQ1q,

λ`µPσfk1
pRT

2 R2q

´

Ep1q

0 ei1 b Fp2q

λ`µ´2fk1

¯

`
1

λ ` µ

ÿ

pα,βqPΩ`
λ`µ

αPσfi2
pRT

1 R1q

βPσfk1
pRT

2 R2q

ˆ

β

α
¯ 1

˙

R1Fp1q

α´2fi2 b Fp2q

β´2fk1 “ 0,

´Iλ`µPσfi2
pRT

1 R1q,

0Pσek2
pQ2q

´

Fp1q

λ`µ´2fi2 b Ep2q

0 ek2

¯

`
1

λ ` µ

ÿ

pα,βqPΩ`
λ`µ

αPσfi2
pRT

1 R1q

βPσfk1
pRT

2 R2q

ˆ

β

α
¯ 1

˙

Fp1q

α´2fi2 b R2Fp2q

β´2fk1 “ 0.

It follows from the definition of linearly independent vectors that 0 R σei1
pQ1q or λ ` µ R σfk1

pRT
2 R2q,

and 0 R σek2
pQ2q or λ ` µ R σfi2

pRT
1 R1q; and λ “ µ ą 0, and for each pα, βq P Ω`

λ`µ with α ‰ β,
α R σei1

pQ1q or β R σek2
pQ2q. (Here we must have Fλ`µ´2fv1w1 “ Fλ`µ´2fv2w2 .)

It follows from (iii) of Proposition 76 that 0 R σfi2
pRT

1 R1q. Then σfi2
pRT

1 R1q contains at least two
elements. Similarly, for Similarly, σfk1

pRT
2 R2q. Suppose λj and µj are the smallest elements in σfi2

pRT
1 R1q

and σfk1
pRT

2 R2q, respectively, with λ1 ă λ2 and µ1 ă µ2. From the argument above, we must have
λ1 “ µ1 and λ1 “ µ2, a contradiction. This proves the proposition.

From Proposition 78, many line graphs of Cartesian products do not exhibit PST.

Theorem 79. Let X be a Cartesian product. If X cannot be expressed as a Cartesian product of K2 and
some graph, then ℓpXq has no pairs of strongly cospectral vertices.

Proof. The conclusion follows from Propositions 76 and 78.

We now characterize strong cospectrality and PST for the remaining line graphs, that is, line graphs
that can be written as X1□K2 for some graph X1. We require the following lemma.

Lemma 80. Let X “ X1□K2 where X1 is a Cartesian product of non-trivial graphs. Then, ℓpXq has no
pairs of strongly cospectral vertices.

Proof. Since X1 is a Cartesian product, N1NT
1 can be written as in (16). Using a similar argument as

in (18), one can show that |fT
i N1NT

1 fi| ą 0 for 1 ď i ď m1. Therefore, N1NT
1 fi ‰ 0. From (ii) of

Proposition 76, the desired result is established.

Note that the assumptions in Lemmas 79 and 80 imply that ℓpXq has no PST.
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Example 81. For all n ě 3, ℓpQnq has no pairs of strongly cospectral vertices. Thus ℓpQnq has no PST.

Theorem 82. Let X “ X1□K2, and tv1, w1u and tv2, w2u be edges of X. Then fv1w1 and fv2w2 are

strongly cospectral if and only if fv1w1 “

„

0
fi b e1

ȷ

and fv2w2 “

„

0
fi b e2

ȷ

for some 1 ď i ď m1 and all of

the following conditions hold:

• X1 is not a Cartesian product of graphs.

• Fp1q

´2 fi “ 0.

• There is no pair of non-zero eigenvalues λ and µ in σabpQ1q with |λ ´ µ| “ 2, where ta, bu is an
edge of X1 corresponding to fi.

Furthermore, if fv1w1 and fv2w2 are strongly cospectral, then the following statements hold:

• ´2 P σ`
fv1w1 ,fv2w2

pAℓq.

• Let λ ą 0. Then λ P σabpQ1q if and only if λ ´ 2 P σ´
fv1w1 fv2w2

pAℓq and λ P σ`
fv1w1 fv2w2

pAℓq.

