
ar
X

iv
:2

40
4.

16
70

1v
1

 [
cs

.D
S]

 2
5

A
pr

 2
02

4

On the Streaming Complexity of Expander Decomposition

Yu Chen

EPFL

Michael Kapralov

EPFL

Mikhail Makarov

EPFL

Davide Mazzali

EPFL

Abstract

In this paper we study the problem of finding (ǫ, φ)-expander decompositions of a graph in the
streaming model, in particular for dynamic streams of edge insertions and deletions. The goal
is to partition the vertex set so that every component induces a φ-expander, while the number
of inter-cluster edges is only an ǫ fraction of the total volume. It was recently shown that there
exists a simple algorithm to construct a (O(φ log n), φ)-expander decomposition of an n-vertex
graph using Õ(n/φ2) bits of space [Filtser, Kapralov, Makarov, ITCS’23]. This result calls
for understanding the extent to which a dependence in space on the sparsity parameter φ is
inherent. We move towards answering this question on two fronts.

We prove that a (O(φ log n), φ)-expander decomposition can be found using Õ(n) space, for
every φ. At the core of our result is the first streaming algorithm for computing boundary-linked
expander decompositions, a recently introduced strengthening of the classical notion [Goranci
et al., SODA’21]. The key advantage is that a classical sparsifier [Fung et al., STOC’11], with
size independent of φ, preserves the cuts inside the clusters of a boundary-linked expander
decomposition within a multiplicative error.

Notable algorithmic applications use sequences of expander decompositions, in particular
one often repeatedly computes a decomposition of the subgraph induced by the inter-cluster
edges (e.g., the seminal work of Spielman and Teng on spectral sparsifiers [Spielman, Teng,
SIAM Journal of Computing 40(4)], or the recent maximum flow breakthrough [Chen et al.,
FOCS’22], among others). We prove that any streaming algorithm that computes a sequence
of (O(φ log n), φ)-expander decompositions requires Ω̃(n/φ) bits of space, even in insertion only
streams.

http://arxiv.org/abs/2404.16701v1

Contents

1 Introduction 1

1.1 Previous work . 1
1.2 Our contribution . 2
1.3 Basic notation . 3

2 Technical overview 4

2.1 Sparsity-independent one-level expander decomposition 4
2.2 Two-level expander decomposition incurs a sparsity dependence 11

3 Preliminaries 15

4 Sparsification for vertex-induced subgraphs 17

4.1 Sparsification primer . 18
4.2 Sampling algorithm for dynamic streams . 19
4.3 Cut counting and proving the sparsification lemma 23

5 Testing expansion and finding sparse cuts in sparsifiers 25

5.1 Characterizing boundary-linked cuts . 26
5.2 Preserving volumes and sparsities . 27
5.3 Proving the proxying lemma . 30

6 Space efficient recursive partitioning 32

6.1 Offline analysis . 36
6.1.1 Properties of nested cuts . 37
6.1.2 Relations between volume estimates . 41
6.1.3 Bounding the number of iterations . 41
6.1.4 Bounding the recursion depth . 47
6.1.5 Correctness . 50

6.2 Dynamic stream implementation . 53

7 Lower bound for two-level expander decomposition 55

7.1 Hard distribution . 55
7.2 Reduction to a communication problem . 60
7.3 Hardness of the communication problem . 65
7.4 Proving the lower bound . 68

References 70

A Technical facts 73

A.1 Fast balanced sparse cut algorithm . 73
A.2 Expansion and regularity of random graphs . 77
A.3 A useful inequality . 79

1 Introduction

Expander graphs are known to represent a class of easier instances for many problems. Therefore,
breaking down the input into disjoint expanders can allow to conveniently solve the task on each of
them separately, before combining the partial results into a global solution. This approach is enabled
by (ǫ, φ)-expander decompositions (for short, (ǫ, φ)-ED). For an undirected graph G = (V,E), this
is a partition U of the vertex set V , such that there are at most ǫ|E| inter-cluster edges, while every
cluster U ∈ U induces a φ-expander. The list of successful applications of this framework is long,
including Laplacian system solvers [ST04], deterministic algorithms for minimum cut [Li21], graph
and hyper-graph sparsification [ST11, CGP+18, KKTY21, APP+23], dynamic algorithms for cut
and connectivity problems [GRST21, GHN+23], fast max flow algorithms [CKL+22a], distributed
triangle enumeration [CS19], polynomial time algorithms for semirandom planted CSPs [GHKM23],
and many more.

We refer to ǫ and φ as the sparsity parameters: the former controls how sparsely connected
the clusters need to be, and the latter determines how expanding (i.e. non-sparse) the cuts within
clusters are. The reason for using the same term for both is that they are in fact very closely
related. One can show that any n-vertex graph has an (ǫ, φ)-ED with ǫ = O(φ log n). To see this,
consider the following constructive argument: if the graph has no φ-sparse cut then {V } is a valid
ED of G, otherwise recurse on the two sides (S, V \S) of a φ-sparse cut and union the results to get
an ED for G. Every cluster in this decomposition is then an expander, and a charging argument
allows to bound the number of inter-cluster edges by O(φ|E| log n) [SW19]. One can also observe
that no better asymptotic trade-off between ǫ and φ is possible in general [AALG18]. Therefore,
this sets the benchmark for algorithmic constructions of EDs.

At a high level, many ED algorithms follow the approach suggested by the existential argument.
As a naive implementation would take exponential time, the crux often lies in efficient algorithms
that either certify that a large portion of the input is an expander, or find a balanced sparse cut.
This would result in a small depth recursion, thanks to balancedness, where each level requires little
computational resources. There are several successful examples of this approach. In the sequential
setting, a recent algorithm constructs a (O(φ log3 n), φ)-ED in Õ(|E|) time [LNPS23], based on
the previous best algorithm which runs in Õ(|E|/φ) time [SW19]. There is also a deterministic
counterpart, which outputs a (φ ·no(1), φ)-ED in almost linear time [CGL+20]. For the CONGEST
model of distributed computing, it is possible to obtain, for instance, a (φ1/

√
logn · no(1), φ)-ED in

no(1)/φ rounds [CS19]. It is also possible to maintain a (φ · no(1), φ)-ED for a graph undergoing
edge updates in no(1)/φ2 amortized update time [GRST21, HKGW23].

1.1 Previous work

In the streaming setting, the problem of finding EDs was open until the recent work of [FKM23].
They obtain a dynamic stream algorithm which outputs a (O(φ log n), φ)-ED and takes Õ(n/φ2)
space. While being optimal in the quality of the decomposition, decoding the sketch to actually
output an ED takes exponential time. The authors also give a polynomial time version: one can
produce a (φ ·no(1), φ)-ED using space Õ(n/φ2)+n1+o(1)/φ1−o(1), with a post-processing that takes
poly(n) time (where the o(1)’s can be tuned, allowing for a quality-space trade-off).

These streaming algorithms also adopt the recursive approach based on finding balanced φ-
sparse cuts, but the streaming model poses a challenge that we now illustrate. Sparsification for
graph streams has been extensively studied [AG09, AGM12a, AGM12b, KLM+14, KMM+20], so
a natural attempt would consist of maintaining a cut sparsifier as the stream comes and later run
the recursive partitioning on it. However, it must be noted that these cuts are to be found in the

1

subgraphs induced by the two sides of a previously made cut. This is not a problem in a classical
computational setting, but it actually constitutes the main obstacle for the streaming model: at
sketching time, the algorithm does not know which subgraphs it will need to access. Unfortunately,
it is impossible to preserve cut sizes in arbitrary subgraphs with multiplicative precision. The
natural work-around is to introduce an additive error term: in [FKM23], the authors introduce the
concept of power-cut sparsifiers. For any given partition U of V , these sparsifiers preserve the cuts
|E(S,U \S)| of each cluster U ∈ U in the partition up to an error of δ ·|E(S,U \S)|+ψ ·vol(S). They
further show that maintaining Õ(n/δψ) random linear measurements of the incidence matrix of the
input graph is enough to obtain such sparsifiers. One can see that setting δ ≪ 1 and ψ ≈ φ preserves
the sparsity of cuts to within an additive error of roughly φ, using Õ(n/φ) linear measurements. This
is enough to find a balanced φ-sparse cut in every subgraph induced by a given partition of the vertex
set. There is another caveat, though: power-cut sparsifiers give a high probability guarantee for
any fixed partition, but we cannot expect them to work for all partitions simultaneously. Therefore,
in order not to use the sparsifiers adaptively, we need one power-cut sparsifier for every recursion
level. The authors show that the depth of the procedure cannot exceed Õ(1/ǫ) = Õ(1/φ), thus
obtaining the space complexity stated before. A few more details are involved in the polynomial
time algorithm, but the underlying framework is the same.

1.2 Our contribution

The work of [FKM23] initiated the study of expander decompositions in the streaming setting,
and consequently raised the question of whether a dependence in space on the sparsity parame-
ter φ is inherent. In this paper, we move towards settling the streaming complexity of expander
decompositions by attacking the problem on two fronts: (1) we give a nearly optimal algorithm
for “one-level” expander decomposition that avoids the sparsity dependence, and (2) we show that
computing a “repeated” expander decomposition, commonly used in applications, cannot avoid
such dependence.

Upper bound

We give an Õ(n) space algorithm for computing a (O(φ log n), φ)-ED in dynamic streams. Specif-
ically, we show that a “universal” sketch consisting of Õ(n) random linear measurements of the
incidence matrix can be decoded into a (O(φ log n), φ)-ED for any φ: the sketch is independent of
the sparsity φ.

Theorem 1 (ED algorithm – exponential time decoding). Let G = (V,E) be a graph given in a
dynamic stream. Then, there is an algorithm that maintains a linear sketch of G in Õ(n) space.
For any φ ∈ (0, 1), the algorithm decodes the sketch to compute a (O(φ log n), φ)-ED of G with high
probability, in Õ(n) space and 2O(n) time.

We note that at least Ω(n log n) space is needed for any small enough φ: for example, if the input
graph is a matching of size n/10, say, its ED gives a 1−O(φ log n) fraction of the matching edges.

The decoding time of our sketch can be made polynomial, at the expense of some loss in the
quality of the expander decomposition (similarly to [FKM23]), but keeping the space independent
of the sparsity φ.

Theorem 2 (ED algorithm – polynomial time decoding). Let G = (V,E) be a graph given in a
dynamic stream. Then, there is an algorithm that maintains a linear sketch of G in n1+o(1) space.
For any φ ∈ (0, 1), the algorithm decodes the sketch to compute a (φ · no(1), φ)-ED of G with high
probability, in n1+o(1) space and poly(n) time.

2

In this case we are off by subpolynomial factors in both quality and space complexity as compared
to the optimal ones. The actual theorem that we prove allows one to trade-off the loss in quality
and increase in space.

Lower bound

Most algorithmic applications of EDs, including the ones mentioned above, do not use just one ED
of the input graph. Rather, they use an ED sequence obtained by repeatedly computing an ED of
the inter-cluster edges from the previous level. This can be done in two natural ways: by contracting
the clusters of an ED (we call this variant CED, for “contraction”), or by removing the intra-cluster
edges without changing the vertex set (we call this variant RED, for “removal”). These approaches
lead to different results and are used for different applications (e.g., [GRST21, Li21] contract the
clusters, and [ST11, CKL+22a] recurse on inter-cluster edges). In the sequential setting, both
CEDs and REDs can be obtained straightforwardly given an ED algorithm. However, this is not
so obvious in the streaming model.

One the one hand, one should be able get a sparsity-independent algorithm for computing
CEDs in dynamic streams via Theorem 1 or Theorem 2: observe that contracting the vertices of a
sparsifier of the input graph G gives a sparsifier of the graph obtained by contracting vertices in G,
so the idea would be to maintain an independent copy of our algorithm for each of the O(log n)
levels and contracting vertices in the sparsifier based on the decomposition of the previous level. On
the other hand, we show a space lower bound for computing REDs, even in insertion only streams,
showing that a dependence on 1/φ is necessary.

Theorem 3 (RED lower bound). Let ǫ, φ ∈ (0, 1) such that 1/n≪ φ≪ 1/polylog n and ǫ = Õ(φ).
Any streaming algorithm that with constant probability computes at least two levels of an (ǫ, φ)-RED
requires Ω̃(n/φ) bits of space.

The result seems to challenge the intuition that EDs become weaker as φ and ǫ decrease (note
that when φ is, say, 1/n2, an ED can simply consist of connected components). The questions
of (1) whether this bound can be improved, (2) how it scales with the number of levels of RED we
compute, and (3) whether there are algorithms matching such bounds, remain open.

1.3 Basic notation

Graph streaming. In this paper, we will be mostly working in the dynamic graph streaming
model, where we know the vertex set V = [n], and we receive a stream of insertions and deletions
for undirected edges over V . In insertion-only graph streams, the only difference is that previously
inserted edges cannot be deleted. At the end of the stream, the graph G = (V,E) consists of the
edges that have been inserted and not deleted, and we say that G is given in a (dynamic) stream.
When we consider a graph given in a (dynamic) stream, we are implicitly assuming it to have n
vertices, without introducing the parameter n explicitly. Also, when we refer to G and n without
reintroducing them we are implicitly considering the graph resulting from the input stream and its
number of vertices.

A powerful tool for dynamic graph streams is linear sketching, introduced in the seminal work
of Ahn, Guha, and McGregor [AGM12a]. The idea is to left-multiply the

(n
2

)
× n incidence matrix

of the graph by a random k ×
(n
2

)
matrix for k ≪

(n
2

)
. Since the sketch consists of linear mea-

surements, it automatically handles the case of dynamic streams. We will not be using sketching
techniques directly, but rather employ existing algorithms that do. In this paper we restrain our-
selves to unweighted edge streams. One may study the same problem in general turnstile graph
streams [CKL22b], but we do not do this here.

3

Cuts, volumes, expanders. Given an unweighted graph G = (V,E), possibly with multiple self-
loops on the vertices, we will operate with weighted graphs that approximate G in an appropriate
sense. We write G′ = (V ′, E′, w) to denote a weighted graph, possibly with multiple weighted
self-loops on the vertices. We describe next some notation for such weighted graph G′. The same
notation carries over to the unweighted graph G by implicitly setting w to assign a weight of 1 to
all edges and self-loops.

For any A,B ⊆ V ′ we denote by E′(A,B) the edges in E′ with one endpoint in A and one in
B, and by w(A,B) the total weight of edges in E′(A,B). The volume of a cut S ⊆ V ′ is the sum of
the (weighted) degrees, including self-loops, of its vertices. We denote it by volG′(S). The sparsity
of a cut ∅ 6= S (V ′ is defined as

ΦG′(S) =
w(S, V ′ \ S)

min{volG′(S), volG′(V ′ \ S)} .

For ψ ∈ (0, 1), we make a distinction between cuts having sparsity less than ψ, which we call
ψ-sparse, and cuts having sparsity at least ψ, which we call ψ-expanding. The sparsity of G′ is the
defined as

ΦG′ = min
∅6=S(V ′

ΦG′(S) ,

and we call G′ a ψ-expander if all its cuts are ψ-expanding, i.e. ΦG′ ≥ ψ.
For a pair of vertices e = {u, v} ∈

(
V ′

2

)
, we denote by λe(G

′) the edge connectivity of e in G′,
i.e.

λe(G
′) = min

∅6=S(V ′ :u∈S,v∈V ′\S
w(S, V ′ \ S) .

Expander decomposition. As we will treat expander decompositions for the input graph G
only, we conveniently use the following additional notation. For a cluster U ⊆ V , i.e. a subset of
the vertices, and a cut S ⊆ U , which is also a subset of the vertices, we denote the number of edges
crossing S in U by ∂US, i.e. ∂US = |E(S,U \S)|. This is the local cut of S in U . If U = V , we use
a shorthand notation ∂S := ∂V S. We call such a cut the global cut of S, since for S ⊆ U we will
be interested in both ∂US and ∂S. Moreover, we drop the subscript from the volume and simply
write vol(·) instead of volG(·). Then, EDs can be defined as follow.

Definition 1.1 (Expander decomposition). Let G = (V,E) and let ǫ, φ ∈ (0, 1). A partition U
of V is an (ǫ, φ)-expander decomposition (for short, (ǫ, φ)-ED) of G if

1. 1
2

∑
U∈U ∂U ≤ ǫ|E|, and

2. for every U ∈ U , one has that G[U] is a φ-expander.

2 Technical overview

In this section, we outline our techniques, and give intuition for how to prove our results.

2.1 Sparsity-independent one-level expander decomposition

Given a graph G = (V,E) in a dynamic stream, and a parameter φ ∈ (0, 1), we consider the
problem of computing an (ǫ, φ)-ED of G for ǫ = O(φ log n). We show that one can do this in Õ(n)
bits of space, without any dependence on φ. In this section, we sketch our approach.

4

Let us begin by recalling the standard recursive framework for constructing expander de-
compositions [KVV00, Tre08, ST11], concisely summarized in Algorithm 1. For any parameter
φ ≤ 10−1/ log n, this algorithm produces a (O(φ log n), φ)-ED by recursively partitioning G along
φ-sparse cuts until no more such cuts are found.

Algorithm 1 Decompose: recursive procedure for computing a (O(φ log n), φ)-ED of G

1: ⊲ φ ∈ (0, 1) is the sparsity parameter
2: procedure Decompose(G) ⊲ G = (V,E) is the input graph
3: if G is a φ-expander then return {V }
4: else

5: S ← a φ-sparse cut of G
6: return Decompose(G[S]) ∪Decompose(G[V \ S])

Many algorithmic constructions of EDs are essentially efficient implementations of Algorithm 1.
Adapting Algorithm 1 to dynamic streams comes with its own set of challenges. When the input is
given in a dynamic stream, one can only afford to store a limited amount of information about the
input graph. Since Algorithm 1 only needs to measure the sparsity of cuts, it seems enough to have
access to cut sizes and volumes. Both these quantities are preserved by cut sparsifiers. According
to the classical definition [BK15], a δ-cut sparsifier is a weighted subgraph H = (V,E′, w) of the
input G = (V,E), where for every cut S ⊆ V one has

(1− δ) · ∂S ≤ ∂wS ≤ (1 + δ) · ∂S .

It is known that such a sparsifier can be constructed in dynamic streams using Õ(n/δ2) bits of
space [AGM12b]. With the same space requirement we can also measure the sparsity of cuts up to
a (1± δ) multiplicative error. Having this in mind, it is natural to consider the following algorithm:
first, read the stream and construct a cut sparsifier, then run Algorithm 1 on it and output the
resulting clustering as the expander decomposition. However, this approach does not work as is.
As it turns out, more information is needed about the graph than what is captured by the regular
notion of a cut sparsifier.

The problem with this approach becomes immediately apparent when one considers the second
recursion level. As the process recurses on the two sides of a sparse cut S, it will repeat the
procedure on the subgraphs G[S] and G[V \S]. Unfortunately, the cut preservation property of the
sparsifier does not carry over to those subgraphs, making it inadequate for estimating the sparsity
of the cuts in those graphs. In fact, the notion of expander decomposition itself already operates
on the subgraphs, as it is required that each cut in each cluster of the decomposition is expanding.

Testing expansion of subgraphs

The reasoning from above gives rise to the following sketching problem: produce a sparsifier that can
be used to check that any subgraph is a φ-expander. To solve it, the authors of [FKM23] introduced
the concept of a (δ, ψ)-power-cut sparsifier. Its property is that, for any cluster U ⊆ V , with high
probability all cuts S ⊆ U are preserved within an additive-multiplicative error. Recall that ∂US is
equal to the size of the cut S inside the induced subgraph G[U]. When talking about sparsifiers in
this section, we will slightly abuse notation by assuming that there is some instance H = (V,E′, w)
of it and denote by ∂wUS the size of the cut S in the subgraph H[U] of this sparsifier H. Then we

5

can write the guarantee of a (δ, ψ)-power-cut sparsifier as follows1:

∀S ⊆ U, (1− δ) · ∂US − ψ · vol(S) ≤ ∂wUS ≤ (1 + δ) · ∂US + ψ · vol(S) .

The authors also give a dynamic stream construction, which uses Õ(n/δψ) bits of space by sampling
edges proportionally to the degrees of their endpoints.

To check the φ-expansion of subgraphs up to a small constant multiplicative error, it is enough
to set δ to be a small constant. However, the multiplicative error parameter ψ must be . φ. This
is a significant downside of this construction, as it was shown in [FKM23] that a (δ, φ)-power-cut
sparsifier must have at least Ω(n/φ) edges. In fact, their lower bound is more general, and holds
for general subgraphs2. In other words, Ω(n/φ) space is necessary in order to test φ-expansion of
general subgraphs. Consequently, new tools must be used to have any hope of getting an algorithm
independent of 1/φ.

Our contribution: sparsification of boundary-linked subgraphs As it turns out, solving
the expansion testing problem, as it was stated, is not necessary. Recently, in the breakthrough
work of [GRST21], it was shown that one could demand additional properties from the expander
decomposition, and it will still exist at the price of increasing the number of inter-cluster edges by
a small multiplicative factor.

More formally, for a set of vertices U ⊆ V and τ > 0, we denote by G[U]τ an induced subgraph
of G on U , where additionally for each edge e = {u, v} that connects a vertex u inside U with a
vertex v outside of U , τ self-loops are added to u. The graph G[U]τ is called a τ -boundary-linked
subgraph. Note that if G[U]τ is a φ-expander, then so necessarily is G[U], but not the other way
around.

Then it is possible, for a given φ, and ǫ = Õ(φ), τ ≈ 1/φ, to construct an (ǫ, φ)-expander
decomposition U where for each cluster U ∈ U , G[U]τ is a Ω̃(φ)-expander [GRST21]. Such a
decomposition is called a boundary-linked expander decomposition.

A key observation is that if in our algorithm we were aiming to construct a boundary-linked
expander decomposition, the testing problem would only involve checking that any given boundary-
linked subgraph is φ-expanding. Indeed, this problem is much easier than the original one and can
be solved in space Õ(n). We will show how to do it in two steps: first, we will discuss how to
strengthen the power-cut sparsifier, and then prove that this strengthening is enough to resolve the
problem.

Achieving additive error in the global cut As was noted in [FKM23], the idea behind con-
structing a power-cut sparsifier was to reanalyse the guarantee given by the construction of [ST11]
for sparsifying expanders. In other words, a power-cut sparsifier results from a more rigorous anal-
ysis of an existing sparsifier. The problem with this approach is that the sparsifier of [ST11] is
relatively weak to begin with: it only preserves cuts in expanders, while other constructions can
preserve them in all graphs [BK15, FHHP11]. To strengthen the guarantee, we give the same
treatment to the construction of [FHHP11] in Section 4. For the sake of simplicity and to gain an
intuition for why this kind of sparsification is at all possible, we discuss here how to do that with
the classical construction of [Kar94] by closely following the original proof.

1A similar sparsifier construction was proposed by [AKLP22]. Their construction has an additive error of ψ|S|,
so the dependence is on the number of vertices instead of the volume

2The lower bound instance is a 1/φ-regular graph. There, each edge by itself forms a φ-expander, while any pair
of vertices without an edge between them is not. Being able to test the φ-expansion of the majority of those small
subgraphs would imply being able to recover the majority of edges in the graph.

