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Abstract

Correlation Clustering, introduced by Bansal et al. (FOCS ’02), is an elegant optimization model that formulates

clustering of objects based on their similarity information. In the model, we are given a set V of n elements, where

each pair of elements labeled either ‘+’ (representing that they are similar) or ‘−’ (representing that they are dis-

similar) together with a nonnegative weight quantifying the degree of similarity/dissimilarity. The goal is to find a

clustering of V that minimizes the so-called disagreements, i.e., the sum of weights of misclassified pairs in terms of

the given similarity information.

In this paper, we establish Multilayer Correlation Clustering, a novel generalization of Correlation Clustering

to the multilayer setting. In this model, we are given a series of inputs of Correlation Clustering (called layers)

over the common set V . The goal is then to find a clustering of V that minimizes the ℓp-norm (p ≥ 1) of the

disagreements vector, which is defined as the vector (with dimension equal to the number of layers), each element

of which represents the disagreements of the clustering on the corresponding layer. For this generalization, we first

design an O(L log n)-approximation algorithm, where L is the number of layers, based on the well-known region

growing technique. We then study an important special case of our problem, namely the problem with the probability

constraint, where each pair of elements in V has both labels ‘+’ and ‘−’ but the sum of weights of both labels equals

1. For this case, we first give an (α+2)-approximation algorithm, where α is any possible approximation ratio for the

single-layer counterpart. For instance, we can take α = 2.5 in general (Ailon et al., JACM ’08) and α = 1.73+ ǫ for

the unweighted case (Cohen-Addad et al., FOCS ’23). Furthermore, we design a 4-approximation algorithm, which

improves the above approximation ratio of α + 2 = 4.5 for the general probability-constraint case. Computational

experiments using real-world datasets demonstrate the effectiveness of our proposed algorithms.
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1 Introduction

Clustering objects based on the information of their similarity is a fundamental task in machine learning. Correlation

Clustering, introduced in the seminal paper by Bansal et al. [6,7], is an elegant optimization model that mathematically

formulates this task. In the model, we are given a set V of n elements, where each pair of elements is labeled either ‘+’

(representing that they are similar) or ‘−’ (representing that they are dissimilar) together with a nonnegative weight

representing the degree of similarity/dissimilarity. In general, the goal of Correlation Clustering is to find a clustering

of V that is consistent with the given similarity information as much as possible. The (in)consistency of a clustering

of V can be measured by the so-called disagreements, which is defined as the sum of weights of misclassified pairs,

i.e., pairs with ‘+’ label across clusters and pairs with ‘−’ label within the same cluster. The problem of finding a

clustering of V that minimizes the disagreements is called MINDISAGREE.

It is known that MINDISAGREE is not only NP-hard [6] but also APX-hard even if we consider the unweighted

case (i.e., the case where the weights are all equal to 1) [16]. A large body of work has been devoted to designing

polynomial-time approximation algorithms for the problem. For the general weighted case, Charikar et al. [16] and

Demaine et al. [25] independently proposedO(log n)-approximation algorithms, using the well-known region growing

technique [29]. The approximation ratio of O(log n) is still the state-of-the-art, and it is also known that improving

it is at least as hard as improving the O(log n)-approximation for Minimum Multicut [29], which is one of the major

open problems in theoretical computer science. For the unweighted case, Bansal et al. [6] presented the first constant-

factor approximation algorithm, which has been improved by a series of works so far [5, 16, 17, 19, 20]. Notably, the

current-best approximation ratio for the unweighted case is 1.73 + ǫ for any ǫ > 0, which was very recently given

by Cohen-Addad et al. [19]. For more details, including approximation algorithms for other special cases or even

generalizations, see Section 2.

1.1 Our contribution

In this study, we establish Multilayer Correlation Clustering, a novel generalization of Correlation Clustering to the

multilayer setting. In the model, we are given a series of inputs of Correlation Clustering (called layers) over the com-

mon set V of n elements. The goal is then to find a clustering of V that is consistent as much as possible with all layers.

To quantify the (in)consistency of a clustering over layers, we introduce the concept of disagreements vector (with

dimension equal to the number of layers) of a clustering, each element of which represents the disagreements of the

clustering on the corresponding layer. Using the ℓp-norm (p ≥ 1) of this vector, we can quantify the (in)consistency of

the given clustering in a variety of regimes. In particular, if we set p = 1, it simply quantifies the sum of disagreements

over all layers, whereas if we set p = ∞, it quantifies the maximal disagreements over the layers. For p ≥ 1, our

problem aims to find a clustering of V that minimizes the ℓp-norm of the disagreements vector. Obviously the problem

is a generalization of MINDISAGREE.

Multilayer Correlation Clustering is highly motivated by real-world scenarios. For example, suppose that we want

to find a clustering of users of X (previously known as Twitter) using their similarity information. In this case, various

types of similarity can be defined through analysis of users’ tweets and observations of different types of connections

among users such as follower–followee relations, retweets, and mentions. In the original framework of Correlation

Clustering, we need to deal with that information one by one and manage to aggregate resulting clusterings. On the

other hand, Multilayer Correlation Clustering enables us to handle that information simultaneously, directly producing

a clustering that is consistent (as much as possible) with all types of information. As another example scenario, suppose

that we analyze brain networks arising in neuroscience. In a brain network, nodes correspond to small regions of a

brain, and edges usually represent similarity relations among them. However, it is often the case that the edge set is not

determined uniquely; indeed, there would be at least two types of similarity based on the structural connectivity and

the functional connectivity (e.g., co-activation) among the small pieces of a brain. Obviously, Multilayer Correlation

Clustering can again find its advantage in this context. Furthermore, in both of the above scenarios, the similarity

information can be time-dependent and/or uncertain, naturally leading to the multilayer setting, even if we focus on a

specific type of similarity.

For this novel, well-motivated generalization, we present a variety of algorithmic results. We first design a

polynomial-time O(L logn)-approximation algorithm, where L is the number of layers. Our algorithm is a gener-

alization of the O(log n)-approximation algorithms for MINDISAGREE [16, 25] and thus employs the region growing
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technique [29]. Our algorithm first solves a convex programming relaxation of the problem, particularly a linear pro-

gramming (LP) relaxation for the case of p =∞. An important fact is that any feasible solution (and thus any optimal

solution) to the relaxation gives a pseudometric over V . Then, the algorithm iteratively constructs a cluster (and re-

moves it from V as a part of the output), using the region growing technique based on the pseudometric computed,

until all elements are clustered. Specifically, in each iteration, the algorithm takes an arbitrary element in V and con-

structs a ball of center being that element together with a carefully-selected radius. In the computation of the radius,

the algorithm takes into account the similarity information over all layers simultaneously, which is a key factor for

proving our approximation ratio of O(L logn).
We then study an important special case of our problem, namely the problem with the probability constraint. To

explain the problem, we briefly review MINDISAGREE with the probability constraint [6]. In this model, each pair of

elements in V has both ‘+’ and ‘−’ labels, each of which is associated with a nonnegative weight in the interval [0, 1].
The probability constraint assures that for each pair of elements, the sum of weights of ‘+’ and ‘−’ labels is equal to

1. At first glance, the problem might look tricky, but it is indeed a quite reasonable setting. According to the definition

of disagreements, for each pair of elements, if they are assigned to the same cluster, the weight of ‘−’ label is charged,

whereas if they are assigned to different clusters, the weight of ‘+’ label (i.e., 1 minus the weight of ‘−’ label) is

charged. Therefore, we can see that for each pair of elements, there is essentially only one weight in the interval [0, 1]
representing the degree of dissimilarity of them. In particular, MINDISAGREE of the unweighted case is a special case

of MINDISAGREE with the probability constraint. Our problem is a multilayer generalization of MINDISAGREE with

the probability constraint.

For this problem, we propose several constant-factor approximation algorithms. We first give a polynomial-time

(α+2)-approximation algorithm, where α is any possible approximation ratio for MINDISAGREE with the probability

constraint or any of its special cases if we consider the corresponding special case of our problem. For instance, we

can take α = 2.5 in general [5], α = 1.73 + ǫ for the unweighted case [19], and α = 1.5 for the case where the

weights of ‘−’ labels satisfy the triangle inequality constraint (see Section 3) [17]. In the design of our algorithm, we

introduce a novel optimization problem in a metric space. Let (X, d) be a metric space and p ≥ 1. In the problem,

given x1, . . . , xL ∈ X and a candidate set F ⊆ X , we are asked to find x ∈ F that minimizes
(∑

ℓ∈[L] d(x, xℓ)
p
)1/p

if p < ∞ and maxℓ∈[L] d(x, xℓ) if p = ∞. Intuitively, the problem aims to find the most representative candidate

of the given points x1, . . . , xL in a metric space. We prove that there is a polynomial-time approximation-preserving

reduction from our problem to this problem. To this end, a key fact is that each layer of our input (i.e., an input

of MINDISAGREE with the probability constraint) and any clustering of V , which might look different objects, can

be dealt with in a unified metric space, by setting an appropriate metric d. Following this reduction, we design an

algorithm for the metric-space problem, producing our algorithm that is applicable to a variety of cases. We wish

to note that our resulting algorithm is based on a single-layer analysis, meaning that it solves MINDISAGREE on

each layer and just outputs the best clustering among those seen in the process; however, we believe that the above

metric-space problem and the algorithm that we design for the problem may be of independent interest.

Furthermore, we design a 4-approximation algorithm for the general probability-constraint case, which improves

the above approximation ratio of α + 2 = 4.5. Unlike the above, this algorithm constructs a clustering using the

information collected by all layers simultaneously. Therefore, although we have no better approximation ratio for the

unweighted case and the triangle inequality constraint case, the algorithm is expected to perform better in practice

than the above even for those special cases. Specifically, the algorithm first solves a convex programming relaxation

as in the aforementioned O(L logn)-approximation algorithm for the general weighted case, and then constructs

a clustering, using some thresholding rule that is simpler than the region growing technique. Our algorithm is a

generalization of the 4-approximation algorithm for MINDISAGREE of the unweighted case, designed by Charikar et

al. [16]. Our result implies that their algorithm can be extended to the probability constraint case, which has yet to be

mentioned before. Although some approximation ratios better than 4 are known for the unweighted case [5,17,19,20],

thanks to its simplicity and extendability, the algorithm by Charikar et al. [16] has been generalized to various settings

of the unweighted case (see Section 2). Our analysis implies that those results may be further generalized from the

unweighted case to the probability constraint case.