Proof. From Proposition 76, if fv1w1 and fv2w2 are strongly cospectral, then they necessarily have the
particular block structure and Fp1q

´2 fi “ 0. Let S be the set of pairs pα, βq such that α, β P σpQ1q and
α ´ β “ 2. For pλ, µq P S, it follows from (19) that

Fλ´2 “

»

–

0 0

0 Fp1q

λ´2 b 1
2

„

1 ´1
´1 1

ȷ

fi

fl `
1

µ ` 2

»

—

–

2
µ R1Fp1q

µ´2RT
1 b 1 R1Fp1q

µ´2 b 1?
2

“

1 1
‰

Fp1q

µ´2RT
1 b 1?

2

“

1 1
‰T µ

2 Fp1q

µ´2 b

„

1 1
1 1

ȷ

fi

ffi

fl

. (20)

Examining the p2, 2q blocks of Fλ´2 together with fi b e1 and fi b e2, we can find that Fλ´2

„

0
fi b e1

ȷ

‰

˘Fλ´2

„

0
fi b e2

ȷ

if and only if Fp1q

λ´2fi ‰ 0 and Fp1q

µ´2fi ‰ 0—that is, λ, µ P σfi pRT
1 R1q. For γ P σpRT

1 R1q

with |γ ´ α| ‰ 2 for all α P σpRT
1 R1q, it can be easily checked that Fγ´2

„

0
fi b e1

ȷ

“ ˘Fγ´2

„

0
fi b e2

ȷ

.

The remaining conclusion can be established from the examination above, and Remark 77.

Corollary 83. Let X “ X1□K2 where X1 is a tree or a unicyclic graph with odd cycle. Suppose that no
pair of non-zero eigenvalues of Q1 has difference 2. Then, two vertices in ℓpXq are strongly cospectral if
and only if they correspond to edges tpv1, w1q, pv2, w1qu and tpv1, w2q, pv2, w2qu in X, where tv1, v2u is
an edge of X1 and VpK2q “ tw1, w2u. This implies that ℓpXq has exactly m1 pairs of strongly cospectral
vertices. From Theorem 65, the corresponding edges are strongly cospectral in X.

We conclude the paper with the following result.

Theorem 84. Let X “ X1□K2, and tv1, w1u and tv2, w2u be edges of X. Then ℓpXq exhibits PST between

fv1w1 and fv2w2 if and only if fv1w1 “

„

0
fi b e1

ȷ

and fv2w2 “

„

0
fi b e2

ȷ

for some 1 ď i ď m1 and all of the

following conditions hold:

• X1 is not a Cartesian product of graphs.

• Fp1q

´2 fi “ 0.
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• There is no pair of non-zero eigenvalues λ and µ in σabpQ1q with |λ ´ µ| “ 2, where ta, bu is an
edge of X1 corresponding to fi.

• σabpQ1q consists of integral elements so that for each non-zero λ P σabpQ1q, λ ” 2 pmod 4q.

Proof. From Theorem 82, we only need to check the parity condition, recalling the last condition of
Theorem 35. Suppose that ℓpXq exhibits PST between fv1w1 and fv2w2 . Let σabpQ1qzt0u “ tλ1, . . . , λku

for some k ě 1. Suppose that λ1 is the largest eigenvalue of Q1. From Theorem 82, ´2 P σ`
fv1w1 fv2w2

pAℓq,

λj ´ 2 P σ´
fv1w1 fv2w2

pAℓq and λj P σ`
fv1w1 fv2w2

pAℓq for 1 ď j ď k. Let λ0 “ ´2 and

g “ gcd
´

tλ1 ´ λru
k
r“0 , tλ1 ´ λr ` 2u

k
r“1

¯

.

If g “ 1, then λ1 is necessarily odd and so is pλ1 ` 2q{g, which is a contradiction to ´2 P σ`
fv1w1 fv2w2

pAℓq.
Hence, g “ 2. Since pλ1 ` 2q{g is even, λ1 ” 2 pmod 4q. Moreover, for 2 ď j ď k, pλ1 ´ λjq{g is even
and pλ1 ´ λj ` 2q{g is odd. Therefore, λj ” 2 pmod 4q.
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