6

We show that, given a graph G = (V,E) with a minimum cut of size k, it is possible to construct
a sparsifier H of G such that every cut inside any given subgraph G[U] of G is preserved with high
probability with the following guarantee:

∀S ⊆ U, ∂US − δ · ∂S ≤ ∂wUS ≤ ∂US + δ · ∂S . (2.1)

In this paper, a sparsifier with property (2.1) is called a cluster sparsifier (see Definition 4.1). To
achieve (2.1), consider using the same process as in [Kar94]: sample each edge with the same
probability p ≈ δ−2/k.

To see why this works, fix a subgraph U ⊆ V , and consider any cut S in U . We wish to show
that the size of the cut S inside U concentrates well after sampling. In the original proof, this is
done by simply applying a Chernoff bound. In our case, this bound would look like this:

Pr[|∂wUS − ∂US| ≥ δ · ∂US] ≤ exp

(
−1

3
δ2p · ∂US

)
.

However, this is insufficient, as the probability depends on the cut size inside G[U]. As we have
no lower bound on its size, unlike with the sizes of global cuts, the second part of the argument
of [Kar94] cannot be applied. Instead, we apply an additive-multiplicative version of the Chernoff
bound (see for example [FKM23]), that allows us to compare the approximation error with a bigger
value than its expectation. This gives us

Pr[|∂wUS − ∂US| ≥ δ · ∂S] ≤ 2 exp

(
− 1

100
δ2p · ∂S

)
.

Expressing the probability in terms of the global cut allows us to use the cut counting lemma [Kar93],
which bounds the number of global cuts of size at most αk by n2α, for α ≥ 1. The proof is concluded
by associating each global cut with a local cut in G[U] and taking the union bound over them.

In order to get the guarantee of (2.1) for all graphs, not only those with a minimum cut of
size k, one can sample edges proportionally to the inverse of their connectivity (as in the work
of [FHHP11]) as opposed to uniformly. Moreover, one can implement such sampling scheme in
dynamic streams, using the approach of Ahn, Guha, and McGregor [AGM12b]. We defer the
details of these reanalyses to Section 4, where we show how to construct cluster sparsifiers with
property (2.1) in dynamic streams.

Benefits of boundary-linked graphs To see why the cluster sparsifier is enough to solve the
boundary-linked φ-expansion testing problem, consider the following reasoning. Set the self-loop
parameter τ equal to b/φ, for some b ≫ φ and b ≪ 1. Fix a cluster U , for which G[U]b/φ is an
Ω̃(φ)-expander. The crucial fact is that the size of any cut inside G[U]b/φ is lower bounded by its
size in the global graph up to a small polylogarithmic factor in the following way:

∂US ≥ Ω̃(b) · ∂S . (2.2)

We will now explain the derivation of the above equation in detail. For a cut ∅ 6= S (U , we denote
by bndU (S) = ∂S − ∂US the number of edges going from S to V \ U . Note that by the definition
of G[U]b/φ, the volume of any cut S inside of it is equal to volG[U]b/φ(S) = vol(S) + (bφ − 1) bndU (S).
First, because we assume that G[U]b/φ is an Ω̃(φ)-expander, we have

∂US ≥ Ω̃(φ) · volG[U]b/φ(S) .

7

Then, applying the aforementioned formula for volG[U]b/φ(S), we have

∂US ≥ Ω̃(φ) vol(S) + Ω̃(φ)

(
b

φ
− 1

)
bndU (S) .

Since b≫ φ and dropping the first summand, the above simplifies to

∂US ≥ Ω̃(b) bndU (S) .

Finally, applying ∂US + bndU (S) = ∂S and b≪ 1, we arrive back at equation (2.2).
A consequence of equation (2.2) is that setting δ ≈ 1/b in the cluster sparsifier produces the

following guarantee for Ω̃(φ)-expander subgraphs G[U]b/φ:

∀S ⊆ U, ∂US −O(1) · ∂US ≤ ∂wUS ≤ ∂US +O(1) · ∂US ,
where the O(1) can be made arbitrarily small. In other words, we achieve a multiplicative approx-
imation guarantee on subgraphs of interest, which is enough to solve the testing problem. Since b
can be set to be 1/polylog n, the final sparsifier size does not depend on 1/φ. In this sense, such
sparsifier can be thought of as a “universal” sketch of the graph that allows to solve the testing
problem for all φ simultaneously.

Even though we now know how to solve the testing problem, an implementation of Algorithm 1
would need to actually find a sparse cut when the test fails (and in particular, it needs to find a
balanced sparse cut, see the next section). In Section 5, we show that cluster sparsifiers enable to
solve this harder task too: consider an offline algorithm that either correctly determines a graph
to be a boundary-linked expander or finds a (balanced) sparse cut; we show that one can run such
algorithm on a subgraph of the sparsifier as a black box and obtain essentially the same result
as if the algorithm was run on the corresponding subgraph of the original graph. In this sense,
cluster sparsifiers serve as small error proxies to the original graph for expander-vs-sparse-cut type
of queries on vertex-induced subgraphs.

Low depth recursion

Another problem that arises when using the recursive approach is that the subgraph sparsification
guarantee of both power-cut sparsifiers and cluster sparsifiers is only probabilistic, and it can be
shown that it cannot be made deterministic [FKM23]. This means that after finding a sparse cut S
in a subgraph G[U]b/φ of a sparsifier, we cannot claim that the same sparsifier would preserve the
cuts inside the new graph G[S]b/φ with high probability, as it is dependent on another cut that
we have already found inside the sparsifier. This means we cannot use the same sparsifier for two
different calls to Algorithm 1 inside the same execution path. However, we can share a sparsifier
among all the calls at the same recursion level since these will operate on independent portions
of G. Therefore, we want to have a separate sparsifier for every recursion level. This means that
in order to minimize space requirements, it is crucial to have a small recursion depth.

To have small recursion depth, the algorithmic approach of [FKM23, CS19, CPSZ21] enforces
the sparse cut S from line (5) to be balanced, i.e., none of S and V \S is much larger than the other.
In particular, they only recurse on the two sides of a cut if vol(S) & ǫ vol(V \S). When there is no
balanced sparse cut and yet the input is not an expander, a lemma of Spielman and Teng [ST11]
suggests there should be an Ω(φ)-expander G[S′] that accounts for a (1−O(ǫ))-fraction of the total
volume. An algorithmic version of this structural result allows us to iteratively trim off a small
piece of the graph until such S′ is found. At this point, the algorithm of [FKM23] can simply return
{S′} ∪ (∪u∈V \S′{u}) as an ED, with at most O(ǫ|E|) inter-cluster edges between singletons. As
the volume of the cluster multiplicatively decreases by 1−O(ǫ) after each call, this gives recursion
depth at most Õ(1/ǫ) ≈ Õ(1/φ).

8

Our contribution: adaptation of trimming. We show that a simple refinement of this ap-
proach allows us to adapt the framework of [SW19], which leads to an algorithm with recursion
depth independent of φ. We run the same algorithm, but instead of separating each vertex in V \S′

into its own singleton cluster, we recurse with Algorithm 1 on the whole set V \ S′. Conceptually,
this implements an analogue of the trimming step of [SW19].

This means that at the end, fewer edges in V \ S become inter-cluster edges. Because of that,
we can strengthen the balancedness requirement: we recurse on the two sides of a sparse cut only
if vol(S) & 1

C vol(V \ S) for a large constant C. This allows us to trim more vertices each time,
resulting in Õ(1) depth of the trimming step. On the other hand, because in each call to Algorithm 1
the volume of clusters passed to recursive calls is decreased by at least a constant factor, the total
recursion depth becomes at most Õ(1).

Other than the refinement discussed above, our space efficient implementation of Algorithm 1,
as well as the iterative procedure to find the large expander S′, are almost the same as the ones
of [FKM23] (which in turn are inspired by the one of [CS19]). The details of the algorithms are
given in Section 6.

Putting it all together

Combining the ideas illustrated in the two sections above, neither the sparsifier’s size nor the
recursion depth depend on φ, thus giving a sparsity-independent space algorithm for boundary-
linked expander decomposition (BLD for short). This result is stated in terms of parameters
b, ǫ, φ ∈ (0, 1), γ ≥ 1: a (b, ǫ, φ, γ)-BLD is a partition U with at most an ǫ fraction of crossing edges
and every U ∈ U induces a φ/γ-expander G[U]b/φ (see Section 3 and Definition 3.1). Using this
terminology, we obtain the following result.

Theorem 2.1 (Exponential time decoding BLD). Let G = (V,E) be a graph given in a dynamic
stream, and let b ∈ (0, 1) be a parameter such that b ≤ 1/ log2 n. Then, there is an algorithm that
maintains a linear sketch of G in Õ(n/b3) space. For any ǫ ∈ [n−2, b log n], the algorithm decodes
the sketch to compute, with high probability and in Õ(n/b3) space and 2O(n) time, a (b, ǫ, φ, γ)-BLD
of G for

φ = Ω

(
ǫ

log n

)
and γ = O(1) .

From this, one can easily conclude our main result, restated here for convenience of the reader.

Theorem 1 (ED algorithm – exponential time decoding). Let G = (V,E) be a graph given in a
dynamic stream. Then, there is an algorithm that maintains a linear sketch of G in Õ(n) space.
For any φ ∈ (0, 1) such that φ ≤ c/ log2 n for a small enough constant c > 0, the algorithm decodes
the sketch to compute a (O(φ log n), φ)-ED of G with high probability, in Õ(n) space and 2O(n) time.

We remark that for φ ≥ Ω(1/ log2 n), one can use the algorithm of [FKM23] to still have an Õ(n)
space construction of a (O(φ log n), φ)-ED.

Proof. First note that without loss of generality we can assume φ ≥ 1/n2, otherwise an ED can
simply consists of the connected components of G (which can be computed in dynamic streams
in Õ(n) space [AGM12a]). Then, we note that since c is small enough and φ ≤ c/ log2 n, one can
always define ǫ = C ·φ · log n for an appropriate constant C > 0 while ensuring 1/n2 ≤ ǫ ≤ 1/ log n.
We can thus prove the theorem by equivalently showing that there is an algorithm that maintains a
linear sketch of G in Õ(n) space, and that for all ǫ ∈ [1/n2, 1/log n] decodes the sketch to compute,
with high probability, an (ǫ,Ω(ǫ/ log n)))-ED of G in Õ(n) space and 2O(n) time.

9

Let then ǫ ∈ [1/n2, 1/log n]. We use the algorithm from Theorem 2.1 with parameter ǫ and
a parameter b of our choice. We need to meet two preconditions: b ≤ 1/ log2 n and ǫ ≤ b log n.
Since we assume ǫ ≤ 1/ log n, we can set b = 1/ log2 n, and all the prerequisites are fulfilled. Then
the algorithm from Theorem 2.1 runs in 2O(n) time and takes Õ(n/b3) = Õ(n) bits of space. The
output U is a (b, ǫ, φ, γ)-BLD of G with high probability, where φ = Ω(ǫ/ log n) and γ = O(1).
Since a (b, ǫ, φ, γ)-BLD of G is an (ǫ, φ/γ)-ED of G, we have obtained an (ǫ,Ω(ǫ/ log n))-ED of G
with high probability.

The exponential time in the decoding is due to the subtask of finding a balanced sparse cut. As we
show, one can make the decoding time polynomial by resorting to known offline approximation al-
gorithms [SW19, LNPS23]. However, we only have logΩ(1) n-approximations for finding a balanced
sparse cut, and in particular, we do not expect (under NP-hardness and the Unique Games Con-
jecture) there to be a polynomial time O(1)-approximation [CKK+06]. Such super-constant factor
error incurs some loss in the quality of decomposition and space requirement, which, nevertheless,
remains independent of the sparsity.

Theorem 2.2 (Polynomial time decoding BLD). Let G = (V,E) be a graph given in a dynamic
stream, and let b ∈ (0, 1) be a parameter such that b ≤ 1/ log5 n. Then, there is an algorithm
that maintains a linear sketch of G in n/b3 · logO(logn/ log 1

b
) n space. For any ǫ ∈ [n−2, b log n], the

algorithm decodes the sketch to compute, with high probability and in n/b3 · logO(logn/ log 1
b
) n space

and poly(n) time, a (b, ǫ, φ, γ)-BLD of G for

φ = Ω

(
ǫ

log4 n

)
and γ = log

O
(

log n
log 1/b

)

n .

Theorem 2, restated here for convenience, then follows from Theorem 2.2.

Theorem 2 (ED algorithm – polynomial time decoding). Let G = (V,E) be a graph given in
a dynamic stream, and let b ∈ (0, 1) be a parameter such that b ≤ 1/ log5 n. Then, there is an
algorithm that maintains a linear sketch of G in n/b3 · logO(logn/ log 1

b
) n space. For any φ ∈ (0, 1)

such that φ ≤ b/ logC·logn/ log 1
b n for a large enough constant C > 0, the algorithm decodes the sketch

to compute a (φ · logO(logn/ log 1
b
) n, φ)-ED of G with high probability, in n/b3 · logO(logn/ log 1

b
) n space

and poly(n) time.

We remark that setting, say, b = 2−
√
logn in the above result gives a n1+o(1) space algorithm for

computing a (φ · no(1), φ)-ED for any φ ≤ 2−2C log logn
√
logn. For larger values of φ, one can use the

polynomial time algorithm of [FKM23] to still get a n1+o(1) space construction for a (φ·no(1), φ)-ED.

Proof. As in the proof of Theorem 1, we can assume φ ≥ 1/n2. Also, by virtue of C being a large
enough constant and φ ≤ b/ logC·logn/ log 1

b n, one can always define ǫ = φ · logC·logn/ log 1
b n while

ensuring n−2 ≤ ǫ ≤ b log n. Then, we equivalently prove that for any b ∈ (0, 1) with b ≤ 1/ log5 n
there is an algorithm that maintains a linear sketch of G in n/b3 · logO(logn/ log 1

b
) n space, and that

for any ǫ ∈ (0, 1) such that n−2 ≤ ǫ ≤ b log n decodes the sketch to compute, with high probability,
an (ǫ, ǫ/ logO(logn/ log 1

b
) n)-ED of G in n/b3 · logO(logn/ log 1

b
) n space and poly(n) time.

Let then b, ǫ ∈ (0, 1) with b ≤ 1/ log5 n and n−2 ≤ ǫ ≤ b log n. We use the algorithm from
Theorem 2.2 with the same parameters b and ǫ, since every admissible pair of parameters b and ǫ
fulfils the conditions of Theorem 2.2. The space complexity is also the same, and the running time
is poly(n). Again, observe that a (b, ǫ, φ, γ)-BLD of G is an (ǫ, φ/γ)-ED of G. Hence the claim,
since Theorem 2.2 gives

φ

γ
= Ω

(
ǫ

log4 n

)
· 1

log
O
(

logn
log 1/b

)

n

=
ǫ

log
O
(

log n
log 1/b

)

n

.

10

The proofs of Theorem 2.1 and Theorem 2.2 can be found in Section 6.

2.2 Two-level expander decomposition incurs a sparsity dependence

Given a graph G = (V,E) in a stream and parameters ǫ, φ ∈ (0, 1), we consider the problem of
computing a two-level (ǫ, φ)-RED of G. In other words, we study the problem of computing an
(ǫ, φ)-ED U of G and an (ǫ, φ)-ED U ′ of the graph G′ = (V,E \ U), where E \ U denotes the set of
inter-cluster edges of U , i.e. the edges of E that are not entirely contained in a cluster U ∈ U (see
Section 3 and Definition 3.2). We remark that we wish to do so in a single pass over the stream.

A natural algorithmic approach and why it fails. A naive attempt to solve this problem
would be that of sketching the graph twice, for example by using our algorithm from Theorem 1.
One can use the first sketch to construct the first level ED U . After, the hope is that one can send
updates to the second sketch so as to remove the intra-cluster edges and then decode this sketch
into an ED of G′ = (V,E \U) using again Theorem 1. However, this hope is readily dashed. Indeed,
sketching algorithms break down if we send a removal update for an edge that was not there in the
first place, and we do not have knowledge of which of the pairs

(U
2

)
are in E and which are not.

Our contribution: space lower bound. We show that, in sharp contrast to our algorithm
for constructing a one-level expander decomposition, this problem requires Ω̃(n/φ) space, i.e. a
dependence on 1/φ is unavoidable. Formally, we obtain the following result.

Theorem 3 (RED lower bound). Let ℓ ≥ 2 and let ǫ, φ ∈ (0, 1) such that ǫ = 1 − Ω(1), φ ≤ ǫ,
and φ ≥ C · max{ǫ2, 1/n} for a large enough constant C > 0. Any streaming algorithm that with
probability at least 9/10 computes an ℓ-level (ǫ, φ)-RED requires Ω(n/ǫ) bits of space.

The above theorem gives an Ω̃(n/φ) space lower bound for algorithms that compute a RED with
near-optimal parameters, i.e. algorithms that achieve ǫ = Õ(φ) for any 1/n≪ φ≪ 1/ log n.

Setup and hard instances. Throughout this section, the symbols ≪ and ≫ mean smaller or
larger by a large constant factor. Let us fix the RED parameters ǫ, φ ∈ (0, 1), and let us restrain
ourselves to the regime φ ≫ ǫ2 (and of course φ ≪ ǫ). We prove the lower bound by giving a
distribution over hard instances G = (V,E). This distribution is parametrised by integers d and m
such that 1 ≪ d ≪ m ≪ n, m ≫ 1/φ, m ≪ 1/ǫ2, and d ≪ 1

ǫ . With these parameters fixed, our
hard distribution G is defined below in Definition 2.3. An illustration is given in Figure 1.

Definition 2.3 (Distributions G and G′ – Informal, see Definition 7.2). We partition V arbitrarily
into two sets S and T with n/2 vertices each, and further partition S into n/m sets S1, . . . , Sn/m
with m/2 vertices each. The edge set of the graph G = (V,E) ∼ G is defined as follows.

1. For each i ∈ [n/m], the induced subgraph G[Si] is an Erdős-Rényi random graph with m/2
vertices and degree ≈ d. We denote by G′ the distribution of the subgraph G[S].

2. The induced subgraph G[T] is a fixed d-regular Ω(1)-expander.

3. We fix for convenience an arbitrary labelling si,1, . . . , si,m/2 of the vertices in each Si, and we
sample an index K uniformly from [m/2]. Then, for every i ∈ [n/m], we add dm/2 edges
from si,K to T so that each t ∈ T has d incident edges connecting to S.

11

Roughly speaking, our hard instances should be composed of n/m regular expanders that are
densely connected to T , which is also an expander, through a selection of “special” vertices. We
will show that the hardness arises from recovering information about certain important vertices
and edges, defined below and also illustrated in Figure 1.

S1

Sn/m

T is an expander

s1,K

sn/m,K

Si

si,K

degree from vertices in T to the LHS is ddegree from si,K to the RHS is dm/2

. . .
. . .

Figure 1: Illustration of the graph we use for proving the lower bound. Thick bullets represent
important vertices, thick lines represent important edges, dotted lines represent edges connecting
the important vertices to T .

Definition 2.4 (Important vertices and edges – Informal, see Definition 7.3). Let G = (V,E) ∼ G.
We define the set of important vertices V ∗ = {si,K : i ∈ [n/m]} to be the set of vertices of S that
are connected to T , and define the set of important edges E∗ = {{si,K , v} : i ∈ [n/m], v ∈ S} to be
the set of edges in the induced subgraph G[S] that are incident on V ∗.

The lower bound proof has two steps: we first prove that a two-level RED leaks a non-trivial
amount of information about the graph G ∼ G; then we prove that, in order to obtain such amount
of information, the algorithm must use a lot of space.

Two-level expander decomposition of the hard instance

In this section, we show that any valid two-level RED reveals a lot of informations about the
important edges. The following lemma shows that a non-trivial amount of important edges are
inter-cluster edges in the first level decomposition. An ideal decomposition is illustrated in Figure 2.

Lemma 2.5 (Informal, see Lemma 7.4). Let G = (V,E) ∈ supp(G). Then, any (ǫ, φ)-ED U of G
satisfies

|E∗ \ U| ≥ 4

5
· |E∗| .

Proof sketch. By definition of the graph, there are Θ(dn) edges in the graph. Since there is at most
an ǫ fraction of crossing edges, there are only O(ǫdn) crossing edges. Note that there are Θ(dn)

12

edges in G[T], so only an O(ǫ) fraction of the edges in G[T] are crossing edges. Furthermore, G[T] is
a regular expander: this implies that there is a large cluster U∗ ∈ U comprising a 1−O(ǫ) fraction
of T , together with a 1 − O(ǫ) fraction of important vertices. The latter is true since the edges
between S and T make up a constant fraction of the total volume and only a small fraction of the
edges can be crossing. We refer the reader to Claim 7.5 for more details.

The edges in the subgraphG[S] also account for a constant fraction of the total volume. Together
with the fact that each Si induces a regular expander, for many of the Si’s we will have a cluster
in U that contains most of Si. Now consider a set Si such that the important vertex of Si is in U

∗

and most of the vertices in Si are all in the same cluster. If most of the vertices in Si are also
inside U∗, then consider the cut from (U∗∩Si)\{si,K} to (U∗ \Si)∪{si,K}. The cut size is at most
the number of important edges in Si, which is O(d). On the other hand, the volume of the cut is
Θ(dm) since most of the vertices of Si are in the cluster. Recalling that m ≫ 1

φ , one concludes
that the cut is sparse. Therefore, we ruled out the possibility of having many vertices of Si in U

∗.
See Claim 7.6 for a detailed discussion.

In summary, as illustrated in Figure 2, in any valid expander decomposition, most of the vertices
in T and most of the important vertices are inside a giant cluster U∗, and for most of the Si’s,
there is a cluster other than U∗ that contains most of the vertices in Si. For any such Si, most of
the important edges inside it are then crossing edges.

The second level expander decomposition, i.e. an expander decomposition of the inter-cluster edges
from the first level, is also quite structured, as illustrated in the ideal RED of Figure 2.

Lemma 2.6 (Informal, see Claim 7.14). Let G = (V,E) ∈ supp(G), and let U1,U2 be any 2-level
(ǫ, φ)-RED of G. Then, there are at most n/10 vertices in S that are non-isolated vertices3 in U2.
Moreover, at least a 2/3 fraction of important edges are not in E \ U2, i.e. a 2/3 fraction of
important edges are inside clusters of U2.

Proof sketch. The number of crossing edges in the first level decomposition is O(ǫdn), which is
much less than n since d ≪ 1

ǫ . This means that most of the vertices are isolated vertices in the
second level. Moreover, by Lemma 2.5, most of the important edges are crossing edges in the first
level decomposition. Among these Θ(dn/m) edges, at most O(ǫ2dn) edges can be crossing edges in
the second level decomposition. Recalling that m ≪ 1

ǫ2
, we see that most of the important edges

are not crossing edges in the second level decomposition.

Lower bound via communication complexity

Our streaming lower bound will be proven in the two-player one-way communication model. In
this setting, Alice gets the edges in G[S] and G[T], and Bob gets the edges between S and T . We
prove that in order to give a two-level RED, Alice needs to send Ω(dn) bits of information to Bob.

The high level idea is the following. Note that the identity of the important vertices can be
only revealed by edges given to Bob. Thus, given Alice’s input, every vertex in S has the same
probability to be an important vertex, which means that every edge in S has the same probability
to be an important edge. Therefore, in order to make sure that Bob recovers most of the important
edges (which is morally equivalent to computing a two-level RED, as suggested by Figure 2), Alice
needs to send most of the edges in S to Bob, which is Ω(dn).

