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The Galvanostatic Intermittent Titration Technique (GITT) is a ubiquitous method for deter-
mining the solid-state diffusivity in lithium-ion battery materials. However, it is notoriously time-
consuming and relies upon assumptions whose applicability is questionable. We propose a novel
methodology that allows inference of the diffusivity for a more general class of data that is simpler
and faster to harvest. We infer the diffusivity (as a function of stoichiometry) by minimising the
residual sum of squares between data and solutions to a spherically-symmetric diffusion model in
a single representative active material particle. Using data harvested from the NMC cathode of a
commercial LG M50 cell we first demonstrate that our method is able to reproduce the diffusivities
inferred by the GITT, which requires ten days of galvanostatic intermittent titration data. We then
demonstrate that our method reliably reconstructs diffusivity using significantly less data. Despite
arising from quick-to-measure data, our method more accurately infers diffusivities. This work is
a contribution towards developing faster and more reliable techniques in parameter inference for
lithium-ion batteries.

I. INTRODUCTION

The Doyle-Fuller-Newman (DFN) model [1–4] is widely acknowledged as the gold standard in physics-based mod-
elling for lithium-ion batteries and offers a framework for understanding and predicting device behaviour at the level
of individual and electrode pairs. Provided that the parameterisation has been performed accurately, the DFN model
has been shown to reliably predict the electrochemical response of real batteries in realistic operating conditions; with
observed and predicted voltages often matching to within a single percentage [5–8]. So ubiquitous is the DFN model
that a wealth of literature exists on various model simplifications and extensions, many of which are discussed in a
recent review by Brosa Planella et. al [9]. One prevalent class of simplified DFN models are the so-called single particle
models (SPM) [10–13]. These are generally accurate for low and moderate C-rate operating (<1C, or thereabouts), in
which all the particles in each electrode behave similarly and so the model can be reduced to that of lithium transport
within one “representative” particle in each electrode. The distribution of lithium ions within these representative
particles are assumed to obey a spherically-symmetric diffusion process.

As alluded to above, the predictive power of the DFN, and related physics-based models, is predicated upon
knowledge of parameters that cannot be directly measured but must instead be inferred through physical principles
and indirect experimental observations. Therefore, the process of parameterisation – the accurate inference of these
parameters – is crucial for developing effective battery models, which in turn are key to advancing device improvement
and control [14].

One of the most influential parameters in physics-based models (especially SPMs) is the solid state diffusivity of
lithium-ions within the active materials, D(c), which varies (often rather strongly) with concentration c, and must
be inferred. The most widespread inference approach is to collect data with the Galvanostatic Intermittent Titration
Technique (GITT), where the electrode is forced with a small constant current for a short time, then allowed to relax
until the lithium ions are fully diffused, with the forcing–relaxation cycle repeated until the state-of-charge range of
interest is covered. This technique allows each forcing-relaxation cycle to be analysed separately as an independent
diffusion problem with constant diffusivity and homogeneous initial concentration. Using the analytic solution of a
semi-infinite slab (or, the Sand equation [15]), one can determine a diffusion constant corresponding to the small range
of concentrations in the cycle [16].

Despite its widespread application, the GITT approach presents several limitations, with one of the most prominent
being the practical challenge of data collection. For typical particle sizes R ∼ O(1)µm and diffusion constants
D ∼ O(10−15)m2/s, the constant current should be applied for O(10) seconds to accurately determine D(c). As a
consequence, in order to adequately reconstruct D(c) across the relevant range of concentrations, it is necessary to
apply low currents several hundred times. Each pulse is followed by a relaxation period, typically lasting around an
hour, to restore uniform concentration, a prerequisite for applying the Sand equation to the next pulse. Thus the
total data collection time can span weeks. A second type of issue is that of the questionable embedded assumptions.
The GITT inference is carried out using a solution that pertains for semi-infinite slabs, yet the models in which the
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parameters will be used contain diffusion equations in a sphere. Thus there is inconsistency in between inference
and prediction. The semi-infinite slab approximation is appropriate for pulse durations tpulse much shorter than the
diffusion time scale td = R2/D. The accuracy decreases as the ratio tpulse/td increases, with a 5% deviation from
the spherical solution at tpulse/td ≈ 3 × 10−2 [17]. For tpulse > 0.04 td, the Sand equation becomes inadequate for
determining D(c) (a detailed discussion is presented in Appendix A).
In addition to the GITT, other techniques to determine the diffusivity exist. Cyclic voltammetry allows estimation of

the average (constant) diffusivity [18, 19]; electrochemical impedance spectroscopy [20]; the potentiostatic intermittent
titration technique [21]; the intermittent current interruption technique [22].

In this paper, we propose determining the diffusivity by inference from spherical diffusion model (ISDM). In the
spirit of SPMs, we solve the fully nonlinear spherical diffusion model in a single representative particle for a known
surface lithium flux (directly proportional to the known current applied to/drawn from the cell) and determine the
concentration at the particle surface. Via the equilibrium overpotential, Ueq(c), we calculate the cell voltage, V (t),
and by comparing this quantity to the observed cell voltage, we infer D(c). In contrast with the GITT, our approach
offers the following benefits: (i) it can be applied to data with any current profile as long as the concentration spans
the range of state of charge of interest, thereby allowing for very significantly reduced data collection times; (ii) the
model being used for inference is compatible with those in which the parameters will subsequently be used to make
predictions, thus there are no embedded assumptions and it is therefore valid for all diffusion timescales; (iii) as we
will show the parameters inferred by ISDM may offer improved predictive capability for many use cases of interest.
To validate our approach, we use half-cell data harvested from a commercial LG M50 NMC811 cathode from Ref.[23]
and show that by using data covering a significantly shorter time, we are able to match, and arguably improve upon,
the parameter inference produced by the GITT. The remainder of this paper is organised as follows. In Section II,
we outline the mathematical method underlying ISDM. We validate our approach in Section III using both synthetic
and experimental data for GITT current profiles. In Section IV we demonstrate the generality of our approach by
inferring diffusivity from experimental data generated by applying a constant current. We then compare ISDM to
the GITT in recovering a known diffusivity in a full DFN model simulation data in Section V. We conclude with
Section VI where we summarise and discuss our results.

II. THE ISDM APPROACH

In this section we present the system of equations (reminiscent of a SPM) that lie at the heart of the ISDM. We
then discuss the details of the inference approach before moving onto validation in Section III.

For the present study, our aim is to write down the simplest physics-based model that contains only the parameters
that one infers with the GITT, thereby ensuring an even playing field in terms of what we are expecting to learn from
ISDM vs. GITT. If confronted with data where the influence of other parameters are nonnegligible, then our ISDM
methodology remains robust once one the inference model is extended to include those parameters concurrently with
diffusivity.

A. A single particle model

We consider a representative particle with radius R, where the molar Li ion concentration c(t, r) on the sphere
follows the radially symmetric diffusion equation

∂c

∂t
=

1

r2
∂

∂r

(
r2 D(c)

∂c

∂r

)
, (1)

subject to the initial condition

c(0, r) = c0 , (2)

and boundary conditions

∂c

∂r

∣∣∣∣
r=0

= 0 , −D(c)
∂c

∂r

∣∣∣∣
r=R

= j , (3)

where j(t) is the molar surface flux, describing the rate of Li ions transferred across the particle’s surface. Under
the usual SPM assumption that the dynamics of each particle are very similar, we can (to a good approximation)
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apportion the current applied to/drawn from the cell, I(t), equally between particles, such that

j = ± I

F n 4π R2
, (4)

where n is the number of active particles in the electrode, and F = eNA = 9.6485× 104C/mol is Faraday’s constant.
The sign above is negative for the cathode and positive for the anode, so that positive values of I(t) correspond to a
lithiating cathode (and delithiating anode) and hence battery discharging.

In most experiments, one applies I(t) and measures the voltage V (t). Neglecting the reaction overpotential and
internal resistance, the dominant contribution to the voltage comes from the equilibrium potential, that is,

V = Ueq(csurf) , (5)

where csurf(t) = c(t, R) is the surface concentration of Li ions.

B. Inference of diffusivity and the parameterisation scheme

Let D = {ti, Ii, Vi}Ni=1 be an experimental data and let us assume that the particle number n, radius R and Ueq(c)
are known from independent measurements. In order to infer concentration-dependent diffusivity, we parameterise it
as D(c; θ), where θ is the parameter vector.
The spatial derivatives in Eq. (1) are treated using the conservative control-volume method [24] thereby reducing

the PDE to a system of coupled ODEs for the concentrations at given collocation points, ri, as functions of time only.
We proceed to numerically solve the ODE system for given parameters θ. Using the solution on the particle surface
c(t, R; θ), we define the loss function as the mean of the residual sum of squares:

L(θ) = 1

N

N∑
i=1

(Vi − Ueq(c(ti, R; θ)))
2
. (6)

The parameters θ can be estimated by minimising the loss:

θ̂ = argmin
θ

L(θ) , (7)

which is equivalent to a maximum likelihood estimate under the assumption of Gaussian errors.
The main challenge in this approach is the parameterisation of D(c). To model diffusivity, there exists an infinite

number of choices of functional forms. Parameterisations with few number of parameters generally do not reflect
the complexity of the GITT estimation. On the other hand, increasing the number of parameters leads to a high
dimensional parameter space which makes it impractical to scan for a global minimum of the loss function.

In this proof-of-principle study, we model D(c) as a piecewise linear function, where the N dimensional parameter
vector θ is defined as the array of diffusivity values at predetermined knots. To estimate these parameters, we first
bin the time series data into N partitions. Each partition α has the corresponding data:

Dα = {tαi, Iαi, Vαi}Nα

i=1 , (8)

where Nα is the number of data points in partition α ∈ {1, . . . ,N}. We evolve the diffusion equation for each partition
sequentially, assuming a series of Fickian diffusion processes with constant diffusivity θα in each segment, and solve
the corresponding optimisation problem. Defining the local loss in partition α as

Lα(θα) =
1

Nα

Nα∑
i=1

[Vαi − Ueq(c(tαi, R; θα))]
2
, (9)

we estimate the constant diffusivity θα as

θ̂α = argmin
θα

Lα(θα) . (10)

The value of the corresponding knot ĉα is defined by evolving the diffusion equation for the partition using the

estimated diffusivity θ̂α and averaging it over time and volume:

ĉα =
3

Tα R3

∫ R

0

∫ tα1+Tα

tα1

r2c(t, r; θ̂α) dt dr , (11)
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where Tα is the duration of the evolution that falls into partition α. At the end of this procedure, we obtain N pairs

of (ĉα, θ̂α) values which can be seen as sample points from the full diffusivity function D(c) that is most likely to
produce the experimental data in each partition.