Finally we conduct thorough experiments using a variety of real-world datasets to evaluate the performance of our

proposed algorithms in terms of both solution quality and running time. We confirm that our algorithms outperform

baseline methods for both Problem 1 of the general weighted case and Problem 1 with the probability constraint.
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Our contribution can be summarized as follows:

• We formulate Multilayer Correlation Clustering, a novel generalization of Correlation Clustering to the multi-

layer setting (Section 3).

• We design an O(L logn)-approximation algorithm for Problem 1 (Section 4).

• For Problem 1 with the probability constraint, we devise an (α + 2)-approximation algorithm, where α is any

possible approximation ratio for MINDISAGREE with the probability constraint or any of its special cases if

we consider the corresponding special case of our problem. Moreover, we design a 4-approximation algorithm,

which improves the above approximation ratio of α+ 2 = 4.5 for the general case (Section 5).

• We perform thorough computational experiments using various real-world datasets and demonstrate the practical

effectiveness of our proposed algorithms (Section 6).

2 Related Work

Our work focuses on Correlation Clustering, with a particular interest in the approximability of our generalization, i.e.,

Multilayer Correlation Clustering, which is strongly related to the emerging research topic in network science called

multilayer-network analysis.

Special cases of MINDISAGREE. For MINDISAGREE of the unweighted case, Bansal et al. [6, 7] gave the first

constant-factor approximation algorithm with the approximation ratio of 17,429. Then the approximation ratio has

been improved by a series of works. Charikar et al. [16] designed a 4-approximation algorithm. The algorithm first

solves an LP relaxation of the problem to obtain a pseudometric over the elements. Then the algorithm iteratively

constructs a cluster, using a simple thresholding rule based on the pseudometric computed. Ailon et al. [5] gave a

purely-combinatorial randomized 3-approximation algorithm, which they referred to as KWIKCLUSTER. The algo-

rithm is quite simple; it takes an element, called the pivot, uniformly at random from the remaining elements and

constructs a cluster by collecting all remaining elements that are similar to the pivot. The algorithm removes the clus-

ter and repeats the process until the elements are fully clustered. The authors also proved that a simple randomized

construction of the clusters based on the pseudometric computed by the LP relaxation improves the approximation

ratio from 3 to 2.5. Later Chawla et al. [17] demonstrated that a more sophisticated randomized construction of the

clusters achieves a 2.06-approximation [17], which almost matches the integrality gap of 2 of the LP relaxation [16].

In a recent breakthrough, Cohen-Addad et al. [20] designed a (1.994 + ǫ)-approximation algorithm for any ǫ > 0,

using a semidefinite programming relaxation of the problem, particularly the Sherali–Adams hierarchy. Very recently,

Cohen-Addad et al. [19] further improved the approximation ratio to 1.73 + ǫ by inventing a novel preprocessing

algorithm.

For MINDISAGREE with the probability constraint, Bansal et al. [6, 7] provided an approximation-preserving

reduction from the problem to MINDISAGREE of the unweighted case. Specifically, the authors proved that any

α-approximation algorithm for MINDISAGREE of the unweighted case yields a (2α + 1)-approximation algorithm

for MINDISAGREE with the probability constraint. Ailon et al. [5] demonstrated that the counterparts of KWIK-

CLUSTER and that combined with the pseudometric computed by the LP relaxation achieve a 5-approximation and

a 2.5-approximation, respectively, both of which improved the 9-approximation based on the above reduction with

the 4-approximation algorithm for MINDISAGREE of the unweighted case by Charikar et al. [16]. In particular, the

approximation ratio of 2.5 is still known to be the state-of-the-art. It is also known that in the case where the weights

of ‘−’ labels satisfy the triangle inequality constraint additionally, the approximation ratio can be improved. Indeed,

Ailon et al. [5] proved that their above algorithms achieve a 2-approximation, and later Chawla et al. [17] improved it

to 1.5.

Gionis et al. [30] studied the problem called Clustering Aggregation, which is highly related to MINDISAGREE.

In the problem, we are given L clusterings of the common set V , and the goal is to find a clustering of V that is

consistent with the given clusterings as much as possible. The (in)consistency is measured by the sum of distances

between the output clustering and the given L clusterings, where the distance is defined as the number of pairs of

elements that are clustered in the opposite way. Gionis et al. [30] proved that Clustering Aggregation is a special case
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of MINDISAGREE with the probability constraint and the triangle inequality constraint. We can also directly see that

Clustering Aggregation is a quite special case of Multilayer Correlation Clustering of the unweighted case, where each

layer already represents a clustering and the parameter p of the ℓp-norm is set to 1. The authors also demonstrated that

picking up the best clustering among the given L clusterings gives a 2(1 − 1/L)-approximation while an algorithm

similar to the 4-approximation algorithm for MINDISAGREE of the unweighted case, designed by Charikar et al. [16],

achieves a 3-approximation. Finally, it is worth noting that Clustering Aggregation has also been considered under a

variety of different names such as Clustering Ensemble and Consensus Clustering [26, 47].

Generalizations of MINDISAGREE. Here we review a selection of generalizations that are fairly related to our work

among the many available. For a broader survey, we refer the readers to the recent book [12] and references therein.

The most related would be Multi-Chromatic Correlation Clustering, introduced by Bonchi et al. [13], as a further

generalization of Chromatic Correlation Clustering [14]. Let V be a set of n elements. Let L be a set of colors. Each

pair of elements in V is associated with a subset of L, meaning that the endpoints are similar in the sense of those

colors. The goal is to find a clustering of V and an assignment of each cluster to a subset of L that is consistent as

much as possible with the given similarity information. The (in)consistency of a clustering is evaluated as follows:

For each pair within a cluster, a distance between the color subsets of the pair and the cluster is charged, while for

each pair across clusters, a distance between the color subset of the pair and the emptyset is charged. Varying the

definition of the distance, a number of concrete models can be obtained. It is easy to see that the input of Multi-

Chromatic Correlation Clustering is essentially the same as that of our problem of the unweighted case. A substantial

difference between those two problems is that Multi-Chromatic Correlation Clustering asks to specify the colors (i.e.,

layers in our case) of each cluster for which the cluster is supposed to be valid. Our problem does not require such an

effort, where all clusters are supposed to be valid on all layers. Our problem has two concrete advantages over Multi-

Chromatic Correlation Clustering. First, the objective function is more intuitive but can deal with a complex relations

among the (in)consistency over all layers. Indeed, our objective function is the ℓp-norm of the disagreements vector,

which is more easily interpretable; for example, if we set p = ∞, we can minimize the maximal disagreements over

all layers. On the other hand, as Multi-Chromatic Correlation Clustering does not evaluate the inconsistency on each

layer independently, it cannot involve this type of objective. Second, our problem is capable of the general weighted

case, while Multi-Chromatic Correlation Clustering is defined only for the unweighted case and the way to generalize

it to the weighted case is not trivial. For Multi-Chromatic Correlation Clustering, Bonchi et al. [13] designed an

approximation algorithm with an approximation ratio proportional to the product of |L| and the maximum degree of

the input (when interpreting it as a graph). Recently, Klodt et al. [39] introduced a different yet similar generalization

of Chromatic Correlation Clustering to the multi-chromatic case and devised a 3-approximation algorithm based on

KWIKCLUSTER.

Multilayer Correlation Clustering can be seen as Correlation Clustering with fairness considerations. Indeed,

supposing that the similarity information of each layer is given by an agent (e.g., a crowd worker), we see that the

problem tries not to abandon any similarity information given by the agents. From a fairness perspective, Puleo

and Milenkovic [43, 44] initiated the study of local objectives for MINDISAGREE of the unweighted case. In this

model, the disagreements of a clustering are quantified locally rather than globally, at the level of single elements.

Specifically, they considered a disagreements vector (with dimension equal to the number of elements), where i-th
element represents the disagreements incident to the corresponding element i ∈ V . The goal is then to minimize

the ℓp-norm (p ≥ 1) of the disagreements vector. If we set p = 1, the problem reduces to MINDISAGREE of the

unweighted case, whereas if we set p = ∞, the problem aims to minimize the maximal disagreements over the

elements. The authors proved that the model with p = ∞ is NP-hard and designed a 48-approximation algorithm

for any p ≥ 1 by extending the 4-approximation algorithm for MINDISAGREE of the unweighted case, designed by

Charikar et al. [16]. Charikar et al. [15] then improved the approximation ratio to 7 by inventing a different rounding

algorithm. The contribution of Charikar et al. [15] is not limited to the unweighted case; they also studied the above

model with p = ∞ of the general weighted case and designed an O(
√
n)-approximation algorithm. Later Kalhan

et al. [37] improved the above approximation ratio of 7 to 5, and designed an O(n
1
2−

1
2p log

1
2+

1
2p n)-approximation

algorithm for any p ≥ 1 of the general weighted case, matching the current-best approximation ratio of O(log n) for

MINDISAGREE of the general weighted case (i.e., the above model with p = 1) [16, 25], up to a logarithmic factor.

Very recently, Davies et al. [21] gave a purely-combinatorial O(nω)-time 40-approximation algorithm for p = ∞ of

the unweighted case, where ω is the exponent of matrix multiplication, while Heidrich et al. [32] improved the above
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approximation ratio of 5 by Kalhan et al. [37] to 4 for p =∞. Ahmadi et al. [2] studied the cluster-wise counterpart of

the above model with p =∞ (of the general weighted case), where the goal is to find a clustering of V that minimizes

the maximal disagreements over the clusters. The authors presented an O(log n)-approximation algorithm together

with an O(r2)-approximation algorithm for the Kr,r-free graphs. Later Kalhan et al. [37] significantly improved these

approximation ratios to 2 + ǫ for any ǫ > 0.

Another type of fairness has been considered for Correlation Clustering. Ahmadian et al. [3] initiated the study of

Fair Correlation Clustering (of the unweighted case), where each element is associated with a color, and each cluster

of the output is required to be not over-represented by any color, meaning that the fraction of elements with any

single color has to be upper bounded by a specified value. For the model, the authors designed a 256-approximation

algorithm, based on the notion called fairlet decomposition. Ahmadi et al. [1] independently studied a similar model

of Fair Correlation Clustering, where the distribution of colors in each cluster has to be the same as that of the entire

set. In particular, for the case of two colors that have the same number of elements in the entire set, the authors

proposed a (3α + 4)-approximation algorithm, where α is any known approximation ratio for MINDISAGREE of the

unweighted case. Friggstad and Mousavi [27] then gave an approximation ratio of 6.18, which cannot be achieved

by the above 3α + 4. The authors also studied the model with the aforementioned local objective for p = ∞ and

designed a constant-factor approximation algorithm. Schwartz and Zats [46] proved that the model of Ahmadi et

al. [1] of the general weighted case has no finite approximation ratio, unless P = NP. Very recently, Ahmadian et

al. [4] substantially generalized the above models and designed an approximation algorithm that has constant-factor

approximation ratios for some useful special cases.

Multilayer Correlation Clustering can also be seen as Correlation Clustering with the uncertainty of input by

interpreting each layer as a possible scenario of the similarity information of the elements. Most works on Correlation

Clustering with uncertainty assume the existence of the ground-truth clustering of V and aim to recover it, based

only on its noisy observations. In the seminal paper by Bansal et al. [7], this type of problem had already been

considered, while Joachims and Hopcroft [36] gave the first formal analysis of the problem. Later, a variety of

problem settings have been introduced in a series of works [18, 41, 42]. Very recently, Kuroki et al. [40] considered

another type of problem, which aims to perform as few queries as possible to an oracle that returns a noisy sample of

the similarity between two elements in V , to obtain a clustering of V that minimizes the disagreements. Specifically,

they introduced two novel online-learning problems rooted in the paradigm of combinatorial multi-armed bandits, and

designed algorithms that combine KWIKCLUSTER with adaptive sampling strategies.

Multilayer-network analysis. Correlation Clustering can be seen as a general clustering model on networks. A

multilayer network is a generalization of the ordinary network, where we have a number of edge sets (i.e., layers),

which encode different types of connections and/or time-dependent connections over the common set of vertices.

Our problem, Multilayer Correlation Clustering, can then be viewed as a generalization of Correlation Clustering

to multilayer networks. Recently, multilayer networks have attracted much attention, and many network-analysis

primitives have been generalized from the ordinary (i.e., single-layer) networks to multilayer networks. Examples

include community detection [9, 22, 33, 48], dense subgraph discovery [28, 35, 38], link prediction [22, 34], analyzing

spreading processes [23, 45], and identifying central vertices [8, 24].

3 Problem Formulation

In this section, we formally introduce our problem. Let V be a set of n elements. Let E be the set of unordered pairs

of distinct elements in V , i.e., E = {{u, v} : u, v ∈ V, u 6= v}. Let L be a positive integer, representing the number

of layers. For each ℓ ∈ [L], let w+
ℓ : E → R≥0 and w−

ℓ : E → R≥0 be the weight functions for ‘+’ and ‘−’ labels,

respectively, on that layer.1 For simplicity, we define w+
ℓ (u, v) = w+

ℓ ({u, v}) and w−
ℓ (u, v) = w−

ℓ ({u, v}) for ℓ ∈ [L]
and {u, v} ∈ E. Let C be a clustering (i.e., a partition) of V , that is, C = {C1, . . . , Ct} such that

⋃
i∈[t]Ci = V and

Ci ∩ Cj = ∅ for i, j ∈ [t] with i 6= j. For v ∈ V , we denote by C(v) the (unique) element (i.e., cluster) in C to

which v belongs. Then, for u, v ∈ V , 1l[C(u) = C(v)] = 1 if u, v belong to the same cluster and 1l[C(u) 6= C(v)] = 0
otherwise. The disagreement of C on layer ℓ ∈ [L] is defined as the sum of weights of misclassified labels on that

1Note that to deal with the probability constraint case in a unified manner, we assume that each pair of elements have both ‘+’ and ‘−’ labels.
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layer, i.e.,

Disagreeℓ(C) =
∑

{u,v}∈E

(
w+

ℓ (u, v)1l[C(u) 6= C(v)] + w−
ℓ (u, v)1l[C(u) = C(v)]

)
.

Then the disagreements vector of C is defined as

Disagree(C) = (Disagreeℓ(C))ℓ∈[L].

We are now ready to formulate our problem:

Problem 1 (Multilayer Correlation Clustering). Fix p ∈ [1,∞]. Given V and (w+
ℓ , w

−
ℓ )ℓ∈[L], we are asked to find a

clustering C of V that minimizes the ℓp-norm of the disagreement vector of C, i.e.,

‖Disagree(C)‖p =





(∑
ℓ∈[L]Disagreeℓ(C)p

)1/p

if p <∞,

maxℓ∈[L]Disagreeℓ(C) if p =∞.

Obviously Problem 1 is a generalization of MINDISAGREE to the multilayer setting. Varying the value of p,

we can obtain a series of objective functions that evaluate the (in)consistency of the given clustering in a variety of

regimes. If we set p = 1, the problem just aims to minimize the sum of disagreements over all layers. It is easy to

see that this case can be reduced to MINDISAGREE in an approximation-preserving manner; therefore, the problem is

O(log n)-approximable [16, 25]. If we set p =∞, the problem aims to minimize the maximal disagreements over all

layers, which is an important special case we are particularly interested in.

Similarly to the case of MINDISAGREE, as long as we consider the most general case that has no constraint

on w+
ℓ , w

−
ℓ , we can assume without loss of generality that at most one of w+

ℓ (u, v) and w−
ℓ (u, v) is nonzero for

any {i, j} ∈ E. Otherwise we can transform the instance into another one that satisfies the above and is more

easily approximable (see Section 1.4 in Bonchi et al. [12] for details). Following this, we can obtain a more intuitive

representation of our problem as follows: For each ℓ ∈ [L], introduce two mutually-disjoint sets E+
ℓ = {{u, v} ∈ E :

w+
ℓ (u, v) > 0} and E−

ℓ = {{u, v} ∈ E : w−
ℓ (u, v) > 0}, and define wℓ : E

+
ℓ ∪ E−

ℓ → R>0 such that wℓ({u, v}) =
w+

ℓ (u, v) if {u, v} ∈ E+
ℓ and wℓ({u, v}) = w−

ℓ (u, v) if {u, v} ∈ E−
ℓ . Again we write wℓ(u, v) = wℓ({u, v}) for

ℓ ∈ [L] and {u, v} ∈ E+
ℓ ∪ E−

ℓ , for simplicity. Then we can rewrite the disagreement of C on layer ℓ ∈ [L] as

Disagreeℓ(C) =
∑

{u,v}∈E+
ℓ

wℓ(u, v)1l[C(u) 6= C(v)] +
∑

{u,v}∈E−

ℓ

wℓ(u, v)1l[C(u) = C(v)],

which will be used throughout Section 4.

An important special case of Problem 1 is that w+
ℓ , w

−
ℓ for every layer ℓ ∈ [L] satisfy the so-called probability

constraint, i.e., w+
ℓ (u, v) + w−

ℓ (u, v) = 1 for any {u, v} ∈ E. Note that the most fundamental special case, i.e., the

unweighted case, is still contained in this case, where w−
ℓ (u, v) = 1−w+

ℓ (u, v) = 0 or 1. Another special case, which

we also handle in the present paper, is Problem 1 with the probability constraint and the triangle inequality constraint.

The additional constraint, i.e., the triangle inequality constraint, stipulates that on every layer ℓ ∈ [L], w−
ℓ (u,w) ≤

w−
ℓ (u, v) +w−

ℓ (v, w) holds for any distinct u, v, w ∈ V . It is easy to see that in the case of p = 1, Problem 1 with the

probability constraint (and the triangle inequality constraint) can be reduced to MINDISAGREE with the probability

constraint (and the triangle inequality constraint) in an approximation-preserving manner. Indeed, simply summing

up the weights over all layers for each pair of elements and dividing them by L, we can obtain an equivalent instance

of MINDISAGREE with the probability constraint (and the triangle inequality constraint). Therefore, we see that the

problem is still 2.5-approximable [5] in the probability constraint case and 1.5-approximable [17] in the probability

constraint and triangle inequality constraint case. However, even if we consider the quite special case, Problem 1 of

the unweighted case, there is no trivial reduction that can beat the above 2.5-approximation.

4 Algorithm for Problem 1

In this section, we design an O(L logn)-approximation algorithm for Problem 1. Our algorithm first solves a convex

programming relaxation and then rounds the fractional solution, using the region growing technique, to obtain a
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clustering. As explained in Section 3, we assume without loss of generality that at most one of w+
ℓ (i, j) and w−

ℓ (i, j)
is nonzero for each {i, j} ∈ E, and employ the latter representation of our problem given there.

4.1 The proposed algorithm

We first present 0–1 convex programming formulations for Problem 1. For distinct i, j ∈ V , we introduce 0–1
variables xij , xji, both of which take 0 if i, j belong to the same cluster and 1 otherwise. Then, in the case of p <∞,

Problem 1 can be formulated as follows:

minimize


∑

ℓ∈[L]


 ∑

{i,j}∈E+
ℓ

wℓ(i, j)xij +
∑

{i,j}∈E−

ℓ

wℓ(i, j)(1− xij)




p


1/p

subject to xij = xji (∀i, j ∈ V, i 6= j),

xik ≤ xij + xjk (∀i, j, k ∈ V, i 6= j, j 6= k, k 6= i),

xij ∈ {0, 1} (∀i, j ∈ V, i 6= j).

On the other hand, in the case of p =∞, we have the following 0–1 LP formulation:

minimize t

subject to
∑

{i,j}∈E+
ℓ

wℓ(i, j)xij +
∑

{i,j}∈E−

ℓ

wℓ(i, j)(1− xij) ≤ t (∀ℓ ∈ [L]),

xij = xji (∀i, j ∈ V, i 6= j),

xik ≤ xij + xjk (∀i, j, k ∈ V, i 6= j, j 6= k, k 6= i),

xij ∈ {0, 1} (∀i, j ∈ V, i 6= j).

For the above formulations, by relaxing the constraints xij ∈ {0, 1} to xij ∈ [0, 1] for all distinct i, j ∈ V , we can

obtain continuous relaxations of Problem 1, which we refer to as (CV) and (LP), respectively. Let x = (xij)i,j∈V : i6=j .

It should be noted that (CV) is a convex programming problem. Indeed, the objective function is convex, as it is a

vector composition of form f(g(x)) = f(g1(x), . . . , gL(x)), where f : RL
≥0 → R≥0 is an ℓp-norm of p ≥ 1, which

is convex and non-decreasing in each argument, and gℓ : R
E
≥0 → R≥0 is linear and thus convex for every ℓ ∈ [L];

moreover, the set of feasible solutions is obviously convex. Therefore, we can employ an appropriate method for

convex programming such as an interior-point method to solve the problem to arbitrary precision in polynomial time.

Throughout this paper, for the sake of simplicity, we suppose that (CV) can be solved exactly in polynomial time. On

the other hand, (LP) is indeed an LP, and thus can be solved exactly in polynomial time. Let OPTCV and OPTLP be

the optimal values of the above relaxations, respectively.

Our algorithm first solves an appropriate relaxation, (CV) or (LP), depending on the value of p, and obtains its

optimal solution x
∗ = (x∗

ij)i,j∈V : i6=j . Then the algorithm introduces x∗ = (x∗
ij)i,j∈V by setting x∗

ii = 0 for every

i ∈ V . Obviously x
∗ is a pseudometric over V , i.e., a relaxed metric where a distance between distinct elements may

be equal to 0. Based on this, the algorithm constructs a clustering in an iterative manner. The algorithm initially has the

entire set V . In each iteration, the algorithm takes an arbitrary element called a pivot in the current set and constructs a

cluster by collecting the pivot itself and the other elements that are located at distance less than some carefully-chosen

value from the pivot. The algorithm removes the cluster from the current set and repeats the process until it is left with

the emptyset.

To describe the algorithm formally, we introduce some notations. Recall that x∗ = (x∗
ij)i,j∈V is a pseudometric

over V . Let V̂ be an arbitrary subset of V . For i ∈ V̂ and r ≥ 0, we denote by BV̂ (i, r) the open ball of center i and

radius r in V̂ , i.e.,

BV̂ (i, r) = {j ∈ V̂ : x∗
ij < r}.
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Algorithm 1: O(L logn)-approximation algorithm for Problem 1

Input: V , (E+
ℓ , E−

ℓ )ℓ∈[L], and (wℓ)ℓ∈[L]

Output: Clustering of V
1 Compute an optimal solution x

∗ = (x∗
ij)i,j∈V : i6=j to (CV) if p <∞ and (LP) if p =∞;

2 Construct x∗ = (x∗
ij)i,j∈V by setting x∗

ii = 0 for every i ∈ V ;

3 Take an arbitrary c > 2;

4 B ← ∅;
5 V (1) ← V and t← 1;

6 while V (t) 6= ∅ do

7 Take an arbitrary pivot i(t) ∈ V (t);

8 Compute r∗(t) ∈ argmin

{
max

ℓ∈[L]:Fℓ 6=0

cut(V (t),ℓ)(BV (t)(i(t), r))

vol(V (t),ℓ)(BV (t)(i(t), r))
: r ∈ (0, 1/c]

}
;

9 B ← B ∪ {BV (t)(i(t), r∗(t))};
10 V (t+1) ← V (t) \BV (t)(i(t), r∗(t));

11 t← t+ 1;

12 return B;

For BV̂ (i, r), we define its cut value cut(V̂ ,ℓ)(BV̂ (i, r)) within V̂ on layer ℓ ∈ [L] as the sum of weights of ‘+’ labels

across BV̂ (i, r) and V̂ \BV̂ (i, r) on layer ℓ ∈ [L] , i.e.,

cut(V̂ ,ℓ)(BV̂ (i, r)) =
∑

{j,k}∈E+
ℓ
: j∈B

V̂
(i,r)∧k∈V̂ \B

V̂
(i,r)

wℓ(j, k).

For BV̂ (i, r), we define its volume vol(V̂ ,ℓ)(BV̂ (i, r)) within V̂ on layer ℓ ∈ [L] as

vol(V̂ ,ℓ)(BV̂ (i, r)) =
Fℓ

n
+

∑

{j,k}∈E+
ℓ
: j,k∈B

V̂
(i,r)

wℓ(j, k)x
∗
jk +

∑

{j,k}∈E+
ℓ
: j∈B

V̂
(i,r)∧k∈V̂ \B

V̂
(i,r)

wℓ(j, k)(r − x∗
ij),

where Fℓ =
∑

{j,k}∈E+
ℓ

wℓ(j, k)x
∗
jk .

Based on the above notations, the pseudocode of our algorithm is presented in Algorithm 1. The feature of our

algorithm can be found in the radius selection: In the t-th iteration, the algorithm selects the radius r∗(t) that minimizes

the maximal ratio of the cut value to the volume of the ball of the chosen pivot i(t) over all layers ℓ ∈ [L] with Fℓ 6= 0.

4.2 Analysis of Algorithm 1

Here we prove that Algorithm 1 is a polynomial-timeO(L log n)-approximation algorithm for Problem 1. To this end,

we have the following key lemma, verifying the effectiveness of the radius determined by the algorithm:

Lemma 1. In Algorithm 1, for any t = 1, . . . , |B|, it holds that

max
ℓ∈[L]:Fℓ 6=0

cut(V (t),ℓ)(BV (t)(i(t), r∗(t)))

vol(V (t),ℓ)(BV (t)(i(t), r∗(t)))
≤ cL log(n+ 1),

and moreover, BV (t)(i(t), r∗(t)) can be computed in polynomial time.

Proof. Fix t ∈ {1, . . . , |B|}. For simplicity, for any r ∈ [0, 1/c], we write BV (t)(i(t), r) = B(r), and moreover, for

any ℓ ∈ [L], cut(V (t),ℓ)(BV (t)(i(t), r)) = cutℓ(r) and vol(V (t),ℓ)(BV (t)(i(t), r)) = volℓ(r). By the definition of r∗(t), it
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suffices to show that there exists r ∈ (0, 1/c] that satisfies

max
ℓ∈[L]:Fℓ 6=0

cutℓ(r)

volℓ(r)
≤ cL log(n+ 1).

Suppose, for contradiction, that for any r ∈ (0, 1/c],

max
ℓ∈[L]:Fℓ 6=0

cutℓ(r)

volℓ(r)
> cL log(n+ 1).

Then we have

∫ 1/c

0

max
ℓ∈[L]:Fℓ 6=0

cutℓ(r)

volℓ(r)
dr >

∫ 1/c

0

cL log(n+ 1) dr = L log(n+ 1). (1)

Now relabel the elements in V (t) that have distance less than 1/c from i(t) (including i(t) itself) as i(t) = j0, . . . , jq−1

in the increasing order of the distance. For each p = 0, . . . , q − 1, we denote by rp the distance from i(t) to jp, i.e.,

rp = x∗
i(t)jp

. For convenience, we set rq = 1/c. For any ℓ ∈ [L], the function volℓ(r) is not necessarily differentiable

and even not necessarily continuous at r0, . . . , rq . On the other hand, at any point r ∈ (0, 1/c] except for r1, . . . , rq ,

the function volℓ(r) is differentiable, and from the definition, we have

d volℓ(r)

dr
= cutℓ(r). (2)

Moreover, by simple calculation, we have that for any ℓ ∈ [L] with Fℓ 6= 0,

volℓ(1/c)

volℓ(0)
≤ n+ 1. (3)

Indeed, we see that volℓ(0) = Fℓ/n and

volℓ(1/c) =
Fℓ

n
+

∑

{j,k}∈E+
ℓ
: j,k∈B(1/c)

wℓ(j, k)x
∗
jk +

∑

{j,k}∈E+
ℓ
: j∈B(1/c)∧k∈V (t)\B(1/c)

wℓ(j, k)

(
1

c
− x∗

i(t)j

)

≤ Fℓ

n
+

∑

{j,k}∈E+
ℓ
: j∈B(1/c)∧k∈V (t)

wℓ(j, k)x
∗
jk

≤ Fℓ

n
+ Fℓ,

where the first inequality follows from

1/c− x∗
i(t)j ≤ x∗

i(t)k − x∗
i(t)j ≤ x∗

i(t)j + x∗
jk − x∗

i(t)j = x∗
jk (4)
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for any {j, k} ∈ E+
ℓ such that j ∈ B(1/c) and k ∈ V (t) \B(1/c). Using Equality (2) and Inequality (3), we have

∫ 1/c

0

max
ℓ∈[L]:Fℓ 6=0

cutℓ(r)

volℓ(r)
dr ≤

∑

ℓ∈[L]:Fℓ 6=0

∫ 1/c

0

cutℓ(r)

volℓ(r)
dr

=
∑

ℓ∈[L]:Fℓ 6=0

q−1∑

p=0

∫ rp+1

rp

cutℓ(r)

volℓ(r)
dr

=
∑

ℓ∈[L]:Fℓ 6=0

q−1∑

p=0

∫ rp+1

rp

1

volℓ(r)
d volℓ(r)

=
∑

ℓ∈[L]:Fℓ 6=0

q−1∑

p=0

(log volℓ(rp+1)− log volℓ(rp))

=
∑

ℓ∈[L]:Fℓ 6=0

log
volℓ(1/c)

volℓ(0)

≤ L log(n+ 1),

where the first inequality follows from the fact that
cutℓ(r)
volℓ(r)

is nonnegative for any ℓ ∈ [L] with Fℓ 6= 0 and r ∈ (0, 1/c].

The above contradicts Inequality (1), meaning that there exists r ∈ (0, 1/c] such that

max
ℓ∈[L]:Fℓ 6=0

cutℓ(r)

volℓ(r)
≤ cL log(n+ 1).

From now on, we show that B(r∗(t)) = BV (t)(i(t), r∗(t)) can be computed in polynomial time. To this end, it

suffices to show that the radius r∗(t) ∈ argmin
{
maxℓ∈[L]:Fℓ 6=0

cutℓ(r)
volℓ(r)

: r ∈ (0, 1/c]
}

can be computed in polynomial

time. Recall the relabeling of the elements in V (t). For any p = 0, . . . , q − 1, in the interval (rp, rp+1], the function
cutℓ(r)
volℓ(r)

for any ℓ ∈ [L] is monotonically nonincreasing, and thus so is maxℓ∈[L]
cutℓ(r)
volℓ(r)

. Indeed, in that interval, cutℓ(r)

is unchanged, while volℓ(r) is monotonically nondecreasing. Therefore, it suffices to compute maxℓ∈[L]
cutℓ(r)
volℓ(r)

for

all r = r1, . . . , rq and identify the one that attains the minimum. Clearly this procedure can be done in polynomial

time.

We are now ready to prove our main theorem:

Theorem 1. Algorithm 1 is a polynomial-time O(L logn)-approximation algorithm for Problem 1.

Proof. By Lemma 1, it is trivial that Algorithm 1 runs in polynomial time. Therefore, in what follows, we analyze the

approximation ratio. Letting B be the output of the algorithm, we need to evaluate

‖Disagreeℓ(B)‖p =






∑

ℓ∈[L]


 ∑

{j,k}∈E+
ℓ

wℓ(j, k)1l[B(j) 6= B(k)] +
∑

{j,k}∈E−

ℓ

wℓ(j, k)1l[B(j) = B(k)]




p


1/p

if p <∞,

max
ℓ∈[L]




∑

{j,k}∈E+
ℓ

wℓ(j, k)1l[B(j) 6= B(k)] +
∑

{j,k}∈E−

ℓ

wℓ(j, k)1l[B(j) = B(k)]




if p =∞.

We first evaluate the terms for ‘+’ labels. By Lemma 1, we have that for any ℓ ∈ [L] with Fℓ 6= 0,

cut(V (t),ℓ)(BV (t)(i(t), r∗(t))) ≤ cL log(n+ 1) · vol(V (t),ℓ)(BV (t)(i(t), r∗(t))).
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Based on this, for any ℓ ∈ [L] with Fℓ 6= 0, we have

∑

{j,k}∈E+
ℓ

wℓ(j, k)1l[B(j) 6= B(k)] =
|B|∑

t=1

cut(V (t),ℓ)(BV (t)(i(t), r∗(t)))

≤ cL log(n+ 1)

|B|∑

t=1

vol(V (t),ℓ)(BV (t)(i(t), r∗(t)))

≤ cL log(n+ 1)


Fℓ

n
· |B|+

∑

{j,k}∈E+
ℓ

wℓ(j, k)x
∗
jk




≤ 2cL log(n+ 1)
∑

{j,k}∈E+
ℓ

wℓ(j, k)x
∗
jk . (5)

The second inequality follows from the fact that the balls included in B are mutually disjoint. Indeed, for any {j, k} ∈
E+

ℓ contained in some ballBV (t)(i(t), r∗(t)), the valuewℓ(j, k)x
∗
jk is produced just once due to vol(V (t),ℓ)(BV (t)(i(t), r∗(t))),

while for any {j, k} ∈ E+
ℓ across distinct balls BV (t′)(i(t

′), r∗(t′)) and BV (t′′)(i(t
′′), r∗(t′′)) (t′ < t′′), once remov-

ing BV (t′)(i(t
′), r∗(t′)), all the incident edges will never appear in the later iterations, and thus at most the value

wℓ(j, k)(1/c − x∗
i(t′)j

) is produced just once due to vol(V (t′),ℓ)(BV (t′)(i(t
′), r∗(t′))). Note that without loss of gen-

erality, we assumed that BV (t′)(i(t
′), r∗(t′)) contains only j among j, k. By Inequality (4), we have 1/c−x∗

i(t′)j
≤ x∗

jk .

On the other hand, for any ℓ ∈ [L] with Fℓ = 0, we see that x∗
jk = 0 for any {j, k} ∈ E+

ℓ . Therefore, by its design,

the algorithm does not separate any {j, k} ∈ E+
ℓ , meaning that for any ℓ ∈ [L] with Fℓ = 0,

∑

{u,v}∈E+
ℓ

wℓ(u, v)1l[B(u) 6= B(v)] = 0. (6)

Next we evaluate the terms for ‘−’ labels. For any ℓ ∈ [L], we have

∑

{j,k}∈E−

ℓ

wℓ(j, k)1l[B(j) = B(k)] =
c

c− 2

|B|∑

t=1

∑

{j,k}∈E−

ℓ
: j,k∈B

V (t) (i(t),r
∗

(t)
)

wℓ(j, k)

(
1− 2

c

)

≤ c

c− 2

|B|∑

t=1

∑

{j,k}∈E−

ℓ
: j,k∈B

V (t) (i(t),r
∗

(t)
)

wℓ(j, k)
(
1− x∗

jk

)

≤ c

c− 2

∑

{j,k}∈E−

ℓ

wℓ(j, k)
(
1− x∗

jk

)
, (7)

where the first inequality follows from the triangle inequalities in (CV) and (LP). Indeed, denoting by i(t) the center

of the ball containing j, k, we have x∗
jk ≤ x∗

ji(t)
+ x∗

i(t)k
< 2/c.

Let OPT be the optimal value of Problem 1. Using Inequality (5), Equality (6), and Inequality (7), we have that
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in the case of p <∞,

‖Disagreeℓ(B)‖p

≤




∑

ℓ∈[L]


2cL log(n+ 1)

∑

{j,k}∈E+
ℓ

wℓ(j, k)x
∗
jk +

c

c− 2

∑

{j,k}∈E−

ℓ

wℓ(j, k)
(
1− x∗

jk

)



p


1/p

≤ max

{
2cL log(n+ 1),

c

c− 2

}
∑

ℓ∈[L]


 ∑

{j,k}∈E+
ℓ

wℓ(j, k)x
∗
jk +

∑

{j,k}∈E−

ℓ

wℓ(j, k)
(
1− x∗

jk

)



p


1/p

= max

{
2cL log(n+ 1),

c

c− 2

}
OPTCV

≤ max

{
2cL log(n+ 1),

c

c− 2

}
OPT,

and in the case of p =∞,

‖Disagreeℓ(B)‖p

≤ max
ℓ∈[L]


2cL log(n+ 1)

∑

{j,k}∈E+
ℓ

wℓ(j, k)x
∗
jk +

c

c− 2

∑

{j,k}∈E−

ℓ

wℓ(j, k)
(
1− x∗

jk

)



≤ max

{
2cL log(n+ 1),

c

c− 2

}
max
ℓ∈[L]


 ∑

{j,k}∈E+
ℓ

wℓ(j, k)x
∗
jk +

∑

{j,k}∈E−

ℓ

wℓ(j, k)
(
1− x∗

jk

)



= max

{
2cL log(n+ 1),

c

c− 2

}
OPTLP

≤ max

{
2cL log(n+ 1),

c

c− 2

}
OPT.

Noting that max
{
2cL log(n+ 1), c

c−2

}
= O(L logn), we have the theorem.

Finally we mention the integrality gaps of (CV) and (LP). For MINDISAGREE of the general weighted case,

the LP relaxation used for designing the O(log n)-approximation algorithms is known to have the integrality gap of

Ω(logn) [16, 25]. As our relaxations, (CV) and (LP), are generalizations of the above LP relaxation, the integrality

gap of Ω(logn) is inherited. This matches our approximation ratio in the case of L = O(1) but there remains a gap in

general.

5 Algorithms for Problem 1 with Probability Constraint

In this section, we present our algorithms for Problem 1 with the probability constraint. The first algorithm has an

approximation ratio of (α + 2), where α is any possible approximation ratio for MINDISAGREE with the probability

constraint or any of its special cases if we consider the corresponding special case of our problem, while the second

algorithm has an approximation ratio of 4.

5.1 The (α + 2)-approximation algorithm

To design the algorithm, we reduce Problem 1 with the probability constraint to a novel optimization problem in a

metric space. Let X be a set. Let d : X × X → R≥0 be a metric on V , i.e., d(x, y) = 0 if and only if x = y for

x, y ∈ V , d(x, y) = d(y, x) for x, y ∈ V , and d(x, z) ≤ d(x, y) + d(y, z) for x, y, z ∈ V . In general, (X, d) is called

a metric space. We introduce the following problem:
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Problem 2 (Find the Most Representative Candidate in a Metric Space). Fix p ≥ 1. Let (X, d) be a metric space.

Given x1, . . . , xL ∈ X and a candidate set F ⊆ X , we are asked to find x ∈ F that minimizes

(∑
ℓ∈[L] d(x, xℓ)

p
)1/p

if p <∞ and maxℓ∈[L] d(x, xℓ) if p =∞.

Then we can prove the following key lemma. The proof is based on the fact that each layer of the input of Problem 1

with the probability constraint (i.e., an input of MINDISAGREE with the probability constraint) and any clustering of

V can be dealt with in a unified metric space (X, d) when X and d are set appropriately.

Lemma 2. There exists a polynomial-time approximation-preserving reduction from Problem 1 with the probability

constraint to Problem 2.

Proof. Fix p ≥ 1. Let V and (w+
ℓ , w

−
ℓ )ℓ∈[L] be the input of Problem 1 with the probability constraint, satisfying

w+
ℓ (u, v) + w−

ℓ (u, v) = 1 for any ℓ ∈ [L] and {u, v} ∈ E. We construct an instance of Problem 2 as follows: Let

X = [0, 1]E and d : X × X → R≥0 be a metric such that d(x, y) := ‖x − y‖1 for x, y ∈ X . For x ∈ X and

{u, v} ∈ E, we denote by x(u, v) the element of x associated with {u, v}. For each ℓ ∈ [k], let xℓ ∈ X be the element

such that xℓ(u, v) = w−
ℓ (u, v) for {u, v} ∈ E. Let F = {x ∈ {0, 1}E : x induces a clustering of V }. Here x is said

to induce a clustering of V if every connected component in (V,Ex), where Ex = {{u, v} ∈ E : x(u, v) = 0}, is

a clique. Then we see that there is a one-to-one correspondence between F and the set of clusterings of V . Take an

arbitrary element x ∈ F and let Cx be the clustering corresponding to x. Then we have that for any ℓ ∈ [L],

d(x, xℓ) = ‖x− xℓ‖1
=

∑

{u,v}∈E

(
(1 − w−

ℓ (u, v))1l[Cx(u) 6= Cx(v)] + w−
ℓ (u, v)1l[Cx(u) = Cx(v)]

)

=
∑

{u,v}∈E

(
w+

ℓ (u, v)1l[Cx(u) 6= Cx(v)] + w−
ℓ (u, v)1l[Cx(u) = Cx(v)]

)

= Disagreeℓ(Cx),
meaning that the objective function of Problem 2 is equivalent to that of Problem 1 with the probability constraint.

Therefore, x is a β-approximate solution to Problem 2 if and only if so is Cx to Problem 1 with the probability

constraint. Noticing that the above reduction can be done in polynomial time, we have the lemma.

In what follows, we design an approximation algorithm for Problem 2, resulting in an approximation algorithm for

Problem 1 with the probability constraint with the same approximation ratio. To this end, we introduce the following

subproblem:

Problem 3 (Find the Closest Candidate in a Metric Space). Let (X, d) be a metric space. Given x ∈ X and a

candidate set F ⊆ X , we are asked to find x′ ∈ F that minimizes d(x, x′).

Assume now that we have an α-approximation algorithm for Problem 3. Let x1, . . . , xL ∈ X and F ⊆ X be the

input of Problem 2. Our approximation algorithm for Problem 2 runs as follows: For every ℓ ∈ [L], the algorithm

obtains an α-approximate solution x′
ℓ ∈ F for Problem 3 with input xℓ ∈ X and F ⊆ X , using the α-approximation

algorithm for Problem 3. Then the algorithm outputs the best solution among x′
1, . . . , x

′
L in terms of the objective

function of Problem 2. The pseudocode is given in Algorithm 2.

5.2 Analysis of Algorithm 2

The following theorem gives the approximation ratio of Algorithm 2.

Theorem 2. Algorithm 2 is an (α + 2)-approximation algorithm for Problem 2.

Proof. Let x∗ ∈ F be an optimal solution to Problem 2. Let xclosest ∈ argminx∈{x1,...,xL} d(x, x
∗) and x′

closest be

the α-approximate solution for Problem 3 with input xclosest and F . By the definition of x′
closest and xclosest, we have

that for any ℓ ∈ [L],

d(x′
closest, xclosest) ≤ α · d(x∗, xclosest) ≤ α · d(x∗, xℓ).
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Algorithm 2: (α+ 2)-approximation algorithm for Problem 2

Input: x1, . . . , xL ∈ X and F ⊆ X
Output: x ∈ F

1 for ℓ = 1, . . . , L do

2 x′
ℓ ← α-approximate solution for Problem 3 with input xℓ ∈ X and F ⊆ X;

3 return xout ∈ argminx∈{x′

1,...,x
′

L
}

(∑
ℓ∈[L] d(x, xℓ)

p
)1/p

if p <∞ and

xout ∈ argminx∈{x′

1,...,x
′

L
} maxℓ∈[L] d(x, xℓ) if p =∞;

Using these inequalities, we have that for any ℓ ∈ [L],

d(x′
closest, xℓ) ≤ d(x′

closest, x
∗) + d(x∗, xℓ)

≤ d(x′
closest, xclosest) + d(xclosest, x

∗) + d(x∗, xℓ)

≤ α · d(x∗, xℓ) + d(x∗, xℓ) + d(x∗, xℓ)

= (α+ 2) · d(x∗, xℓ),

where the first and second inequalities follow from the triangle inequality for the metric d and the third inequality

follows from the definition of xclosest. Noticing that x′
closest is one of the output candidates of Algorithm 2, we can

upper bound the objective value of the output xout as follows: In the case of p <∞,


∑

ℓ∈[L]

d(xout, xℓ)
p




1/p

≤


∑

ℓ∈[L]

d(x′
closest, xℓ)

p




1/p

≤ (α+ 2)


∑

ℓ∈[L]

d(x∗, xℓ)
p




1/p

,

while in the case of p =∞,

max
ℓ∈[L]

d(xout, xℓ) ≤ max
ℓ∈[L]

d(x′
closest, xℓ) ≤ (α+ 2)max

ℓ∈[L]
d(x∗, xℓ),

which concludes the proof.

In Algorithm 2, the approximation ratio α for Problem 3 that we can take depends on the metric space (X, d) and

part of input F ⊆ X , inherited from Problem 2. By interpreting Problem 1 with the probability constraint (or any of

its special cases) as Problem 2 with specific metric space (X, d) and part of input F ⊆ X , we can obtain the following

series of approximability results:

Corollary 1. There exists a polynomial-time 4.5-approximation algorithm for Problem 1 with the probability con-

straint.

Proof. By Lemma 2, it suffices to show that there exists a polynomial-time 4.5-approximation algorithm for Problem 2

with the metric space (X, d) and the part of input F ⊆ X that correspond to Problem 1 with the probability constraint.

By Theorem 2, Algorithm 2 is an (α+ 2)-approximation algorithm for Problem 2, where α is the approximation ratio

of the algorithm employed for solving Problem 3 with those (X, d) and F ⊆ X . Based on the reduction in the proof

of Lemma 2, Problem 3 with those (X, d) and F ⊆ X is equivalent to MINDISAGREE with the probability constraint,

for which there exists a polynomial-time 2.5-approximation algorithm [5]. Therefore, we have the corollary.

Corollary 2. For any ǫ > 0, there exists a polynomial-time (3.73 + ǫ)-approximation algorithm for Problem 1 of the

unweighted case.

Proof. The proof strategy is the same as the above. In this case, we can specialize the reduction given in the proof of

Lemma 2 by replacing X = [0, 1]E with X = {0, 1}E , and we see that Problem 3 with (X, d) and F ⊆ X is equiv-

alent to MINDISAGREE of the unweighted case, for which there exists a polynomial-time (1.73 + ǫ)-approximation

algorithm for any ǫ > 0 [19].
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Corollary 3. There exists a polynomial-time 3.5-approximation algorithm for Problem 1 with the probability con-

straint and the triangle inequality constraint.

Proof. The proof is again similar. In this case, we can specialize the reduction by replacing X = [0, 1]E with

X = {x ∈ [0, 1]E : x(u,w) ≤ x(u, v) + x(v, w), ∀u, v, w ∈ V }, and we see that Problem 3 with (X, d) and F ⊆ X
is equivalent to MINDISAGREE with the probability constraint and the triangle inequality constraint, for which there

exists a polynomial-time 1.5-approximation algorithm [17].

5.3 The 4-approximation algorithm

Here we present our 4-approximation algorithm, which is a generalization of the 4-approximation algorithm for

MINDISAGREE of the unweighted case, designed by Charikar et al. [16]. As in Section 4, we first introduce 0–1
convex programming formulations for Problem 1. In the case of p <∞, Problem 1 can be formulated as follows:

minimize




∑

ℓ∈[L]




∑

{i,j}∈E

(
w+

ℓ (i, j)xij + w−
ℓ (i, j)(1 − xij)

)



p


1/p

subject to xij = xji (∀i, j ∈ V, i 6= j),

xik ≤ xij + xjk (∀i, j, k ∈ V, i 6= j, j 6= k, k 6= i),

xij ∈ {0, 1} (∀i, j ∈ V, i 6= j).

On the other hand, in the case of p =∞, we have the following 0–1 LP formulation:

minimize t

subject to
∑

{i,j}∈E

(
w+

ℓ (i, j)xij + w−
ℓ (i, j)(1 − xij)

)
≤ t (∀ℓ ∈ [L]),

xij = xji (∀i, j ∈ V, i 6= j),

xik ≤ xij + xjk (∀i, j, k ∈ V, i 6= j, j 6= k, k 6= i),

xij ∈ {0, 1} (∀i, j ∈ V, i 6= j).

As in Section 4, we refer to the continuous relaxations of the above problems as (CV-Pr) and (LP-Pr), respectively.

Again (CV-Pr) is a convex programming problem, and we suppose that (CV-Pr) can be solved exactly in polynomial

time. Let OPTCV-Pr and OPTLP-Pr be the optimal values of (CV-Pr) and (LP-Pr), respectively.

Our algorithm first solves an appropriate relaxation, (CV-Pr) or (LP-Pr), depending on the value of p, and obtains

its optimal solution x
∗ = (x∗

ij)i,j∈V : i6=j . Then the algorithm introduces x∗ = (x∗
ij)i,j∈V by setting x∗

ii = 0 for every

i ∈ V . Based on the pseudometric x∗ over V , the algorithm constructs a clustering, using a simple thresholding rule.

Let V̂ be an arbitrary subset of V . For i ∈ V̂ and r ≥ 0, we denote by BV̂ (i, r) the closed ball of center i and radius

r in V̂ , i.e.,

BV̂ (i, r) = {j ∈ V̂ : x∗
ij ≤ r}.

Our algorithm initially set V̂ = V . In each iteration, the algorithm takes an arbitrary element i ∈ V̂ and initializes

a cluster B = {i}. Then the algorithm constructs C = BV̂ (i, 1/2) \ {i}. If the average distance between i and the

elements in C is less than 1/4, i.e., 1
|C|

∑
j∈C x∗

ij < 1/4, then the algorithm updates B by adding all elements in C.

The algorithm removes B from V̂ as a cluster of the output, and repeats this procedure until V̂ = ∅. The pseudocode

is written in Algorithm 3.

5.4 Analysis of Algorithm 3

The following theorem gives the approximation ratio of Algorithm 3.
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Algorithm 3: 4-approximation algorithm for Problem 1 with the probability constraint

Input: V and (w+
ℓ , w

−
ℓ )ℓ∈[L]

Output: Clustering of V
1 Compute an optimal solution x

∗ = (x∗
ij)i,j∈V : i6=j to (CV-Pr) if p <∞ and (LP-Pr) if p =∞;

2 Construct x∗ = (x∗
ij)i,j∈V by setting x∗

ii = 0 for every i ∈ V ;

3 B ← ∅ and V̂ ← V ;

4 while V̂ 6= ∅ do

5 Take an arbitrary i ∈ V̂ and initialize B ← {i};
6 C ← BV̂ (i, 1/2) \ {i};
7 if 1

|C|

∑
j∈C x∗

ij < 1/4 then B ← B ∪ C;

8 B ← B ∪ {B} and V̂ ← V̂ \B;

9 return B;

Theorem 3. Algorithm 3 is a 4-approximation algorithm for Problem 1 with the probability constraint.

Proof. It suffices to prove that for any layer ℓ ∈ [L], it holds that

Disagreeℓ(B) ≤ 4
∑

{i,j}∈E

(
w+

ℓ (i, j)x
∗
ij + w−

ℓ (i, j)(1 − x∗
ij)

)
. (8)

Indeed, from this inequality, it follows that ‖Disagree(B)‖p ≤ 4 · OPTCV-Pr if p < ∞ and ‖Disagree(B)‖p ≤
4 · OPTLP-Pr if p = ∞, which proves the theorem. Fix ℓ ∈ [L] and consider an arbitrary iteration of the while-loop

in Algorithm 3. Let B ⊆ V̂ be the cluster produced in the iteration. We define the cost of B as the contribution of all

pairs of elements in V̂ with at least one of them being inside B to the objective value, i.e.,
∑

{j,k}∈E: j,k∈B w−
ℓ (j, k)+∑

{j,k}∈E: j∈B∧k∈V̂ \B w+
ℓ (j, k). In what follows, we upper bound the cost of B using the corresponding terms in the

right-hand-side of Inequality (8). Recall that C = BV̂ (i, 1/2) \ {i} contains all elements in V̂ (except for i) within

distance of at most 1/2 from i. There are two cases:

(i) If the average distance between i and the elements in C is no less than 1/4, i.e., 1
|C|

∑
j∈C x∗

ij ≥ 1/4, then the

algorithm forms the singleton cluster B = {i}. In this case, the cost of the cluster reduces to
∑

j∈V̂ \{i} w
+
ℓ (i, j). For

each j ∈ V̂ \ {i} with x∗
ij > 1/2, we can upper bound each w+

ℓ (i, j) using the corresponding term in the right-hand-

side of Inequality (8) because it holds that w+
ℓ (i, j) ≤ 2 ·w+

ℓ (i, j)x
∗
ij ≤ 2

(
w+

ℓ (i, j)x
∗
ij + w−

ℓ (i, j)(1− x∗
ij)

)
. On the

other hand, consider any pair of elements for which x∗
ij ≤ 1/2 holds, i.e., the element j is contained in C. Then, it

holds that 1− x∗
ij ≥ x∗

ij , and thus we have

∑

j∈C

(
w+

ℓ (i, j)x
∗
ij + w−

ℓ (i, j)(1 − x∗
ij)

)
≥

∑

j∈C

(
w+

ℓ (i, j) + w−
ℓ (i, j)

)
x∗
ij =

∑

j∈C

x∗
ij ,

where the equality follows from the probability constraint. Using the above inequality together with the assumption
1
|C|

∑
j∈C x∗

ij ≥ 1/4, we have

∑

j∈C

w+
ℓ (i, j) ≤ |C| ≤ 4

∑

j∈C

x∗
ij ≤ 4

∑

j∈C

(
w+

ℓ (i, j)x
∗
ij + w−

ℓ (i, j)(1 − x∗
ij)

)
.

(ii) The second case is when the average satisfies 1
|C|

∑
j∈C x∗

ij < 1/4, where the algorithm forms the cluster

B = {i} ∪ C. For the sake of the proof, we assume that the elements in V̂ are relabeled so that j < k if x∗
ij < x∗

ik ,

where ties are broken arbitrarily.

First consider the pairs of elements contained in B. The cost ofB charged by these pairs is
∑

{j,k}∈E: j,k∈B w−
ℓ (j, k).

If both x∗
ij < 3/8 and x∗

ik < 3/8 hold, then the triangle inequality over the pseudometric assures that 1− x∗
jk ≥ 1/4,
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Table 1: Real-world datasets used in our experiments.

Dataset (abbreviation) |V | L

aves-sparrow-social (sparrow) 52 2

insecta-ant-colony1 (ant) 113 41

reptilia-tortoise-network (tortoise) 136 4

aves-wildbird-network (wildbird) 202 6

aves-weaver-social (weaver) 445 23

reptilia-tortoise-network-fi (tortoise-fi) 787 9

and therefore each w−
ℓ (j, k) can be upper bounded by the corresponding term in the right-hand-side of Inequality (8)

within a factor of 4. The cost of B charged by the remaining pairs of elements j, k ∈ B with j < k can be taken

into account by k. Obviously we have x∗
ik ∈ [3/8, 1/2]. For a fixed k, define the quantities pk =

∑
j<k w

+
ℓ (j, k) and

nk =
∑

j<k w
−
ℓ (j, k). The cost taken into account by k is equal to nk. The sum of the terms corresponding to all

pairs j < k, where k is fixed, in the right-hand-side of Inequality (8) can be lower bounded as follows:
∑

j<k

(
w+

ℓ (j, k)x
∗
jk + w−

ℓ (j, k)(1 − x∗
jk)

)
≥

∑

j<k

(
w+

ℓ (j, k)(x
∗
ik − x∗

ij) + w−
ℓ (j, k)(1 − x∗

ik − x∗
ij)

)

= pkx
∗
ik + nk(1− x∗

ik)−
∑

j<k

x∗
ij

≥ pkx
∗
ik + nk(1− x∗

ik)−
pk + nk

4
.

The last inequality follows from the probability constraint together with the fact that the average distance between i
and the elements in {j : j < k} must be smaller than 1/4, as x∗

ij ≥ 3/8 for any j ≥ k. Therefore, the above is lower

bounded by a linear function depending on x∗
ik ∈ [3/8, 1/2]. It is easy to see that for every x∗

ik in this range, the value

is always at least nk/4. Therefore, the cost nk is always within a factor of 4.

Next consider the pairs of elements j, k ∈ V̂ with exactly one element being contained in B = {i} ∪ C. Without

loss of generality, we assume that j < k and thus we have j ∈ B, k ∈ V̂ \B, and x∗
ij < x∗

ik . The cost of B charged by

these pairs is
∑

{j,k}∈E: j∈B∧k∈V̂ \B w+
ℓ (j, k). If x∗

ik ≥ 3/4 holds, then x∗
ik−x∗

ij ≥ 1/4. Using the triangle inequality

over the pseudometric, we have x∗
jk ≥ 1/4, meaning that the cost charged by those pairs is accounted for within a

factor of 4. The cost of B charged by the remaining pairs can again be taken into account by k. Obviously we have

x∗
ik ∈ (1/2, 3/4). For a fixed k, redefine the quantities pk =

∑
j<k: j∈B w+

ℓ (j, k) and nk =
∑

j<k: j∈B w−
ℓ (j, k).

The cost taken into account by k is equal to pk. The rest of the proof is identical to the above.

The above theorem indicates that the 4-approximation algorithm for MINDISAGREE of the unweighted case, de-

signed by Charikar et al. [16], can be extended to the probability constraint case, which has yet to be mentioned before.

Although some approximation ratios better than 4 are known for MINDISAGREE of the unweighted case, thanks to its

simplicity and extendability, the algorithm has been generalized to various settings of the unweighted case (see Sec-

tion 2). Our analysis implies that those results may be further generalized form the unweighted case to the probability

constraint case.

6 Experimental Evaluation

In this section, we report the results of computational experiments performed on various real-world datasets, evaluating

the practical performance of our proposed algorithms in terms of both solution quality and computation time.

6.1 Experimental setup

Datasets. Throughout the experiments, we set p = ∞ in Problem 1, meaning that we aim to minimize the maximal

disagreements over all layers. Table 1 lists real-world datasets, each of which is a multilayer network consisting of
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L layers with positive edge weights. All datasets were collected by Network Repository2. Using the datasets, we

generated our instances of Problem 1. Let G = (V, (Eℓ, wℓ)ℓ∈[L]) be a multilayer network at hand, where Eℓ is the set

of edges on layer ℓ and wℓ : Eℓ → R>0 is its weight function. We first normalize all edge weights so that the maximum

weight is equal to 1; that is, we redefine wℓ({u, v}) ← wℓ({u, v})/wmax for every ℓ ∈ [L] and {u, v} ∈ Eℓ, where

wmax = maxℓ∈[L]max{u,v}∈Eℓ
wℓ({u, v}). For every ℓ ∈ [L], let weights(ℓ) be the multiset of all edge weights on

layer ℓ, i.e., weights(ℓ) = {wℓ({u, v}) : {u, v} ∈ Eℓ}. We generate our instance V and (w+
ℓ , w

−
ℓ )ℓ∈[L] as follows:

The set V of objects is exactly the same as the set of vertices in the multilayer network. For convenience, we define

E = {{u, v} : u, v ∈ V, u 6= v}.
First let us consider Problem 1 of the general weighted case. For each layer ℓ ∈ [L] and {u, v} ∈ E, if

{u, v} ∈ Eℓ we set w+
ℓ (u, v) = wℓ({u, v}) and w−

ℓ (u, v) = 0; otherwise we set w+
ℓ (u, v) = 0 and w−

ℓ (u, v) =
random.choice(weights(ℓ)) with probability 0.5, where random.choice() takes an element from a given

multiset uniformly at random, and w+
ℓ (u, v) = w−

ℓ (u, v) = 0 otherwise. The intuition behind the above setting is

that we actively put ‘+’ labels for the pairs of objects having edges, while for the pairs of objects not having edges,

we only passively put ‘−’ labels (i.e., only with probability 0.5), given the potential missing of edges in the original

network. The weights for ‘+’ labels fully respect for the original edge weights, while the weights for ‘−’ labels are

generated from those for ‘+’ labels.

Next consider Problem 1 with the probability constraint. In this case, the instances are generated with the

same intuition as above. For each layer ℓ ∈ [L] and {u, v} ∈ E, if {u, v} ∈ Eℓ we set w+
ℓ (u, v) = 0.5 +

wℓ({u, v})/2 and w−
ℓ (u, v) = 1 − w+

ℓ (u, v); otherwise we set w+
ℓ (u, v) = 1 − w−

ℓ (u, v), where w−
ℓ (u, v) =

0.5 + random.choice(weights(ℓ))/2 with probability 0.5, and w+
ℓ (u, v) = w−

ℓ (u, v) = 0.5 otherwise.

Our algorithms and baselines. For Problem 1 of the general weighted case, we run Algorithm 1. Note that in the

algorithm, the way to select a pivot is arbitrary; in our implementation, the algorithm just takes the object with the

smallest ID. We employ the following baseline methods:

• Pick-a-Best. This method first solves MINDISAGREE on each layer, using the state-of-the-art O(log n)-
approximation algorithms [16, 25], and then outputs the best one among them in terms of the objective value

of Problem 1. This method can be seen as a generalization of Algorithm 2 for Problem 1 with the probability

constraint case, but it is not clear if the method has an approximation ratio such as O(L logn), achieved by

Algorithm 1.

• Aggregate. This method first aggregates the layers. Specifically, the method constructs w+ : E → R≥0

and w− : E → R≥0 by setting w+(u, v) =
∑

ℓ∈[L]w
+
ℓ (u, v) and w−(u, v) =

∑
ℓ∈[L]w

−
ℓ (u, v) for every

{u, v} ∈ E. Then it solves MINDISAGREE with input V and (w+, w−), using the O(log n)-approximation al-

gorithms [16,25]. As mentioned in Section 3, this method gives an O(log n)-approximate solution for Problem 1

when p = 1, but the approximation ratio for the case of p =∞ is not clear.

For Problem 1 with the probability constraint, we run Algorithms 2 and 3. Note that Algorithm 2 varies depend-

ing on the approximation algorithm for MINDISAGREE with the probability constraint employed in the algorithm.

Specifically, we use the 2.5-approximation algorithm and the 5-approximation algorithm, designed by Ailon et al. [5],

providing the approximation ratios of 4.5 and 7, respectively, of Algorithm 2. There is a trade-off between these two

selections: The first algorithm has a better approximation ratio, but it is slower, as it has to solve an LP, which is not

required in the second algorithm. We refer to the two algorithms as Algorithm 2 (LP) and Algorithm 2 (LP), respec-

tively. In Algorithm 3, the way to select a pivot is arbitrary, and we use the same rule as the above. We employ the

following baseline method:

• Aggregate-Pr. This method is the probability-constraint counterpart of the above Aggregate. Specifically,

the method constructs w+ : E → R≥0 and w− : E → R≥0 by setting w+(u, v) =
(∑

ℓ∈[L]w
+
ℓ (u, v)

)
/L and

w−(u, v) =
(∑

ℓ∈[L]w
−
ℓ (u, v)

)
/L for every {u, v} ∈ E. Then it solves MINDISAGREE with the probability

constraint with input V and (w+, w−), using the 2.5-approximation algorithm or the 5-approximation algo-

rithm [5], as in Algorithm 2. We refer to this baseline as Aggregate-Pr (LP) or Aggregate-Pr (LP), depending

2https://networkrepository.com/index.php
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Table 2: Results for Problem 1 of the general weighted case.

Algorithm 1 Pick-a-Best Aggregate

Dataset LB Obj. val. Time(s) Obj. val. Time(s) Obj. val. Time(s)

sparrow 13.37 13.48 0.47 26.79 0.34 13.81 0.11

ant 32.48 34.30 587.94 42.94 1719.11 47.59 48.03

tortoise 127.14 151.00 2.32 193.00 16.43 174.00 0.91

wildbird 54.97 56.50 35.78 98.27 129.20 74.84 7.87

weaver 132.75 164.00 135.22 — OT 177.00 12.19

tortoise-fi 271.48 305.00 644.07 — OT 446.00 195.40

on the choice of the above approximation algorithm. As mentioned in Section 3, Aggregate-Pr (LP) gives a

2.5-approximate solution for Problem 1 with the probability constraint when p = 1, but the approximation ratio

for the case of p =∞ is not clear.

Finally we mention the implementation of the LPs. All LPs to be solved by the algorithms have the Θ(n3) triangle

inequality constraints; therefore, it is inefficient to input the entire program directly. To overcome this, all algorithms

employ the technique called Row Generation [31]. In this technique, we first solve the program without any triangle

inequality constraint. Then we scan all the constraints: if there are constraints that are violated by the current optimal

solution, we add the constraints to the program, solve it again, and repeat the process; otherwise we output the current

optimal solution, which is indeed an optimal solution to the original program.

Machine spec and code. All experiments were conducted on a machine with Apple M1 Chip and 16 GB RAM. All

codes were written in Python 3. LPs were solved using Gurobi Optimizer 11.0.1 with the default parameter setting.

6.2 Results

The results for Problem 1 of the general weighted case are presented in Table 2, where for each instance, the best

objective value and running time among the algorithms are written in bold. The second column, named LB, presents

OPTLP, i.e., the optimal value of (LP), which is a lower bound on the optimal value of Problem 1. OT indicates that

the algorithm did not terminate in 3,600 seconds. As can be seen, Algorithm 1 outperforms the baseline methods in

terms of the quality of solutions. Indeed, Algorithm 1 obtains much better solutions than those computed by Pick-

a-Best and Aggregate. Remarkably, the objective value achieved by Algorithm 1 is often quite close to the lower

boundOPTLP, meaning that the algorithm tends to obtain a near-optimal solution. As Algorithm 1 solves (LP), which

involves the multilayer structure and thus is more complex than the LP solved in Aggregate, Algorithm 1 is slower

than Aggregate; however, Algorithm 1 is still even faster than Pick-a-Best, as the latter requires to solve L different

LPs corresponding to the layers.

The results for Problem 1 with the probability constraint are summarized in Table 3. Note that for this case, all

algorithms except for Algorithm 3 are performed 10 times, as they contain randomness. OT again indicates that (the

first run of) the algorithm did not terminate in 3,600 seconds. The objective values are presented using the average

value and the standard deviation, while the running time is just with the average value, because obviously it may

not vary much. The trend of the results is similar to that for the general weighted case. Indeed, Algorithm 3 with

an approximation ratio of 4 outperforms the baseline methods in terms of the quality of solutions, and the algorithm

succeeds in obtaining near-optimal solutions. Although Algorithm 2 (LP) and Algorithm 2 (LP) are also our proposed

algorithms, which have approximation ratios of 4.5 and 7, respectively, their practical performances are not comparable

with that of Algorithm 3. Therefore, we conclude that our proposed algorithm for practical use is Algorithm 3.

7 Conclusion

In this paper, we have introduced Multilayer Correlation Clustering, a novel generalization of Correlation Clustering

to the multilayer setting. We first designed a polynomial-time O(L logn)-approximation algorithm for the general
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Table 3: Results for Problem 1 with the probability constraint.

Algorithm 2 (LP) Algorithm 2 (LP) Algorithm 3 Aggregate-Pr (LP) Aggregate-Pr (LP)

Dataset LB Obj. val. Time(s) Obj. val. Time(s) Obj. val. Time(s) Obj. val. Time(s) Obj. val. Time(s)

sparrow 630.8 635.1±1.8 0.4 658.0±1.6 0.0 631.1 0.3 638.1±1.7 0.1 652.7±2.1 0.0

ant 3148.2 3154.5±0.5 1728.4 3160.7±1.2 1.0 3150.3 674.2 3154.0±0.1 60.3 3158.3±3.4 0.0

tortoise 2387.5 2683.3±40.6 19.8 3837.7±54.6 0.0 2422.5 2.9 2444.5±13.4 0.9 2601.0±18.2 0.0

wildbird 9840.2 9887.9±2.6 142.0 10077.8±8.4 0.1 9841.3 11.2 9863.2±4.7 6.2 9900.9±17.4 0.0

weaver 24875.7 — OT 39732.3±342.5 5.3 24924.5 94.1 24971.5±0.0 10.3 24971.0±0.0 0.2

tortoise-fi 77569.5 — OT 126849.1±831.5 3.2 77577.5 189.5 77664.7±5.1 123.5 77740.8±12.4 0.2

weighted case. Then, for the probability constraint case, we proposed a polynomial-time (α + 2)-approximation

algorithm, where α is any possible approximation ratio for MINDISAGREE with the probability constraint or any of its

special cases if we consider the corresponding special case of our problem, and a polynomial-time 4-approximation

algorithm. Computational experiments using various real-world datasets demonstrate the practical effectiveness of our

proposed algorithms.

Our work opens up several interesting problems. For Problem 1 of the general weighted case, can we design a

polynomial-time algorithm that has an approximation ratio better than O(L logn)? As Problem 1 contains MINDIS-

AGREE as a special case and approximating MINDISAGREE is known to be harder than approximating Minimum

Multicut [29], it is quite challenging to obtain an approximation ratio of o(logn). Therefore, a more reasonable ques-

tion is “how much can we make the term L smaller in the current approximation ratio of O(L log n)?” To answer this,

the first step would be to investigate the integrality gaps of (CV) and (LP). The current integrality gap of Ω(logn),
inherited from the LP relaxation used in the O(log n)-approximation algorithms for MINDISAGREE [16, 25], leaves

the possibility to improve the approximation ratio of Algorithm 1 to O(log n). Another interesting direction is to im-

prove the approximation ratios for Problem 1 with the probability constraint and its special cases. For instance, can we

design a polynomial-time algorithm that has an approximation ratio better than 4 for the general case? To this end, one

possibility is to improve the approximation ratio for MINDISAGREE with the probability constraint from the current

best 2.5 [5] to some value smaller than 2. As the integrality gap of the LP relaxation used in the 2.5-approximation

algorithm (i.e., KWIKCLUSTER) is known to be 2 [16], this approach requires to invent a different technique. Another

possibility is to replace the rounding procedure of Algorithm 3 to that of KWIKCLUSTER, but it is not clear how to

extend the analysis focusing on the bad triplets [5] to the multilayer setting. For Problem 1 of the unweighted case and

Problem 1 with the probability constraint and the triangle inequality constraint, improving the approximation ratio for

the single-layer counterpart directly improves our approximation ratios. Finally, investigating Multilayer Correlation

Clustering in the spirit of MAXAGREE rather than MINDISAGREE is also an interesting direction. It is worth men-

tioning that a closely-related problem called Simultaneous Max-Cut has recently been studied by Bhangale et al. [11]

and Bhangale and Khot [10] from the approximability and inapproximability points of view, respectively.
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