3We call a vertex v non-isolated in a decomposition U if U puts v in a cluster with other vertices, i.e. v does not
constitute a singleton cluster in U .

13

First level ED Second level ED

U
∗

.
.
.

.
.
.

.
.
.

.
.
.

Figure 2: Illustration of the ideal expander decomposition of the graph. Thick bullets represent
important vertices, smaller bullets represent ordinary vertices, thick lines represent important edges,
dotted lines represent the rest of the edges. Grey areas represent the clusters in the decomposition.

To make the above idea concrete, we consider a communication problem where Alice is given a
graph, and Bob is asked to output a not too large set of pairs that contains a good fraction of the
edges of Alice’s input. We first reduce this new problem to the two-level RED problem. Then, we
will prove a communication complexity lower bound for this problem.

Definition 2.7 (Informal, see Definition 7.8). In the communication problem recover, Alice’s
input is a graph G′ = (S,E′) where |S| = n/2, and Bob’s output is a set of pairs of vertices
F ⊆

(S
2

)
that must satisfy |F | ≤ nm/10 and |F ∩ E′| ≥ Ω(|E′|), i.e. at least a constant fraction

of the edges in G′ are in F .

Now, the idea is to plant Alice’s input for recover into our instance from Definition 2.3. The input
distribution for recover is sampled from the distribution G′. In other words, the distribution of
Alice’s input is the same as the left-hand side part of G ∼ G (i.e. the subgraph G[S]). Then, in the
reduction, Alice gets the edges of G[S] and G[T] while Bob gets the edges between S and T . By
virtue of the discussion in the previous section, we expect a RED of G to allow Bob to recover many
important edges in G[S]. Hence, Bob could simulate the RED algorithm for all the m/2 possible
choices of the random index K ∼ [m/2] that defines the important edges (see Definition 2.3): in
this way, the k-th RED should reveal information about Alice’s edges that are incident on the
vertices {si,k}i. Therefore, by varying k over [m/2], Bob should obtain information about all the
edges in Alice’s graph. More precisely, the reduction is the following.

Reduction (Informal, see Reduction 7.11). Let A be a deterministic streaming algorithm for com-
puting a 2-level (ǫ, φ)-RED. Alice, given her input graph G′ = (S,E′) generated by G′, feeds her
edges E′ to A, together with the fixed edges of G[T]. Then, she sends the memory state of A to Bob.
Upon receiving the message, Bob makes m/2 copies of A and initialises them to the memory state
he received from Alice. Call these copies A1, . . . ,Am/2. Next, for each k ∈ [m/2], call Gk = (V,Ek)
the graph we obtain from G when K = k and the left-hand side Gk[S] is exactly Alice’s input G′

(so that the vertices {si,k}i are the important vertices in Gk, see Definition 7.2). Then, Bob feeds

14

the edges Ek(S, T) to Ak. Let then Uk
1 ,Uk

2 be the RED output by Ak. Bob finally constructs his
output set F as follows: for each k ∈ [m/2], add the pair {s, si,k} to F for every i ∈ [n/m] and
every s ∈ Si that is not an isolated vertex in Uk

2 .

By Lemma 2.6, the number of non-isolated vertices in the second-level decomposition is at most
n/10. Hence, the total number of pairs added to F is at most nm/10, thus satisfying the first
requirement of Definition 2.7. Moreover, by Lemma 2.6, at least a 2/3 fraction of the important
edges are not crossing edges in the second level. This means that for each k, at least a 2/3 fraction
of the edges that are incident on si,k is added to F . In turn, this implies that F contains at least a
constant fraction of the edges in E′, thus satisfying the second requirement of Definition 2.7. More
precisely, one can prove the following.

Lemma 2.8 (Informal, see Lemma 7.15). If there is a deterministic L-bit space streaming algorithm
A that computes a 2-level (ǫ, φ)-RED with constant probability over inputs G ∼ G, then there is a
deterministic protocol R that solves recover with constant probability over inputs G′ ∼ G′. The
communication complexity of R is at most L.

The final component of the proof is the communication complexity lower bound for recover.

Lemma 2.9 (Informal, see Lemma 7.19). The one-way communication complexity of solving
recover with constant probability over inputs sampled from G′ is Ω(dn).

Proof sketch. Roughly speaking , we show that the posterior distribution of the input conditioned
on the output is shifted away from its prior distribution.

Recall that when the input G′ = (S,E′) is sampled from G′, the graph is a disjoint union of
n/m random graphs with m/2 vertices each and degree ≈ d. There are roughly

((
m/2

d

)m/2
)n/m

≈
(m
2d

)dn/2

possible inputs in total and the information complexity is Ω(dn). Conditioning on the the output F
of a correct protocol for recover, the number of possible inputs is greatly decreased. In particular,
to determine the input E′, we need to select a constant fraction, say 2/3 for example, of the pairs
from F , and select the rest of the edges (a 1/3 fraction, in our example) arbitrarily. Since |F | is at
most nm/10, |E′| = Θ(dn), and

(S
2

)
≈ nm/2, the total number of possible inputs is then roughly

(
nm/10

2/3 · dn

)
·
(
nm/2

1/3 · dn

)
≈
(
3m

20d

)1/3·dn
·
(
3m

2d

)1/6·dn
<
(m
3d

)dn/2
.

This means the information complexity of the input is decreased by a constant factor, which means
that the protocol needs to communicate Ω(dn) bits of information.

Finally, one can conclude the main result (Theorem 3) combining Lemma 2.8 and Lemma 2.9. The
formal proofs and definitions are deferred to Section 7.

3 Preliminaries

In this section, we introduce definitions and notation that we will use in the remainder of the paper.

15

Boundary-linked expander decomposition. In this paper we work heavily with boundary-
linked EDs [GRST21]. A boundary-linked ED is the same as a classical ED except that Property (2)
of Definition 1.1 is strengthened.

For a cut S in a cluster U , the boundary bndU (S) of S with respect to U is the number of
edges that go from S to the outside of U , i.e. bndU (S) = |E(S, V \ U)|. For U ⊆ V and τ ≥ 0,
the τ -boundary linked subgraph of G on U , denoted by G[U]τ , is the subgraph of G induced by U
with additional τ · bndU ({u}) self-loops attached to every u ∈ U . For cuts S ⊆ U , we adopt the
following shorthand notation:

• the volume volG[U]τ (S) is denoted by volτU (S);

• the sparsity ΦG[U]τ (S) in G[U]τ is denoted by Φτ
U(S), which is equal to

Φτ
U(S) =

∂US

min{volτU (S), volτU (U \ S)}
.

Let φ ∈ (0, 1), b ∈ [φ, 1) be some parameters. Most of the time in this paper, the value of τ for
all instances of boundary linked subgraphs will be the same and equal to the ratio b/φ. Hence
we adopt additional shorthand notation: we use G[U]◦, vol◦U (S), Φ◦

U (S), Φ◦
U for referring to

G[U]b/φ, vol
b/φ
U (S), Φ

b/φ
U (S), Φ

b/φ
U respectively. One can observe that

vol◦U (S) = vol
b/φ
U (S) = vol(S) +

(
b

φ
− 1

)
bndU (S) .

Then a boundary-linked ED can be defined as follows.

Definition 3.1 (Boundary-linked expander decomposition [GRST21]). Let G = (V,E), let b, ǫ, φ ∈
(0, 1) be parameters such that b ≥ φ, and let γ ≥ 1 be an error parameter. A partition U of V is a
(b, ǫ, φ, γ)-boundary-linked expander decomposition (for short, (b, ǫ, φ, γ)-BLD) of G if

1. 1
2

∑
U∈U ∂U ≤ ǫ|E|, and

2. for every U ∈ U , G[U]◦ is a φ/γ-expander.

Expander decomposition sequence. For a partition U of V (think of U as an ED of G), we
denote by E \ U the set of inter-cluster (or crossing) edges with respect to U , i.e.

E \ U = E \
⋃

U∈U

(
U

2

)
,

Analogously, we let G\U = (V,E \U) be the subgraph of G obtained by removing the intra-cluster
edges in U . For a sequence of partitions U1, . . . ,Uℓ of V and i ∈ [ℓ], we define GR

1 = G and denote
by GR

i+1 = GR
i \ Ui the subgraph of G obtained by removing the intra-cluster edges of the first i

partitions.

Definition 3.2 (Removal-based ED sequence). Let G = (V,E), let ǫ, φ ∈ (0, 1), let ℓ ≥ 1, and
let U1, . . . ,Uℓ be a sequence of partitions of V . The sequence U1, . . . ,Uℓ is an ℓ-level removal-based
(ǫ, φ)-ED sequence (for short, ℓ-level (ǫ, φ)-RED or (ǫ, φ, ℓ)-RED) of G if, for all i ∈ [ℓ], Ui is an
(ǫ, φ)-ED of the graph GR

i .

16

Sparsifier-specific notation. Since our algorithms will be working on sparsifiers of the input
graph, it is convenient to have short-hand notation for the above quantities in the sparsifier. For
a weighted subgraph H = (V,E′, w) of G, a cluster U ⊆ V and a cut S ⊆ U , we have “sparsified”
counterparts ∂wS, volw(S), ∂wUS,bnd

w
U (S) for ∂S, vol(S), ∂US,bndU (S). More precisely, ∂wS =

w(S, V \S), ∂wUS = w(S,U \S), bndwU(S) = w(S, V \U), and volw(S) is the sum of weighted degrees
of vertices of S in H. Then, H[U]◦ denotes the subgraph of H induced by U (retaining edge weights
from w), where every vertex is attached b/φ · bndwU({x}) self-loops. We then also introduce notation
for the “sparsified” version of vol◦U (S) and Φ◦

U (S): we denote volH[U]b/φ(S) and ΦH[U]b/φ(S) by
vol◦wU (S) and Φ◦w

U (S) respectively. For clarity, we note that vol◦wU (S) = volw(S) + b−φ
φ bndwU (S),

reflecting the fact that vol◦U (S) = vol(S) + b−φ
φ bndU (S).

4 Sparsification for vertex-induced subgraphs

In order to give a space efficient implementation of Algorithm 1, we will take a subroutine computing
an approximate most-balanced sparse cut of a graph, and run it as a black box on a vertex-induced
subgraph of a sparsifier. From such sparsifier, we demand that the local cuts are approximated
to within an additive error proportional the corresponding global cut. Formally, we rely on the
following cut preserving property for vertex-induced subgraphs.

Definition 4.1 (Cluster sparsifier). Let G = (V,E), let δ ∈ (0, 1), let U ⊆ V be a cluster, and let
H = (V,E′, w) be a weighted subgraph of G on the vertex set V . Then, H is a cluster sparsifier for
U in G with error δ, denoted by H[U] ≈δ G[U], if one has

∀S ⊆ U, ∂US − δ · ∂S ≤ ∂wUS ≤ ∂US + δ · ∂S and ∀S ⊆ V, (1− δ) · ∂S ≤ ∂wS ≤ (1 + δ) · ∂S .

In Definition 4.1, the second property is the same as the first one when U = V . Therefore, if one is
able to sample a sparsifier where the first property holds with high probability for any cluster U ⊆ V ,
then we get a sparsifier that with high probability embodies Definition 4.1. Perhaps surprisingly,
we show that classical constructions of cut sparsifiers give the first property of Definition 4.1.
Specifically, we use the approach of Fung et al. [FHHP11], based on sampling edges with probability
proportional to their edge connectivity, together with its dynamic stream implementation by Ahn,
Guha, and McGregor [AGM12b]. Hence, we obtain the following sparsification lemma.

Lemma 4.2 (Cluster sparsifiers in dynamic streams). Let G = (V,E) be an n-vertex graph and
let δ ∈ (0, 1). Then, there is a distribution Dδ such that, for any cluster U ⊆ V and a sample
H = (V,E′, w) ∼ Dδ one has H[U] ≈δ G[U] with high probability, and |E′| = Õ(n/δ2) edges.
When G is given in a dynamic stream, there is an algorithm that maintains a linear sketch of G in
Õ(n/δ2) space and decodes it to output a weighted subgraph H = (V,E′, w) in Õ(n/δ2) space and
poly(n) time such that H ∼ Dδ.

The distribution Dδ we use is a cosmetic modification of the algorithm of Ahn, Guha, and Mc-
Gregor [AGM12b], hereafter referred to as the AGM algorithm. It provides a dynamic stream
implementation of the sampling scheme of Fung et al. [FHHP11] for constructing cut sparsifiers.
Even though we deviate only slightly from the original analysis of Ahn, Guha, and McGregor and
Fung et al., we give a complete proof for the sake completeness. In Section 4.1, we give a few
preliminaries on sparsification and dynamic streams that are needed to present and discuss the al-
gorithm. In Section 4.2, we outline the algorithm and prove the technical lemmas that characterise
its correctness. In Section 4.3, we use standard cut counting arguments to combine such technical
lemmas into proving Lemma 4.2.

17

4.1 Sparsification primer

We give a few preliminaries needed to present the AGM algorithm. We start with the following
result: for a graph given in a dynamic stream, we can output a subgraph that preserves the
distinction between k-edge connected and not k-edge connected cuts.

Theorem 4.3 (Connectivity witness [AGM12a]). Let G = (V,E) be a graph given in a dynamic
stream, and let k ≥ 1 be an integer parameter. Then there is an algorithm ConnWit(k) that
maintains a linear sketch of G in Õ(kn) space. With high probability, the algorithm decodes the
sketch to output a subgraph G′ = (V,E′) in Õ(kn) space and poly(n) time such that:

1. for all ∅ 6= S (V , if |E(S, V \ S)| < k then E(S, V \ S) ⊆ E′;

2. for all ∅ 6= S (V , if |E(S, V \ S)| ≥ k then |E(S, V \ S) ∩ E′| ≥ k;

3. |E′| = O(kn).

Proof. The algorithm works by maintaining k independent linear sketches for dynamic spanning
forest [AGM12a], each taking Õ(n) space to maintain and Õ(n) space and poly(n) time to decode.
We use the first sketch to recover a spanning forest of G. Then, we feed edge removals for every
edge in the spanning forest to the second to k-th sketch. We proceed in this fashion until we have
recovered k edge-disjoint maximal spanning forest F1, . . . , Fk ⊆ E of G. Then we let E′ be the
union of these spanning forests. This takes k · Õ(n) space and one has |E′| = O(kn).

Now consider a cut ∅ 6= S (V . Clearly E′(S, V \S) ⊆ E(S, V \S). Now supposeE(S, V \S) < k.
For the sake of a contradiction, let us say E(S, V \ S) \ E′ 6= ∅. By disjointness of the Fi’s, there
must be a j ∈ [k] such that the residual graph G \ (∪j−1

i=1Fi) still contains an edge from E(S, V \S).
Hence, there are two components of the spanning forest Fj which could be joint by this edge, which
contradicts its maximality.

Consider the case of E(S, V \S) ≥ k, and suppose for the sake of a contradiction that E′(S, V \
S) < k. By disjointness of the Fi’s there must be a forest Fj such that Fj ∩ E(S, V \ S) = ∅ (as
otherwise E′(S, V \ S) ≥ k). As before, this contradicts the maximality of Fj .

Hereafter let C > 0 be a large enough constant, and define for every e = {u, v} ∈
(V
2

)
the ideal

sampling probabilities

pe = min

{
1,

1

λe
· C log3 n

δ2

}
,

where λe is the edge connectivity of e, i.e. the minimum number of edges crossing a uv-cut in G.
The original AGM algorithm estimates edge connectivities (and hence sampling probabilities) via
the sparsifier that is being constructed, in some sense. Here, we simplify the analysis and instead
use a separate sparsifier for that purpose. For instance, one can use a spectral sparsifier, defined
as follows.

Definition 4.4 (Spectral sparsifier). Let G = (V,E) and let ξ ∈ (0, 1). A (1± ξ)-spectral sparsifier
of G is a weighted subgraph G̃ = (V, Ẽ, w̃) such that

∀x ∈ RV , (1− ξ)x⊤Lx ≤ x⊤L̃x ≤ (1 + ξ)x⊤Lx ,

where L and L̃ are the Laplacian matrices of G and G̃, respectively. The Laplacian matrix of a
graph is L = D − A, where D denotes the degree diagonal matrix of the graph and A denotes its
(weighted) adjacency matrix

It is known how to construct such sparsifiers in dynamic streams.

18

Theorem 4.5 ([KMM+20]). Let G = (V,E) be a graph given in a dynamic stream, and let ξ ∈
(0, 1). Then, there is an algorithm Spectral(ξ) that maintains a linear sketch of G in Õ(n/ξ2)
space. With high probability, the algorithm decodes the sketch to output in Õ(n/ǫ2) time and space
a weighted subgraph G̃ = (V, Ẽ, w̃) with |Ẽ| = Õ(n/ǫ2) that is a (1± ξ)-spectral sparsifier of G.

4.2 Sampling algorithm for dynamic streams

With all the preliminaries in place, we can describe (our version of) the AGM algorithm. The
high level approach consists in sampling edges at geometric rates as they arrive in the stream, and
then use the i-th connectivity witness to recover the edges e that are sampled at rate pe ≈ 2i.
Algorithm 2 outlines this process, where we denote by λ̃e the edge connectivity of e ∈

(
V
2

)
in G̃. As

one can see from the description of the algorithm, we actually let w be a function E → R≥0 where
w(e) = 0 for all e ∈ E \ E′. This facilitates the discussion.

Algorithm 2 agm: sparsifier construction in dynamic streams

1: ⊲ δ ∈ (0, 1) is the error parameter
2: ⊲ C > 0 is a large enough constant
3: ⊲ k = 16C · δ−2 · log3 n

4: procedure PreProcessing
5: Spectral← instance of Spectral(1/2) from Theorem 4.5
6: for i = 1, . . . , 2 log n do

7: hi ∼ UNIF
(
{0, 1}(V2)

)
⊲ sample 2 log n independent uniform hash functions

8: ConnWiti(k)← i-th independent instance of ConnWit(k) from Theorem 4.3

9: procedure OnUpdate(e) ⊲ e ∈
(V
2

)

10: feed the update for e to Spectral
11: for i = 0, . . . , 2 log n do

12: if
∏i

j=1 hj(e) = 1 then

13: feed the update for e to ConnWiti(k)

14: procedure PostProcessing
15: G̃ = (V, Ẽ, w̃)← result of Spectral
16: for i = 0, . . . , 2 log n do

17: Gi = (V,Ei)← (V, {e ∈ E :
∏i

j=1 hj(e) = 1}) ⊲ used for convenience of analysis only
18: G′

i = (V,E′
i)← result of ConnWiti(k) ⊲ used by the algorithm

19: for e ∈
(V
2

)
do

20: p̃e ← min
{
1, 2

λ̃e
· C log3 n

δ2

}

21: je ←
⌊
log 1

min{1,p̃e}

⌋
.

22: if e ∈ E′
je

then

23: w(e)← 2je

24: else

25: w(e)← 0
26: E′ ← supp(w)
27: return H = (V,E′, w).

19

We remark that Algorithm 2 assumes access to poly(n) bits of randomness. It is known that
one can lift this assumption by using Nisan’s pseudorandom generator [Nis92, Ind06] with only a
polylog(n) space blow-up factor (and a poly(n) time blow-up). We remark that we can do this
because the random bits are only used during the stream processing, and we only compute linear
sketches in this phase, which in particular are oblivious to the order of updates in the stream.
Then we can already conclude a bound on the space complexity, as well as on the size of the output
graph.

Lemma 4.6. Algorithm 2 takes Õ(n/δ2) bits of space and H has at most Õ(n/δ2) edges.

Proof. The edges of H can only come from the output of one of the instances ConnWit. In other
words, E′ ⊆ ∪iE′

i. From Theorem 4.3 we also know that each instance of ConnWit takes Õ(kn)

bits of space and that each E′
i contains at most Õ(kn) edges. Hence, |E′| = Õ(kn) = Õ(n/δ2) and

Algorithm 2 takes Õ(kn) = Õ(n/δ2) bits of space.

We continue our analysis by bounding the probability that a certain bad event happens, which
corresponds to the sampling or sketching primitives failing to preserve a needed value. To be more
specific about this, first define for every i = 0, . . . , 2 log n the event Bi that instance i of Theorem 4.3
ConnWiti(k) fails to correctly construct the graph G′

i. In addition, for every e ∈
(V
2

)
, let B(1)e be

the event that λ̃e < 1/2 · λe or λ̃e > 3/2 · λe. Finally, define for every e ∈ E the quantity

τe =

⌊
log

1

min{1, pe}

⌋
,

and let B(2)e be the event that there exists j ∈ N with τe−2 ≤ j ≤ τe such that λe(Gj) ≥ k, where k
is defined in Algorithm 2 and λe(Gi) is the edge connectivity of e in Gi for i = 0, . . . , 2 log n. With
this notation, the bad event we want to avert is

B =
(
∨2 logni=0 Bi

)
∨
(
∨
e∈(V2)

B(1)e

)
∨
(
∨e∈E B(2)e

)
.

Intuitively, this is a bad event because the algorithm cannot trust the connectivity witnesses nor
the edge connectivities computed via the spectral sparsifiers. On the contrary, when B does not
happen, we know that all the graphs G′

i are constructed correctly (thanks to ¬Bi), all the edges
have je that is not too large (thanks to ¬B(1)e), and we can recover the sampled edges via the
graphs G′

i (thanks to ¬B
(2)
e).

Lemma 4.7. When running Algorithm 2, the bad event B does not happen with high probability.

Proof. By Theorem 4.5, we know that ∨eB(1)e does not happen with high probability for any
e ∈

(V
2

)
. Now let i = 0, . . . , 2 log n, and note that the randomness used to define the input Gi

to ConnWiti(k) and the randomness used by ConnWiti(k) itself are independent. Hence, by
Theorem 4.3 and by union bound over i, we get that ∨iBi does not happen with high probability.

Lastly, we deal with the events B(2)e .
For ease of notation, define for any ∅ 6= S ⊆ V the size of its cut projected onto the edges of Gi

as ∂iS = |Ei ∩E(S, V \ S)|. Then consider any e = {s, t} ∈ E and any j ∈ N with τe − 2 ≤ j ≤ τe,
and let Se ⊆ V be an st-cut in G of minimum size, i.e. λe = ∂Se. Observe that by the way the
algorithm defines the sub-streams, each f ∈ E is in Ei with probability 2−i for all i = 0, . . . , 2 log n,
so in expectation the edge connectivity of e has dropped below 4C · δ−2 · log3 n in the graph Gj .

20

More precisely,

E[∂jSe] = ∂Se · 2−j ≤ 4 · ∂Se · 2−τe

≤ 8λe min{1, pe}
≤ 8λepe

≤ 8λe
C · δ−2 · log n

λe
= 8C · δ−2 · log3 n .

Applying the Chernoff bound (since edges are sampled independently of each other) we get that

Pr
[
∂jSe > 12C · δ−2 · log3 n

]
≤ Pr

[
∂jSe >

(
1 +

1

2

)
E[∂jSe]

]

≤ exp

(
−E[∂jSe]

12

)

≤ exp

(
−E[∂τeSe]

12

)
.

In order to make sure that the exponential above is in fact small enough, we now have two cases to
consider. First consider the possibility that τe = 0, or equivalently pe >

1
2 . This means two things:

Eτe = E (see Algorithm 2), and λe < 2C · δ−2 · log3 n. Then, ∂τeSe = λe ≤ 12C · δ−2 · log3 n with
probability 1, so we need not worry about this case. For the other possibility that pe ≤ 1

2 , one can
deduce that pe = C · λ−1

e δ−2 · log3 n and thus lower bound the expectation of ∂τeSe as

E[∂τeSe] = ∂Se · 2−τe ≥ λepe = C · δ−2 · log3 n ,

Hence, the Chernoff bound above gives ∂τeSe ≤ 12C · δ−2 · log3 n < k with high probability. Thus,

the edge connectivity of e in Gj must be at most ∂jSe < k. Taking a union bound gives that ∨eB(2)e

does not happen with high probability.

Finally, we show properties of the weight function produced by the algorithm. We first focus on the
special case of edges with very low connectivity, i.e. with pe = 1, and show that these are indeed
copied exactly in E′, as one would expect.

Lemma 4.8. Let H = (V,E′, w) be the output of Algorithm 2. If B does not happen, then for any
edge e ∈ E with pe = 1 we have e ∈ E′ and w(e) = 1 .

Proof. Assume B does not happen. This in particular means that G′
0 is correctly constructed, so

by Theorem 4.3 any cut of size less than 16C · δ−2 · log3 is exactly preserved in G′
0. On the other

hand, if an edge e ∈ E has pe = 1 then its edge connectivity λe is at most C · δ−2 · log3 n. Since
λ̃e ≤ 2λe, it then follows that p̃e = 1, so je = 0 and hence the claim.

For edges which we do not know to have pe = 1, but for which we at least know a lower bound p on
their sampling probability, we wish to show that they are preserved with “very high” probability.
We do this by using a Chernoff-style bound of Ahn, Guha, and McGregor.

Lemma 4.9. Let H = (V,E′, w) be the output of Algorithm 2. Then for any edge set X ⊆ E, any
p ≤ mine∈X pe, and any x ≥ |X| one has

Pr

[
¬B and

∣∣∣∣∣
∑

e∈X
w(e) − |X|

∣∣∣∣∣ > δ · x
]
≤ 2 exp

(
− 1

48
· δ2 · px

)
.

21

Proof. For ease of notation, let λ̃ be the vector of edge connectivities (λ̃e)e∈E from Algorithm 2,
and λ is the vector of edge connectivities (λe)e∈E of G. We will condition on the values λ̂ that λ̃
can take, and define

p̂e = min

{
1,

2

λ̂e
· C log3 n

δ2

}
and ĵe =

⌊
log

1

min{1, p̂e}

⌋
.

Then,

Pr

[
¬B and

∣∣∣∣∣
∑

e∈X
w(e) − |X|

∣∣∣∣∣ > δ · x
]

=
∑

λ̂∈NE

Pr

[
¬B and

∣∣∣∣∣
∑

e∈X
w(e) − |X|

∣∣∣∣∣ > δ · x and λ̃ = λ̂

]

=
∑

λ̂∈NE : 1
2
λ≤λ̂≤ 3

2
λ

Pr

[
¬B and

∣∣∣∣∣
∑

e∈X
w(e) − |X|

∣∣∣∣∣ > δ · x and λ̃ = λ̂

]
.

By conditioning we get

Pr

[
¬B and

∣∣∣∣∣
∑

e∈X
w(e) − |X|

∣∣∣∣∣ > δ · x
]

=
∑

λ̂∈NE : 1
2
λ≤λ̂≤ 3

2
λ

Pr

[
¬B and

∣∣∣∣∣
∑

e∈X
w(e) − |X|

∣∣∣∣∣ > δ · x
∣∣∣∣∣λ̃ = λ̂

]
· Pr

[
λ̃ = λ̂

]

We now analyse the first factor in each term of the sum above. We use three facts to do this: (1)
whenever we have ¬B, for all e ∈ X one has that e ∈ E′

je if and only if e ∈ Eje (this is the case
because 1

2λ ≤ λ̃ ≤ 3
2λ, so max{0, τe − 2} ≤ je ≤ τe, and the event B(2)e does not happen); (2) recall

that, for i = 0, . . . , 2 log n, e ∈ Ei if and only if
∏i

t=1 ht(e) = 1 (see Algorithm 2); (3) also recall
that Algorithm 2 assigns weight 2je to an edge recovered from E′

je (see Algorithm 2). Using these
three facts, we get

Pr

[
¬B and

∣∣∣∣∣
∑

e∈X
w(e) − |X|

∣∣∣∣∣ > δ · x
∣∣∣∣∣λ̃ = λ̂

]
= Pr

[
¬B and

∣∣∣∣∣
∑

e∈X
2je

je∏

t=1

ht(e) − |X|
∣∣∣∣∣ > δ · x

∣∣∣∣∣λ̃ = λ̂

]
.

Next, by the condition λ̃ = λ̂, we have ĵe = je for all e ∈ X, so we get

Pr

[
¬B and

∣∣∣∣∣
∑

e∈X
w(e) − |X|

∣∣∣∣∣ > δ · x
∣∣∣∣∣λ̃ = λ̂

]
= Pr

¬B and

∣∣∣∣∣∣

∑

e∈X
2ĵe

ĵe∏

t=1

ht(e)− |X|

∣∣∣∣∣∣
> δ · x

∣∣∣∣∣∣
λ̃ = λ̂

≤ Pr

∣∣∣∣∣∣

∑

e∈X
2ĵe

ĵe∏

t=1

ht(e)− |X|

∣∣∣∣∣∣
> δ · x

∣∣∣∣∣∣
λ̃ = λ̂

= Pr

∣∣∣∣∣∣

∑

e∈X
2ĵe

ĵe∏

t=1

ht(e)− |X|

∣∣∣∣∣∣
> δ · x

 .

Now we apply the following form of the Chernoff bound.

22

Fact 4.10 ([FKM23]). Let X1, . . . ,XN be independent random variables distributed in [0, a]. Let
X =

∑
r∈[N]Xr and µ = E[X]. Then, for ζ ∈ (0, 1) and α ≥ 0 one has

Pr [|X − µ| > ζµ+ α] ≤ 2 exp

(
−ζα
3a

)

Before applying this bound, we note that the random variables 2ĵe
∏ĵe

t=1 ht(e) are independent
across e ∈ X and have each mean 1. Moreover, each of this random variables have value at most
2ĵe ≤ 2

⌊log 1
min{1,p}

⌋
, so we set a = 1/p. We also set ζ = δ/2 and α = δ · (x − |X|) + δ|X|/2. Then

we get

Pr

∣∣∣∣∣∣

∑

e∈X
2ĵe

ĵe∏

t=1

ht(e) − |X|

∣∣∣∣∣∣
> δ · x

 ≤ 2 exp

(
− δ

2

48
px

)
.

This concludes the proof.

4.3 Cut counting and proving the sparsification lemma

We hereafter fix a cluster U ⊆ V , and we partition the edge set E into Fi = {e ∈ E : 2i ≤ λe ≤
2i+1 − 1 } for i = 0, . . . , log n. Note that these Fi’s are pairwise disjoint and their union gives E.
We recall that E(A,B) denotes the set of edges in E with one endpoint in A and one in B, for
A,B ⊆ V . Then, we write ∂iUS = |Fi ∩ E(S,U \ S)| to denote the size of the projection of the
local cut of S onto the edge set Fi, for all i = 0, . . . , log n and ∅ 6= S (U . Analogously, we also
write ∂i wU S = w(Fi ∩E(S,U \ S)) to denote the total weight of the projection of the local cut of S
onto Fi, where w is the weight function of H.

We show that H preserves the cuts of a cluster U ⊆ V within each Fi individually, with high
probability. This follows by two of the technical lemmas we proved in the previous section, namely
Lemma 4.8 and Lemma 4.9.

Lemma 4.11. Let H = (V,E′, w) be the output of Algorithm 2, and let i = 0, . . . , log n. Then

Pr

[
¬B and ∃ ∅ 6= S (U :

∣∣∂i wU S − ∂iUS
∣∣ > δ · ∂S

1 + log n

]
≤ 1

poly(n)
.

Proof. We proceed by first showing a probability bound for each cut S, and then combine them
using a union bound to get the final result. Specifically, for all j ∈ [2 log n] we define the set

Yij = {E(S, V \ S) : ∅ 6= S (U and 2i+j−1 ≤ ∂S ≤ 2i+j − 1} ,

and we will show a probability bound for all j ∈ [2 log n] and Y ∈ Yij. Taking a careful union
bound over all such choices will be enough to get the lemma statement. It shall be useful to define
Πi

U (Y) = Y ∩ Fi ∩
(
U
2

)
to be the projection onto Fi and onto the cluster U of the edges in Y , for

any Y ⊆ E. Moreover, we denote by FY the failure event that

∣∣w(Πi
U (Y))− |Πi

U (Y)|
∣∣ > δ

|Y |
1 + log n

,

For ease of writing we shall denote Πi
U (E(S, V \S)) and FE(S,V \S) by Πi

U (∂S) and F∂S respectively.
To appreciate their purpose, we remark that for any ∅ 6= S (U ,

F∂S ⇐⇒
∣∣∂i wU S − ∂iUS

∣∣ > δ
∂S

1 + log n

since Πi
U (∂S) = Πi

U (E(S, V \ S)) = E(S, V \ S) ∩ Fi ∩
(
U
2

)
= Fi ∩ E(S,U \ S).

23

Claim 4.12. Let j ∈ [2 log n] and Y ∈ Yij. Then

Pr[¬B and FY] ≤ 2n−
C
768

2j .

Proof. We start by observing that we can consider only the set X = {e ∈ Πi
U (Y) : pe < 1},

since edges with pe = 1 are always added to E′ with weight set to 1 (when B does not occur) by
Lemma 4.8, so ∣∣w(Πi

U (Y))− |Πi
U (Y)|

∣∣ = |w(X)− |X|| .
If X = ∅, the probability of FY is zero, so let us consider the case that X 6= ∅, for which we want
to upper bound the probability

Pr

[
¬B and |w(X) − |X|| > δ

|Y |
1 + log n

]
.

To do so, we use Lemma 4.9 and set p = min{1, C · 2−(i+1)δ−2 log3 n}, which is a lower bound on
all the probabilities {pe}e∈X . This is the case because every e ∈ X has pe < 1 and λe ≤ 2i+1 (since
X ⊆ Fi). We also note that |Y | ≥ |X|, thus we can safely apply Lemma 4.9 and get

Pr

[
¬B and |w(X) − |X|| > δ

|Y |
1 + log n

]
≤ 2 exp

(
− 1

48
· δ2 · p · |Y |

(1 + log n)2

)
.

If we recall Y ∈ Yij , and in particular |Y | ≥ 2i+j−1, we can then conclude the claim by plugging
the value of p into the exponent.

Now that we have bounded the probability that a single cut from Yij is not well preserved once
projected onto U and Fi, we show that the union over j of the collections Yij is representative of
all the local cuts of U .

Claim 4.13. Let ∅ 6= S (U such that Πi
U (∂S) 6= ∅. Then there exists j ∈ [2 log n] so that

E(S, V \ S) ∈ Yij.

Proof. Since Πi
U (∂S) 6= ∅, there exists e = {u, v} ∈ E(S, V \ S) that is also in Fi. In particular

this means that E(S, V \S) is a uv-cut in G, and e has edge connectivity at least 2i, thus ∂S ≥ 2i.
At the same time, ∂S ≤ 2i+j − 1 for some j ∈ [2 log n] since ∂S ≤ |E| ≤ n2 − 1.

Now, for all j ∈ [2 log n] and all Z ⊆ Fi, we define the worst-case edge set Y ∗
j (Z) ⊆ E of Z as

Y ∗
j (Z) ∈ argmin

Y ∈Yij :Πi
U (Y)=Z

|Y | .

The reason why we call Y ∗
j (Z) worst case for Z is the following. Among all the global cuts in Yij

whose projection onto Fi and U is Z, the cut Y ∗
j (Z) is the one which allows for the smallest error

term, which intuitively makes FY more likely to happen. Formally we have the following claim,
which follows from the definition.

Claim 4.14. If there exist j ∈ [2 log n] and Y ∈ Yij such that the event FY happens, then there
exist j ∈ [2 log n] and Z ∈ {Πi

U (Y
′) : Y ′ ∈ Yij} such that FY ∗

j (Z) happens.

Claim 4.13 and 4.14 together suggest that we can restrain ourselves to union bound over {Πi
U (Y) :

Y ∈ Yij}, which is exactly what we are going to do. Before that, we make sure that this set is not
too large.

24

Claim 4.15. For every j ∈ [2 log n] we have |{Πi
U (Y) : Y ∈ Yij}| ≤ n2·2j .

Proof. We will employ the following cut counting result, where Ek denotes the set of edges e ∈ E
with edge connectivity λe ≥ k, for any integer k.

Theorem 4.16 ([FHHP11] Theorem 1.6). For any k, s ≥ 1 one has

|{E(S, V \ S) ∩ Ek : ∅ 6= S (V and ∂S ≤ s · k}| ≤ n2s ,

i.e. the number of distinct subsets of edges of connectivity at least k from cuts of size at most s · k
is at most n2s.

Fix j ∈ [2 log n]. We recall that every e ∈ Fi has λe ≥ 2i, which means Fi ⊆ E2i . Also, for any
Y ∈ Yij there is by definition a cut ∅ 6= S (V such that ∂S ≤ 2i+j − 1 and Y = E(S, V \ S).
Hence

|{Πi
U (Y) : Y ∈ Yij}| ≤ |{E2i ∩ E(S, V \ S) : ∅ 6= S (V and ∂S ≤ 2i+j}| ,

and applying Theorem 4.16 with k := 2i and s := 2j we conclude the claim.

Using the above claims we finally have

Pr[¬B and ∃ ∅ 6= S (U s.t. F∂S]

by Claim 4.13 ≤Pr[∃j ∈ [2 log n] s.t. ∃Y ∈ Yij s.t. ¬B and FY]

by Claim 4.14 ≤Pr[∃j ∈ [2 log n] s.t. ∃Z ∈ {Πi
U (Y) : Y ∈ Yij} s.t. ¬B and FY ∗

j (Z)]

by Claim 4.12 ≤
∑

j∈[2 logn]

∑

Z∈{Πi
U (Y): Y ∈Yij}

2n−
C
768

2j

by Claim 4.15 ≤
∑

j∈[2 logn]
n2·2

j
2n−

C
768

2j

≤ 1

poly(n)

Finally, we can conclude the main sparsification lemma Lemma 4.2 by a simple combination of
Lemma 4.7, Lemma 4.11, and Lemma 4.6.

Proof of Lemma 4.2. Recall that the Fi’s partition and cover E entirely, and that ¬B happens
with high probability by Lemma 4.7. Then, one can see that conditioning on ¬B, summing over
i = 0, . . . , log n, and applying Lemma 4.11 gives Lemma 4.2.

5 Testing expansion and finding sparse cuts in sparsifiers

The key ingredient to our ED algorithms is that sparsifiers as per Definition 4.1 serve as good proxies
to the subgraphs of G for any subroutine that either asserts expansion or outputs an approximate
most-balanced sparse cut. We will in fact show that the result of running such subroutine on a
boundary-linked subgraph of G is almost the same as if we run it on the corresponding subgraph
of a sparsifier.

Before we proceed further, we need to define what we demand exactly from the approximate
most-balanced sparse cut subroutine. Loosely speaking, it is a procedure that takes as input a graph

25

and a sparsity parameter, and either asserts that the graph is an expander, or outputs a sparse cut.
In particular, the returned cut should be not too small compared to the largest cut among those
certifying that the input is not an expander. For technical reasons, we ask that the algorithm also
returns an approximation to the volume of the returned cut. Inspired by the definition of [FKM23],
we have the following definition, which captures what the subroutine should return.

Definition 5.1 (Balanced sparse cut witness). Let ψ, ξ ∈ [0, 1] and α, λ ≥ 1, and let H = (U,E′, w)
be a weighted graph with self-loops. A (ψ, ξ, α, λ)-balanced sparse cut witness of H (for short,
(ψ,α, λ, ξ)-BSCW) is an element ω of {⊥} ∪ ({R : ∅ 6= R (U} × R>0) such that:

1. if ω = ⊥, then H is a ψ-expander;

2. if ω = (R, ν), then:

(a) ΦH(R) < α · ψ,
(b) for every other cut ∅ 6= T (U with ΦH(T) < ψ and volH(T) ≤ volH(U \ T) one has

volH(T) ≤ λ · volH(R),

(c) volH(R) ≤ (1 + ξ) volH(U \R),
(d) (1− ξ) · vol◦U (R) ≤ ν ≤ (1 + ξ) · vol◦U (R).

A balanced sparse cut subroutine is then simply an algorithm returning a balanced sparse cut
witness. For convenience of later discussions, we also have the following definition.

Definition 5.2 (Balanced sparse cut algorithm). Let α, λ ≥ 1. An algorithm BalSparseCutα,λ
is an (α, λ)-balanced sparse cut algorithm (for short, (α, λ)-BSCA) if, taken as input a weighted
graph with self-loops H = (U,E′, w) and a parameter ψ ∈ (0, 1), BalSparseCutα,λ(H,ψ) outputs
a (ψ,α, λ, 0)-BSCW of H.

Ultimately, we will use either an exponential time brute force BSCA, or a fast BSCA with worse
parameters, leading to our exponential and polynomial time ED algorithms, respectively.

Using these definitions, the main result of this section is the following: one can almost seam-
lessly run a BSCA on the sparsifier, without heavily deteriorating the quality of the BSCW hence
obtained.

Lemma 5.3 (Proxying lemma). Let b, φ, c, δ ∈ (0, 1) such that c ≤ 1/30 is a constant, φ <
b, b ≤ c, δ ≤ c2b/ log n, and let BalSparseCutα,λ be an (α, λ)-BSCA with α ≤ 1

2b . Fix a
cluster U ⊆ V and also let H = (V,E′, w) such that H[U] ≈δ G[U]. Let ω be the output of
BalSparseCutα,λ(H[U]◦, (1+ 1

2 logn)·φ). Then, ω is a (φ, (1+ 1
logn)α, (1+c)λ, c)-BSCW of G[U]◦.

In Section 5.1 and Section 5.2 we show properties that will let us compare cuts and volumes in
H[U]◦ and G[U]◦. In Section 5.3 we use these tools to prove Lemma 5.3.

5.1 Characterizing boundary-linked cuts

Structurally, we will divide the cuts of a subgraph G[U]◦ into two groups: those those that are
boundary-linked and those that are not. This concept4., which we introduce next, is key to our
goal: it captures the cuts that we are able to sparsify to within multiplicative error. Loosely
speaking, a cut of G[U]◦ is boundary-linked if its local cut is a decent fraction of its global cut.

4The notion of boundary-linked cuts was already used in previous works, but not in the context of sparsification
and streaming [GRST21, Li21]

26

Definition 5.4 (Boundary-linked cuts). Let β ∈ (0, 1) be a parameter, let U ⊆ V be a cluster, and
let S ⊆ U be a cut. We say that S is β-boundary-linked in U if

∂US ≥ β ·min{∂S, ∂(U \ S)} .

We shall then group the cuts of G[U]◦ into boundary-linked ones and those that are not. As shown
by the two lemmas below, each of these groups has a useful properties for our goal: for a correct set
of parameters, boundary-linked cuts are very well approximated by a sparsifier, while those that
are not boundary-linked must be sparse.

Lemma 5.5 (Characterization of boundary-linked cuts). Let b, φ, c, δ ∈ (0, 1) such that c ≤ 1/2 is
a constant, φ ≤ b, b ≤ c, and δ ≤ c2b/ log n. Fix a cluster U ⊆ V and also let H = (V,E′, w) such
that H[U] ≈δ G[U]. Then, the following hold:

1. for all non b/2-boundary-linked cuts ∅ 6= S (U we have Φ◦
U(S) < φ, and

2. for all b/2-boundary-linked cuts S ⊆ U we have (1− c
logn) · ∂US ≤ ∂wUS ≤ (1 + c

logn) · ∂US.
Proof. To show (1), let ∅ 6= S (U be a cut with Φ◦

U (S) ≥ φ. By definition this means that
∂US ≥ φmin{vol◦U (S), vol◦S(U \ S)}. Since ∂US = ∂U (U \ S), we can in fact assume without loss
of generality that ∂US ≥ φ vol◦U (S). Recalling how these volumes are defined, we have that every
vertex in u ∈ S has a contribution of at least bφ ·bndU ({u}) to vol◦U (S), so vol◦U (S) ≥ b/φ ·bndU (S).
Hence, ∂US ≥ φ vol◦U (S) yields ∂US ≥ b · bndU (S). Finally, we observe that the global cut of S,
i.e. ∂S, can be decomposed as the sum of ∂US and bndU (S). By virtue of this decomposition, from
∂US ≥ b · bndU (S) we get ∂US ≥ b · (∂S − ∂US). Rearranging the terms, and since we assume
that b is bounded by c ≤ 1/2, we conclude ∂US ≥ b/2 · ∂S, i.e. S is b/2-boundary-linked.

To show (2), from definition of boundary-linked we know ∂US ≥ b/2 ·min{∂S, ∂(U \ S)}, while
from the assumption that H[U] ≈δ G[U] we know |∂US − ∂wUS| ≤ δ · ∂S. Again, without loss of
generality we can assume ∂US ≥ b/2 ·∂S, since ∂US = ∂U (U \S) and ∂wUS = ∂wU (U \S). Therefore,
the sparsification error |∂US − ∂wUS| can actually be bounded by δ · ∂S ≤ c2b/ log n · 2/b · ∂US ≤
c/ log n · ∂US (since c ≤ 1/2).

5.2 Preserving volumes and sparsities

Lemma 5.5 says that for any cut S in U , either S is sparse, or the sparsifier gives a multiplicative
approximation to its local cut. Intuitively, for the latter cuts, one would expect the sparsifier to
preserve their sparsity as well. However, this is not trivially true, because the sparsity depends on
both the local cut and the volume in the boundary-linked subgraph: while we have a multiplicative
preservation of boundary-linked cuts, we may not have the same guarantee for their volume. To
circumvent this issue, we consider the case of sparse and expanding cuts separately: the former
have in fact their volumes preserved within a relative error, while for the latter we get that their
volume in the sparsifier is still not too large. We combine these observations by treating separately
boundary-linked and non boundary-linked cuts, and conclude that the distinction between sparse
and expanding is very accurately preserved in a sparsifier. We begin with analysing the volume of
sparse cuts in the sparsifier.

Lemma 5.6 (Multiplicative error for volumes of sparse cuts). Let b, φ, φ̂, c, δ ∈ (0, 1) such that
c ≤ 1/5 is a constant, φ < b, δ ≤ c2/ log n, and φ̂ ≤ φ/b. Fix a cluster U ⊆ V and also let
H = (V,E′, w) such that H[U] ≈δ G[U]. Then, for all cuts ∅ 6= S (U with Φ◦

U(S) < φ̂ we have
(
1− c

log n

)
· vol◦U (S) ≤ vol◦wU (S) ≤

(
1 +

c

log n

)
· vol◦U (S) .

27

Proof. By definition of vol◦wU (S), the error in estimating the volume can be written as

|vol◦wU (S)− vol◦U (S)| ≤ |volw(S)− volU (S)|+
b− φ
φ
|bndwU (S)− bndU(S)| . (5.1)

The first term is easily upper-bounded by δ ·vol(S), because of the global cut preservation property
of H[U] ≈δ G[U] (see Definition 4.1) applied to singleton cuts. For the second term, we can further
split it as

|bndwU (S)− bndU (S)| ≤ |∂wS − ∂S|+ |∂wUS − ∂US| , (5.2)

We now upper-bound the right hand side using again the cut preservation properties from Defini-
tion 4.1: we employ the multiplicative error for the global cut ∂S, and the additive error for ∂US.
Combining these with the assumption that S is sparse, one gets

∣∣∣∂wS − ∂S
∣∣∣+
∣∣∣∂wUS − ∂US

∣∣∣ ≤ 2δ · ∂S (5.3)

= 2δ ·
(
∂US + bndU (S)

)
(5.4)

since Φ◦
U (S) < φ̂ < 2δ · φ̂ · vol◦U (S) + 2δ · bndU (S) (5.5)

since φ̂ ≤ φ/b and vol◦U (S) ≥
φ

b
bndU (S) ≤ 2δ · φ

b
· vol◦U (S) + 2δ · φ

b
· vol◦U (S) (5.6)

≤ 4δ · φ

b− φ · vol
◦
U (S) , (5.7)

We now backtrack and plug (5.7) into (5.2), and then (5.2) into (5.1) to conclude the claim:

|vol◦wU (S)− vol◦U (S)| ≤ |volw(S)− volU (S)|+
b− φ
φ
|bndwU (S)− bndU (S)|

≤ δ · vol(S) + 4δ · vol◦U (S)
≤ 5δ · vol◦U (S)

≤ 5c2

log n
· vol◦U (S)

≤ c

log n
· vol◦U (S) ,

since c ≤ 1/5.

Using this fact together with the cut preservation properties of a cluster sparsifier, we can already
conclude that there cannot be cuts that look “very” expanding in H[U]◦ but are actually sparse
in G[U]◦. In particular, if the sparsity of a cut in the sparsifier is above φ by a factor that dominates
the error of the sparsifier, then its sparsity must be at least φ in the original graph. We show this
in Lemma 5.7.

Lemma 5.7 (Very expanding cuts in a sparsifier are indeed expanding). Let b, φ, φ̂, c, δ ∈ (0, 1)
such that c ≤ 1/30 is a constant, φ < b, b ≤ c, δ ≤ c2b/ log n, and φ̂ ≥ (1 + 1

3 logn) · φ. Fix a cluster
U ⊆ V and also let H = (V,E′, w) such that H[U] ≈δ G[U]. Then, for all cuts ∅ 6= S (U with
Φ◦w
U (S) ≥ φ̂ we have Φ◦

U(S) ≥ φ.

Proof. For the sake of a contradiction, let ∅ 6= S (U be a cut with Φ◦w
U (S) ≥ φ̂ such that

Φ◦
U (S) < φ.
Consider first the case that S is b/2-boundary-linked. Then we know from H[U] ≈δ G[U] (see

Definition 4.1) that ∂wUS = (1±c/ log n)∂US. Also, as we are assuming Φ◦
U (S) < φ, from Lemma 5.6

28

(our parameters verify stronger conditions than what is demanded by the lemma, so it applies) we
know vol◦wU (S) = (1 ± c/ log n) vol◦U (S). These two together give Φ◦w

U (S) < (1 + 10c/ log n)φ < φ̂
for small enough c, a contradiction.

Next consider the case that S is not b/2-boundary-linked. Then we do not have a multi-
plicative approximation to ∂wUS. However, S is φ-sparse in G[U]◦ so we still have vol◦wU (S) =
(1 ± c/ log n) vol◦U (S) and vol◦wU (U \ S) = (1 ± c/ log n) vol◦U (U \ S) by Lemma 5.6. Therefore,
because φ̂ ≥ (1 + 1

3 logn)φ we get

∂wUS ≥
(
1− c

log n

)(
1 +

1

3 log n

)
· φ ·min{vol◦U (S), vol◦U (U \ S)}

≥
(
1 +

1

10 log n

)
· φ ·min{vol◦U (S), vol◦U (U \ S)} ,

and at the same time the additive error approximation from Definition 4.1 is enough to yield

∂wUS ≤ ∂US + δ · ∂S < φ ·min{vol◦U (S), vol◦U (U \ S)}+ δ · ∂S .

Therefore,

∂S ≥ 1

δ · 10 log n · φ ·min{vol◦U (S), vol◦U (U \ S)}

since δ ≤ c2b/ log n ≥ 1

10c2
·min{bndU (S),bndU (U \ S)} .

Now let us assume bndU (S) ≤ bndU (U \ S) without loss of generality. Then the above is es-
sentially saying that ∂S is much larger than bndU (S). Recalling now that we can decompose
∂S = ∂US + bndU (S), the above lower bound is actually saying that much of the advantage
that ∂S has over bndU (S) must come from ∂US. More precisely, since c ≤ 1/30 we get

∂US ≥
1

c
· ∂S > b

2
· ∂S ,

which contradicts the assumption that S is not b/2-boundary-linked.

Next, we handle the case of expanding cuts, and show that their volume does not get overshot too
much. Even though this is a much weaker guarantee than the one we obtained in Lemma 5.6 for
sparse cuts, it will still be enough for our purposes: this will later be useful in concluding that their
sparsity has not dropped by a lot.

Lemma 5.8 (Upper bound for volumes of expanding cuts). Let b, φ, φ̂, c, δ ∈ (0, 1) such that c ≤ 1/2
is a constant, φ ≤ b, δ ≤ c2/ log n, and φ̂ ≤ φ/b. Fix a cluster U ⊆ V and also let H = (V,E′, w)
such that H[U] ≈δ G[U]. Then, for all cuts ∅ 6= S (U with Φ◦

U (S) ≥ φ̂ we have

min{vol◦wU (S), vol◦wU (U \ S)} ≤
1 + c

logn

φ̂
· ∂US .

Proof. Let S∗ ∈ {S,U \S} be the side of the cut achieving the minimum min{vol◦U (S), vol◦U (U \S)}.
Even though bndwU (S

∗) may not be a very good approximation of bndU (S
∗), we can upper-bound it

by decomposing ∂wS∗ = ∂wUS +bndwU (S) and using the local cut preservation property of H[U] ≈δ

G[U] (see Definition 4.1): we get

bndwU (S
∗) = ∂wS∗ − ∂wUS∗ ≤ bndU (S

∗) + δ · ∂S∗ .

29

Using the above bound, together with the global approximation from Definition 4.1 applied to
singleton cuts, we can upper-bound vol◦wU (S∗) as

vol◦wU (S∗) = volw(S) +
b− φ
φ

bndwU (S)

≤ (1 + δ) · vol(S∗) +
b− φ
φ

bndU (S
∗) +

b− φ
φ
· δ · ∂S∗

since ∂S∗ = ∂US + bndU (S) ≤ (1 + δ) · vol(S∗) + (1 + δ) · b− φ
φ
· bndU (S∗) +

b− φ
φ
· δ · ∂US∗

by definition of vol◦U (S) ≤ (1 + δ) · vol◦U (S∗) +
b− φ
φ
· δ · ∂US∗

since φ̂ ≤ φ

b
≤ (1 + δ) · vol◦U (S∗) + δ · 1

φ̂
· ∂US∗ .

By our assumption that Φ
b/φ
U (S) ≥ φ̂, we also know vol

b/φ
U (S∗) ≤ 1

φ̂
∂US. We then conclude

vol◦wU (S∗) ≤ (1 + 2δ) · 1
φ̂
∂US ≤

(
1 +

c

log n

)
1

φ̂
∂US ,

since c ≤ 1/2.

Having a bound on the volumes of expanding cuts, allows to bound the sparsity of those cuts in
the sparsifier (since all such cuts are boundary-linked, and hence the local cut is well preserved).
This is almost the reverse of Lemma 5.7.

Lemma 5.9 (Expanding cuts are almost expanding in the sparsifier). Let b, φ, φ̂, c, δ ∈ (0, 1) such
that c ≤ 1/6 is a constant, φ ≤ b, b ≤ c, δ ≤ c2b/ log n, and φ ≤ φ̂ ≤ φ/b. Fix a cluster U ⊆ V and
also let H = (V,E′, w) such that H[U] ≈δ G[U]. Then, for all cuts ∅ 6= S (U with Φ◦

U (S) ≥ φ̂ we
have Φ◦w

U (S) ≥ (1− 1
3 logn)φ̂.

Proof. First note that our parameter regime is strictly stronger than that of Lemma 5.5 and
Lemma 5.8. Hence, by Lemma 5.5, we know that S is b/2-boundary-linked, since it is φ̂-expanding
and φ̂ ≥ φ. Lemma 5.5 then also guarantees that ∂wUS ≥ (1 − c

logn)∂US. On the other hand,
Lemma 5.8 gives min{vol◦wU (S), vol◦wU (U \ S)} ≤ (1 + c

logn)/φ̂ · ∂US. Hence,

min{vol◦wU (S), vol◦wU (U \ S)} ≤
1 + c

logn

1− c
logn

1

φ̂
· ∂wUS ≤

1

1− 1
3 logn

· 1
φ̂
· ∂wUS ,

since c ≤ 1/6 is small enough.

5.3 Proving the proxying lemma

From the previous section, we have that the distinction between sparse and expanding cuts of G[U]◦

is very accurately preserved by H[U]◦, and also the volume of sparse cuts of G[U]◦ is approximated
to within a small relative error in H[U]◦. As these are exactly the quantities that a BSCA is
interested in, we can then prove the main lemma of the section, restated here for convenience of
the reader.

Lemma 5.3 (Proxying lemma). Let b, φ, c, δ ∈ (0, 1) such that c ≤ 1/30 is a constant, φ <
b, b ≤ c, δ ≤ c2b/ log n, and let BalSparseCutα,λ be an (α, λ)-BSCA with α ≤ 1

2b . Fix a
cluster U ⊆ V and also let H = (V,E′, w) such that H[U] ≈δ G[U]. Let ω be the output of
BalSparseCutα,λ(H[U]◦, (1+ 1

2 logn)·φ). Then, ω is a (φ, (1+ 1
logn)α, (1+c)λ, c)-BSCW of G[U]◦.

30

Proof. By definition of BalSparseCutα,λ, we know that ω is a ((1 + 1
2 logn) · φ, α, λ, 0)-BSCW

of H[U]◦, i.e.

1. if ω = ⊥, then H[U]◦ is a (1 + 1
2 logn) · φ-expander;

2. if ω = (R, ν), then:

(a) Φ◦w
U (R) < (1 + 1

2 logn) · α · φ,
(b) vol◦wU (R) ≤ vol◦wU (U \R),
(c) for every other cut ∅ 6= T (U with Φ◦w

U (R) < (1+ 1
2 logn)·φ and vol◦wU (T) ≤ vol◦wU (U \T)

one has vol◦wU (T) ≤ B vol◦wU (R):

(d) ν = vol◦wU (R).

Our goal is to translate these properties to G[U]◦ by showing that ω is a (φ, (1+ 1
logn)α, (1+c)λ, c)-

BSCW of G[U]◦, i.e.

1. if ω = ⊥, then G[U]◦ is a φ-expander;

2. if ω = (R, ν), then:

(a) Φ◦
U (R) < (1 + 1

logn) · α · φ,
(b) vol◦U (R) ≤ (1 + c) vol◦U (U \R),
(c) for every other cut ∅ 6= T (U with Φ◦

U(R) < φ and vol◦U(T) ≤ vol◦U (U \ T) one has
vol◦U (T) ≤ (1 + c)B vol◦U(R):

(d) (1− c) · vol◦U (R) ≤ ν ≤ (1 + c) · vol◦U (R).

Correctness of the case ω = ⊥. The idea is that if the cluster U is non-trivially more than a
φ-expander in the sparsifier, then it should be at least a φ-expander in G. Let us say that ω = ⊥,
i.e. Φ◦w

U (S) ≥ (1 + 1
2 logn) · φ for all ∅ 6= S (U . Let φ̂ = (1 + 1

2 logn) · φ, so that we are in the
parameter regime of Lemma 5.7. Then, this lemma ensures that Φ◦

U (S) ≥ φ for all ∅ 6= S (U . In
other words, G[U]◦ is a φ-expander.

Correctness of the case ω = (R, ν). Assume ω = (R, ν). We need to show the four properties
of a BSCW for G[U]◦.

• Property (2a). Intuitively, R cannot be much more expanding in G than what it looks like
in H, so if it is sparse in H it is basically just as sparse in G. To prove this formally, it is
convenient to distinguish the case of this cut being boundary-linked or not.

If R is not b/2-boundary-linked, then Lemma 5.5 implies Φ◦
U(R) < φ. The property is then

already proved in this case.

If it is b/2-boundary-linked, suppose for the sake of a contradiction that R has Φ◦
U (R) ≥

(1 + 1/log n)α · φ. Let φ̂ = (1 + 1
logn)α · φ. This value of φ̂ fulfils the condition that φ̂ ≤ 1/b

from Lemma 5.9, since α ≤ 1/(2b) by assumption. We then meet the requirements to apply
Lemma 5.9 (all other parameters also meet its preconditions, as our parameter regime for
b, φ, c, φ is no weaker than its), so

Φ◦w
U (R) ≥

(
1− 1

3 log n

)
·
(
1 +

1

log n

)
· α · φ ≥

(
1 +

1

2 log n

)
α · φ,

which contradicts the definition of BalSparseCutα,λ. We have then showed property (2a).

31

• Properties (2b) and (2d). From the previous point we know that Φ◦
U(R) < (1+ 1

logn)α·φ. Since
our parameter regime is only stronger than that of Lemma 5.6 if we set φ̂ = (1 + 1

logn)α · φ, we
get vol◦wU (R) = (1±c/ log n) vol◦U (R) and vol◦wU (U \R) = (1±c/ log n) vol◦U (U \R). Recalling
that vol◦wU (R) ≤ vol◦wU (U \R) (see (2b) for H[U]◦), this yields

vol◦U (R) ≤
1

1− c
logn

vol◦wU (R) ≤ 1

1− c
logn

vol◦wU (U \R) ≤
1 + c

logn

1− c
logn

vol◦U (U \R) ,

so vol◦U (R) ≤ (1 + c) vol◦U (U \R). Recalling that ν = vol◦wU (R) (see (2d) for H[U]◦), one also
has

|ν − vol◦U (R)| = |vol◦wU (R)− vol◦U (R)| ≤ c/ log n · vol◦U (R) ≤ c vol◦U (R) .

• Property (2c). This property aims to bound the volume of R against the volume of every other
φ-sparse cut. We want to exploit the bound that BalSparseCutα,λ gives for these cuts in H,
i.e. that for every cut ∅ 6= T (U with Φ◦w

U (R) < (1 + 1
2 logn)φ and vol◦wU (T) ≤ vol◦wU (U \ T)

one has vol◦wU (T) ≤ λ vol◦wU (R) (see (2c) for H[U]◦). Now one can see that if we prove all
such T to be also φ-sparse in G[U]◦, then we could conclude simply using the fact that the
volumes of H[U]◦ are good proxies for those in G[U]◦. We now implement this strategy.

By virtue of property (2a), we have that Φ◦
U (R) < (1+ 1

logn)α · φ, and from an application of
Lemma 5.6 we have vol◦wU (R) = (1± c/ log n) vol◦U (R) (again, the preconditions of the lemma
are met if we take φ̂ = (1 + 1

logn)α · φ).
Consider now any other cut ∅ 6= T (U with Φ◦

U(T) < φ and vol◦U (T) ≤ vol◦U (U \ T).
Note that for any such T we have vol◦wU (T) = (1 ± c/ log n) vol◦U (T) and vol◦wU (U \ T) =
(1 ± c/ log n) vol◦U (U \ T), again by applying Lemma 5.6 (setting φ̂ = φ ≤ φ/b, and all other
parameters satisfy the needed preconditions).

Moreover, any such T is also ((1 + 1
2 logn) · φ)-sparse in H[U]◦, by applying Lemma 5.7 with

parameter φ̂ = (1 + 1
2 logn)φ ≥ (1 + 1

3 logn)φ. From (2c) for H[U]◦, we then know

min{vol◦wU (T), vol◦wU (U \ T)} ≤ λ vol◦wU (R) .

Recall that vol◦wU (R), vol◦wU (T), vol◦wU (U \ T) all are within a (1 ± c/ log n) multiplicative
error of vol◦U (R), vol

◦
U (T), vol

◦
U (U \ T) respectively. Hence, min{vol◦wU (T), vol◦wU (U \ T)} ≤

λ vol◦wU (R) translates to

vol◦U (T) = min{vol◦U (T), vol◦U (U \ T)} ≤ (1 + 10c/ log n)λ · vol◦U (R) ≤ (1 + c)λ · vol◦U (R) .

We have then proved (2c).

6 Space efficient recursive partitioning

The main goal of this section is to show Theorems 2.1 and 2.2, restated here for convenience.

Theorem 2.1 (Exponential time decoding BLD). Let G = (V,E) be a graph given in a dynamic
stream, and let b ∈ (0, 1) be a parameter such that b ≤ 1/ log2 n. Then, there is an algorithm that
maintains a linear sketch of G in Õ(n/b3) space. For any ǫ ∈ [n−2, b log n], the algorithm decodes
the sketch to compute, with high probability and in Õ(n/b3) space and 2O(n) time, a (b, ǫ, φ, γ)-BLD
of G for

φ = Ω

(
ǫ

log n

)
and γ = O(1) .

32

Theorem 2.2 (Polynomial time decoding BLD). Let G = (V,E) be a graph given in a dynamic
stream, and let b ∈ (0, 1) be a parameter such that b ≤ 1/ log5 n. Then, there is an algorithm
that maintains a linear sketch of G in n/b3 · logO(logn/ log 1

b
) n space. For any ǫ ∈ [n−2, b log n], the

algorithm decodes the sketch to compute, with high probability and in n/b3 · logO(logn/ log 1
b
) n space

and poly(n) time, a (b, ǫ, φ, γ)-BLD of G for

φ = Ω

(
ǫ

log4 n

)
and γ = log

O
(

log n
log 1/b

)

n .

The only difference between the algorithms of Theorem 2.1 and 2.2 lies in the balanced sparse
cut subroutine that they employ. Therefore, we present and analyse them in a unified manner by
deferring the choice of the balanced sparse cut algorithm to later. Using the results from Section 4
and Section 5 (i.e. Lemma 4.2 and Lemma 5.3 respectively), we prove the following.

Lemma 6.1 (Unified algorithm). Let G = (V,E) be a graph given in a dynamic stream, let b ∈ (0, 1)
be a parameter such that b ≤ 1/log n. Let BalSparseCutα,λ be an (α, λ)-BSCA where α ≤ 1

b logn
and λ = O(1). Also let k be an integer such that k ≥ log (n5α)/log (b−1/2/λ), and k ≤ log n.
Then there is an algorithm that maintains a linear sketch of G in Õ(n/b3) · αO(k) space. For all
ǫ ∈ [n−2, b log n], the algorithm decodes the sketch using BalSparseCutα,λ to compute, with high
probability, a (b, ǫ, φ, γ)-BLD of G for

φ = Ω

(
ǫ

α log n

)
and γ = O(αk+1) .

Moreover, the decoding runs in Õ(n/b3)·αO(k)+S(n, Õ(n/b2)·αO(k)) space and T (n, Õ(n/b2)·αO(k))·
poly(n) time, where S(p, q) and T (p, q), denote the space and time complexity of BalSparseCutα,λ
on a graph with p vertices and q edges respectively. Furthermore, the decoding only makes calls to
BalSparseCutα,λ(·, ψ) with sparsity parameters ψ ∈ (0, 1) that satisfy ψ ≤ 1

10α .

From Lemma 6.1 one readily obtains the theorems by either using a brute force (1, 1)-BSCA or a
polynomial time (O(log3 n), O(1))-BSCA.

Proof of Theorem 2.1. It is easy to get an exponential time (1, 1)-BSCA as per Definition 5.2.
Given a graph and a parameter ψ ∈ (0, 1), one can do this by brute-forcing all possible cuts in the
input graph: either return ω = ⊥ if all the cuts are ψ-expanding, or return ω = (R, ν) where R
is the ψ-sparse cut with maximum volume, and ν is its volume. The space requirement of this
algorithm is linear in the size of its input.

We then have parameters α = 1, λ = 1, and we set k = log n. Hence, for any b ≤ 1/ log2 n
and ǫ ≤ b log n, we meet the preconditions of Lemma 6.1: b ≤ 1/ log n, α = 1 ≤ 1

b logn , λ = O(1),
k ≤ log n, and

log n5α

log 1
λ
√
b

≤ O(log n)

Ω(log log n)
≤ k ,

where the first inequality follows because α = λ = 1, and b ≤ 1/ log2 n. Therefore, by Lemma 6.1
there is a dynamic stream algorithm that with high probability outputs a (b, ǫ, φ, γ)-BLD of G
where

φ = Ω

(
ǫ

α log n

)
= Ω

(
ǫ

log n

)
and γ = O(αk+1) = O(1) .

Its space complexity is
Õ(k · n/b3) · αO(k) = Õ(n/b3) ,

since for the brute force algorithm we have S(p, q) = Õ(q). The running time is 2O(n) since the
brute force algorithm has T (p, q) = Õ(q) · 2p.

33

Proof of Theorem 2.2. For the polynomial time version, we use the following BSCA.

Theorem 6.2 ([SW19, LNPS23]). For p-vertex q-edge input graphs with polynomially bounded edge
weights and self-loops, there is a (cbsc log

3 p,Cbsc)-BSCA that runs in time Õ(p + q) and works
with high probability for every input sparsity parameter 0 < ψ ≤ 1

10cbsc log3 p
, where cbsc, Cbsc ≥ 1

are absolute constants.

This easily follows from the ED-based BSCA of [SW19], combined with the faster ED algorithm
of [LNPS23], except that here we explicitly allow for input graphs with arbitrary self-loops. We
defer to Appendix A.1 a discussion on how to reduce from inputs with self-loops to self-loop free
ones. Another technical detail is that the algorithm from Theorem 6.2 is a balanced sparse cut
algorithm on any input with high probability. First note that we can boost the success probability
of this algorithm to 1− 1/poly(n) even when it is applied on graphs much smaller than n, simply
by doing logO(1) n independent repetitions. Also, one can see that the decoding of Lemma 6.1 (i.e.
Algorithms 3 and 4) calls BalSparseCutα,λ on disjoint portions of Õ(1/b) · αO(k) sparsifiers (see
the proof of Lemma 6.1). Since the running time of this BSCA (with the probability boosting) is
Õ(p + q) logO(1) n on p-vertex q-edge graphs, we have that it uses at most as many random bits.
Then, because this is applied to disjoint portions of Õ(1/b) · αO(k) sparsifiers, each having at most
Õ(n/b2) · αO(k) edges, we only need Õ(n/b3) · αO(k) random bits in order to avoid adaptivity and
at the same time ensure that all the calls work correctly with probability 1 − 1/poly(n). As this
fits into our claimed space budget, we can then pretend that this BSCA is deterministic. From
Lemma 6.1 we also know that the algorithm never calls BalSparseCutα,λ with sparsity parameters
larger than 1

10α , so if we set α = cbsc log
3 n ≥ cbsc log

3 p our setting matches the requirement of
Theorem 6.2.

Now we plug α = cbsc log
3 n, λ = Cbsc and set k = logn5α

log b−1/2/λ
, and verify the preconditions of

Lemma 6.1. For any b ≤ 1/ log5 n and ǫ ≤ b log n, have that λ = Cbsc = O(1) and

α = cbsc log
3 n ≤ log4 n ≤ 1

b log n
.

We also have that k = O(log n/ log log n) ≤ log n, since α = O(log3 n), λ = O(1), and b ≤ 1/ log5 n.
Therefore, the lemma gives a dynamic stream algorithm that with high probability outputs a
(b, ǫ, φ, γ)-BLD of G where

φ = Ω

(
ǫ

α log n

)
= Ω

(
ǫ

log4 n

)
and γ = O(αk+1) = log

O(log n
log 1/b

)
n .

Since the BSCA from Theorem 6.2 runs in time Õ(q) on a q-edge graph, its space requirement must
also be Õ(q). Hence the overall space complexity is

Õ(k · n/b3) · αO(k) + Õ(n/b2) · αO(k) = Õ(n/b3) · logO(log n
log 1/b

)
n .

The running time is poly(n), since BalSparseCutα,λ takes at most poly(n) time, since in our
setting for b, k, and α we have Õ(n/b2) · αO(k) ≤ nO(1).

Overview of the algorithm. We now give the BLD construction for Lemma 6.1. Algorithms 3
and 4 outline the core procedure, which is almost the same as the one of [FKM23]. For BLD
parameters b and ǫ we set φ appropriately in terms of ǫ, and our goal is to show that calling
Algorithm 3 as Decompose(V, 0) gives a BLD of G.

34

Algorithm 3 Decompose: space efficient implementation of Algorithm 1 for BLD construction

1: ⊲ b, φ ∈ (0, 1) are global BLD parameters
2: ⊲ α, λ are the parameters of BalSparseCutα,λ
3: ⊲ C ≥ 1, c ∈ (0, 1) are constant parameters
4: procedure Decompose(U, ℓ) ⊲ cluster U ⊆ V , recursion level ℓ ≥ 0
5: H = (V,E′, w)← Sparsifierc

ℓ(U, b) ⊲ sparsifier for U in this level
6: ω ← BalSparseCutα,λ(H[U]◦, (1 + 1

2 logn) · φ)

7: if ω = ⊥ then return {U} ⊲ if U is an expander, return
8: (R, ν)← ω ⊲ otherwise, if R is balanced enough, recurse on both sides
9: if ν ≥ 1

Cλ vol◦wU (U) then return Decompose(R, ℓ+ 1) ∪ Decompose(U \R, ℓ+ 1)

10: (S, exp)← Trim(U, ℓ) ⊲ find an expander inside U , or settle for a less sparse balanced cut
11: if exp = ⊤ then ⊲ if S induces an expander, recurse on the complementary only
12: return {S} ∪Decompose(U \ S, ℓ+ 1)
13: else ⊲ otherwise, S should be decently sparse and balanced, so recurse on both sides
14: return Decompose(S, ℓ+ 1) ∪ Decompose(U \ S, ℓ+ 1)

Algorithm 4 Trim: trim some cuts to find an expander, or find a less sparse but balanced cut

1: ⊲ b, φ ∈ (0, 1) are global BLD parameters
2: ⊲ α, λ are the parameters of BalSparseCutα,λ
3: ⊲ C ≥ 1, c ∈ (0, 1) are constant parameters
4: ⊲ k is a positive integer
5: procedure Trim(U, ℓ) ⊲ cluster U ⊆ V , recursion level ℓ ≥ 0
6: b0 ← b, φ0 ← φ, A← U
7: for j = 1, . . . , k + 1 do

8:

bj ← bj−1

(1+ 1
log n

)·α , φj ←
φj−1

(1+ 1
log n

)·α

9: for h = 1, 2, . . . ,∞ do

10: H = (V,E′, w)← Sparsifierc
ℓ,j,h(A, bj) ⊲ sparsifier for A in this level and iteration

11: ω ← BalSparseCutα,λ(H[A]◦, (1 + 1
2 logn) · φj)

12: if ω = ⊥ then return (A,⊤) ⊲ ⊤ means A is an expander
13: (R, ν)← ω
14: if ν ≥ 1

Cλ vol◦wU (U) then return (R,⊥) ⊲ ⊥ means R is a cut

15: if ν ≥ 1
Cλ (vol◦wU (U))1−(j−1)/k

then ⊲ trim
16: A← A \R
17: else ⊲ go to next outer loop iteration, if this happens we should have j ≤ k
18: break

Algorithm 3 is a space efficient implementation of Algorithm 1 for BLD. In line (6), it uses
a BSCA on a sparsifier either to certify that the given cluster is already an expander, or to find
a sparse cut in it. In the former case it can simply return the cluster. In the latter case, if the

35

condition (9) finds the cut to be balanced enough, the algorithm can afford to recurse on both
sides keeping the recursion depth under control. Otherwise, it calls Algorithm 4. This procedure is
supposed to either trim off a small volume mass from the cluster in line (16) so that the remainder
induces an expander (see return statement in line (12)), or find a less sparse but more balanced cut
than the one obtained in line (6) of Algorithm 3 (see return statement in line (14)). In the former
case, Algorithm 3 can then recurse only on the trimmed part of the cluster (recursion of line (12)),
whereas in the latter it is still acceptable to recurse on both sides while keeping the recursion depth
under control (recursion of line (14)).

As both algorithms run a BSCA on weighted subgraphs of G, we use Lemma 5.3 to analyse
their behaviour with respect to the input G. It is then crucial that the graphs on which the BSCA
is run are sparsifiers for the cluster at hand. Therefore, we will implement lines (5) and (10)
in Algorithms 3 and 4 respectively via the algorithm from Lemma 4.2. Crucially, we want to
instantiate enough independent copies of the sparsification algorithm, so that lines (5) and (10)
can always access a fresh sparsifier. The memory requirement is then determined by the sparsifiers
that we maintain, while the correctness will be proved using Lemma 5.3.

Roadmap. In the next sections we prove Lemma 6.1. In Section 6.1, we work under the assump-
tion that line (5) of Algorithm 3 and (10) of Algorithm 4 always behave as expected, meaning that
they return a sparsifier for the cluster at hand. In this ideal setting, we show that Algorithm 3
outputs a BLD in small recursion depth and few iterations. Then, with Lemma 4.2, in Section 6.2
we lift the assumption that line (5) of Algorithm 3 and (10) of Algorithm 4 are deterministically
correct, thus concluding a proof of Lemma 6.1.

6.1 Offline analysis

The algorithms have hardwired parameters k, α, λ,C, c. The BLD parameters b, φ ∈ (0, 1) are given
as input (for now, we parametrize the BLD by b and φ instead of b and ǫ, and will later specify
how to define φ from ǫ). Hereafter, whenever we use b, φ, k, C, c, α, λ, (bj)j , (φj)j , we are referring
to the corresponding parameter in Algorithms 3 and 4.

As one can see from the pseudocode, the input graph G is not simply fed to Algorithms 3
and 4, but they have restricted access to it: their interaction with G is limited to lines (5) and (10)
respectively, i.e. they only have sparsifier-access to it. In this section we work under the assumption
that the algorithms can always obtain a sparsifier that meets the precondition of Lemma 5.3, i.e.
they are cluster sparsifiers with appropriate error (see Definition 4.1).

Assumption 1. Every time line (5) of Algorithm 3 calls Sparsifierc
ℓ(U, b) for some ℓ ≥ 0, U ⊆ V ,

it gets a graph H = (V,E′, w) such that H[U] ≈δ G[U], where δ = c2b/ log n.

Assumption 2. Every time line (10) of Algorithm 4 calls Sparsifierc
ℓ,j,h(A, bj) for some ℓ ≥ 0,

j, h ≥ 1, A ⊆ V , it gets a graph H = (V,E′, w) such that H[A] ≈δj G[A], where δj = c2bj/ log n.

Throughout this section, we will use the definition δ = c2b/ log n and δj = c2bj/ log n for all
j ∈ [k + 1], as in Assumption 1 and Assumption 2. To illustrate why in the second assumption we
have δj instead of δ, we make the following observation.

Observation 6.3. For a constant c ≤ 1/30, φ < b, b ≤ c, α ≤ 1
2b , a cluster A ⊆ V , and a

sparsifier H = (V,E′, w) such that H[A] ≈δj G[A], Lemma 5.3 guarantees that calling an (α, λ)-
BSCA as BalSparseCutα,λ(H[A]◦, (1 + 1

2 logn) · φj) gives a (φj , (1 +
1

logn)α, (1 + c)λ, c)-BSCW
of G[A]◦ (as in line (11) of Algorithm 4).

36

Proof of Observation 6.3. For a constant c ≤ 1/30, parameters b, φ, δ, α such that φ < b, b ≤
c, α ≤ 1

2b , a cluster A ⊆ V , and a sparsifier H = (V,E′, w) such that H[A] ≈δ G[A],
Lemma 5.3 guarantees that calling an (α, λ)-BSCA as BalSparseCutα,λ(H[A]◦, (1+0.5/log n) ·φ)
gives a (φ, (1 + 1

logn)α, (1 + c)λ, c)-BSCW of G[A]◦. Then, we recall that G[A]◦ = G[A]b/φ and
H[A]◦ = H[A]b/φ, so it also holds that G[A]◦ = G[A]bj/φj and H[U]◦ = H[U]bj/φj , since we can see
from Algorithm 4 that bj/φj = b/φ for all j ∈ [k + 1]. Moreover, observe the following: φ < b if
and only if φj < bj, α ≤ 1

2b implies α ≤ 1
2bj

(by definition of bj in Algorithm 4), and b ≤ c implies
bj ≤ c (again, by definition of bj in Algorithm 4). One can then use Lemma 5.3 replacing b, φ, δ
with bj , φj , δj respectively, hence getting Observation 6.3.

The goal of this section is threefold: in Section 6.1.3, we bound the number of iterations that
any execution of Algorithm 4 can go through; in Section 6.1.4, we bound the recursion depth of
Algorithm 3; in Section 6.1.5, we show the output of calling Algorithm 3 as Decompose(V, 0) is a
BLD of G. Interestingly, Section 6.1.5 crucially uses the results from Section 6.1.3 and Section 6.1.4
about recursion depth and number of iterations. Before, we give some preliminary results: in
Section 6.1.1 we give properties of cuts of boundary-linked subgraphs; in Section 6.1.2, we show
how relations between volume estimates (such as the comparisons performed by Algorithm 3 in
line (9) and by Algorithm 4 in lines (14) and (15)) translate to relations between the actual volumes
of the corresponding cuts.

6.1.1 Properties of nested cuts

When Algorithm 3 makes a cut in the input cluster U , this cut is then fed as input to the recursive
call in line (9), which will in turn try to find a cut inside it. Similarly, Algorithm 4 makes a cut in
the current cluster A in line (16), and in the next iteration it will try to find a cluster inside the
remainder of A. The leitmotif of these algorithms is that they try to make cuts inside a cluster
that is one side of a cut previously made. It is then useful for the analysis to relate volume and
sparsity of nested cuts.

Lemma 6.4 (Properties of nested cut). Let b, φ ∈ (0, 1) and δ > 0 be such that φ ≤ b, δ < 1/b.
Fix a cluster U ⊆ V , let ∅ 6= S (U be a cut such that Φ◦

U (S) < δ ·φ, and let T ⊆ S. Then we have
the following relations between volumes:

vol◦U (T)
(1)

≤ vol◦S(T)
(2)
< vol◦U (T) + δb ·min{vol◦U (S), vol◦U(U \ S)}

(3)

≤ vol◦U (U) .

If it also holds that ∅ 6= T (S has Φ◦
S(T) < δ · φ and vol◦U (T ∪ (U \ S)) < 1

2 vol
◦
U (U) then

Φ◦
U(T ∪ (U \ S)) < δ · φ .

Proof. For convenience let ψ = δ ·φ. Inequality (1) holds simply because T ⊆ S ⊆ U , so the number
of self-loops attached to T cannot decrease when going from G[U]◦ to G[S]◦. Inequality (2) can be
obtained by rewriting the volumes in G[S]◦ as

vol◦S(T) = vol(T) +
b− φ
φ

bndS(T) = vol◦U (T) +
b− φ
φ
|E(T,U \ S)| (6.1)

≤ vol◦U (T) +
b

φ
|E(T,U \ S)| . (6.2)

Since S is ψ-sparse in G[U]◦, we can upper-bound |E(T,U \S)| by ∂US < ψmin{vol◦U (S), vol◦U (U \
S)}, thus getting the bound. For inequality (3), note vol◦U (T) ≤ vol◦U (S) because T ⊆ S and

37

δb ·min{vol◦U (S), vol◦U (U \ S)} ≤ vol◦U (U \ S) for δ ≤ 1/b. Since vol◦U (S) + vol◦U (U \ S) = vol◦U (U),
we have the bound (3).

Suppose now that ∅ 6= T (S has Φ◦
S(T) < ψ and vol◦U (T ∪ (U \S)) < 1

2 vol
◦
U(U). First observe

that because Φ◦
S(T) < ψ, the definition of Φ◦

S(T) yields ∂ST < ψ vol◦S(T). By Eq. (6.2), we also
have

∂ST < ψ vol◦S(T) ≤ ψ vol◦U (T) +
ψb

φ
· |E(T,U \ S)| ≤ ψ vol◦U (T) + |E(T,U \ S)| , (6.3)

where we used that ψb/φ ≤ 1 since ψ = δφ and δ ≤ 1/b. Due to vol◦U (T ∪ (U \ S)) < 1
2 vol

◦
U (U),

the definition of Φ◦
U (T ∪ (U \ S)) finally yields

Φ◦
U(T ∪ (U \ S)) = ∂U (T ∪ (U \ S))

vol◦U (T ∪ (U \ S))

since T ⊆ S, so T ∩ (U \ S) = ∅ =
∂ST + ∂US − |E(T,U \ S)|
vol◦U (T) + vol◦U (U \ S)

by (6.3) <
ψ vol◦U (T) + |E(T,U \ S)|+ ∂US − |E(T,U \ S)|

vol◦U (T) + vol◦U (U \ S)

=
ψ vol◦U (T) + ∂US

vol◦U (T) + vol◦U (U \ S)

≤ max

{
ψ,

∂US

vol◦U (U \ S)

}
= max {ψ,Φ◦

U (S)}

since Φ◦
U(S) < ψ ≤ ψ .

Algorithm 4 makes cuts iteratively. It finds a cut in the cluster, it trims it off in line (16), it finds
another cut in the remainder, it trims it off, and so on, provided that these cuts verify certain
conditions: their individual volumes are neither too large (if one of them was very large in volume,
the algorithm would return in line (14)) nor too small (see condition (15)). The following lemma
proves properties of such cut sequences. Figure 3 should help the reader to visualize the statement
and the proof.

U = U
<1

U
<2

Rt

U
<t

. . .

R2R1 . . .R2R1R1

Figure 3: Sequence of nested cuts.

Lemma 6.5 (Properties of a sequence of nested cuts). Let b, φ ∈ (0, 1) be such that φ ≤ b, and
δ ∈ (0, 1]. Fix a cluster U ⊆ V , let θ ∈ R≥0 be such that θ ≤ 1

5 vol
◦
U (U), and let R1, . . . , Rt be a

sequence of cuts ∅ 6= Ri (U<i where U<i = U \ (∪i−1
z=1Rz) for all i ∈ [t]. If

38

1. for all ∅ 6= X (U with Φ◦
U (X) < δφ and vol◦U (X) ≤ vol◦U (U \X) one has vol◦U (X) < θ, and

2. for all i ∈ [t] one has Φ◦
U<i(Ri) < δφ and vol◦U<i(Ri) <

1
5 vol

◦
U (U),

then we have the following.

1. For all i ∈ [t], one has Φ◦
U(∪iz=1Rz) < δφ and vol◦U (∪iz=1Rz) < θ.

2. For all i ∈ [t], if there is θlow ∈ R≥0 such that vol◦U<i(Ri) ≥ θlow then one also has vol◦U (Ri) ≥
θlow − b · θ.

3. Let U<t+1 = U \ (∪tz=1Rz). If ∅ 6= R (U<t+1 is a cut such that Φ◦
U<t+1(R) < δφ and

θlow ≤ vol◦U<t+1(R) ≤ 5
9 vol

◦
U<t+1(U<t+1) for some θlow ≤ 4

9 vol
◦
U (U), then Φ◦

U(R) < δφ · vol◦U (U)

θlow−b·θ
and θlow − b · θ ≤ vol◦U (R) ≤ 5

9 vol
◦
U (U).

The end goal of part (1) is to upper bound the number of edges crossing and the remaining volume
when Algorithm 4 returns (A,⊤) and therefore Algorithm 3 recurses on U \A only (see line (7) in
Algorithm 3). The idea is that in this case U \A corresponds to the union of nested cuts that are
trimmed off by Algorithm 4.

Part (2) will be useful to bound the number of iterations that Algorithm 4 can take. In every
iteration a cut is trimmed off, and from condition (15) we know the volume of these cuts to be not
too small in U<i. From part (2) we then know these volumes to be not too small in U either, and
hence the number of such cuts cannot be too large, since they are disjoint.

The end goal of part (3) is to upper bound the number of edges crossing and the remaining
volume when Algorithm 4 returns (R,⊥) and therefore Algorithm 3 recurses on R and U \R (see
line (9) in Algorithm 3). The idea is that in this case, every cut trimmed off by Algorithm 4 is
sparse and far from being balanced (because of condition (14) in Algorithm 4), whereas the last
one is both sparse and somewhat balanced (because of condition (14) in Algorithm 4).

In the remainder of this section we prove the three parts of this lemma.

Proof of Lemma 6.5, part (1). Intuitively, the union of a sequence of nested sparse and small cuts
should be sparse and small too. We prove this by induction on i ∈ [t]. Denote for conve-
nience ψ = δ φ.

The base case for i = 1 readily follows. Since U1 = U , we have Φ◦
U (R1) < ψ and also vol◦U (R1) <

1
5 vol

◦
U(U) from precondition (2). Moreover, by precondition (1), there is no ψ-sparse cut X with

θ ≤ vol◦U (X) < 1
2 vol

◦
U (U). Hence, it must be the case that vol◦U (R1) < θ.

For the inductive step, take i ∈ [t−1] and assume that Φ◦
U (∪iz=1Rz) < ψ and vol◦U (∪iz=1Rz) < θ.

We now apply Lemma 6.4 with S = U<i+1 and T = Ri+1. We can do so because Φ◦
U (S) =

Φ◦
U (∪iz=1Rz) < ψ, so the lemma gives

vol◦U (Ri+1) ≤ vol◦U<i+1(Ri+1) ≤
1

5
vol◦U (U) <

1

4
vol◦U (U) .

Combining this bound with the inductive hypothesis that vol◦U (∪iz=1Rz) < θ, one has

vol◦U (∪i+1
z=1Rz) = vol◦U (∪iz=1Rz)+vol◦U (Ri+1) < θ+vol◦U (Ri+1) <

1

5
vol◦U (U)+

1

4
vol◦U (U) <

1

2
vol◦U (U) ,

which rewrites as vol◦U (T ∪ (U \ S)) < 1
2 vol

◦
U (U) with S = U<i+1 and T = Ri+1. Also, from

precondition (2), we have Φ◦
U<i+1(Ri+1) < ψ, or in other words Φ◦

S(T) < ψ with S = U<i+1 and

T = Ri+1. Then, the second part of Lemma 6.4 gives Φ◦
U (∪i+1

z=1Rz) < ψ, so one part of the induction

39

is proved. For the other part, we combine Φ◦
U (∪i+1

z=1Rz) < ψ and vol◦U (∪i+1
z=1Rz) <

1
2 vol

◦
U (U) with

precondition (1): since we assume there is no ψ-sparse cut in G[U]◦ with volume sandwiched
between θ and 1

2 vol
◦
U (U), it must be the case that vol◦U (∪i+1

z=1Rz) < θ.

Proof of Lemma 6.5, part (2). We prove this using part (1) and Lemma 6.4. The case of i = 1
follows from the preconditions, since U1 = U . Let then i = 2, . . . , t, and denote for conve-
nience ψ = δ φ. Then, part (1) gives that Φ◦

U (∪i−1
z=1Rz) < ψ. If we set S = U<i and T = Ri we

have Φ◦
U(S) = Φ◦

U (∪i−1
z=1Rz) < ψ, and can then apply Lemma 6.4 to get the lower bound

vol◦U (Ri) > vol◦U<i(Ri)− δb · vol◦U (∪i−1
z=1Rz)

since δ ≤ 1 ≥ vol◦U<i(Ri)− b · vol◦U (∪i−1
z=1Rz) .

Part (1) also gives vol◦U (∪i−1
z=1Rz) < θ, and since we assume that vol◦U<i(Ri) ≥ θlow, one concludes

vol◦U (Ri) > vol◦U<i(Ri)− b · vol◦U (∪i−1
z=1Rz) ≥ θlow − b · θ .

Proof of Lemma 6.5, part (3). We begin by analysing the volume vol◦U (R). Again, from part (1)
we have

Φ◦
U (∪ti=1Ri) < δφ , vol◦U (∪ti=1Ri) < θ .

Setting ψ = δφ, S = U<t+1 and T = R, we have Φ◦
U (S) = Φ◦

U (∪tz=1Rz) < ψ, so we can apply
Lemma 6.4 to yield

vol◦U (R) > vol◦U<t+1(R)− b · vol◦U (∪ti=1Ri) > θlow − b · θ , (6.4)

and

vol◦U (R) ≤ vol◦U<t+1(Rt) ≤
5

9
vol◦U<t+1(U

<t+1) . (6.5)

We can once more apply Lemma 6.4 with S = T = U<t+1 (since again Φ◦
U (S) = Φ◦

U (∪tz=1Rz) < ψ),
so

vol◦U<t+1(U
<t+1) ≤ vol◦U (U) . (6.6)

We then have from (6.4), (6.5), (6.6)

θlow − b · θ ≤ vol◦U (R) ≤
5

9
vol◦U<t+1(U

<t+1) ≤ 5

9
vol◦U (U) . (6.7)

Next we analyse the sparsity of R by first upper-bounding the quantity ∂UR:

∂UR ≤ ∂U<t+1R+ ∂U (∪ti=1Ri) (6.8)

since Φ◦
U<t+1(R) < ψ by assumption < ψ · vol◦U<t+1(R) + ∂U (∪ti=1Ri) (6.9)

since Φ◦
U(∪ti=1Ri) < ψ from part (1) < ψ · vol◦U<t+1(R) + ψ · vol◦U (∪ti=1Ri) (6.10)

since vol◦U (R) <
5

9
vol◦U (U) from (6.7) < ψ · 5

9
· vol◦U (U) + ψ · vol◦U (∪ti=1Ri) (6.11)

since vol◦U (∪ti=1Ri) < θ from part (1) < ψ · 5
9
· vol◦U (U) + ψ · θ (6.12)

by assumption on θ < ψ · vol◦U (U) . (6.13)

40

On the other hand, the bounds in (6.7) yield

min{vol◦U (R), vol◦U (U \R)} ≥ min

{
θlow − b · θ, 4

9
vol◦U(U)

}
(6.14)

since θlow ≤ 4

9
vol◦U(U) by assumption = θlow − b · θ . (6.15)

From the bound (6.13) and (6.15) we finally conclude

Φ◦
U (R) =

∂UR

min{vol◦U (R), vol◦U (U \R)}
<
ψ · vol◦U (U)

θlow − b · θ .

6.1.2 Relations between volume estimates

In this section we show how relations between volume estimates (such as the comparisons performed
by Algorithm 3 in line (9) and by Algorithm 4 in lines (14) and (15)) translate to relations between
the actual volumes of the corresponding cuts.

Lemma 6.6 (Relations between volume estimates). Let b, φ, c ∈ (0, 1) be such that c ≤ 1/4 is a
constant and φ ≤ b. Fix a cluster U ⊆ V , and also let H = (V,E′, w) such that H[U]◦ ≈c G[U]◦,
and let ω be a (ψ,α′, λ′, c)-BSCW of G[U]◦ for some ψ ∈ (0, φ] and α′, λ′ ≥ 1. If ω = (R, ν) for
some ∅ 6= R (U and ν ∈ R>0, then for any ρ, τ ∈ [0, 1] and X ⊆ V we have

1. if ν ≥ ρ · (vol◦wX (X))τ , then vol◦U (R) ≥ ρ/2 · (vol◦X(X))τ .

2. if ν < ρ · (vol◦wX (X))τ , then vol◦U (R) < 2ρ · (vol◦X(X))τ and for every cut ∅ 6= S (U with
Φ◦
U (S) < ψ and vol◦U(S) ≤ vol◦U (U \ S) one has vol◦U (S) < 2λ′ρ · (vol◦X(X))τ .

Proof. From property (2d) of the definition of BSCW (see Definition 5.1), we know (1−c) vol◦U (R) ≤
ν ≤ (1+c) vol◦U (R), and from property (2b) we know that for every cut ∅ 6= S (U with Φ◦

U (S) < ψ
and vol◦U (S) ≤ vol◦U (U \ S) one has vol◦U (S) < λ′ · vol◦U (R).

On the other hand, (1 − c) vol◦X(X) ≤ vol◦wX (X) ≤ (1 + c) vol◦X(X) for any X ⊆ V . To see
why, first note that vol◦wX (X) = volw(X) + b−φ

φ bndwX(X) = volw(X) + b−φ
φ ∂wX, and analogously

vol◦X(X) = vol(X) + b−φ
φ ∂X . Then, since H[U]◦ ≈c G[U]◦, we have the approximation guarantee

for global cuts (see Definition 4.1): applying it to all singleton cuts in X we can approximate
vol(X), and applying it to X we can approximate ∂X.

From the above discussion it follows that for all ρ, τ ∈ [0, 1] and X ⊆ V , ν ≥ ρ · (vol◦wX (X))τ

implies vol◦U (R) ≥ ρ1−c
1+c ·(vol◦X(X))τ ≥ ρ/2·(vol◦X(X))τ , since c ≤ 1/4. If instead ν < ρ·(vol◦wX (X))τ ,

we have vol◦U (R) < ρ1+c
1−c · (vol◦X(X))τ ≤ 2ρ · (vol◦X(X))τ . Moreover, since by definition of ω one has

vol◦U (S) < λ′ · vol◦U (R) for every cut ∅ 6= S (U with Φ◦
U (S) < ψ and vol◦U(S) ≤ vol◦U (U \ S), we

get vol◦U (S) < λ′ · vol◦U (R) ≤ λ′2ρ · (vol◦X(X))τ for any such S.

6.1.3 Bounding the number of iterations

Combining the structural properties of nested cuts together with Lemma 6.6, we can show the
correctness of the algorithms. We begin by observing that whenever Algorithm 4 breaks the inner
loop in line (18) we have j ≤ k. This ensures that restraining the outer loop to indices j = 1, . . . , k+1
(see line (7)) does not lead to undefined behaviour.

41

Lemma 6.7 (Algorithm 4 does few outer loop iterations). Let b, φ, c ∈ (0, 1) such that c ≤ 1/30
is a constant, φ < b and b ≤ c. Also let C ≥ 3 be a constant, and let BalSparseCutα,λ be an
(α, λ)-BSCA where α ≤ 1

2b . If Assumption 2 holds, then if Algorithm 4 breaks in line (18) it is in
some outer loop iteration j with j ≤ k.

Proof. We prove this by contradiction, so suppose the algorithm enters line (18) with j = k+1 for
some inner loop iteration h ≥ 1. Let A be the value of the corresponding variable in Algorithm 4
at the beginning of inner loop iteration h within outer loop iteration k+1. Also let H = (V,E′, w)
be the graph gotten from line (10) in the same iteration. From the description of the algorithm,
since it entered line (18), the call BalSparseCutα,λ(H[A]◦, (1 + 1/(2 log n)) · φk+1) from line (11)
has returned a BSCW of the form (R, ν) such that ν < 1

Cλ(vol
◦w
U (U))1−(k+1−1)/k = 1

Cλ(vol
◦w
U (U))0.

Moreover, since we have c ≤ 1/30, φ < b, b ≤ c, α ≤ 1
2b , and H[A] ≈δk+1

G[A] (from As-
sumption 2), Lemma 5.3 ensures that (R, ν) is a (φj , (1 +

1
logn)α, (1 + c)λ, c)-BSCW of G[A]◦ (see

Observation 6.3).
We now want to use Lemma 6.6 with ψ = φk+1, α

′ = (1 + 1
logn)α, λ

′ = (1 + c)λ, ρ = 1
Cλ ,

τ = 0, and X = U . These parameters verify the conditions for applying Lemma 6.6 to (R, ν)
on G[A]◦: c ≤ 1/30 ≤ 1/4, ψ = φk+1 ≤ φ (by definition of φk+1 in the algorithm), α′, λ′ ≥ 1,
ρ ≤ 1, τ ∈ [0, 1], H[A] ≈c G[A] (since H[A] ≈δk+1

G[A] and δk+1 ≤ c), and hence (R, ν) is a
(φj , (1 +

1
logn)α, (1 + c)λ, c)-BSCW of G[A]◦. Then Lemma 6.6 gives

vol◦A(R) < 2ρ(vol◦U (U))τ =
2

Cλ
< 1 ,

which in particular implies R = ∅. However, this contradicts the fact that (R, ν) is a BSCW
of G[A]◦ (see Definition 5.1).

Next, we show that Algorithm 4 verifies the preconditions (1) and (2) of Lemma 6.5. Specifically, if
Algorithm 3 calls Algorithm 4, there cannot be sparse and balanced cuts in U , and also every cut
trimmed by Algorithm 4 is sparse and small in volume. This will later allow us to apply Lemma 6.5
for bounding the number of inner loop iterations (and also for bounding the recursion depth, in
the next section).

Lemma 6.8 (Algorithm 4 makes a sequence of nested sparse small cuts). Let b, φ, c ∈ (0, 1)
such that c ≤ 1/30 is a constant, φ < b and b ≤ c. Also let C ≥ 11 be a constant, and let
BalSparseCutα,λ be an (α, λ)-BSCA where α ≤ 1

2b . Consider an execution of Algorithm 4 called
from Algorithm 3 on input cluster U ⊆ V . Also let R1, . . . , Rq ⊆ U be the sequence of q cuts trimmed
in line (16) by Algorithm 4, and let U<i = U \ (∪i−1

z−1Rz). If Assumption 1 and Assumption 2 hold,
then

1. for all ∅ 6= S (U with Φ◦
U (S) < φ, vol◦U (S) ≤ vol◦U (U \ S), one has vol◦U (S) <

3
C vol◦U (U),

2. for all i ∈ [q] one has Φ◦
U<i(Ri) < φ and vol◦U<i(Ri) <

1
5 vol

◦
U (U).

Proof. From the description of Algorithms 3 and 4, we see that Algorithm 4 starts only if line (6)
of Algorithm 3 returns a BSCW ω = (R, ν) such that ν < 1

Cλ vol◦wU (U), as per line (10) (otherwise,
Algorithm 3 would not call Algorithm 4). Now we want to apply Lemma 5.3 to ω. Because we have
c ≤ 1/30, φ < b, b ≤ c, δ = c2b/ log n, α ≤ 1

2b and H[U] ≈δ G[U] from Assumption 1, all the precon-
ditions of Lemma 5.3 are met for us to apply it to the call BalSparseCutα,λ(H[U]◦, (1+ 1

2 logn) ·φ)
from line (6) of Algorithm 3: hence, ω is a (φ, (1 + 1

logn)α, (1 + c)λ, c)-BSCW of G[U]◦. Since we
observed just above that ω is of the form (R, ν) and ν < 1

Cλ vol◦wU (U), we now use Lemma 6.6 with
parameters ψ = φ, α′ = (1 + 1

logn)α, λ
′ = (1 + c)λ, ρ = 1

Cλ , τ = 1, and X = U . These parameters

42

verify the requirement of Lemma 6.6 since we have c ≤ 1/30 ≤ 1/4, H[U] ≈c G[U] (from Assump-
tion 1, since δ ≤ c), ψ ≤ φ, α′, λ′ ≥ 1, ρ, τ ≤ 1, and (R, ν) is a (φ, (1 + 1

logn)α, (1 + c)λ, c)-BSCW
of G[U]◦. Then we get that for every cut ∅ 6= S (U with Φ◦

U (S) < φ and vol◦U (S) ≤ vol◦U (U \ S)
one has

vol◦U (S) < 2λ′ρ · vol◦U (U) =
2(1 + c)λ

Cλ
vol◦U (U) ≤ 3

C
· vol◦U (U) .

This gives part (1).
For all i ∈ [q], denote by j(i) ∈ [k + 1] the outer loop iteration of Algorithm 4 where Ri was

trimmed, and also let U<i = U \ (∪i−1
z=1Rz) (i.e., at the beginning of the iteration where Ri has

been trimmed we had A = U<i). Then, from the description of the algorithm we know that Ri

was paired with a value νRi such that (Ri, νRi) was the result of BalSparseCutα,λ(H[U<i]◦, (1+
1

2 logn) · φj(i)−1), where H = (V,E′, w) verifies H[U<i] ≈δj(i) G[U
<i] because of Assumption 2.

As we have c ≤ 1/30, φ < b, b ≤ c, α ≤ 1
2b , Lemma 5.3 ensures that the pair (Ri, νRi) is a

(φj(i), (1 +
1

logn)α, (1 + c)λ, c)-BSCW of G[U<i]◦ for all i ∈ [q] (see Observation 6.3). From the
description of the algorithm we also know that νRi must also not satisfy condition (14), as otherwise
Algorithm 4 would have returned, so νRi <

1
Cλ vol◦wU (U) for all i ∈ [q]. For each i ∈ [q], we now

use Lemma 6.6 with parameters ψ = φj(i), α
′ = (1 + 1

logn)α, λ
′ = (1 + c)λ, ρ = 1

Cλ , τ = 1, and
X = U . These parameters verify the requirement for applying Lemma 6.6 to (Ri, νRi) in G[U

<i]:
c ≤ 1/30 ≤ 1/4, H[U<i] ≈c G[U

<i] (from Assumption 2 and δj(i) ≤ c), ψ = φj(i) ≤ φ, α′, λ′ ≥ 1,
ρ, τ ≤ 1, and (Ri, νRi) is a (φj(i), (1 +

1
logn)α, (1 + c)λ, c)-BSCW of G[U<i]◦. Then, for all i ∈ [q]

Lemma 6.6 gives

vol◦U<i(Ri) <
2

Cλ
vol◦U (U) <

1

5
vol◦U (U) , (6.16)

since C ≥ 11. Furthermore, because every (Ri, νRi) is a (φj(i), (1 +
1

logn)α, (1 + c)λ, c)-BSCW
of G[U<i]◦, we have by Definition 5.1

Φ◦
U<i(Ri) <

(
1 +

1

log n

)
αφj(i) =

(
1 +

1

log n

)
α

φ
((

1 + 1
logn

)
α
)j(i) ≤ φ , (6.17)

since j(i) ≥ 1. The bounds in (6.16) and (6.17) give part (2).

Finally, we argue that Algorithm 4 goes through few inner loop iterations within each outer loop
iteration. The idea for this is that we can upper bound the total volume trimmed in line (16), but
we can also lower bound the volume of each individual cut.

Lemma 6.9 (Algorithm 4 does few inner loop iterations). Let b, φ, c ∈ (0, 1) such that c ≤ 1/30 is a
constant, φ < b and b ≤ c. Also let C ≥ 31 be a constant, let BalSparseCutα,λ be an (α, λ)-BSCA
where α ≤ 1

2b and λ ≤ c
2b , and let k be an integer such that k ≥ log n2

φ / log
c
λ·b . If Assumption 1 and

Assumption 2 hold, then Algorithm 4 goes through at most 1/b inner loop iterations within each
outer loop iteration.

Proof. Let U be the input cluster of Algorithm 4. Fix hereafter an outer loop iteration j =
1, . . . , k+1, and let A be the value of the corresponding variable of the algorithm at the beginning
of the j-th outer loop iteration. Because line (16) of Algorithm 4 removes a non-empty cut from
A at every inner loop iteration, there are finitely many iterations. Denote then by t the number of
inner loop iterations for outer loop iteration j. Then, for every inner loop iteration h ∈ [t] define
A<h to be the value of variable A at the beginning of inner loop iteration h.

Since Assumption 2 holds, we also know that to every inner loop iteration h ∈ [t] corre-
sponds a graph H = (V,E′, w) from line (10) which satisfies H[A<h] ≈δj G[A

<h]. As we have

43

c ≤ 1/30, φ < b, b ≤ c, α ≤ 1
2b , and H[A<h] ≈δj G[A<h], Lemma 5.3 ensures that calling

BalSparseCutα,λ(H[A<h]◦, (1+ 1
2 logn)·φj) gives a (φj , (1 + 1

logn)α, (1 + c)λ, c)-BSCW of G[A<h]◦

in line (11) of Algorithm 4 (see Observation 6.3). Moreover, from the description of the algorithm,
it must be the case that the BSCW obtained is of the form (Rh, νh) for all h ∈ [t − 1], where
∅ 6= Rh (A<h and νh ∈ R>0. One can then see that for every h ∈ [t] we have A<h = A\ (∪h−1

z=1Rz),
and because of conditions (14) and (15) we have that for every h ∈ [t− 1] the following holds:

1

Cλ
(vol◦wU (U))1−(j−1)/k ≤ νh <

1

Cλ
vol◦wU (U) .

We now want to translate the above bounds to vol◦A<h(Rh) using Lemma 6.6. To do so, note
that H[A<h] ≈δj G[A

<h] in particular implies H[A<h] ≈c G[A
<h] (since we have defined δj =

c2bj/ log n ≤ c), and as discussed before we know that

(Rh, νh) is a

(
φj ,

(
1 +

1

log n

)
α, (1 + c)λ, c

)
-BSCW of G[A<h]◦ (6.18)

Let us then set ψ = φj , α
′ = (1 + 1

logn)α, λ
′ = (1 + c)λ, ρ = 1

Cλ , τ being either 1− (j − 1)/k (for
the lower bound) or 1 (for the upper bound), and X = U . These parameters verify the conditions
for applying Lemma 6.6 to (Rh, νh) on G[A<h]◦: c ≤ 1/30 ≤ 1/4, ψ = φj ≤ φ, α′, λ′ ≥ 1, ρ ≤ 1,
both values of τ are bounded by 1 (this is because j ≤ k + 1), H[A<h] ≈c G[A

<h] (since from
Assumption 2 we have H[A<h] ≈δj G[A

<h]), and (Rh, νh) is a (φj , (1 +
1

logn)α, (1 + c)λ, c)-BSCW
of G[A<h]◦ (see (6.18)). Then Lemma 6.6 gives

1

2Cλ
(vol◦U (U))1−(j−1)/k ≤ vol◦A<h(Rh) <

2

Cλ
vol◦U (U) , (6.19)

where the lower bound is obtained with τ = 1 − (j − 1)/k and the upper bound with τ = 1. The
application of Lemma 6.6 with τ = 1 also gives that for every cut ∅ 6= S (A<h with Φ◦

A<h(S) < φj
and vol◦A<h(S) ≤ vol◦A<h(A<h \ S) one has

vol◦A<h(S) < 2λ′ρ · vol◦U (U) =
2(1 + c)λ

Cλ
vol◦U (U) ≤ 3

C
· vol◦U (U) . (6.20)

We consider now the case of j = 1 and 2 ≤ j ≤ k + 1 separately.

Case j = 1. In this case A is identical to the input cluster U . We then want to apply Lemma 6.5
with δ = 1 and θ = 3

C vol◦U (U) to the sequence of cuts R1, R2, . . . , Rt−1 in the cluster U . Let for

convenience U i = U \ (∪i−1
z=1Rz) for all i ∈ [t].

First note that this value of θ meets the requirement of Lemma 6.5 that θ < 1
5 vol

◦
U (U), since

C ≥ 16. Secondly, our set of assumptions matches that of Lemma 6.8, so we get that for all
∅ 6= S (U with Φ◦

U (S) < φ, vol◦U (S) ≤ vol◦U (U \ S), one has vol◦U (S) <
3
C vol◦U (U), and for all i ∈

[q] one has Φ◦
U<i(Ri) < φ and vol◦U<i(Ri) <

1
5 vol

◦
U(U). These facts match preconditions (1) and (2)

of Lemma 6.5 for δ and θ as we set them above.
Part (1) of Lemma 6.5 then upper-bounds the total volume of the sequence as

vol◦U(∪t−1
h=1Rh) <

3

C
vol◦U (U) . (6.21)

Since the lower bound of (6.18) with j = 1 means that vol◦U<h(Rh) ≥ 1
2Cλ vol◦U (U) for all h ∈ [t−1],

using part (2) of Lemma 6.5 with θlow = 1
2Cλ vol◦U (U) we further get

vol◦U (Rh) ≥
1

2Cλ
vol◦U (U)− b · 3

C
vol◦U (U) ≥ 1

3Cλ
vol◦U (U) for all h ∈ [t− 1] , (6.22)

44

since λ ≤ 1
18b . Therefore, taking the ratio of the cumulative upper bound in (6.21) and the individual

lower bounds from (6.22), we conclude that t− 1 cannot exceed

vol◦U (∪t−1
h=1Rh)

minh∈[t−1] vol
◦
U (Rh)

≤
3
C vol◦U (U)
1

3Cλ vol◦U (U)
≤ 9λ .

Thus, the number of inner loop iterations for j = 1 is at most 9λ+ 1 ≤ 1
2b + 1 ≤ 1/b.

Case 2 ≤ j ≤ k + 1. The approach is analogous to the first iteration, except that we use the
bounds from Lemma 6.5 on the sequence R1, . . . , Rt−1 in the cluster A (for j = 1 we applied the
lemma to the cluster U). We remark that, in this case, A can also be seen as the value of the
corresponding variable of Algorithm 4 at the very end of outer loop iteration j − 1.

Consider the call BalSparseCutα,λ(H[A]◦, (1 + 1
2 logn) · φj−1) to BalSparseCutα,λ in the

last inner loop iteration within outer loop iteration j − 1, where H = (V,E′, w) is accordingly the
graph obtained from line (10) at the last inner loop iteration within outer loop iteration j − 1.
Since Assumption 2 holds, we know that the graph H satisfies H[A] ≈δj−1

G[A]. As we have
c ≤ 1/30, φ < b, b ≤ c, α ≤ 1

2b , and H[A] ≈δj−1
G[A], Lemma 5.3 ensures that the call

BalSparseCutα,λ(H[A]◦, (1 + 1
2 logn) · φj−1) gives a (φj−1, (1 +

1
logn)α, (1 + c)λ, c)-BSCW ω of

G[A]◦ (see Observation 6.3). On the other hand, from the description of the algorithm we know
that iteration j starts only if this ω is of the form (R, ν) with ν < 1

Cλ(vol
◦w
U (U))1−(j−2)/k (due to

condition (15)). We now use Lemma 6.6 with parameters ψ = φj−1, α
′ = (1 + 1

logn)α, λ
′ = (1+c)λ,

ρ = 1
Cλ , τ = 1 − (j − 2)/k, and X = U . These parameters verify the requirement of Lemma 6.6

since we have c ≤ 1/30 ≤ 1/4, H[A] ≈c G[A] (from Assumption 2 and δj−1 ≤ c), ψ = φj−1 ≤ φ,
α′, λ′ ≥ 1, ρ, τ ≤ 1, and (R, ν) is a (φj−1, (1 +

1
logn)α, (1 + c), cλ)-BSCW of G[A]◦. Then we get

that for every cut ∅ 6= S (A with Φ◦
A(S) < φj−1 and vol◦A(S) ≤ vol◦A(A \ S) one has

vol◦A(S) < 2λ′ρ (vol◦U (U))τ =
2(1 + c)λ

Cλ
(vol◦U (U))1−(j−2)/k ≤ 3

C
· (vol◦U (U))1−(j−2)/k . (6.23)

This is still not enough to apply Lemma 6.5 to cluster A: the bound in (6.19) bounds the volumes
of nested cuts Rh in A<h by 2

Cλ vol◦U (U), but applying Lemma 6.5 demands an upper bound of
1
5 vol

◦
A(A) on the volumes of cuts Rh in A<h. Hence, we first show the volume of U to be not much

larger than that of A.

Claim 6.10. We have vol◦U (U) ≤ 2 vol◦A(A).

Proof. If A = U the statement is trivial. Otherwise, we know there must have been a sequence
of nested cuts S1, . . . , Sr ⊆ U that Algorithm 4 trimmed off from U in line (16) so that A =
U \ (∪i∈[r]Si). We then want to apply Lemma 6.5 to the sequence of cuts S1, S2, . . . , Sr in the

cluster U with δ = 1 and θ = 3
C vol◦U (U). Let for convenience U<i = U \ (∪i−1

z=1Sz) for all i ∈ [r+1].
First note that this value of θ meets the requirement of Lemma 6.5 that θ < 1

5 vol
◦
U (U), since C ≥

16. Secondly, our set of assumptions matches that of Lemma 6.8, so we get that for all ∅ 6= S (U
with Φ◦

U (S) < φ, vol◦U (S) ≤ vol◦U (U \ S), one has vol◦U (S) <
3
C vol◦U (U), and for all i ∈ [r] one has

Φ◦
U<i(Si) < φ and vol◦U<i(Si) <

1
5 vol

◦
U (U) (the latter follows because part (2) of Lemma 6.8 bounds

the sparsity and volume of every cut in the entire sequence of cuts trimmed by the algorithm,
and S1, . . . , Sr is a prefix of the entire sequence). These facts match preconditions (1) and (2) of
Lemma 6.5 for δ and θ as set above. Part (1) of Lemma 6.5 then upper-bounds the total volume
of the sequence as

vol◦U (∪ri=1Si) <
3

C
vol◦U (U) . (6.24)

45

To conclude it is sufficient to notice

vol◦U (U) = vol◦U (A) + vol◦U (U \ A)
= vol◦U (A) + vol◦U (∪ri=1Si)

vol◦A(A) cannot have less self-loops than vol◦U(A) ≤ vol◦A(A) + vol◦U (∪ri=1Si)

by (6.24) < vol◦A(A) +
3

C
vol◦U (U) ,

and the claim follows since C ≥ 6.

By Claim 6.10 and (6.19), we have that for every h ∈ [t− 1]

vol◦A<h(Rh) <
2

Cλ
vol◦U (U) ≤ 4

Cλ
vol◦A(A) <

1

5
vol◦A(A) , (6.25)

since C ≥ 21. Furthermore, because every (Rh, νh) is a (φj , (1 + 1
logn)α, (1 + c)λ, c)-BSCW

of G[A<h]◦, we have

Φ◦
A<h(Rh) <

(
1 +

1

log n

)
αφj =

(
1 +

1

log n

)
α

φ
((

1 + 1
logn

)
α
)j ≤ φj−1 . (6.26)

We are now in shape to apply Lemma 6.5 to the sequence of cuts R1, R2, . . . , Rt+1 in the cluster A.
Specifically, we do this with δ = φj−1/φ and θ = 3

C (vol
◦
U (U))1−(j−2)/k. First observe that δ ≤ 1 (by

definition of φj−1) and θ ≤ 3
C vol◦U (U) ≤ 1

5 vol
◦
A(A) (again by Claim 6.10 and C ≥ 31), as demanded

by Lemma 6.5. For these parameters, one can see that precondition (2) is given by (6.25) and (6.26).
Precondition (1) is instead given by (6.23). Part (1) of Lemma 6.5 then upper-bounds the total
volume of the sequence as

vol◦A(∪t−1
h=1Rh) < θ =

3

C
(vol◦U (U))1−(j−2)/k . (6.27)

We are left with lower bounding the volume of each individual cut. We do this with part (2) of
Lemma 6.5 with θlow = 1

2Cλ(vol
◦
U (U))1−(j−1)/k, which meets the requirement that vol◦A(Rh) ≥ θlow

thanks to the bound in (6.19). Part (2) of Lemma 6.5 then gives that for all h ∈ [t− 1]

vol◦A(Rh) ≥ θlow − b · θ =
1

2Cλ
(vol◦U(U))1−(j−1)/k − b · 3

C
(vol◦U (U))1−(j−2)/k . (6.28)

Therefore, taking the ratio of the upper bound on the total volume from (6.27) and the lower bound
on the volume of each individual cut from (6.28), we conclude that t− 1 is at most

vol◦A(∪t−1
h=1Rh)

minh∈[t−1] vol
◦
A(Rh)

≤
3
C (vol◦U (U))1−(j−2)/k

1
2Cλ (vol◦U (U))1−(j−1)/k − b · 3

C (vol◦U (U))1−(j−2)/k

=
3
C (vol◦U (U))1/k

1
2Cλ − b · 3

C (vol◦U (U))1/k
.

Next, we observe that vol◦U (U) ≤ vol(V) · b/φ ≤ vol(V)/φ ≤ n2/φ (since in the worst case we
over-count every edge in G as a self-loop in G[U]◦ and at most b/φ times). Then, using that
k ≥ log(n

2

φ)/ log(c
λ·b), it holds that (vol

◦
U (U))1/k ≤ c

λ·b . Now we can upper-bound the above as

3
C (vol◦U (U))1/k

1
2Cλ − b · 3

C (vol◦U (U))1/k
≤

3
C (vol◦U (U))1/k

1
2Cλ − b · 3

C
c
λ·b
≤

3
C ·
(
n2

φ

)1/k

1
5Cλ

≤
3
C · c

λ·b
1

5Cλ

= 15
c

b
,

since c ≤ 1
30 . Hence, the number of inner loop iterations for 2 ≤ j ≤ k+1 is at most 15c

b +1 ≤ 1
b .

46

6.1.4 Bounding the recursion depth

From the description of the algorithms one can see that we recurse on both sides of a cut (in line (14)
of Algorithm 3) only when the conditions (9) in Algorithm 3 and (14) in Algorithm 4 suggest that
the cut is balanced, so as to maintain the recursion depth small. When instead Algorithm 3 recurses
on one side only, in line (12), we can use the properties of nested cuts to upper bound the volume
of the recursed side. To control the number of self-loops that we add after each recursion, we also
want to ensure that we recurse on sparse cuts only.

Lemma 6.11 (Algorithm 3 recurses on balanced sparse cuts). Let b, φ, c ∈ (0, 1) such that c ≤ 1/30
is a constant, φ < b, b ≤ c. Also let C ≥ 16 be a constant, and let BalSparseCutα,λ be an (α, λ)-
BSCA where α ≤ 1

2b and λ ≤ 1
18b . If Assumption 1 and Assumption 2 hold, whenever Algorithm 3

with input cluster U ⊆ V makes a recursive call, the recursion is on a cluster ∅ 6= X (U such that

Φ◦
U (X) < (3Cλ+ 2α) · φ and vol◦U (X) ≤

(
1− 1

3Cλ

)
vol◦U (U) .

Proof. There are three lines where a recursive call can happen: (9), (12), (14). We analyse them
separately.

Recursion in line (9). Let H = (V,E′, w) be the graph returned in line (5) of Algorithm 3. Since
the algorithm recurses in line (9), the call BalSparseCutα,λ(H[U]◦, (1+ 1

2 logn) ·φ) of line (6) must
have returned a BSCW of the form (R, ν) such that

ν ≥ 1

Cλ
vol◦wU (U) . (6.29)

As we have c ≤ 1/30, φ < b, b ≤ c, α ≤ 1
2b , and H[U] ≈δ G[U] (because of Assumption 1),

Lemma 5.3 gives that (R, ν) is a (φ, (1 + 1
logn)α, (1 + c)λ, c)-BSCW of G[U]◦. By Definition 5.1,

this means

Φ◦
U(R) <

(
1 +

1

log n

)
α · φ ≤ 2α · φ .

We now want to use Lemma 6.6 with ψ = φ, α′ = (1 + 1
logn)α, λ

′ = (1 + c)λ, ρ = 1
Cλ , τ = 1,

and X = U . These parameters verify the conditions for applying Lemma 6.6 to (R, ν) on G[U]◦:
c ≤ 1/30 ≤ 1/4, ψ ≤ φ, α′, λ′ ≥ 1, ρ ≤ 1, τ ≤ 1, H[U] ≈c G[U] (since H[U] ≈δ G[U] and δ ≤ c),
and (R, ν) is a (φ, (1 + 1

logn , c)α, (1 + c)λ)-BSCW of G[U]◦. Then Lemma 6.6 with (6.29) gives

vol◦U (R) ≥
ρ

2
(vol◦U (U))τ =

1

2Cλ
vol◦U (U) ,

which we can use to upper bound the volume of U \R:

vol◦U (U \R) = vol◦U (U)− vol◦U (R) ≤
(
1− 1

2Cλ

)
vol◦U(U).

Finally, by property (2c) of BSCW applied to R, vol◦U (R) ≤ (1 + c) vol◦U (U \ R). Because c ≤
1/30 ≤ 1/2 and C ≥ 2,

vol◦U(R) ≤
1 + c

2
vol◦U (U) ≤

(
1− 1

2Cλ

)
vol◦U (U).

Since in this case the algorithm recurses on R and U \R, we have the claim.

47

Recursion in lines (12) and (14). These cases can only happen if Algorithm 3 resorts to
Algorithm 4. Let then R1, . . . , Rq ⊆ U be the sequence of cuts trimmed off by Algorithm 4 in
line (10). We then want to apply Lemma 6.5 to the sequence of cuts R1, R2, . . . , Rq in the cluster U
with δ = 1 and θ = 3

C vol◦U (U). Let for convenience U<i = U \ (∪i−1
z=1Rz) for all i ∈ [q + 1].

First note that this value of θ meets the requirement of Lemma 6.5 that θ < 1
5 vol

◦
U (U), since

C ≥ 16. Secondly, our set of assumptions matches that of Lemma 6.8, so we get that for all
∅ 6= S (U with Φ◦

U (S) < φ, vol◦U (S) ≤ vol◦U (U \ S), one has vol◦U (S) <
3
C vol◦U (U), and for all i ∈

[q] one has Φ◦
U<i(Ri) < φ and vol◦U<i(Ri) <

1
5 vol

◦
U(U). These facts match preconditions (1) and (2)

of Lemma 6.5 for δ and θ as we set them above.

• Line (12). Part (1) of Lemma 6.5 then upper-bounds the total sparsity and volume of the
sequence as

Φ◦
U (∪qz=1Rz) < φ and vol◦U (∪qz=1Rz) <

3

C
vol◦U (U) . (6.30)

For Algorithm 3 to recurse in line (12), it must be the case that Algorithm 4 returned a pair
(S,⊤) in line (10) (see condition (11)). Looking into Algorithm 4, one can then see that if
it returns a pair of the form (S,⊤), it must be the case that S is the value of variable A
at the end of the algorithm, i.e. S = A = U \ (∪z∈[q]Rz). In line (12), the recursive call is
Decompose(U \ S, ℓ+ 1), so we recurse on U \ S = ∪z∈[q]Rz. From (6.30) we then have the
claim since C ≥ 6.

• Line (14). The difference from the previous case is that for Algorithm 3 to recurse in line (14),
it must be the case that Algorithm 4 returned a pair (S,⊥) in line (10) (see condition (11)),
and in particular this implies that Algorithm 4 returned in line (14).

Let p be the outer loop iteration where Algorithm 4 returns, and let H = (V,E′, w) be
the graph from line (10) in the last inner loop iteration of outer loop iteration p (i.e. the
inner loop iteration where it returns). Since in such iteration we must have that variable A
actually equals U<q+1, let ω be the result of BalSparseCutα,λ(H[U q+1]◦, (1 + 1

2 logn)φp) in
that same iteration. As we have c ≤ 1/30, φ < b, b ≤ c, α ≤ 1

2b , and H[U<q+1] ≈δp G[U
<q+1]

(from Assumption 2), Lemma 5.3 ensures that ω is a (φp, (1 +
1

logn)α, (1 + c)λ, c)-BSCW
of G[U<q+1]◦ (see Observation 6.3). Moreover, since Algorithm 4 returned in line (14), it
must be the case that ω is of the form (S, ν), where S is the cut returned from Algorithm 4
to Algorithm 3 in the pair (S,⊥). From the description of the algorithm it must also be the
case that

ν ≥ 1

Cλ
vol◦wU (U) . (6.31)

As we have c ≤ 1/30 ≤ 1/4, φ < b, b ≤ c, α ≤ 1
2b , and H[U<q+1] ≈c G[U

<q+1] (from Assump-
tion 2 and δp ≤ c), the fact that (S, ν) is a (φp, (1 +

1
logn)α, (1 + c)λ, c)-BSCW of G[U<q+1]◦,

and the bound (6.31), Lemma 6.6 gives

vol◦U<q+1(S) ≥
1

2Cλ
vol◦U (U) . (6.32)

Since (S, ν) is a (φp, (1 +
1

logn)α, (1 + c)λ, c)-BSCW of G[U<q+1]◦, by Definition 5.1 we also
know

vol◦U<q+1(S) ≤ (1 + c) vol◦U<q+1(U \ S) ,
so

vol◦U<q+1(S) ≤
5

9
vol◦U<q+1(U) , (6.33)

48

since c ≤ 1/30 ≤ 1/10. Now, setting R = S and θlow = 1
2Cλ vol◦U (U), the bounds in (6.32)

and (6.33), together with the fact that θlow ≤ 4
9 vol

◦
U (U) (since C ≥ 2), allow us to apply

part (3) of Lemma 6.5. This gives

Φ◦
U(S) < φ

vol◦U (U)

θlow − b · θ (6.34)

= φ · vol◦U (U)
1

2Cλ vol◦U (U)− b · 3
C vol◦U (U)

(6.35)

since b ≤ 1

18λ
≤ 3Cλ · φ , (6.36)

and
1

3Cλ
vol◦U (U) ≤ θlow − b · θ ≤ vol◦U (S) ≤

5

9
vol◦U (U) . (6.37)

We can now conclude: since the result of Algorithm 4 is (S,⊥), Algorithm 3 recurses on both S
and U \S in line (14). Let X ∈ {S,U \S}. Then from (6.36) we have that Φ◦

U (X) < 3Cλ ·φ,
and from (6.37) we have that vol◦U (X) ≤ (1− 1

3Cλ) vol
◦
U (U) since C ≥ 2.

We now upper-bound the recursion depth of the algorithm, using the above lemma.

Lemma 6.12 (Algorithm 3 has small recursion depth). Let b, φ, c ∈ (0, 1) such that c ≤ 1/30 is
a constant, φ < b, b ≤ c. Also let C ≥ 16 be a constant, and let BalSparseCutα,λ be an (α, λ)-
BSCA where α ≤ 1

144Cλb , λ ≤ min{ 1
18b ,

1
15C

√
b
}. If Assumption 1 and Assumption 2 hold, then the

recursion depth of Decompose(V, 0) (i.e. Algorithm 3) is at most 9Cλ · log n.

Proof. The crux is that recursion only happens on one of the sides of a not too large cut. As our
set of assumptions matches that of Lemma 6.11 (note that the preconditions are the same except
α ≤ 1

144Cλb ≤ 1
2b and λ ≤ min{ 1

18b ,
1

15C
√
b
} ≤ 1

18b), we get the following: for any recursion from U
to X

Φ◦
U (X) < (2α + 3Cλ)φ and vol◦U (X) ≤

(
1− 1

3Cλ

)
vol◦U (U) (6.38)

To get a bound on the recursion depth, we translate these bounds to a bound on vol◦X(X).
We use Lemma 6.4 with δ = 3Cλ + 2α, S = X, and T = X. These setting verifies the

requirements of Lemma 6.4: δ ≤ 1/b (since α ≤ 1
4b , and λ ≤ 1

6Cb), Φ
◦
U(S) < δφ from (6.38), and

T ⊆ S. Hence, inequality (2) from Lemma 6.4 gives

vol◦X(X) = vol◦S(T)

inequality (2) of Lemma 6.4 < vol◦U (T) + δb ·min{vol◦U (S), vol◦U (U \ S)}
≤ (1 + δb) · vol◦U (X)

from (6.38) ≤ (1 + δb)

(
1− 1

3Cλ

)
vol◦U(U)

since α ≤ 1

144Cλb
and λ ≤ 1

15C
√
b
≤
(
1 +

1

36Cλ

)(
1− 1

3Cλ

)
vol◦U (U)

≤
(
1− 1

4Cλ

)
vol◦U (U) .

49

From this we conclude that if we do a recursion on X at level ℓ, then

vol◦X(X) ≤
(
1− 1

4Cλ

)ℓ

vol◦V (V) =

(
1− 1

4Cλ

)ℓ

vol(V) <

(
1− 1

4Cλ

)ℓ

n2 .

The bound follows.

6.1.5 Correctness

Finally, one can see from the algorithms that they recurse only on the sides of cuts resulting from
BalSparseCutα,λ. We know such cuts to be sparse, so intuitively there should be few inter-cluster
edges in the resulting partition of V . We also know that when the algorithm returns a cluster {U},
it is because the corresponding BSCW declares it to be an expander. One can then prove that the
result of this process is a BLD.

Lemma 6.13 (Algorithm 3 outputs a BLD). Let b, φ, c ∈ (0, 1) such that c ≤ 1/30 is a constant,
φ < b, b ≤ c. Also let C ≥ 31 be a constant, let BalSparseCutα,λ be an (α, λ)-BSCA where
α ≤ 1

144Cλb , λ ≤ min{ 1
18b ,

1
15C

√
b
}, and let k be an integer such that k ≤ log n. If Assumption 1 and

Assumption 2 hold, then the result of Decompose(V, 0) (i.e. Algorithm 3) is a (b, ǫ, φ, γ)-BLD of
G where

ǫ = 4(3Cλ+ 2α) · φ · 9Cλ · log n · e2b(3Cλ+2α)9Cλ·log n and γ = 6αk+1 .

Proof. First note that our assumptions subsume the preconditions of Lemma 6.7. Hence, if Algo-
rithm 4 breaks in line (18) it is in some outer loop iteration j with j ≤ k, so the behaviour of the
algorithm is well defined (see the outer loop for j = 1, . . . , k + 1 in line (7) of Algorithm 4).

From the description we then see that Decompose(V, 0) always outputs a valid partition U
of V . We show that U verifies the two properties of Definition 3.1.

Property (2). Let X ∈ U , which can either be the result of the return statement in line (7) or
in line (12) of Algorithm 3.

• Return statement in line (7). Let U ⊆ V be the input cluster to the instance of Algorithm 4
that returned X. Also let H = (V,E′, w) be the graph from line (5) and ω be the result
of BalSparseCutα,λ(H[U]◦, (1 + 1

2 logn) · φ) in line (6) of that same instance. From the
description of the algorithm, we know that the return statement in line (7) only occurs if
ω = ⊥, and in particular X is the input cluster U .

As our parameter regime implies c ≤ 1/30, φ < b, b ≤ c, α ≤ 1
2b , and also we have H[U] ≈δ

G[U] from Assumption 1, we can use Lemma 5.3. This ensures that ω is a (φ, (1+ 1
logn)α, (1+

c)λ, c)-BSCW of G[U]◦. From Definition 5.1, ω = ⊥ implies that G[U]◦ is a φ-expander.

• Return statement in line (12). In this case, Algorithm 3 must have called Algorithm 4, which
in turn returned a pair (S,⊤). Then, Algorithm 4 must have returned in line (12). Denoting
by A the value of the corresponding variable in Algorithm 4 when it returns, we must have A =
X. Also let p ∈ [k+1] be the outer loop iteration where Algorithm 4 returns, letH = (V,E′, w)
be the graph from line (10), and let ω be the result of BalSparseCutα,λ(H[A]◦, (1+ 1

2 logn) ·
φp) in line (6) of the inner loop iteration where the algorithm returns.

As our parameter regime implies c ≤ 1/30, φ < b, b ≤ c, α ≤ 1
2b , and also we have H[A] ≈δp

G[A] from Assumption 2, we can use Lemma 5.3. This ensures that ω is a (φp, (1+
1

logn)α, (1+

50

c)λ, c)-BSCW of G[U]◦ (see Observation 6.3). From Definition 5.1, ω = ⊥ implies that
G[A]◦ = G[X]◦ is a φp-expander. Since p ≤ k + 1, k ≤ log n, and φp is defined as

φp =
φ((

1 + 1
logn

)
α
)p ,

we conclude that G[X]◦ is in fact a ψ-expander with

ψ =
φ((

1 + 1
logn

)
α
)p ≥

φ
((

1 + 1
logn

)
α
)k+1

≥ φ

6αk+1
.

From the above case analysis we conclude that for every X ∈ U , G[U]◦ is a φ/γ-expander with
γ = 6αk+1.

Property (1). We will bound the number of inter-cluster edges by counting the number of edges
cut at every recursion level, and then sum over levels. For convenience, let then D = 9Cλ · log n.
We can then employ Lemma 6.12 (since our set of assumptions matches that of the lemma), which
bounds the recursion depth by D.

Next, for ℓ = 0, 1, . . . ,D, let Iℓ be the set of instances of Algorithm 3 at the ℓ-th level of the
recursion triggered from Decompose(V, 0). Each instance I ∈ Iℓ is a pair I = (U,X), where
U ⊆ V is the input cluster to the instance, and:

1. if the instance returns {U} in line (7), then X = ∅;

2. if the instance makes a recursive call, then ∅ 6= X (U is a set on which the instance invokes
Algorithm 3.

Then, since our set of assumptions matches that of Lemma 6.11, we get that Φ◦
U(X) < (2α+3Cλ)φ

for every ℓ = 0, . . . ,D and every (U,X) ∈ Iℓ such that X 6= ∅. Hence,

for all ℓ = 0, . . . ,D, and all (U,X) ∈ Iℓ, we have ∂UX < (2α + 3Cλ)φ vol◦U (X) . (6.39)

With this notation, define the set of edges cut at level ℓ to be

Cℓ =
⋃

(U,X)∈Iℓ

E(X,U \X) .

Now let µ = (3Cλ+ 2α), and for ℓ = 0, . . . ,D also define

T (ℓ) = µφ vol(V) + 2µ · b
ℓ−1∑

ℓ′=0

T (ℓ′) .

To bound the number of inter cluster edges, we first show that |Cℓ| ≤ T (ℓ), then we resolve the
recurrence T (ℓ), and finally we sum over ℓ = 0, . . . ,D to conclude.

Claim 6.14. For every ℓ = 0, 1, . . . ,D one has |Cℓ| ≤ T (ℓ).

Proof. We prove the statement by induction. At level 0 there can be only one instance (V,X) ∈ I0,
so the number of edges cut is |C0| = ∂VX. By (6.39)

|C0| < µφ vol◦V (X) = µφ vol(X) ≤ µφ vol(V) = T (0) ,

51

thus proving the base case.
Next take any 1 ≤ ℓ ≤ D, and assume that |Cℓ′ | ≤ T (ℓ′) for all ℓ′ = 0, . . . , ℓ− 1. By (6.39) we

know ∂UX < µφ · vol◦U (X) for all (U,X) ∈ Iℓ. Using the definition of vol◦U (X), we get

∂UX < µφ · vol◦U (X) = µφ ·
(
vol(X) +

b− φ
φ

bndU (X)

)
(6.40)

since bndU (X) ≤ ∂U ≤ µφ · vol(X) + µb · ∂U . (6.41)

Observe that the union of all E(U, V \U) on level ℓ is a subset of all edges cut on previous recursion
levels. This means that

∑

(U,X)∈Iℓ

∂U ≤ 2

ℓ−1∑

ℓ′=0

|Cℓ′ | , (6.42)

since every e ∈ Cℓ′ is counted at most twice by the sum over Iℓ.
Using the induction hypothesis and observing that the cuts {X : (U,X) ∈ Iℓ} must be disjoint,

we can upper-bound |Cℓ| as

|Cℓ| =
∑

(U,X)∈Iℓ

∂UX

by (6.41) and disjointness of the X’s < µφ vol(V) + µb
∑

(U,X)∈Iℓ

∂U

by (6.42) ≤ µφ vol(V) + 2µb

ℓ−1∑

ℓ′=0

|Cℓ′ |

by the induction hypothesis ≤ µφ vol(V) + 2µb

ℓ−1∑

ℓ′=0

T (ℓ′)

= T (ℓ) .

thus showing the inductive statement.

Now we solve the recurrence.

Claim 6.15. T (ℓ) ≤ µφ vol(V)(1 + 2µb)ℓ for all ℓ ≥ 0.

Proof. Let ℓ ≥ 1 and assume the statement holds true for all 0 ≤ ℓ′ ≤ ℓ− 1. Then,

T (ℓ) = µφ vol(V) + 2µb
ℓ−1∑

ℓ′=0

T (ℓ′)

≤ µφ vol(V) + 2µb
ℓ−1∑

ℓ′=0

µφ vol(V)(1 + 2µb)ℓ
′

= µφ vol(V)

(
1 + 2µb

ℓ−1∑

ℓ′=0

(1 + 2µb)ℓ
′

)

= µφ vol(V)

(
1 + 2µb

(1 + 2µb)ℓ − 1

1 + 2µb− 1

)

= µφ vol(V)(1 + 2µb)ℓ .

52

Now combing Claim 6.14 and Claim 6.15, one has that the number of inter-cluster edges in U is

∑

U∈U
∂U ≤ 2

D∑

ℓ=0

|Cℓ| ