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Abstract

The weighted essentially non-oscillatory technique using a stencil of 2r points (WENO-2r) is an interpolatory method
that consists in obtaining a higher approximation order from the non-linear combination of interpolants of r+1 nodes.
The result is an interpolant of order 2r at the smooth parts and order r+1 when an isolated discontinuity falls at any
grid interval of the large stencil except at the central one. Recently, a new WENO method based on Aitken-Neville’s
algorithm has been designed for interpolation of equally spaced data at the mid-points and presents progressive order
of accuracy close to discontinuities. This paper is devoted to constructing a general progressive WENO method for
non-necessarily uniformly spaced data and several variables interpolating in any point of the central interval. Also,
we provide explicit formulas for linear and non-linear weights and prove the order obtained. Finally, some numerical
experiments are presented to check the theoretical results.
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1. Introduction and review

In the last years, WENO methods have been developed and used in several applications, mainly to obtain numerical
solutions of partial differential equations (PDEs) but also in other fields, such as image processing or computer-aided
design (see e.g. [6, 14, 15]). The idea is to compute a non-linear combination of interpolations through polynomials
of degree r, aiming to obtain the maximum possible order 2r when the data is free of discontinuities, and order r + 1
at the non-smooth parts. In what follows, we briefly review the method. Let us denote as X a uniform partition of
the interval [a, b] in J subintervals:

X = {xi}
J
i=0, xi = a+ i · h, h =

b− a

J
,

and consider the point-value discretization of a piecewise smooth function f at the nodes xi,

fi = f(xi), i = 0, . . . , J, f = {fi}
J
i=0 .

In this setting, the WENO method with 2r nodes interpolates at the mid-point of the interval (xi−1, xi), denoted by
xi− 1

2
, using the stencil S2r

0 = {xi−r, · · · , xi+r−1}. We construct this interpolation by means of the following convex
combination:

I2r−1(xi− 1
2
; f) =

r−1
∑

k=0

ωr
kp

r
k(xi− 1

2
), (1)

where ωr
k ≥ 0, k = 0, · · · , r − 1 are non-linear (data-dependent) positive weights such that

∑r−1
k=0 ω

r
k = 1, and prk are

the Lagrange interpolants with nodes Sr
k = {xi−r+k, · · · , xi+k}.
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The values of the weights ωr
k are designed to obtain an order of accuracy 2r at xi− 1

2
when the function is smooth

in the large stencil, as follows: There are optimal weights Cr
k ≥ 0, with k = 0, . . . , r − 1 that satisfy the following

equality:

p2r−1
0

(

xi− 1
2

)

=

r−1
∑

k=0

Cr
kp

r
k

(

xi− 1
2

)

.

A formula for these values is obtained in [6]:

Cr
k =

1

22r−1

(

2r

2k + 1

)

, k = 0, · · · , r − 1. (2)

As stated in [15], the weights ωr
k satisfy

ωr
k = Cr

k +O(hκ), k = 0, · · · , r − 1, (3)

at smooth zones, with κ ≥ r − 1, thus assuring that the interpolation in (1) attains order of accuracy 2r

f(xi− 1
2
)− I2r−1

(

xi− 1
2
; f
)

= O(h2r).

In [12, 15], (3) is achieved via the following expressions:

ωr
k =

αr
k

∑r−1
j=0 α

r
j

, where αr
k =

Cr
k

(ǫ + Irk)
t
, k = 0, · · · , r − 1. (4)

In the previous expression, the parameter t is an integer that assures maximum order of accuracy close to the dis-
continuities. The parameter ǫ > 0 is introduced to avoid divisions by zero, and is usually forced to take the size of
the smoothness indicators at smooth zones. In our numerical tests, we will set it to ǫ = h2. The values Irk are called
smoothness indicators for f(x) on each sub-stencil of r points.

Since it was first introduced in [15], several successive improvements have been proposed for WENO algorithms.
They have been focused on enhancing their accuracy, efficiency, and robustness in approximating solutions to hyperbolic
conservation laws, but also on extending their applicability to other contexts such as approximation and interpolation
of data. Initially introduced by Liu, Osher, and Chan in 1994 [15], WENO schemes have gone through several
advancements. The WENO schemes proposed by Jiang and Shu in 1996 [12], improved the original idea in [15], by
proposing new smoothness indicators inspired by the measure of the total variation. These smoothness indicators were
more capable of detecting discontinuities and allowed to extended the idea of WENO to higher orders of accuracy.
However, the classical WENO scheme might experience a loss of accuracy when encountering critical points in the
solution: for instance, a fifth-order WENO scheme may only attain third-order accuracy near smooth extrema [16]. In
fact, in [16], the authors proposed the WENO-M scheme, that not only addressed the accuracy issue but also marked the
first significant improvement in the solution quality near shocks and high gradients. However, the introduced mapping
method proved to be computationally expensive. This study led to the publication of the article [9] where the authors
proposed the WENO-Z scheme, that uses a new set of weights, derived from previously unused information within
the classical WENO scheme: a higher-order global smoothness indicator constructed through a linear combination of
the original smoothness indicators. This scheme achieved superior results with almost the same computational effort
as the classical WENO method. After that, many variants of WENO schemes were proposed, starting from these
two methodologies (see, e.g. [10, 13, 17]). In the context of data approximation, we proposed a first improvement of
WENO algorithm in 2018 [2], where the algorithm attained a progressive order of accuracy close to the discontinuities
using a recursive formulation of the WENO weights. Using WENO interpolation, maximum order of accuracy is
obtained in smooth parts of the data but the accuracy is reduced to order r+1 when, at least, a discontinuity crosses
a stencil. In [3], Amat, Ruiz, Shu and Yáñez present a new WENO method using the Aitken-Neville algorithm to
obtain progressive order of approximation. This method is introduced for the point-value discretization in a uniform
grid, and to approximate at the mid-points of the intervals. In [4], the algorithm is extended to calculate the derivative
value of a function knowing its evaluation in a non-uniform grid and for any point of the considered interval.

In this paper, we extend this method to n dimensions and prove its theoretical properties. We start with dimension
1 in Section 2, following the ideas presented in [3, 4]. We provide a new recursive algorithm to obtain a non-linear scalar
approximation for any point in the central interval in Section 2. Then, in Section 3, we review the multidimensional
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Lagrange interpolation using tensor product, and the WENO version designed by Aràndiga et al. in [7]. Subsequently,
we introduce, in Section 4, our general method for any dimension n starting with n = 2, and give an explicit expression
for the optimal weights. Afterwards, we generalize the method to any number of dimension n, and prove that the
approximation attains the maximum order of accuracy when the nodes are in a region where f is smooth, and has an
increasing order of accuracy depending on where the isolated discontinuity is. In Section 6, we present the smoothness
indicators. The theoretical results are confirmed by the numerical examples, that are presented in Section 7. Finally,
some conclusions are drawn in the last section.

2. A new univariate WENO-2r algorithm with progressive order of accuracy close to discontinuities

Recently, Amat, Ruiz, Shu and Yáñez in [3] introduced a new centered WENO-2r method, which consists in
using all the points free of discontinuities to interpolate a value at the mid-point of an interval. In this section,
we generalize this interpolation to non-uniform grids. Let [a, b] ⊂ R be an interval, we consider a non-uniform grid
a = x0 < x1 < . . . < xJ = b, with h = maxl=1,...,J |xl − xl−1| and i ∈ N such that 0 ≤ i − r ≤ i + r − 1 ≤ J . We
consider a point, x∗ ∈ (xi−1, xi); the largest stencil S2r

0 = {xi−r, · · · , xi+r−1}, and construct the polynomial which
interpolates at these nodes, that we denote by p2r−1

0 . Using the Aitken-Neville formula, we express this polynomial
using the following expression

p2r−1
0 (x∗) =

1
∑

j0=0

C2r−2
0,j0

(x∗)p2r−2
j0

(x∗),

which involves the two interpolatory polynomials, p2r−2
j0

, j0 = 0, 1 with respective stencils:

S2r−1
0 = {xi−r, · · · , xi+r−2}, S2r−1

1 = {xi−r+1, · · · , xi+r−1},

where C2r−2
0,0 (x∗) and C2r−2

0,1 (x∗) are the optimal weights. We repeat this process with each polynomial up to degree
r. A representation of this process can be seen in Figure 1 (where we have removed the dependence on the value x∗),
[3]. Thus, we obtain the general explicit expression:

p2r−1
0 (x∗) =

1
∑

j0=0

C2r−2
0,j0

(x∗)p2r−2
j0

(x∗)

=

1
∑

j0=0

C2r−2
0,j0

(x∗)





j0+1
∑

j1=j0

C2r−3
j0,j1

(x∗)p2r−3
j1

(x∗)





=

1
∑

j0=0

C2r−2
0,j0

(x∗)





j0+1
∑

j1=j0

C2r−3
j0,j1

(x∗)





j1+1
∑

j2=j1

C2r−4
j1,j2

(x∗)p2r−4
j2

(x∗)









=

1
∑

j0=0

C2r−2
0,j0

(x∗)





j0+1
∑

j1=j0

C2r−3
j0,j1

(x∗)



. . .





jr−4+1
∑

jr−3=jr−4

Cr+1
jr−4,jr−3

(x∗)





jr−3+1
∑

jr−2=jr−3

Cr
jr−3,jr−2

(x∗)prjr−2
(x∗)







 . . .







 .

(5)

We calculate these values through the following lemma (the version for uniform grids, and when the interpolation
is at mid-points is proved in [3]).