It should be noted that this approach is not a comprehensive optimisation strategy in the global sense. For scenarios
in which the concentration gradients within the particle are minimal, e.g. a galvanostatic intermittent titration (GIT)
experiment with slow constant charge input and frequent relaxation periods, the local optimisation procedure yields
highly precise outcomes. On the other hand, for cases with high overlap in c values across partitions, it is necessary
to transition to a more global optimisation scheme. In this study, this transition is accomplished by our second

optimisation phase, where D(c; θ) is initialised as a piecewise linear function with knots (ĉα, θ̂α) obtained in the first

phase; the values of θ̂α are then improved towards the minimum of the global (or quasi-global) loss function using a
numerical gradient algorithm. The updated parameter values are then used to construct the final inferred function

D̂(c) = D(c; θ̂). The pseudocode for our two-stage optimisation approach is presented in Appendix B.

For the success of the first (local) optimisation stage, the selection of the number and locations of the partitions
is a crucial step. The optimum choice heavily relies on the form of input current and the density of data, such that
each partition contains sufficient information about the diffusion of Li ions. For instance, a typical GIT experiment
consists mostly of stabilisation data, where the potential does not noticeably change; these data points contain minimal
information once the relaxation is well under way. For the specific example of GIT data, a natural choice is to select
the partitions such that they each coincide with at least one pulse and relaxation period to democratically distribute
the diffusion information across the partitions. On the other hand, for an experiment where there is no obvious choice
for partitioning, e.g. a battery sourced by a continuous constant current (see Section IV), one option is to bin the
data such that each partition contains an equal amount of useful data points, which we define as points where the
change in voltage ∆V is above a certain pre-set threshold value ∆Vmin.

1

The parameterisation and optimisation schemes adopted in this study are only a subset of possible approaches for
ISDM. For materials with well-characterised diffusion properties, adopting a physics-informed parameterisation will
closely align the model with the underlying physical principles, while reducing the number of inferred parameters
θ significantly. Additionally, the adjoint sensitivity method, which facilitates an effective use of gradient descent
variants, can be adopted as an alternative optimisation strategy. For the present study, where a major focus is a
GIT experiment with very large number of data points, a global parameterisation with adjoint methods proves to
be computationally expensive and can become unstable due to the complexity of the diffusion equation. Instead,
the two-stage approach adopted here allows us to analyse individual segments of data separately with parameters
localised in each segment, providing a more practical application of ISDM in this initial study.

III. VALIDATION

In this Section, we show that ISDM produces a diffusivity that is consistent with the one obtained with the
GITT. For the purposes of demonstration we will use a commercially relevant cathode comprised of NMC811. The
measurements have already been reported in Ref. [23]. In the interests of brevity we refer the interested reader to [23]
with a brief summary of the data collection method given below.

The data contains four cycles: the first one (cycle 0) is a charging cycle with constant current for about 10 hours,
followed by (cycle 1) a discharge cycle of the same duration, but opposite current. Then there is a GIT charge cycle
(cycle 2) consisting of 249 periods of constant pulse (150 seconds) and relaxation (1 hour). The last part of the
data is a GIT discharge cycle (cycle 3) with the same parameters for 250 periods, with an opposite-sign current. For
this experiment, a 15 mm diameter and 75.6 µm thickness coin cell is used, and the constant current for all cycles is
I = 0.78 mA (or C/10). The average particle radius is R = 5.22 µm. The delithiation starts at minimum state of
charge with fully diffused concentration c = 0.9084 cmax. Maximum concentration is reported as cmax = 51765 mol/m3

[23].

In this section, we establish the diffusivity derived from the conventional GITT procedure, denoted as DGITT, as
the baseline diffusivity for comparison with the ISDM results. We calculate DGITT by applying the Sand equation to
each forcing-relaxation period within the GIT charging data.

1 If the current direction remains the same throughout the experiment, an alternative would be to define the partitions such that the
transferred electric charge is uniformly distributed across the partitions.
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A. Self-Validation

We start by demonstrating the efficacy of the ISDM method in accurately reproducing diffusivity. We generate
synthetic data by solving the spherical diffusion equation for a particle using DGITT(c) and Ueq(c), both obtained
from the conventional GITT approach. The diffusion equation is forced by the same current time series in the GIT
charging data, with 249 periods of pulse and relaxation.

We note that this self-validation step focusses solely on the performance of the ISDM method and is not influenced
by the validity of the semi-infinite slab approximation or the suitability of the spherical diffusion model for this
context; within the scope of this synthetic data analysis, the DGITT(c) function is treated as the “true” diffusivity.

We divide the synthetic data into N = 50 partitions, such that each partition contains 5 whole GIT periods,
with the last one covering 4. For the first stage of the optimisation, we create a uniform grid with 10 points for

log10

(
1015

m2/sD
)
within the range [−2, 2]. We evaluate the loss at these points to identify the minimum. If a minimum

is located, the range encompassed by the grid point and its two adjacent points is subdivided into 10 finer points,
and this process is repeated until desired accuracy is reached. If no minimum is found within this range, the number
of grid points is expanded by a factor of 10, and the range is extended by 1 unit on both sides. As a result we obtain

50 pairs of (ĉα, θ̂α).
The second stage of the optimisation scheme is intended to change the inferred diffusivity towards the minimum of

the global loss. To this goal, we adopt a variant of cyclic coordinate descent algorithm. We construct the stepwise

linear D(c; θ) function with parameters θ initialised at the estimates θ̂ from the previous step. For the GIT data,
there is minimal overlap in concentration across the partitions; the slow forcing and relaxation periods prevent the
growth of c gradients. We therefore employ a quasi-global loss function for each partition, defined as:

L(β)
α (θα) =

1∑α+β
i=α−β Ni

α+β∑
i=α−β

Ni∑
j=1

[Vi,j − Ueq (c(ti,j , R; θα))]
2
, (12)

where β is the number of neighbours (left and right) for each partition α. For inference from synthetic data we use
β = 2, that is, for each θα parameter, we include 5 partitions to calculate the quasi-global loss (12). We then estimate

the gradient of L(β)
α (θα) with respect to θα numerically and update the values of θ̂α, sequentially going over each

partition. We repeat this procedure until the global loss L(θ) converges and we obtain our final D̂(c) = D(c; θ̂) from
ISDM.

The results of ISDM procedure is shown in Fig.1 for N = 50 partitions, along with the “true” value DGITT(c)

which was used to generate the synthetic data. In the plot, we also show D̃GITT(c) which is obtained by applying

the traditional GITT to this synthetic data for comparison. For the synthetic data, the ISDM result D̂(c) is in good
agreement with the original DGITT(c) used to generate the data.
To quantify the accuracy of the predictions from our model, we first note that an overwhelming portion of the data

is determined by the correct choice of the equilibrium potential Ueq(c). Therefore we expect the predictions to be very
close to the data. Instead of directly quantifying how much of the data is explained, we instead quantify how much of
the data in excess of a null model can be predicted by the model. To this end, we choose a null model corresponding
to D(c) → ∞, which predicts instantaneous diffusion, i.e.

V null(t) = Ueq(cav(t)) , (13)

where cav(t) is the average concentration across the particle at time t, and Ueq is determined from the relaxation
values in the GITT forcing-relaxation data. Defining the voltage data in excess of the null model as

∆Vi = Vi − V null(ti) , (14)

the predicted voltage deviation from the null model for a given D(c) is

∆V pred
i (D) = Ueq(cpred(ti, R;D))− V null(ti) , (15)

where cpred(t, R;D) is the concentration predicted by the specific D(c) model used.
We define the coefficient of determination R2 as the proportion of variability in the dataset beyond that explained

by the null model, accounted for by a spherical diffusion model with diffusivity D(c). Specifically,

R2(D) = 1−

∑N
i=1

(
∆Vi −∆V pred

i (D)
)2

∑N
i=1

(
∆Vi − 1

N

∑N
j=1 ∆Vj

)2 . (16)
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0.3 0.4 0.5 0.6 0.7 0.8 0.9
c / cmax

10 18

10 17

10 16

10 15

10 14

D
(c

)[
m

2 /s
]

DGITT ("True" value)
D(c) (ISDM with = 50)
DGITT (Traditional GITT on synthetic data)

FIG. 1. The diffusivity inferred from a synthetic data using ISDM on 50 partitions. The current is chosen to coincide with the
GIT charge cycle in [23]. The solid black line shows the true value of D(c) used to generate the synthetic data, while the solid
blue line is the result of applying the traditional GITT on the synthetic data.

Note that R2 ∈ (−∞, 1], where 1 indicates a perfect fit, values close to 0 suggest that the model does not improve
upon the null model, and negative values reveal that the model adds more variability than the null model. The
coefficient of determination for the ISDM estimate D̂(c) is calculated as follows:

R2(D̂) = 0.997 , (17)

that is, ISDM yields a model that can account for almost all the variability in the data. For comparison we apply
the traditional GITT, using the Sand equation on the synthetic data to infer the diffusivity D̃GITT(c). This model

produces less accurate predictions compared to ISDM, with R2(D̃GITT) = 0.800.
Since the true diffusivity is known for the synthetic data, we can also define a measure of accuracy for D(c) itself:

R2
D(D) = 1−

〈
(D(c)−Dtrue)

2
〉
c〈

(Dtrue(c)− ⟨Dtrue(c)⟩c)2
〉
c

, (18)

where ⟨f(c)⟩c denotes the mean of a function f(c) over the range of c. 2 The metric R2
D quantifies the proximity of

the estimated diffusivity to its true value. For the ISDM estimate, we calculate

R2
D(D̂) = 0.991 , (19)

while using the diffusivity obtained by applying the traditional GITT to the synthetic data, we get R2(D̃GITT) = 0.882.
This demonstrates the self-consistency of our approach. Since the synthetic data was generated from a single particle

spherical diffusion model, it is no surprise that the spherical-diffusion-based ISDM performs better than GITT, which
is based on semi-infinite slab approximation.

2 It is important to note that this measure loses significance if Dtrue is flat, i.e. does not exhibit variations. Nevertheless, for the cases
examined in this paper, the diffusivities typically have strong dependence on concentration and R2

D proves to be a reliable metric for
assessing the differences of the inferred diffusivities from the true one.
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B. Validation with real data

After confirming that the ISDM approach can reproduce the true D(c) from synthetic data, we move on to analysing
the real data from Ref.[23]. Specifically, we consider the GIT charging cycle from which we inferred DGITT(c) in the
previous sub-section using the conventional GITT. We note that the Ueq(c) function used in this section is also inferred
from the GIT data.

After applying the partitioning and optimisation scheme outlined in section IIIA, we obtain the ISDM result for
diffusivity. In Fig.2, we show the inferred D̂(c) for 50 partitions.

0.3 0.4 0.5 0.6 0.7 0.8 0.9
c / cmax

10 18

10 17

10 16

10 15

10 14

D
(c

)[
m

2 /s
]

D (ISDM with = 50)
DGITT (Traditional GITT)

FIG. 2. The diffusivity inferred from real GIT charging data using ISDM on 50 partitions. We also show DGITT(c) obtained
with the conventional GITT, i.e. by applying the Sand equation to each GIT period in the data.

The coefficient of determination, as defined in Eq.(16), for the ISDM result is computed as

R2(D̂) = 0.501 , (20)

that is, the predictive model accounts for half of the deviations in the data from the null model. On the other
hand, using DGITT, i.e. the diffusivity obtained by applying the Sand equation, this quantity is slightly lower, with
R2(DGITT) = 0.470.

Interestingly, ISDM estimates a diffusivity D̂(c) that is generally lower than the conventional GITT result DGITT.
The mean relative deviation is 48%. We show the plot for the percentage relative deviations for all available c values
in Figure.3 We see that the typical relative deviation is of order O(10)%. The largest contribution arises from the
marginal values of concentration. Constraining the comparison to c ∈ [0.3, 0.9], the mean relative percentage deviation
drops down to 34%. In Appendix A, we showed how the GITT result suffers from errors due to approximating the
spherical particle with a semi-infinite slab, which would render the ISDM result more accurate. On the other hand,
the GITT is insensitive to constant contributions to the output voltage during the pulse regime, such as internal
resistance effects.

IV. INFERENCE WITH CONSTANT CURRENT PROFILE

So far, our application of ISDM has been limited to GIT data, serving mainly for comparison with the traditional
GITT-based methods. On the other hand, the true strength of ISDM lies in its versatility to infer diffusivity across
the range of concentration spanned by any current profile.
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FIG. 3. The relative percentage deviation of the ISDM result D̂(c) with respect to DGITT(c), both estimates inferred from the
same GIT charge data.

In this section, we consider the constant current measurements of Chen et al [23] and use ISDM to estimate D(c).
The data contains a 10-hour measurement where the electrode is charged with a constant C/10 current.

A vital component of our inference methodology is the equilibrium potential Ueq(c), which, until now, has been
derived from GIT data. For ISDM to be used as a swift alternative to the GITT, it becomes essential to determine
Ueq(c) without resorting to the extensive, weeks-long measurements traditionally required. In this section, we perform

ISDM using two different equilibrium potentials: U
(GITT)
eq (c) obtained from GIT data and U

(pOCV)
eq (c) obtained from

C/20 charge/discharge data. The latter data set [25] was acquired from a half cell cathode and consists of alternating

charge and discharge cycles, repeated 10 times. We estimate U
(pOCV)
eq (c) as outlined in Appendix C, averaging over

the 10 charge/discharge cycles.
For partitioning, we distribute the useful data evenly into 50 partitions. We define a useful data where the change

in output voltage between two consecutive points exceeds 2× 10−4V.
The first stage of optimisation is performed as prescribed in Sec.III A, allowing us to obtain constant diffusion

values θ̂α for each partition, corresponding to the average concentrations ĉα. For the second stage, the quasi-global
loss definition is no longer useful, since the constant current introduces nonnegligible gradients across the particles and

the parameters θ̂α are no longer localised to their corresponding partitions. We therefore use a traditional gradient
descent algorithm where we use the global loss function (6) and numerically estimate the gradients with respect

to every parameter θ̂α, then update all parameters simultaneously towards the minimum of the global loss until
convergence.

We show the results in Figure.4 for inference from C/10 charging data, compared with the corresponding GITT
result, using both choices of the equilibrium potential. The coefficients of determination for the two case are calculated
as:

R2(D̂) = 0.863 ,
(
using U (GITT)

eq

)
,

R2(D̂) = 0.860 ,
(
using U (pOCV)

eq

)
. (21)

where for the computation of model predictions, we use the corresponding Ueq(c) that was used when inferring each

D̂(c). For comparison, the traditional GITT result gives R2(DGITT) = 0.0017 (using U
(GITT)
eq ).

The poor performance of DGITT in explaining the constant charge data underlines the inconsistency between the
predictive model (single particle spherical diffusion) and the inference model (single particle slab diffusion), which
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0.3 0.4 0.5 0.6 0.7 0.8 0.9
c / cmax

10 18

10 17

10 16

10 15

10 14

D
(c

)[
m

2 /s
]

D (ISDM with = 50 and U(GITT)
eq )

D (ISDM with = 50 and U(pOCV)
eq )

DGITT (Traditional GITT)

FIG. 4. The diffusivity D(c) inferred from ISDM on real C/10 charging data of Ref.[23], using 50 partitions. The blue and

red plots lines correspond to D̂(c) inferred using Ueq(c) from GITT and pOCV, respectively. The orange line represents the
diffusivity obtained with the conventional GITT.

becomes particularly apparent when the system is subjected to a more generalised forcing beyond the periodic pulse-
relaxation signal.

V. ACCURACY COMPARISON: ISDM VS GITT

In Sections III B and IV, we have demonstrated that ISDM outperforms the traditional GITT in explaining the
data. However, these assessments are primarily consistency tests that hinge on the validity of the single-particle
approximation. Moreover, we have neglected any contribution from e.g. overpotentials, electrolyte. Given these
constraints, the superior data fitting of ISDM compared to the GITT is expected, as ISDM is specifically designed to
minimise deviations from observed data it is inferred from. Nonetheless, neither analysis provides insight into which
of the inferred diffusivities is more correct. Even in Section IIIA, where the true diffusivity was known, the synthetic
data originated from a single-particle model, limiting the analysis therein to only a self-consistency test.

To fairly compare the results of ISDM and the GITT, we require an unbiased data with a known diffusivity. To
this end, we used Dandeliion [26] for DFN model simulations of a LG M50 NMC811 cathode half-cell with various
current profiles, using the parameters from Ref.[23]. In these runs, we use a realistic diffusion function formulated as
the exponential of a high-order polynomial, whose full form can be retrieved from the links provided in footnotes 3–5.
The equilibrium potential was fixed to be the fitted function presented in Ref.[23].

We first generate a dataset for a cathode half-cell charging with a GIT forcing-relaxation current 3 (covering 9.5
days of data). We then apply the traditional GITT with Sand equation to determine diffusivity DGITT(c).

We then move on to applying ISDM to the simulated half-cell, which consists of two stages. In the first stage we
apply charge then discharge the half-cell with a constant C/20 current 4 (covering 40 hours of data), which allows

us to determine U
(pOCV)
eq as described in Appendix C. In the second stage, we generate charging data with C/10

3 The Dandeliion run for GIT pulse-relaxation current can be accessed at:
https://simulation.dandeliion.com/legacy/simulation/?id=40751b48-307b-46fb-bcb9-5b3ab79b3b5c

4 The Dandeliion run for charge and discharge with constant C/20 current can be accessed at:
https://simulation.dandeliion.com/legacy/simulation/?id=d91db0e5-e0bb-4391-936c-50c69f267c24

https://simulation.dandeliion.com/legacy/simulation/?id=40751b48-307b-46fb-bcb9-5b3ab79b3b5c
https://simulation.dandeliion.com/legacy/simulation/?id=d91db0e5-e0bb-4391-936c-50c69f267c24
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constant current 5 (covering 10 hours) and apply ISDM (with N = 50 partitions) to infer diffusivity D̂(c), using the

equilibrium potential U
(pOCV)
eq .

The comparison of the inferred diffusivities along with the true one is shown in Fig.5. Coefficient of determination

0.4 0.5 0.6 0.7 0.8 0.9
x

10 16

10 15
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ffu

siv
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 [
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2 /s
]

Dtrue

D (ISDM with = 50)
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FIG. 5. Comparison of diffusivities inferred using ISDM (D̂) with 50 partitions and the traditional GITT (DGITT), along with
the true value used to generate the DFN data.

for diffusivity R2
D, defined in Eq.(18), which quantifies how close the inferred functions are to the true diffusivity is

calculated for each case as:

R2
D(D̂) = 0.883 , R2

D(DGITT) = 0.777 . (22)

ISDM not only achieves a more accurate approximation of the true diffusivity compared to GITT, but it also requires
only 50 hours of data collection, in contrast to the 9.5 days necessary for GITT. This represents a 78% reduction in
data collection time.

VI. CONCLUSIONS

We have introduced a novel methodology for inferring the concentration-dependent solid-state diffusivity using
experimentally measured voltage data. We refer to our method as “inference from spherical diffusion model” (ISDM).
The ISDM approach offers advantages over the GITT, namely: (i) it does not depend upon the questionable semi-
infinite slab assumption inherent in the Sand equation, (ii) it does not require a carefully controlled pulsed current
input and lengthy relaxation intervals. The proposed approach is highly versatile, and can infer diffusivity from any
current excitation which causes the concentration to pass through the desired range of values, and which is consistent
with the assumptions of the SPM. This allows significant savings in experimental time.

We first showed that ISDM is capable of recovering the correct diffusivity from synthetic data (generated by solving
the model equations forward with a known diffusivity). This demonstrates that ISDM is consistent, in contrast to
the GITT. Second, we applied the approach to real galvanostatic intermittent titration (GIT) data from an LG M50
NMC811 cathode [23]. The diffusivity inferred by our method is in good agreement with the results of the GITT.

5 The Dandeliion run for charging with constant C/10 current can be accessed at:
https://simulation.dandeliion.com/legacy/simulation/?id=3865ded1-60e1-439b-82b3-65a0ec8c5b0c

https://simulation.dandeliion.com/legacy/simulation/?id=3865ded1-60e1-439b-82b3-65a0ec8c5b0c
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Third, we applied ISDM to C/10 galvanostatic charging data, which is much faster and easier to harvest than GIT
data. Once again, we were able to obtain results broadly consistent with the diffusivity inferred from the previous
tests. Finally, we directly compared the performance of ISDM and the GITT at inferring diffusivity. We used the DFN
model to generate synthetic GIT charge, C/20 charge-discharge and C/10 charge data using a realistic pre-specified
diffusivity. Diffusivities were then predicted from this data using both the GITT and ISDM, with the latter method
producing substantially more accurate results.

The most obvious application for our method is in inferring the diffusivity of an electrode at the beginning of life
in order to make predictions of the device behaviour in the future. However, owing to the speed and agility of the
technique it may prove useful in other ways. It is well-known that degradation, for example in the form of microscale
intra-particle cracks, causes the effective diffusivity of the insertion material to reduce with cycle number. Since the
ISDM is agnostic to data-type, it could be used in the field to update the model parameters from incoming data as
the devices ages, maintaining the predictive capability of the model. These parameter changes might also be used
as an advanced indicator of approaching device failure or nonlinear ageing. Finally, we emphasise that although we
have chosen to focus on solid-state diffusivity there are no conceptual hurdles to applying the technique elsewhere.
In Li-ion batteries it could be used to infer electrolytic conductivity, transference number, or activation energies for
the Arrhenius temperature dependence of the diffusivity. It may also prove useful in a variety of other energy capture
and storage devices.
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Appendix A: Validity of Slab approximation on a sphere

In this appendix, we discuss the validity of the slab approximation implicit in Sand equation to describe a spherical
diffusion process. Similar analyses was presented in Ref.[17] and in the Supplementary Information of Ref.[22]. In
particular, we quantify the validity of D(c) obtained using the Sand equation on an actual galvanostatic intermittent
titration (GIT) experiment.

We consider the spherical diffusion equation (1) for constant diffusivity D, forced with a constant surface flux j0,
and starting with an initial homegenous concentration c0. We rescale concentration c, distance r and time t with
initial concentration c0, particle radius R and diffusion timescale td, respectively. That is,

c̃(t, r) =
c(t, r)

c0
, x =

r

R
, τ =

t

td
=

D t

R2
. (A1)

With these redefinitions, Eq.(1) becomes

∂c̃(τ, x)

∂τ
=

∂2c̃(τ, x)

∂x2
+

2

x

∂c̃(τ, x)

∂x
, (A2)

subject to:

c̃(0, x) = 1 ,
∂c̃(τ, x)

∂x

∣∣∣∣
x=0

= 0 ,
∂c̃(τ, x)

∂x

∣∣∣∣
x=1

= −δ , (A3)

where we defined

δ =
j0 R

c0D
. (A4)

The solution to Eq.(A2) is known analytically [27, 28],

c̃(τ, x) = 1− δ

[
3 τ +

5x2 − 3

10
− 2

x

∞∑
n=1

sin(αn x)

α2
n sin(αn)

e−α2
nτ

]
, (A5)

where αn is the n–th positive root of the transcendental equation α = tanα.
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On the surface (x = 1), this solution reduces to:

c̃(τ, 1) = 1− δ

[
3 τ +

1

5
− 2

∞∑
n=1

e−α2
nτ

α2
n

]
. (A6)

At τ = 0, the sum evaluates to
∑∞

n=1 α
−2
n = 1/10 [29], which verifies the initial condition c̃(0, 1) = 1.

One way to determine the behaviour of the finite sum is to approximate it into an integral. We observing that for
large n, the recursion approximates to αn+1 ≈ αn + π. Extending this relation, we have

αn ≈ α1 + (n− 1)π , (A7)

which is accurate at 1% level for low n, but becomes more precise for larger values. This allows the approximation

S =

∞∑
n=1

e−α2
nτ

α2
n

≈
∞∑

n=1

s(n) , (A8)

where we defined

s(n) =
e−[α1+(n−1)π]2τ

[α1 + (n− 1)π]2
. (A9)

Next, we approximate the infinite sum (A8) with the Euler-Maclaurin formula:

S =
∞∑

n=1

s(n) ≈
∫ ∞

1

s(x)dx+
s(∞) + s(1)

2
+

∞∑
k=1

B2k

(2k)!

(
s(2k−1)(∞)− s(2k−1)(1)

)
, (A10)

where B2k are the even Bernoulli numbers. Since we are only interested in small τ approximation, we only keep terms
up to linear order in τ . The integral is straightforward to evaluate and we find:∫ ∞

1

s(x)dx =
e−α2

1τ

α1π
−
√

τ

π
erfc

(
α1

√
τ
)
=

1

α1π
−

√
τ

π
+O(τ) (A11)

As for the correction terms, s(n) and its odd derivatives evaluated at infinity all vanish. The only remaining con-
tributions come from the function and its derivatives at n = 1. The infinite sum of odd derivatives at n = 1 are
problematic. Around k = 12th term, the sum starts to grow rapidly. On the other hand, these terms only give
contributions at order τ0, τ2 and higher. Since we are only interested in the behaviour of the τ1/2 term, we will
assume that these terms can be resummed. Considering the finite limit for τ → 0, we conjecture that

S ≈ 1

10
−

√
τ

π
+O(τ) . (A12)

That is, for small τ , the solution to the spherical diffusion equation is approximated as

c̃(τ, 1)− 1

δ
= −2

√
τ

π
+O(τ) . (A13)

Written in dimensionful quantities, the surface concentration is:

csurf = c0 − 2 j0

√
t

D π
+O

(
D t

R2

)
. (A14)

Thus, for t ≪ R2/D, the spherical diffusion equation has the same surface solution as the diffusion equation for a
semi-infinite slab [16] which forms the basis of the Sand equation. Although Eq.(A14) suggests that the GITT would
be applicable for short pulses, we need to determine how small D t/R2 should be to determine the diffusivity reliably
using the GITT.

Moreover, at relatively large τ , the infinite sum decays exponentially, and we are left with

c̃(τ, 1)− 1

δ
= −1

5
− 3 τ , (A15)
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or

csurf = c0 −
j0R

D

(
1

5
+

3 tD

R2

)
, (t ∼ R2/D) . (A16)

This expression is particularly interesting since the surface concentration depends linearly on t and the slope is
independent of D. Therefore if one employs the GITT in this regime, the inferred diffusion constants will be arbitrary.
Again, we need to use numerical methods to determine precisely the time τ = tD/R2 where this behaviour becomes
relevant.

In Figure 6, we show a comparison of the full solution and demonstrate the validity of (A13) and (A15) in the
corresponding regimes.
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1)

/
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Late ( ) approximation

FIG. 6. Comparison of the full solution (solid black), the early
√
τ approximation (red dashed) and the late linear behaviour

(green dashed).

To quantify the accuracy of the approximations, we calculate the relative error by

Error[%] = 100× c̃− c̃approx
c̃− 1

, (A17)

where c̃ is the exact solution while c̃approx is the approximation. The time dependence of the relative errors are
presented in Figure 7. We see that the square-root solution (A13) is valid within 5% for τ < 0.0032, 7.5% for
τ < 0.0073 and 10% for τ < 0.0132.

On the other hand, we see the relative error in the late solution (A15) catches up with the early approximation
(A13) at τeq = 0.0402, with both errors at 17.25%. For τ > τeq, the linear approximation rapidly improves and the
Sand equation is no longer applicable. 6

In Figure 8 we demonstrate the effect of approximating the sphere as a semi-infinite slab using the GIT data for
cathode delithiation from Ref.[23]. Here τ = tD/R2 is compute for each GITT pulse of duration t, with D inferred
from the Sand equation. For this data, the value of τ is consistently above the 5% cutoff, occasionally going above
the 7.5% line. The sand equation is valid within 10% accuracy in general. Even though GITT might not be accurate,
it is still valid since τ stays below the critical τeq line, where Sand equation breaks down for spherical diffusion.

6 A typical value for the 5% accuracy of the linear solution is τ > 1.27 [17, 22]. This actually corresponds to the accuracy associated with
approximating (c̃− 1)/δ ≈ −3 τ . Instead, including the intercept (c̃− 1)/δ ≈ −1/5− 3 τ , the linear behaviour becomes valid at a much
earlier time, reaching 5% accuracy at τ > 0.0783.
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FIG. 7. Comparison of the full solution (solid black), the early
√
τ approximation (red dashed) and the late linear behaviour

(green dashed).

On the other hand, given a relative error ∆c/c in concentration, Eq.(A14) implies that the relative error in diffusivity
is

∆D

D
= −2

∆c

c
. (A18)

Since the early solution (A14) consistently underestimates the drop in concentration, this leads to an overestimation
of diffusivity larger by a factor of 2. For instance, a 5% error in c̃ would translate into a 10% error in D.

Appendix B: Optimisation scheme

In this appendix, we present the pseudocode for the optimisation algorithm.

procedure InferD(Data, N , N iter, β)
Divide Data into N partitions, (time: tα, voltage Vα)
for each partition α from 1 to N do

Calculate ĉα as the average c in partition α
Define local loss Lα using tα, Vα, as a function of Dα

Perform grid search to find Dα that minimises Lα

Store pair (ĉα, D̂α)
end for
Construct D̂(c) as a piecewise linear function with knots at (ĉα, D̂α)
if overlaps are manageable (e.g. GITT) then

for iteration from 1 to N iter do
for each partition α do

Estimate gradient of the quasi-global loss including 2β with respect to D̂(ĉα) numerically

Update D̂(ĉα)
end for

end for
else (e.g. constant C/10)

for iteration from 1 to N iter do
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FIG. 8. Plot of the τ parameter for Chen et al [23] cathode delithiation data. The dashed orange, green and magenta lines
denote the 5%, 7.5% and 10% accuracy lines, respectively. The solid red line corresponds to the critical τeq value above which,
one cannot infer diffusivity from the Sand equation.

Estimate gradients of global loss w.r.t each D̂(ĉα) numerically

Update all D̂(ĉα) simultaneously
end for

end if
end procedure

Appendix C: Determination of equilibrium potential using pOCV

The efficacy of ISDM, as with any inference technique, hinges on the accurate determination of the equilibrium
potential Ueq(c). In particular, if the output voltage differs from the correct Ueq once the system relaxed, the inference
process becomes futile, yielding arbitrary outcomes.

When we are presented with a GIT data, it is straightforward to reconstruct the Ueq(c) function from the voltages
at the relaxation points. However, in order to make use of the flexibility of ISDM, it is crucial to find alternative
approaches to determining Ueq(c) without resorting to lengthy experimental techniques.

In this appendix, we outline the determination of the U
(pOCV )
eq (c) function used in Sections IV and V. In order to

construct the Ueq, we first note that

Vmeasured = Ueq(csurf)± |η| , (C1)

where η is the reaction overpotential. The sign is positive (negative) during charging (discharging). Assuming a
small enough current such that the charge is quickly dissipated across the particle, we can estimate the equilibrium
potential as:

Ueq ≈ 1

2
(Vcharge + Vdischarge) , (C2)

such that the effect of the overpotential is cancelled. For the data set used in Sec.IV, which contains 10 charge and

discharge cycles, we average over all 10 cycles, and show the estimated U
(pOCV )
eq in Fig.9, along with the U

(GITT)
eq
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FIG. 9. The equilibrium potential estimated from pOCV data with constant C/20, compared to the one obtained directly from
GIT data.

obtained from a full GIT charging cycle. The mean squared error between the two functions is 7 × 10−6 within the
overlapping stoichiometry range.
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