Lemma 2.1. Let r ≤ l ≤ 2r − 2 and 0 ≤ j ≤ (2r − 2)− l, x∗ ∈ (xi−1, xi), then

pl+1
j (x∗) = Cl

j,j(x
∗)plj(x

∗) + Cl
j,j+1(x

∗)plj+1(x
∗), (6)

where

Cl
j,j(x

∗) =
x∗ − xi−r+j+l+1

xi−r+j − xi−r+j+l+1
, Cl

j,j+1(x
∗) = 1− Cl

j,j(x
∗) =

xi−r+j − x∗

xi−r+j − xi−r+j+l+1
. (7)

Proof. The proof is direct by taking into account that the stencil for constructing pl+1
j is {xi−r+j , . . . , xi−r+j+l+1}

and for plj and plj+1 are {xi−r+j, . . . , xi−r+j+l} and {xi−r+j+1, . . . , xi−r+j+l+1} respectively. �

As Corollary, we obtain the values showed in [3] for mid-point interpolation.
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r−3,r−3p

r
r−3
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r−3,r−2p

r
r−2

Cr
r−2,r−2p

r
r−2

Cr
r−2,r−1p

r
r−1

Figure 1: Diagram showing the structure of the optimal weights needed to obtain optimal order of accuracy, [3].
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Corollary 2.2. Let r ≤ l ≤ 2r− 2 and 0 ≤ k ≤ (2r− 2)− l, if we denote as Cl
k,k and Cl

k,k+1 the values which satisfy:

pl+1
k (xi−1/2) = Cl

k,kp
l
k(xi−1/2) + Cl

k,k+1p
l
k+1(xi−1/2), (8)

then

Cl
k,k =

2(l − r + k + 1) + 1

2(l+ 1)
, Cl

k,k+1 = 1− Cl
k,k =

2(r − k)− 1

2(l+ 1)
. (9)

From Eq. (5), we can deduce the following recursive method:







p̃rj(x
∗) = prj(x

∗), j = 0, . . . , r − 1,

p̃l+1
j (x∗) = ω̃l

j,j(x
∗)p̃lj(x

∗) + ω̃l
j,j+1(x

∗)p̃lj+1(x
∗), l = r, . . . , 2r − 2, j = 0, . . . , 2r − 2− l,

(10)

with the non-linear weights defined as:

ω̃l
j,j1(x

∗) =
α̃l
j,j1

(x∗)

α̃l
j,j(x

∗) + α̃l
j,j+1(x

∗)
, α̃l

j,j1(x
∗) =

Cl
j,j1

(x∗)

(ǫ + I lj,j1)
t
, j1 = j, j + 1, (11)

where Cr
j,j1 (x

∗), j1 = j, j + 1 are determined in Eq. (7). The values I lj,j1 , explained in subsection 2.1, are smoothness
indicators.

With this formulation, the approximation is defined by

Ĩ2r−1(x∗; f) = p̃2r−1
0 (x∗), (12)

being p̃2r−1
0 (x∗) the result of the recursive process, Eq. (10).

2.1. On smoothness indicators and the accuracy of the new univariate progressive WENO method

The choice of the smoothness indicators is crucial. To design the new non-linear algorithm, we only calculate the
smoothness indicators at level l = r, and we use them in all the levels, as we can see in this subsection. In [6] it is
proved that if the smoothness indicators satisfy the following conditions:

P1 The order of a smoothness indicator that is free of discontinuities is h2, i.e.

Irk = O(h2) if f is smooth in Sr
k .

P2 The distance between two smoothness indicators free of discontinuities is hr+1, i.e. let k, k′ ∈ {0, 1, . . . , r − 1}
be such that there does not exist any discontinuity in Sr

k and Sr
k′ , then

Irk − Irk′ = O(hr+1).

P3 When a discontinuity crosses the stencil Sr
k then

Irk 9 0 as h → 0.

Then, the optimal weights satisfy Eq. (3) for determined parameters t and ǫ (Proposition 2 in [6]). We exploit this
result to construct the smoothness indicators in each step of the Aitken-Neville’s algorithm. We will use the following
definition (Definition 4.1 in [3]).

Definition 1. Let l = r, . . . , 2r− 2, and Irk , with k = 0, . . . , r− 1, be the smoothness indicators with properties P1,P2

and P3. Then, we define the smoothness indicators at level l as:

I lk,k = Irk , k = 0, . . . , (2r − 2)− l,

I lk,k+1 = Irl−(r−1)+k, k = 0, . . . , (2r − 2)− l.
(13)

Therefore, in each step, we will remove the part which is “contaminated” by a discontinuity. In particular, we can
prove the following proposition adapting the proof of Proposition 4.4 in [3] to any point x∗ ∈ (xi−1, xi).
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Proposition 2.3. Let r ≤ l ≤ 2r − 2, 0 ≤ k ≤ (2r − 2) − l, x∗ ∈ (xi−1, xi), and let I lk,k, and I lk,k+1 be smoothness
indicators defined in Definition 1. The following weights:

ω̃l
k,k(x

∗) =
α̃l
k,k(x

∗)

α̃l
k,k(x

∗) + α̃l
k,k+1(x

∗)
, ω̃l

k,k+1(x
∗) =

α̃l
k,k+1(x

∗)

α̃l
k,k(x

∗) + α̃l
k,k+1(x

∗)
, (14)

with,

α̃l
k,k(x

∗) =
Cl

k,k(x
∗)

(ǫ+ I lk,k)
t
, α̃l

k,k+1(x
∗) =

Cl
k,k+1(x

∗)

(ǫ+ I lk,k+1)
t
, (15)

and with Cl
k,k(x

∗) + Cl
k,k+1(x

∗) = 1, will fall under one of the following cases:

1. If neither I lk,k nor I lk,k+1 are affected by a discontinuity, then ω̃l
k,k(x

∗) = Cl
k,k(x

∗) +O(hr−1) and ωl
k,k+1(x

∗) =

Cl
k,k+1(x

∗) +O(hr−1).

2. If I lk,k+1 is affected by a singularity, then ω̃l
k,k(x

∗) = 1 +O(h2t) and ω̃l
k,k+1(x

∗) = O(h2t).

3. If I lk,k is affected by a singularity then ω̃l
k,k+1(x

∗) = 1 +O(h2t) and ω̃l
k,k(x

∗) = O(h2t).

4. If I lk,k and I lk,k+1 are affected by a singularity then ω̃l
k,k(x

∗) 9 0 and ω̃l
k,k+1(x

∗) 9 0.

We have the following main result:

Theorem 2.4. Let 1 < l0 ≤ r − 1, x∗ ∈ (xi−1, xi), and Ĩ2r−1(x∗; f) the result of the recursive process, Eq. (10), if f
is smooth in [xi−r , xi+r−1] \ Ω and f has a discontinuity at Ω then

Ĩ2r−1(x∗; f)− f(x∗) =

{

O(h2r), if Ω = ∅;
O(hr+l0), if Ω = [xi+l0−1, xi+l0 ].

(16)

By symmetry, we only analyze when there exists an isolated discontinuity at an interval [xi−1+l0 , xi+l0 ], l0 = 1, . . . , r−1
(analogously, we obtain the equivalent symmetric results for [xi−r+l0 , xi−r+l0+1], l0 = 0, . . . , r − 2).

In the next sections, we generalize this method to multi-dimensions. We also introduce some possible smoothness
indicators which satisfy P1,P2, and P3 in Section 6.

3. Comparison of multivariate linear Lagrange interpolation with the non-linear WENO method in

Cartesian grids

In this section, we briefly review the Lagrange interpolation problem in several variables when the data are located
in Cartesian grids (non-necessarily equally-spaced) and we construct a multivariate WENO method following the ideas
presented in [7] for two variables. We present the necessary ingredients to extend the progressive WENO-2r algorithm
introduced in Section 2 to several variables.

3.1. Multivariate linear interpolation

Let us start supposing aj , bj ∈ R with aj < bj , j = 1, . . . , n, and an hypercube denoted as:

n
∏

j=1

[aj, bj ] = [a1, b1]× . . .× [an, bn].

We call the points of a grid for each interval as:

aj = x
(0)
j < x

(1)
j < x

(2)
j < . . . < x

(Jj)
j = bj , j = 1, . . . , n,

and define
hj = max

i=1,...,Jj

|x
(i)
j − x

(i−1)
j |, h := max

j=1,...,n
hj .

6



We suppose an unknown function f :
∏n

j=1[aj , bj ] → R, and consider our data as the evaluation of this function in the
points of the Cartesian grid, i.e.

f(l1,...,ln) = f(x
(l1)
1 , x

(l2)
2 , . . . , x(ln)

n ), 0 ≤ lj ≤ Jj , 1 ≤ j ≤ n.

Let the polynomials of n variables be denoted by:

Πτ1,...,τn
n = {p(x1, . . . , xn) =

τ1
∑

l1=0

. . .

τn
∑

ln=0

a(l1,...,ln)x
l1
1 x

l2
2 . . . xln

n | a(l1,...,ln) ∈ R, 0 ≤ lj ≤ τj , j = 1, . . . , n},

when τ1 = . . . = τn = τ we call it Πτ
n := Πτ1,...,τn

n . We consider (i1, . . . , in) ∈ N
n to be the reference index where the

approximation is centered at, and r ∈ N such that 0 ≤ ij − r ≤ ij + r − 1 ≤ Jj , j = 1, . . . , n, and the centered stencil:

S2r
0 = {x

(i1−r)
1 , . . . , x

(i1+r−1)
1 } × {x

(i2−r)
2 , . . . , x

(i2+r−1)
2 } × . . .× {x(in−r)

n , . . . , x(in+r−1)
n }

=: (S2r
0 )1 × . . .× (S2r

0 )n =

n
∏

j=1

(S2r
0 )j ,

(17)

then, the problem consists in calculating a polynomial of degree 2r − 1 such that:

p(x) = f(x), ∀x ∈ S2r
(0,...,0).

To do so, we will use the Lagrange base of polynomials:

Lj
p(xj) =

ij+r−1
∏

k=ij−r,k 6=p

(

xj − x
(k)
j

x
(p)
j − x

(k)
j

)

, p = ij − r, . . . , ij + r − 1, j = 1, . . . , n,

then, the unique polynomial is

p2r−1
0 (x1, . . . , xn) =

i1+r−1
∑

l1=i1−r

i2+r−1
∑

l2=i2−r

. . .

in+r−1
∑

ln=in−r

f(x
(l1)
1 , x

(l2)
2 , . . . , x(ln)

n )L1
l1(x1) . . . L

n
ln(xn).

It can be checked (see [7]) that if x∗ = (x∗
1, . . . , x

∗
n) ∈

∏n
j=1[x

(ij−1)
j , x

(ij)
j ], and f ∈ C2nr(R) then the error satisfies:

E(x∗) = f(x∗)− p2r−1
0 (x∗) = O(h2r), (18)

and if m = (m1, . . . ,mn) ∈ N
n with mj ≤ 2r − 1, j = 1, . . . , n, we get

E(m)(x∗) = E(m1,...,mn)(x∗) = O(h2r−max{m1,...,mn}), (19)

where

E(m1,...,mn)(x) =
∂m1+...+mnE

∂m1x1 . . . ∂mnxn
(x).

3.2. Multivariate WENO interpolation in Cartesian grids

Using the same notation as in the previous section, the goal is to construct a non-linear interpolant in multi-
dimensions in the same way as we reviewed in 1d, i.e., an interpolant with maximum order 2r in the smooth parts
and with order r + 1 when there exists a discontinuity which crosses, at least, one small stencil.

In this case, we introduce the method supposing that we want to obtain an approximation of the function f

evaluated at any point of the hypercube x∗ ∈
∏n

j=1[x
(ij−1)
j , x

(ij)
j ]. The construction is similar to the 1d case: Firstly,

we make the linear combination of interpolants of lower degree, r, if k = (k1, . . . , kn) then

p2r−1
0 (x∗) =

∑

k∈{0,1,...,r−1}n

Cr
k(x

∗)prk(x
∗),
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where Cr
k(x

∗) are the optimal weights, and it is not difficult to prove that they have the explicit form:

Cr
k(x

∗) =
n
∏

j=1

Cr
kj
(x∗

j ), k ∈ {0, . . . , r − 1}n,

being Cr
kj
(x∗

j ), kj = 0, . . . , r − 1, j = 1, . . . , n the optimal weights in 1d. In the case that we want to approximate at

the mid-point of the hypercube, i.e. x∗ = x∗
1
2

, then they are defined in Eq. (2). The polynomials prk interpolate at the

nodes

Sr
k = {x

(i1+k1−r)
1 , . . . , x

(i1+k1)
1 } × {x

(i2+k2−r)
2 , . . . , x

(i2+k2)
2 } × . . .× {x(in+kn−r)

n , . . . , x(in+kn)
n } =

n
∏

j=1

Sr
kj
.

Then, we replace the optimal weights by non-linear ones using the following formula

ωr
k(x

∗) =
αr
k(x

∗)
∑

l∈{0,...,r−1}n αr
l (x

∗)
, with αr

k(x
∗) =

Cr
k(x

∗)

(ǫ + Irk)
t
, (20)

being Irk the smoothness indicators with the same requirements pointed out in Section 2, i.e.:

P1 The order of the smoothness indicator free of discontinuities is h2, i.e.

Irk = O(h2) if f is smooth in Sr
k.

P2 The distance between two smoothness indicators free of discontinuities is hr+1, i.e. let k = (k1, . . . , kn), and
k′ = (k′1, . . . , k

′
n) be such that there does not exist any discontinuity in Sr

k and Sr
k′ then

Irk − Irk′ = O(hr+1).

P3 When a discontinuity crosses the stencil Sr
k then:

Irk 9 0 as h → 0.

An example of smoothness indicators will be introduced in Section 6. The parameters ǫ and t are chosen to obtain
maximum order. In our case, following [6] and [7] we will take ǫ = h2 and t = 1

2 (r + 1). Therefore, we state the next
result, which is similar to Proposition 2 in [6] and Theorem 1 in [7].

Theorem 3.1. Let x∗ ∈
∏n

j=1[x
(ij−1)
j , x

(ij)
j ], the multivariate WENO interpolant

I2r−1(x∗; f) =
∑

k∈{0,1,...,r−1}n

ωr
k(x

∗)prk(x
∗) (21)

with ωr
k, k ∈ {0, 1, . . . , r − 1}n defined in Eq. (20), with smoothness indicator Irk, k ∈ {0, 1, . . . , r − 1}n fulfilling P1,

P2, P3; ǫ = h2 and t = 1
2 (r + 1) satisfies:

f(x∗)− I2r−1(x∗; f) =

{

O(h2r), at smooth regions,

O(hr+1), if, at least, one stencil lies in a smooth region.

4. A new progressive bivariate, n = 2, WENO method

The idea of this new method is to reach the maximum possible order of accuracy when one discontinuity crosses
the largest stencil. For this purpose, we use the Aitken-Neville-based algorithm developed in multi-dimensions, [11].
We start with a polynomial of degree 2r− 1 and decompose it in 22 polynomials of degree 2r− 2 obtaining as weights
polynomials of degree 1 that will be replaced by non-linear weights, depending on the location of the discontinuity.
Afterwards, we continue decomposing the 22 polynomials of degree 2r− 2 in polynomials of degree 2r− 3, and so on.
In each step, the non-linear weights determine the stencils free of discontinuity, which will be used to approximate the
value. The procedure is similar to the method expounded in Section 2. For ease of reading, we start with n = 2 in
this section, and then we extend our results to any dimension n in Section 5.
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4.1. A first example: A progressive bivariate WENO method with r = 2

Let us start by designing a bivariate WENO method with r = 2. We suppose a non necessarily uniform grid in

[a1, b1]× [a2, b2] defined by {(x
(l1)
1 , x

(l2)
2 )}

(J1,J2)
(l1,l2)=(0,0), with a1 = x

(0)
1 < x

(1)
1 < . . . < x

(J1)
1 = b1, and a2 = x

(0)
2 < x

(1)
2 <

. . . < x
(J2)
2 = b2, and the data fl1,l2 = f(x

(l1)
1 , x

(l2)
2 ), lj = 0, . . . , Jj , with j = 1, 2. Let (i1, i2) ∈ N

2 such that 0 ≤ ij − 2
and ij + 1 ≤ Jj , with j = 1, 2. We determine the largest stencil

S4
(0,0) = {x

(i1−2)
1 , x

(i1−1)
1 , x

(i1)
1 , x

(i1+1)
1 } × {x

(i2−2)
2 , x

(i2−1)
2 , x

(i2)
2 , x

(i2+1)
2 } = (S4

0 )1 × (S4
0 )2,

and we want to interpolate at any point x∗ = (x∗
1, x

∗
2) ∈ [x

(i1−1)
1 , x

(i1)
1 ]× [x

(i2−1)
2 , x

(i2)
2 ]. We compute the polynomial

p3(0,0)(x1, x2) =
3
∑

l1,l2=0

al1,l2x
l1
1 x

l2
2 ,

such that p3(0,0)(x
(l1)
1 , x

(l2)
2 ) = fl1,l2 if (x

(l1)
1 , x

(l2)
2 ) ∈ S4

(0,0). Again, we can express it as the sum of 22 polynomials that
interpolate in the stencils:

S3
(0,0) = {x

(i1−2)
1 , x

(i1−1)
1 , x

(i1)
1 } × {x

(i2−2)
2 , x

(i2−1)
2 , x

(i2)
2 } = (S3

0 )1 × (S3
0 )2,

S3
(1,0) = {x

(i1−1)
1 , x

(i1)
1 , x

(i1+1)
1 } × {x

(i2−2)
2 , x

(i2−1)
2 , x

(i2)
2 } = (S3

1 )1 × (S3
0 )2,

S3
(0,1) = {x

(i1−2)
1 , x

(i1−1)
1 , x

(i1)
1 } × {x

(i2−1)
2 , x

(i2)
2 , x

(i2+1)
2 } = (S3

0 )1 × (S3
1 )2,

S3
(1,1) = {x

(i1−1)
1 , x

(i1)
1 , x

(i1+1)
1 } × {x

(i2−1)
2 , x

(i2)
2 , x

(i2+1)
2 } = (S3

1 )1 × (S3
1 )2,

called p2(0,0), p
2
(1,0), p

2
(0,1), p

2
(1,1) using, as we mentioned before, the Aitken-Neville-type formula given in [11]:

p3(0,0)(x
∗) =

∑

j0∈{0,1}2

C2
(0,0),j0

(x∗)p2j0(x
∗), (22)

with

C2
(0,0),(0,0)(x

∗) =

(

x∗
1 − x

(i1+1)
1

x
(i1−2)
1 − x

(i1+1)
1

)(

x∗
2 − x

(i2+1)
2

x
(i2−2)
2 − x

(i2+1)
2

)

= C2
0,0(x

∗
1)C

2
0,0(x

∗
2),

C2
(0,0),(1,0)(x

∗) =

(

x∗
1 − x

(i1−2)
1

x
(i1+1)
1 − x

(i1−2)
1

)(

x∗
2 − x

(i2+1)
2

x
(i2−2)
2 − x

(i2+1)
2

)

= C2
0,1(x

∗
1)C

2
0,0(x

∗
2),

C2
(0,0),(0,1)(x

∗) =

(

x∗
1 − x

(i1+1)
1

x
(i1−2)
1 − x

(i1+1)
1

)(

x∗
2 − x

(i2−2)
2

x
(i2+1)
2 − x

(i2−2)
2

)

= C2
0,0(x

∗
1)C

2
0,1(x

∗
2),

C2
(0,0),(1,1)(x

∗) =

(

x∗
1 − x

(i1−2)
1

x
(i1+1)
1 − x

(i1−2)
1

)(

x∗
2 − x

(i2−2)
2

x
(i2+1)
2 − x

(i2−2)
2

)

= C2
0,1(x

∗
1)C

2
0,1(x

∗
2).

Finally, we define the non-linear weights as:

ω̃2
(0,0),k(x

∗) =
α̃2
(0,0),k(x

∗)
∑

l∈{0,1}2 α̃2
(0,0),l(x

∗)
, where α̃2

(0,0),k(x
∗) =

C2
(0,0),k(x

∗)

(ǫ+ I2(0,0),k)
t
, k ∈ {0, 1}2,

with I2(0,0),k defined as:

I2(0,0),(0,0) = I2(0,0), I2(0,0),(0,1) = I2(0,1), I2(0,0),(1,0) = I2(1,0), I2(0,0),(1,1) = I2(1,1),

where I2k, k ∈ {0, 1}2 are smoothness indicators which satisfy the properties P1, P2 and P3. The parameters t and ǫ
are defined in Section 3.2 as h2 and r + 1 = 3 respectively. Thus, we define the new interpolant as:

I3 (x∗; f) =
∑

j0∈{0,1}2

ω2
(0,0),j0

(x∗)p2j0(x
∗).

If we apply it at mid-points, the interpolant presented in [7] and the method showed in Section 3.2 for n = 2 are similar
if the same smoothness indicators are used. Therefore, when r = 2 there are not differences between the progressive
WENO and the classical one. We show the construction of the new method for r = 3.
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4.2. The case r = 3

In this case, we use all the points of the following largest stencil:

S6
(0,0) = {x

(i1−3)
1 , x

(i1−2)
1 , x

(i1−1)
1 , x

(i1)
1 , x

(i1+1)
1 , x

(i1+2)
1 } × {x

(i2−3)
2 , x

(i2−2)
2 , x

(i2−1)
2 , x

(i2)
2 , x

(i2+1)
2 , x

(i2+2)
2 }.

We follow the recursive formula described in (10). Thus, we start calculating the evaluation at the point x∗ of the
polynomials:

p3j1(x
∗), j1 = (j

(1)
1 , j

(1)
2 ) ∈ {0, 1, 2}2,

being the stencils used for constructing each polynomial S3
(l1,l2)

, with lj = 0, 1, 2, and j = 1, 2, see Figure 2. And, by

Figure 2: Stencils used to get p3
j1
(x∗), j1 ∈ {0, 1, 2}2. They are used in classical bivariate WENO [7]

means of the Aitken-Neville formula, we represent p4j0 , j0 = (j
(0)
1 , j

(0)
2 ) ∈ {0, 1}2, whose stencils are displayed in Figure

3, as the sum of the evaluations of polynomials of degree 3 (Figure 4)

p4(0,0)(x
∗) =

∑

j1∈{0,1}×{0,1}

C3
(0,0),j1

(x∗)p3j1(x
∗), p4(1,0)(x

∗) =
∑

j1∈{1,2}×{0,1}

C3
(1,0),j1

(x∗)p3j1(x
∗),

p4(0,1)(x
∗) =

∑

j1∈{0,1}×{1,2}

C3
(0,1),j1

(x∗)p3j1(x
∗), p4(1,1)(x

∗) =
∑

j1∈{1,2}×{1,2}

C3
(1,1),j1

(x∗)p3j1(x
∗),

(23)

with
C3

j0,j1 = C3

(j
(0)
1 ,j

(0)
2 ),(j

(1)
1 ,j

(1)
2 )

= C3

j
(0)
1 ,j

(1)
1

C3

j
(0)
2 ,j

(1)
2

, j0 ∈ {0, 1}2, j1 ∈ j0 + {0, 1}2,

where C3
k,k1

, k = 0, 1, k1 = k + {0, 1} are defined in Eq. (7). Now, we replace in Eq. (23) the linear-weights for
non-linear ones:

ω̃3
j0,j1(x

∗) =
α̃3
j0,j1

(x∗)
∑

l∈j0+{0,1}2 α̃3
j0,l

(x∗)
, where α̃3

j0,j1(x
∗) =

C3
j0,j1

(x∗)

(ǫ+ I3j0,j1)
t
, j0 ∈ {0, 1}2, j1 ∈ j0 + {0, 1}2,
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and
I3j0,j1 = I3j1 , j0 ∈ {0, 1}2, j1 ∈ j0 + {0, 1}2,

being I3j1 smoothness indicators which satisfy the properties P1, P2 and P3. We obtain the approximation:

p̃4(0,0)(x
∗) =

∑

j1∈{0,1}×{0,1}

ω̃3
(0,0),j1

(x∗)p3j1(x
∗), p̃4(1,0)(x

∗) =
∑

j1∈{1,2}×{0,1}

ω̃3
(1,0),j1

(x∗)p3j1(x
∗),

p̃4(0,1)(x
∗) =

∑

j1∈{0,1}×{1,2}

ω̃3
(0,1),j1

(x∗)p3j1(x
∗), p̃4(1,1)(x

∗) =
∑

j1∈{1,2}×{1,2}

ω̃3
(1,1),j1

(x∗)p3j1(x
∗).

(24)

Figure 3: Stencils used to get p4
j0
(x∗), j0 ∈ {0, 1}2.

The last step in our new algorithm for r = 3 is to develop the polynomial of degree 5 as follows:

p5(0,0)(x
∗) =

∑

j0∈{0,1}2

C4
(0,0),j0

(x∗)p4j0(x
∗), (25)

with

C4
(0,0),(0,0)(x

∗) =

(

x∗
1 − x

(i1+2)
1

x
(i1−3)
1 − x

(i1+2)
1

)(

x∗
2 − x

(i2+2)
2

x
(i2−3)
2 − x

(i2+2)
2

)

= C4
0,0(x

∗
1)C

4
0,0(x

∗
2),

C4
(0,0),(1,0)(x

∗) =

(

x∗
1 − x

(i1−3)
1

x
(i1+2)
1 − x

(i1−3)
1

)(

x∗
2 − x

(i2+2)
2

x
(i2−3)
2 − x

(i2+2)
2

)

= C4
0,1(x

∗
1)C

4
0,0(x

∗
2),

C4
(0,0),(0,1)(x

∗) =

(

x∗
1 − x

(i1+2)
1

x
(i1−3)
1 − x

(i1+2)
1

)(

x∗
2 − x

(i2−3)
2

x
(i2+2)
2 − x

(i2−3)
2

)

= C4
0,0(x

∗
1)C

4
0,1(x

∗
2),

C4
(0,0),(1,1)(x

∗) =

(

x∗
1 − x

(i1−3)
1

x
(i1+2)
1 − x

(i1−3)
1

)(

x∗
2 − x

(i2−3)
2

x
(i2+2)
2 − x

(i2−3)
2

)

= C4
0,1(x

∗
1)C

4
0,1(x

∗
2),

and to define the new approximation changing both the non-linear weights, and the approximation to polynomials of
degree 4

Ĩ5(x∗; f) := p̃5(0,0)(x
∗) =

∑

j0∈{0,1}2

ω̃4
(0,0),j0

(x∗)p̃4j0(x
∗), (26)

being p̃4j0(x
∗) obtained in Eq. (24) and

ω̃4
(0,0),j0

(x∗) =
α4
(0,0),j0

(x∗)
∑

l∈{0,1}2 α4
(0,0),l(x

∗)
, where α4

(0,0),j0
(x∗) =

C4
(0,0),j0

(x∗)

(ǫ+ I4(0,0),j0)
t
, j0 ∈ {0, 1}2,
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with the smoothness indicators defined in Eq. (13) as:

I4(0,0),(0,0) = I3(0,0), I4(0,0),(0,1) = I3(0,2), I4(0,0),(1,0) = I3(2,0), I4(0,0),(1,1) = I3(2,2),

where I3j0 , j0 ∈ {0, 1, 2}2 are smoothness indicators satisfying the properties P1, P2, and P3.

Figure 4: Contribution of each stencil of p3
j1
(x∗), j1 ∈ j1 + {0, 1}2 to the approximation of p4

j0
(x∗), j0 ∈ {0, 1}2.

4.3. The general case

Now, we construct the new bivariate WENO-2r algorithm using a larger stencil of (2r)2 points

S2r
(0,0) = {x

(i1−r)
1 , x

(i1−r+1)
1 , . . . , x

(i1+r−1)
1 } × {x

(i2−r)
2 , x

(i2−r+1)
2 , . . . , x

(i2+r−1)
2 } = (S2r

0 )1 × (S2r
0 )2.

The goal is to obtain maximum order of approximation if there exists an isolated discontinuity. We start representing
the polynomial of degree 2r − 1 as follows:

p2r−1
(0,0) =

∑

j0∈{0,1}2

C2r−2
(0,0),j0

p2r−2
j0

,
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and repeat the process up to degree r:

p2r−1
(0,0) =

∑

j0∈{0,1}2

C2r−2
(0,0),j0





∑

j1∈Ω0

C2r−3
j0,j1





∑

j2∈Ω1

C2r−4
j1,j2



. . .





∑

jr−3∈Ωr−4

Cr+1
jr−4,jr−3





∑

jr−2∈Ωr−3

Cr
jr−3,jr−2

prjr−2







 . . .











 ,

(27)

being Ωl = jl + {0, 1}2 with 1 ≤ l ≤ r − 3. Consequently, we determine the values Cl
j,j1

with r ≤ l ≤ 2r − 2, and

j1 ∈ j+ {0, 1}2, proving the following lemma.

Lemma 4.1. Let r ≤ l ≤ 2r − 2; x∗ ∈ [x
(i1−1)
1 , x

(i1)
1 ] × [x

(i2−1)
2 , x

(i2)
2 ], and 0 ≤ j1, j2 ≤ (2r − 2) − l, if we denote as

Cl
j,j1

with j1 ∈ j+ {0, 1}2 the values which satisfy:

pl+1
j (x∗) =

∑

j1∈j+{0,1}2

Cl
j,j1(x

∗)plj1(x
∗), (28)

then

Cl
j,j+(0,0)(x

∗) =

(

x∗
1 − x

(i1−r+j1+l+1)
1

x
(i1−r+j1)
1 − x

(i1−r+j1+l+1)
1

)(

x∗
2 − x

(i2−r+j2+l+1)
2

x
(i2−r+j2)
2 − x

(i2−r+j2+l+1)
2

)

= Cl
j1,j1(x

∗
1)C

l
j2,j2(x

∗
2),

Cl
j,j+(1,0)(x

∗) =

(

x
(i1−r+j1)
1 − x∗

1

x
(i1−r+j1)
1 − x

(i1−r+j1+l+1)
1

)(

x∗
2 − x

(i2−r+j2+l+1)
2

x
(i2−r+j2)
2 − x

(i2−r+j2+l+1)
2

)

= Cl
j1,j1+1(x

∗
1)C

l
j2,j2(x

∗
2),

Cl
j,j+(0,1)(x

∗) =

(

x∗
1 − x

(i1−r+j1+l+1)
1

x
(i−r+j1)
1 − x

(i1−r+j1+l+1)
1

)(

x
(i2−r+j2)
2 − x∗

2

x
(i2−r+j2)
2 − x

(i2−r+j2+l+1)
2

)

= Cl
j1,j1(x

∗
1)C

l
j2,j2+1(x

∗
2),

Cl
j,j+(1,1)(x

∗) =

(

x
(i−r+j1)
1 − x∗

1

x
(i−r+j1)
1 − x

(i1−r+j1+l+1)
1

)(

x
(i2−r+j2)
2 − x∗

2

x
(i2−r+j2)
2 − x

(i2−r+j2+l+1)
2

)

= Cl
j1,j1+1(x

∗
1)C

l
j2,j2+1(x

∗
2).

Proof. The proof is direct, considering that the stencils used to obtain each interpolant are {x
(i1−r+j1)
1 , . . . , x

(i1−r+j1+l+1)
1 }×

{x
(i2−r+j2)
2 , . . . , x

(i2−r+j2+l+1)
2 } for pl+1

j , and

{x
(i1−r+(j1)1)
1 , . . . , x

(i1−r+(j1)1+l)
1 } × {x

(i2−r+(j2)1)
2 , . . . , x

(i2−r+(j2)1+l)
2 }

for plj1 , with j1 ∈ j+ {0, 1}2, and the Aitken-Neville formula, see [11]. �

Note that if our data are equally spaced and we approximate at the mid-points, we recover the result showed in
Cor. 2.2.

Corollary 4.2. Let r ≤ l ≤ 2r−2, and 0 ≤ l1, l2 ≤ (2r−2)− l, and x
(i1)
1 = a+k1h1, h1 = (b1−a1)/J1, k1 = 0, . . . , J1,

and x
(k2)
2 = a2 + k2h2, h2 = (b2 − a2)/J2, k2 = 0, . . . , J2, if we denote as x 1

2
= (x

(i1−1/2)
1 , x

(i2−1/2)
2 ), and Cl

j,j1
(x 1

2
) the

values which satisfy:

pl+1
j (x 1

2
) =

∑

j1∈j+{0,1}2

Cl
j,j1(x 1

2
)plj1(x 1

2
), (29)

then, if we denote as Cl
j,j1

:= Cl
j,j1

(x 1
2
), we get

Cl
j,j = Cl

j1,j1C
l
j2,j2 , Cl

j,j+(1,0) = Cl
j1,j1+1C

l
j2,j2 , Cl

j+(0,1) = Cl
j1,j1C

l
j2,j2+1, Cl

j+(1,1) = Cl
j1,j1+1C

l
j2,j2+1,

being Cl
ji,ji , and Cl

ji,ji+1, i = 1, 2 the weights defined in Eq. (9).

Proof. It is clear from Lemma 4.1. �

Now, we determine the iterative process as Eq. (10)

p̃rjr−2
(x∗) = prjr−2

(x∗), jr−2 = {0, . . . , r − 1}2,

p̃l+1
j2r−l−3

(x∗) =
∑

j2r−l−2∈j2r−l−3+{0,1}2

ω̃l
j2r−l−3,j2r−l−2

(x∗)p̃lj2r−l−2
(x∗), l = r, . . . , 2r − 2, j2r−l−3 ∈ {0, . . . , 2r − 2− l}2,
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for l = r, . . . , 2r − 2, and k ∈ {0, . . . , 2r − 2− l}2, and k1 ∈ k+ {0, 1}2:

ω̃l
k,k1

(x∗) =

(

α̃l
k,k1

α̃l
k,k + α̃l

k,k+(1,0) + α̃l
k,k+(0,1) + α̃l

k,k+(1,1)

)

(x∗),

α̃l
k,k1

(x∗) =
Cl

k,k1
(x∗)

(ǫ + I lk,k1
)t
, k1 ∈ k+ {0, 1}2,

(30)

where I lk,k1
are the smoothness indicators determined by the following formula:

I lk,k1
=















Irk, if k1 = k,
Ir
k+(l−(r−1),0), if k1 = k+ (1, 0),

Ir
k+(0,l−(r−1)), if k1 = k+ (0, 1),

Ir
k+(l−(r−1),l−(r−1)), if k1 = k+ (1, 1),

(31)

being Irk, with 0 ≤ k1, k2 ≤ r − 1, smoothness indicators satisfying the properties P1, P2, and P3.
Finally, the new bivariate progressive WENO approximation is

Ĩ2r−1 (x∗; f) = p̃2r−1
(0,0) (x

∗).

5. A new progressive multivariate WENO method

In this section we generalize the method designed in Section 2 for 1d, and in Section 4.3 for 2d. We follow the
same steps: First of all, we consider the data as in Section 3.1, i.e., if

∏n
j=1[aj , bj] is an hypercube and

aj = x
(0)
j < x

(1)
j < x

(2)
j < . . . < x

(Jj)
j = bj , j = 1, . . . , n,

are the points of a non-regular grid, we suppose our data as the evaluation of a unknown function at these points

f(l1,...,ln) = f(x
(l1)
1 , x

(l2)
2 , . . . , x(ln)

n ), 0 ≤ lj ≤ Jj , 1 ≤ j ≤ n.

Let (i1, . . . , in) ∈ N
n and r ∈ N be such that 0 ≤ ij−r ≤ ij+r−1 ≤ Jj , j = 1, . . . , n, a point x∗ ∈

∏n
j=1[x

(ij−1)
j , x

(ij)
j ],

and the centered stencil:

S2r
0 =

n
∏

j=1

(S2r
0 )j , (32)

with 0 = (0, . . . , 0). We compute the interpolatory polynomial of degree 2r − 1 with nodes S2r
0 , p2r−1

0 (x∗), and we
express it as the combination of 2n polynomials of degree 2r − 2. Thus, we get

p2r−1
0 (x∗) =

∑

j0∈{0,1}n

C2r−2
0,j0

(x∗)p2r−2
j0

(x∗). (33)

Now, we repeat this process up to polynomials of degree r (for simplicity remove the dependence of x∗), we denote as
Ωl = jl + {0, 1}n:

p2r−1
0 =

∑

j0∈{0,1}n

C2r−2
0,j0

p2r−2
j0

=
∑

j0∈{0,1}n

C2r−2
0,j0





∑

j1∈Ω0

C2r−3
j0,j1

p2r−3
j1





=
∑

j0∈{0,1}n

C2r−2
0,j0





∑

j1∈Ω0

C2r−3
j0,j1





∑

j2∈Ω1

C2r−4
j1,j2

p2r−4
j2









=
∑

j0∈{0,1}n

C2r−2
0,j0





∑

j1∈Ω0

C2r−3
j0,j1



. . .





∑

jr−2∈Ωr−3

Cr
jr−3,jr−2

prjr−2



 . . .







 ,

(34)
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with

Cl
j,j+{0,1}n =

n
∏

i=1

Cr
ji,ji+{0,1},

being Cl
ji,ji

, and Cl
ji,ji+1, i = 1, . . . , n the weights defined in Eq. (9).

We establish the recursive process as Eq. (10):

p̃rjr−2
(x∗) = prjr−2

(x∗), jr−2 = {0, . . . , r − 1}n,

p̃l+1
j2r−l−3

(x∗) =
∑

j2r−l−2∈j2r−l−3+{0,1}n

ω̃l
j2r−l−3,j2r−l−2

(x∗)p̃lj2r−l−2
(x∗), l = r, . . . , 2r − 2, j2r−l−3 ∈ {0, . . . , 2r − 2− l}n,

being for l = r, . . . , 2r − 2, and k ∈ {0, . . . , 2r − 2− l}, k1 ∈ k+ {0, 1}n:

ω̃l
k,k1

(x∗) =
α̃l
k,k1

(x∗)
∑

l∈{0,1}n α̃l
k,k+l(x

∗)
, α̃l

k,k1
(x∗) =

Cl
k,k1

(x∗)

(ǫ+ I lk,k1
)t
, k1 ∈ k+ {0, 1}n, (35)

where I lk,k1
are the smoothness indicators determined by the following formula:

I lk,k1
= Irk+(l−(r−1))v, if k1 = k+ v, with v ∈ {0, 1}n, (36)

being Irk, with 0 ≤ kj ≤ r − 1, j = 1, . . . , n, smoothness indicators satisfying the properties P1, P2, and P3.
Therefore, the approximation will be:

Ĩ2r−1(x∗) = p̃2r−1
0 (x∗). (37)

Finally, we calculate the order of accuracy stating the next theorem.

Theorem 5.1. Let l0 ∈ {1, . . . , r − 1}n, l0 = minj=1,...,n(l0)j, x
∗ ∈

∏n
j=1[x

(ij−1)
j , x

(ij)
j ], and Ĩ2r−1(x∗) the approxi-

mation defined in Eq. (37). If f is smooth in
∏n

j=1[x
(ij−r)
j , x

(ij+r−1)
j ] \ Ω, and f has a discontinuity at Ω then

Ĩ2r−1(x∗)− f(x∗) =

{

O(h2r), if Ω = ∅;

O(hr+l0), if Ω =
∏n

j=1[x
(ij+(l0)j−1)
j , x

(ij+(l0)j)
j ].

(38)

6. Smoothness indicators

In this section, we present some smoothness indicators which satisfy the above mentioned properties. We generalize
the smoothness indicators introduced by Aràndiga et al. in [7] which are an adaptation of the ones presented in [5].
The idea is to design some functionals that fulfill P1, P2, and P3.

Given x∗ ∈ R
n, h1, . . . , hn > 0, Φ(s) = x∗ + (s1h1, . . . , snhn), f sufficiently smooth

∫

Φ([0,1]n)

(f ◦ Φ−1)(l)(x)2dx =

∫

Φ([0,1]n)

(

f (l)(Φ−1(x))h−l1
1 . . . h−ln

n

)2
dx

= h−2l1
1 . . . h−2ln

n

∫

Φ([0,1]n)

f (l)(Φ−1(x))dx = h−2l1
1 . . . h−2ln

n

∫

[0,1]n
f (l)(s)h1 . . . hnds

= h−2l1+1
1 . . . h−2ln+1

n

∫

[0,1]n
f (l)(s)ds.

Hence, we define

IΓ(f) =
∑

l∈J

h2l1−1
1 . . . h2ln−1

n

∫

Γ

(f l)(x))2dx, (39)

where Γ =
∏n

j=1[x
(ij−1)
j , x

(ij)
j ], J = {0, 1, . . . , r}n \ {0} and smoothness indicators

Irk = IΓ(p
r
k), k ∈ {0, 1, . . . , r − 1}n, (40)

to get an expression which is scale independent.
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Theorem 6.1. The smoothness indicators defined in Eq. (39-40) satisfy properties P1, P2, and P3.

Proof. Since |Γ| = h1 . . . hn, it is clear that if f is smooth in Γ, then

IΓ(f) = O(h2).

We suppose that p is a polynomial interpolant at a stencil of (r + 1)n points, then

IΓ(f)− IΓ(p) =
∑

l∈J

h2l1−1
1 . . . h2ln−1

n

∫

Γ

((f l)(x))2 − (pl)(x))2)dx

=
∑

l∈J

h2l1−1
1 . . . h2ln−1

n

∫

Γ

El)(x)(2f l)(x)− El)(x))dx

=
∑

l∈J

h2l1
1 . . . h2ln

n O(hr+1−||l||∞)

= O(hr+1).

(41)

where E is defined in Eq. (18), and ||l||∞ = maxj=1,...,n |lj |. Then, if k,k′ ∈ {0, . . . , r − 1}n, we get:

IΓ(p
r
k)− IΓ(p

r
k′) = IΓ(p

r
k)− IΓ(f) + IΓ(f)− IΓ(p

r
k′) = O(hr+1).

Finally, if a discontinuity crosses the stencil Sr
k then:

Irk 9 0 as h → 0,

since some of the quadratic terms of Irk will not converge to 0. �

Remark 6.1. An evaluation of these smoothness indicators for 2d in gridded data is shown in [7]. Also, some
adaptation to smoothness indicators with better capabilities, and computationally more efficient than those introduced
in [1], or in [8] can be performed, but the process requires an study on the order of accuracy, which exceeds the scope
of this paper.

7. Numerical experiments

In this section, we check our theoretical results through some numerical examples. We divide it into four parts,
starting with 1d experiments for uniform and non-uniform grids and performing some tests for the multivariable case.
In both cases, the order of accuracy is analyzed measuring the error in a set of points with a determined grid and
refining it. For this purpose we define the error in a finite set Υ ⊂ R

n as:

E(Υ) = max
x∗∈Υ

|f(x∗)− Ĩ2r−1(x∗)|. (42)

Secondly, in all cases, we study the behavior of the resulting interpolator in the zones close to the discontinuities and
conclude that by employing our new non-linear algorithm, if the discontinuity is isolated, the Gibbs phenomenon is
avoided.

7.1. Examples in 1D for uniform grids

We perform the first experiment using the same function studied in [3]:

f1(x) =

{

x10 − x9 + x8 − 4x7 + x6 + x5 + x4 + x3 + 5x2 + 3x, −π
6 ≤ x < 0,

1− (x10 − 2x9 + 3x8 − 8x7 − 2x6 + x5 − 2x4 − 3x3 − 5x2 + 0.5x), 0 ≤ x < 1− π
6 ,

(43)

discretizing it withNℓ = 2ℓ+1 points in the interval [−π
6 , 1−

π
6 ]. To analyze the order close to the discontinuity we locate

the point 0 in each level ℓ, compute the errors in the adjacent intervals, and estimate the numerical order of accuracy.
Therefore, let jℓ0 ∈ N such that 0 ∈ [xjℓ0−1, xjℓ0

], then we interpolate the value of the function f at 10000 points equally

16



spaced in the interval [xjℓ0−5, xjℓ0+4], denoted by J ℓ, determine the error using Eq. (42), Eℓ
s = E(J ℓ∩ [xjℓ0+s−1, xjℓ0+s])

and approximate the numerical order in each interval s as:

oℓs = log2

(

Eℓ−1
s

Eℓ
s

)

, s = −4, . . . , 4. (44)

This allows us to analyze the progressively increasing order in the neighboring intervals to the one containing the
discontinuity. For r = 3, we can see in Table 1 that the order of accuracy increases as we proved in Theorem 5.1. Also,
for r = 4, Table 3, we observe the same behavior of the numerical order. However, when we apply the classical WENO
algorithm, in both cases r = 3, 4, Tables 2 and 4, the numerical order is reduced to r + 1, in all the intervals where
one of the small stencils is contaminated by the singularity. Note that when we use our algorithm, we interpolate in
any point of the interval, but when using the classical WENO method, we can only interpolate at the mid-point.

ℓ Eℓ
−4 oℓ−4 Eℓ

−3 oℓ−3 Eℓ
−2 oℓ−2 Eℓ

−1 oℓ−1 Eℓ
0 oℓ0 Eℓ

1 oℓ1 Eℓ
2 oℓ2 Eℓ

3 oℓ3 Eℓ
4 oℓ4

5 1.6751e-08 1.3389e-08 5.7904e-09 7.3537e-07 7.3774e-01 1.7858e-06 3.0257e-08 2.4029e-08 2.6927e-08
6 1.4582e-10 6.84 1.2149e-10 6.78 8.5220e-10 2.76 5.1819e-08 3.82 5.1486e-01 0.51 1.1284e-07 3.98 3.5988e-10 6.39 3.4480e-10 6.12 3.3124e-10 6.34
7 1.4314e-12 6.67 1.2491e-12 6.60 3.6705e-11 4.53 3.5352e-09 3.87 9.8435e-01 -0.93 7.1647e-09 3.97 2.6416e-11 3.76 3.0225e-12 6.83 3.6214e-12 6.51
8 1.7396e-14 6.36 1.5998e-14 6.28 1.2246e-12 4.90 2.2682e-10 3.96 9.6727e-01 0.02 4.5610e-10 3.97 1.0890e-12 4.60 3.4750e-14 6.44 3.7415e-14 6.59

9 2.3939e-16 6.18 2.2551e-16 6.14 3.9328e-14 4.96 1.4359e-11 3.98 9.3163e-01 0.05 2.8800e-11 3.98 3.7748e-14 4.85 7.7716e-16 5.48 8.8818e-16 5.39

Table 1: Grid refinement analysis for the new WENO-6 algorithm for the function in (43).

ℓ Eℓ
−4 oℓ−4 Eℓ

−3 oℓ−3 Eℓ
−2 oℓ−2 Eℓ

−1 oℓ−1 Eℓ
0 oℓ0 Eℓ

1 oℓ1 Eℓ
2 oℓ2 Eℓ

3 oℓ3 Eℓ
4 oℓ4

5 1.6749e-08 1.3388e-08 1.5644e-07 6.7525e-07 4.7375e-01 1.6736e-06 3.6670e-07 2.4040e-08 2.6932e-08
6 1.4582e-10 6.84 1.2148e-10 6.78 1.1614e-08 3.75 4.8161e-08 3.80 4.7959e-01 -0.01 1.0573e-07 3.98 2.4504e-08 3.90 3.4479e-10 6.12 3.3126e-10 6.34
7 1.4314e-12 6.67 1.2491e-12 6.60 7.8165e-10 3.89 3.3045e-09 3.86 5.0394e-01 -0.07 6.7145e-09 3.97 1.5610e-09 3.97 3.0224e-12 6.83 3.6212e-12 6.51
8 1.7396e-14 6.36 1.5987e-14 6.28 4.9619e-11 3.97 2.1244e-10 3.95 5.0215e-01 0.00 4.2750e-10 3.97 9.9145e-11 3.97 3.4639e-14 6.44 3.7192e-14 6.60
9 2.3592e-16 6.20 2.2204e-16 6.16 3.1239e-12 3.98 1.3456e-11 3.98 5.0123e-01 0.00 2.6997e-11 3.98 6.2474e-12 3.98 3.3307e-16 6.70 5.5511e-16 6.06

Table 2: Grid refinement analysis for the classical WENO-6 algorithm for the function in (43).

ℓ Eℓ
−4 oℓ−4 Eℓ

−3 oℓ−3 Eℓ
−2 oℓ−2 Eℓ

−1 oℓ−1 Eℓ
0 oℓ0 Eℓ

1 oℓ1 Eℓ
2 oℓ2 Eℓ

3 oℓ3 Eℓ
4 oℓ4

5 2.2152e-11 1.6644e-09 1.8454e-08 3.5396e-09 7.0227e-01 4.1523e-08 2.8408e-08 2.2035e-09 8.4167e-11
6 9.4535e-14 7.87 1.2205e-11 7.09 1.6904e-10 6.77 2.2973e-09 0.62 5.3587e-01 0.39 1.2832e-09 5.01 3.1781e-10 6.48 1.9403e-11 6.82 3.3018e-13 7.99

7 4.9960e-16 7.56 9.1455e-14 7.06 1.7535e-12 6.59 9.5206e-11 4.59 9.8422e-01 -0.87 7.0822e-11 4.17 3.9031e-12 6.34 1.6120e-13 6.91 1.7764e-15 7.53
8 2.0817e-17 4.58 7.0777e-16 7.01 2.2673e-14 6.27 3.1514e-12 4.91 9.6632e-01 0.02 2.8244e-12 4.64 4.8961e-14 6.31 1.7764e-15 6.50 5.5511e-16 1.67
9 1.3878e-17 0.58 1.0408e-17 6.08 3.2092e-16 6.14 1.0091e-13 4.96 9.2930e-01 0.05 9.6589e-14 4.86 8.8818e-16 5.78 4.4409e-16 2.00 4.4409e-16 0.32

Table 3: Grid refinement analysis for the new WENO-8 algorithm for the function in (43).

ℓ Eℓ
−4 oℓ−4 Eℓ

−3 oℓ−3 Eℓ
−2 oℓ−2 Eℓ

−1 oℓ−1 Eℓ
0 oℓ0 Eℓ

1 oℓ1 Eℓ
2 oℓ2 Eℓ

3 oℓ3 Eℓ
4 oℓ4

5 2.2458e-11 1.6502e-09 4.1669e-09 3.2826e-09 4.5560e-01 3.9398e-08 2.2108e-09 4.0566e-10 8.1793e-11
6 9.4508e-14 7.89 1.5559e-10 3.40 5.6031e-10 2.89 2.0622e-09 0.67 4.7046e-01 -0.04 1.1327e-09 5.12 3.6677e-10 2.59 1.1083e-10 1.87 3.2652e-13 7.96

7 4.5797e-16 7.68 5.9243e-12 4.71 2.1924e-11 4.67 8.5879e-11 4.58 5.0851e-01 -0.11 6.3658e-11 4.15 1.6916e-11 4.43 4.7008e-12 4.55 1.5543e-15 7.71
8 0 - 1.9244e-13 4.94 7.1713e-13 4.93 2.8456e-12 4.91 5.0443e-01 0.01 2.5479e-12 4.64 6.4937e-13 4.70 1.7553e-13 4.74 0 -
9 3.4694e-18 - 6.1149e-15 4.97 2.2865e-14 4.97 9.1148e-14 4.96 5.0237e-01 0.00 8.7264e-14 4.86 2.1871e-14 4.89 5.6621e-15 4.95 2.2204e-16 -

Table 4: Grid refinement analysis for the classical WENO-8 algorithm for the function in (43).

7.2. Examples in 1D for non-uniform grids

In this subsection, we perform two experiments: one with the function defined in (43) and, also, with the function
studied in [6]:

f2(x) =

{

5(x− 0.25)3ex
2

, 0 ≤ x < 2/3,

1.5− (x− 0.25)3ex
2

, 2/3 ≤ x < 1.
(45)

We construct a non-uniform grid {xi}32i=0 with xi ∼ U [0, 1], being U [0, 1] a uniform distribution in [0, 1] and interpolate
the values of the function in a uniform grid of 10000 points. The result is showed in Figure 5, we can see that the
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two interpolants avoid Gibbs-phenomenon. We compare our method with classical WENO adapted to non-uniform
grids, we change the optimal weights in (2) using the formulas presented in Lemma 2.1. In Tables 6 and 8 we can
observe similar results to those obtained for uniform grids: the order of accuracy in the adjacent cells to the isolated
discontinuity, ol2 and ol−2, is smaller than the one obtained using the new WENO algorithm. These numerical results
are consistent with the theoretical ones.
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Figure 5: Interpolation using the new WENO-6 algorithm. Dashed line: interpolation of the function (43) (a) and of the function (45) (b).
Circles: Data points.

To analyze the numerical order we take the non-uniform mesh, {x5
i }

32
i=0, we divide it in each level using the following

formula:
{

xℓ+1
2j+1 = 1

2 (x
ℓ
j + xℓ

j+1), j = 0, . . . , 2ℓ − 1,

xℓ+1
2j = xℓ

j , j = 0, . . . , 2ℓ,
(46)

for ℓ ≥ 5 and compute the numerical order following Eq. (44). Again, we see, in Tables 5 and 7, that the behaviour
of the numerical order is the expected one, and proved in Theorem 5.1.

ℓ Eℓ
−4 oℓ−4 Eℓ

−3 oℓ−3 Eℓ
−2 oℓ−2 Eℓ

−1 oℓ−1 Eℓ
0 oℓ0 Eℓ

1 oℓ1 Eℓ
2 oℓ2 Eℓ

3 oℓ3 Eℓ
4 oℓ4

5 1.4532e-09 1.9867e-09 1.3509e-09 2.1725e-07 5.0179e-01 9.6277e-07 5.7583e-12 1.8499e-08 2.0715e-08
6 3.0627e-12 8.89 1.1074e-11 7.48 2.8323e-10 2.25 1.8743e-08 3.53 9.5557e-01 -0.92 1.4596e-07 2.72 1.0063e-10 -4.12 9.9920e-16 24.14 8.8818e-16 24.47
7 3.4114e-13 3.16 2.7956e-13 5.30 9.6570e-12 4.87 1.1295e-09 4.05 9.0939e-01 0.07 4.4933e-09 5.02 5.2145e-11 0.94 7.6797e-12 -12.90 6.9681e-12 -12.93
8 3.1225e-15 6.77 2.6784e-15 6.70 2.8241e-13 5.09 6.9824e-11 4.01 8.1464e-01 0.15 1.4067e-10 4.99 3.2563e-13 7.32 1.1768e-14 9.35 5.5622e-14 6.96
9 4.1633e-17 6.22 4.1633e-17 6.00 8.9997e-15 4.97 4.4054e-12 3.98 5.9349e-01 0.45 8.8614e-12 3.98 9.1038e-15 5.16 4.4409e-16 4.72 3.3307e-16 7.38

Table 5: Non-uniform grid refinement analysis for the new WENO-6 algorithm for the function (43)

ℓ Eℓ
−4 oℓ−4 Eℓ

−3 oℓ−3 Eℓ
−2 oℓ−2 Eℓ

−1 oℓ−1 Eℓ
0 oℓ0 Eℓ

1 oℓ1 Eℓ
2 oℓ2 Eℓ

3 oℓ3 Eℓ
4 oℓ4

5 1.4532e-09 1.9867e-09 2.2394e-09 2.1596e-07 5.0556e-01 9.6277e-07 1.1280e-10 1.8422e-08 2.0870e-08
6 3.0627e-12 8.89 1.1074e-11 7.48 4.4299e-09 -0.98 1.8643e-08 3.53 9.5952e-01 -0.92 1.4596e-07 2.72 9.9574e-09 -6.46 8.8818e-16 24.30 8.8818e-16 24.48
7 3.4114e-13 3.16 2.7956e-13 5.30 2.6139e-10 4.08 1.1280e-09 4.04 9.1492e-01 0.06 4.4933e-09 5.02 2.7581e-09 1.85 7.6801e-12 -13.07 6.9664e-12 -12.93
8 3.1225e-15 6.77 2.6784e-15 6.70 1.5284e-11 4.09 6.9803e-11 4.01 8.1613e-01 0.16 1.4067e-10 4.99 3.4826e-11 6.30 1.1879e-14 9.33 5.5511e-14 6.97
9 4.1633e-17 6.22 4.3368e-17 5.94 9.6033e-13 3.99 4.4051e-12 3.98 5.9392e-01 0.45 8.8614e-12 3.98 1.9277e-12 4.17 4.4409e-16 4.74 3.3307e-16 7.38

Table 6: Non-uniform grid refinement analysis for the classical WENO-6 algorithm for the function (43)

7.3. Examples in 2d for uniform grids

We start with a smooth function to check numerically that the order is 2r. Thus, we consider the function

f3(x1, x2) =
1

x2
1 + x2

2 + 1
, (47)
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ℓ Eℓ
−4 oℓ−4 Eℓ

−3 oℓ−3 Eℓ
−2 oℓ−2 Eℓ

−1 oℓ−1 Eℓ
0 oℓ0 Eℓ

1 oℓ1 Eℓ
2 oℓ2 Eℓ

3 oℓ3 Eℓ
4 oℓ4

5 1.6775e-08 2.7033e-07 6.2666e-05 2.8007e-04 8.2027e-01 5.6347e-05 5.8642e-06 1.6321e-08 4.6059e-08
6 3.5056e-12 12.22 2.1402e-12 16.94 1.9801e-06 4.98 3.5278e-06 6.31 8.1413e-01 0.01 1.0834e-05 2.37 1.3715e-07 5.41 1.3137e-11 10.27 4.4049e-12 13.35
7 2.1300e-13 4.04 1.4868e-10 -6.11 1.9147e-08 6.69 1.3796e-06 1.35 8.0577e-01 0.01 9.3678e-07 3.53 2.7173e-08 2.33 8.3370e-10 -5.98 1.8362e-10 -5.38
8 1.4874e-11 -6.12 1.5467e-11 3.26 9.9600e-10 4.26 9.4274e-08 3.87 7.9070e-01 0.02 5.5039e-08 4.08 7.7134e-10 5.13 1.6195e-11 5.68 1.7014e-11 3.43
9 2.5019e-13 5.89 2.5602e-13 5.91 3.2880e-11 4.92 6.1595e-09 3.93 7.5953e-01 0.05 3.3358e-09 4.04 2.3013e-11 5.06 2.3137e-13 6.12 2.3692e-13 6.16

Table 7: Non-uniform grid refinement analysis for the new WENO-6 algorithm for the function (45).

ℓ Eℓ
−4 oℓ−4 Eℓ

−3 oℓ−3 Eℓ
−2 oℓ−2 Eℓ

−1 oℓ−1 Eℓ
0 oℓ0 Eℓ

1 oℓ1 Eℓ
2 oℓ2 Eℓ

3 oℓ3 Eℓ
4 oℓ4

5 1.6383e-08 2.8758e-07 1.0398e-04 3.9364e-04 8.1970e-01 5.6347e-05 1.8207e-05 1.6304e-08 4.7433e-08
6 3.5061e-12 12.19 2.1401e-12 17.03 5.2570e-06 4.30 3.5206e-06 6.80 8.1338e-01 0.01 1.0834e-05 2.37 8.1099e-07 4.48 1.3140e-11 24.30 4.4047e-12 13.39
7 2.1300e-13 4.04 1.4842e-10 -6.11 2.3862e-07 4.46 1.3735e-06 1.35 8.0534e-01 0.01 9.3678e-07 3.53 1.9806e-07 2.03 8.3530e-10 -13.07 1.8435e-10 -5.38
8 1.4875e-11 -6.12 1.5467e-11 3.26 2.0923e-08 3.51 9.4127e-08 3.86 7.8938e-01 0.02 5.5039e-08 4.08 1.2003e-08 4.04 1.6196e-11 9.33 1.7015e-11 3.43
9 2.5013e-13 5.89 2.5613e-13 5.91 1.3520e-09 3.95 6.1566e-09 3.93 7.5647e-01 0.06 3.3358e-09 4.04 7.3780e-10 4.02 2.3115e-13 4.74 2.3714e-13 6.16

Table 8: Non-uniform grid refinement analysis for the classical WENO-6 algorithm for the function (45)

and interpolate it using a Cartesian grid in the square [−1, 1]2:

Xℓ = {(x
ℓ,(i)
1 , x

ℓ,(j)
2 )}2

ℓ

i,j=0, x
ℓ,(i)
1 = −1 + ihℓ, x

ℓ,(j)
2 = −1 + jhℓ, hℓ = 2−ℓ+1, (48)

at the points

Bℓ = {(τ(k1)x1 + (1− τ(k1))y1, τ(k2)x2 + (1− τ(k2))y2) : (x1, x2), (y1, y2) ∈ Xℓ, τ(k) = 0.3 + 0.1k, k = 0, 4},

applying the new WENO algorithm for r = 3. Note that the set of points Bℓ is conformed by a convex combination of
points of the grid. We have chosen this collection of points, but we could have selected any other. The result is shown
in Fig. 6, and we observe that it is similar to the original function f3. In order to compute the numerical order, we
use the same strategy presented in Section 7.1, we calculate Eℓ = E(Bℓ) and approximate the order as in Eq. (44).
Regarding the table presented in Fig. 6 it is clear that the order of accuracy is the expected one.

r = 3 r = 4

ℓ Eℓ oℓ Eℓ oℓ

4 7.9879e-07 1.6882e-08
5 1.3037e-08 5.94 6.4910e-11 8.02
6 2.0584e-10 5.98 2.5102e-13 8.01

7 3.2245e-12 6.00 1.4433e-15 7.44

Figure 6: Left: Grid refinement analysis for the new WENO-6 algorithm for the function (47). Right: Interpolation using the new WENO-6
algorithm.

In order to analyze the order close to the discontinuities, we perform an experiment with the function:

f3(x1, x2) =

{

ex1+x2 cos(x1 − x2), x1 + x2 ≤ 0,

ex1+x2 cos(x1 − x2) + 1, x1 + x2 > 0.
(49)

We take the mid-point x0 = (x
ℓ,(2ℓ−1)
1 , x

ℓ,(2ℓ−1)
2 ) = (0, 0) of the cartesian grid Xℓ; the set

Y ℓ = {(s1, s2)hℓ : −5 ≤ s1 ≤ 6, −4 ≤ s2 ≤ 5},

(see Figure 7.(a) red big points), and calculate an approximation to the function in the points

X ℓ = {(τ(k1)x1 + (1− τ(k1))y1, τ(k2)x2 + (1− τ(k2))y2) : (x1, x2), (y1, y2) ∈ Y ℓ, τ(k) = 0.3 + 0.1k, k = 0, . . . , 4},
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(see Figure 7.(a) gray, green, yellow and blue small points). We chose this set for the convenience of analyzing the
order, but any other random sample of points could have been selected. A region between four data points is defined
as:

X ℓ
(s1,s2)

= X ℓ ∩ [s1hℓ, (s1 + 1)hℓ]× [s2hℓ, (s2 + 1)hℓ], −5 ≤ s1 ≤ 5, −4 ≤ s2 ≤ 4,

and the errors and the numerical orders in each region as:

Eℓ
(s1,s2)

= E(X ℓ
(s1,s2)

), oℓ(s1,s2) = log2

(

Eℓ−1
(s1,s2)

Eℓ
(s1,s2)

)

, −5 ≤ s1 ≤ 5, −4 ≤ s2 ≤ 4.

Now, we compare with a modification of the classical WENO method adapted to work using tensor products. Note
that the WENO-2d method defined in [7] is constructed for uniform-grids. In this case, we reformulate the classical
WENO to approximate at any point in the considered interval and for non-uniform-grids. Theoretically, we have
proved that the order of accuracy obtained at the green points in Figure 7.(a) is equal to 4, as there is one unique
square stencil that is not contaminated by the discontinuity. For the yellow ones, 5 is the theoretical order of accuracy,
and 6 for the rest of the points. Using the classical WENO algorithm, we only distinguish two zones, order 4 (yellow
and green zones) and order 6 for the rest of the points.

(a) (b)

(c) (d)

Figure 7: Interpolation using new WENO-6 algorithm to the function (49). (a): Nodes (red points) and points of interpolation (color
points). (b), (c) and (d): Result of the interpolation in these points.
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We can check this fact in Tables 9 and 10, where we determine the order, o7(s1,s2) in each region. In this case, in

the smooth part, we obtain numerical order 7. The interpolation is shown in Figure 7.(c). We can see again that the
resulting intepolator avoids Gibbs phenomenon (Figure 7.(d)).

o7(s1,s2) s1 = −5 −4 −3 −2 −1 0 1 2 3 4 5

s2 = −4 -0.00 0.00 4.03 4.07 3.99 5.10 7.07 7.10 7.32 6.81 7.09
−3 3.93 -0.00 0.00 4.05 4.08 3.99 5.11 7.23 7.09 7.00 7.08
−2 3.90 3.94 -0.00 0.00 4.06 4.09 4.00 5.11 7.06 7.21 7.25
−1 3.99 3.92 3.95 -0.00 0.00 4.06 4.09 4.00 5.11 7.07 7.20
0 4.90 4.00 3.92 3.96 -0.00 0.00 4.06 4.09 3.99 5.10 7.09
1 6.89 4.91 4.01 3.93 3.96 -0.00 0.00 4.06 4.08 3.99 5.09

2 6.86 6.97 4.91 4.01 3.93 3.96 -0.00 0.00 4.05 4.07 3.97
3 6.88 6.93 6.96 4.91 4.01 3.92 3.95 -0.00 0.00 4.03 4.06
4 6.84 6.80 6.88 6.97 4.91 4.00 3.92 3.94 -0.00 0.00 4.02

Table 9: Grid refinement analysis for the new WENO-6 algorithm for the function (49) with ℓ = 7

o7(s1,s2) s1 = −5 −4 −3 −2 −1 0 1 2 3 4 5

s2 = −4 -0.00 0.00 4.03 4.07 4.04 4.08 7.15 7.10 7.15 6.98 7.09
−3 3.92 -0.00 0.00 4.04 4.08 4.05 4.08 7.06 6.89 7.00 6.98
−2 3.90 3.94 0.00 0.00 4.05 4.08 4.05 4.09 6.91 7.21 7.25
−1 3.94 3.91 3.95 -0.00 0.00 4.05 4.09 4.05 4.08 7.15 7.19
0 3.91 3.95 3.92 3.95 -0.00 0.00 4.05 4.08 4.05 4.08 7.14
1 6.89 3.92 3.96 3.92 3.96 -0.00 0.00 4.05 4.08 4.04 4.07

2 6.91 6.97 3.92 3.96 3.92 3.95 -0.00 0.00 4.04 4.07 4.02
3 6.92 6.93 6.96 3.92 3.96 3.92 3.95 -0.00 0.00 4.03 4.05
4 6.90 6.94 6.93 6.90 3.92 3.95 3.91 3.94 -0.00 0.00 4.01

Table 10: Grid refinement analysis for the classical WENO-6 algorithm for the function (49) with ℓ = 7

7.4. Examples in 2d for non-uniform grids

Finally, in this subsection, we will present two examples to corroborate that our new algorithm is also valid for
non-uniform grids. To study the order we design a non-regular grid for ℓ = 4 applying the following formula

X̃ℓ = {(x̃
ℓ,(i)
1 , x̃

ℓ,(j)
2 )}2

ℓ

i,j=0, x̃
ℓ,(i)
1 = −1 + ihℓ + εℓi , x̃

ℓ,(j)
2 = −1 + jhℓ + εℓj , hℓ = 2−ℓ+1, εℓi , ε

ℓ
j ∼ U

[

−
hℓ

2
,
hℓ

2

]

(50)

being U
[

−hℓ

2 , hℓ

2

]

the uniform distribution in the interval [−hℓ/2, hℓ/2]. And for ℓ ≥ 4 we use the same strategy as in

1d, Eq. (46), i.e., we define X̃ℓ+1 = {(x̃
ℓ+1,(i)
1 , x̃

ℓ+1,(j)
2 )}2

ℓ+1

i,j=0 as

x̃
ℓ+1,(l1)
1 =

{

1
2 (x̃

ℓ,(i)
1 + x̃

ℓ,(i+1)
1 ), l1 = 2i+ 1, 1 ≤ i ≤ 2ℓ+1 − 1,

x̃
ℓ,(i)
1 , l1 = 2i, 0 ≤ i ≤ 2ℓ+1,

x̃
ℓ+1,(l2)
2 =

{

1
2 (x̃

ℓ,(j)
2 + x̃

ℓ,(j+1)
2 ), l2 = 2j + 1, 0 ≤ j ≤ 2ℓ+1 − 1,

x̃
ℓ,(j)
2 , l2 = 2j, 0 ≤ j ≤ 2ℓ+1,

and interpolate at 25 points contained in each region formed by 4 points:

X̃ ℓ = {(τ(k1)x1 + (1− τ(k1))y1, τ(k2)x2 + (1− τ(k2))y2) : (x1, x2), (y1, y2) ∈ X̃ℓ, τ(k) = 0.3 + 0.1k, k = 0, 1, 2, 3, 4}.

Then we calculate the errors and numerical orders in Ωℓ = X ℓ ∩ [−5.5hℓ, 5.5hℓ]
2, as in previous subsections, with

Eℓ = E(Ωℓ). We can observe again in Table 11, that the results obtained in the numerical experiments satisfy the
theoretical ones. To finish these numerical tests, we perform an interpolation of the function
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r = 3 r = 4
ℓ Eℓ oℓ Eℓ oℓ

5 1.3938e-06 2.3237e-08
6 2.9147e-08 5.58 1.8794e-10 6.95
7 5.4251e-10 5.75 1.1793e-12 7.32
8 1.0811e-11 5.65 5.3291e-15 7.79

9 1.9518e-13 5.79 5.5511e-16 -

Table 11: Non-uniform grid refinement analysis for the new WENO-6 algorithm for the function (47).

f4(x1, x2) =

{

1
16 (x1 + x2) sin(16πx1) sin(16πx2), x1 + x2 ≤ 0,
1
16 (x1 + x2) sin(16πx1) sin(16πx2) + 0.1, x1 + x2 > 0,

(51)

at the points:

B̃7 = {(τ(k1)x1 + (1− τ(k1))y1, τ(k2)x2 + (1− τ(k2))y2) : (x1, x2), (y1, y2) ∈ X̃7, τ(k) = 0.3 + 0.1k, k = 0, 1, 2, 3, 4}

being X̃7 a non-uniform grid constructed employing the formula described in Eq. (50) (see Figure 8(a)). We show the
result in Figure 8(c) and (d) confirming that Gibbs phenomenon does not appear.

8. Conclusions and future work

In this work, we have presented a new WENO method with a progressive order of accuracy close to the discontinu-
ities. This new algorithm is simpler computationally than the one presented in [3] and more general. In particular, our
main contributions can be summarised in the following: we design a new recursive method to compute the interpola-
tion; we construct non-linear explicit formulas to calculate the weights to interpolate any point in the central interval;
we propose an algorithm for non-uniform grids, and finally, we extend the method to n dimensions. This strategy
presents a drawback, the stencils used to interpolate are square and the number of points is larger than necessary to
get the optimal order of accuracy. To improve this fact and to apply this technique in partial differential equations
contexts are the principal lines of our future work.
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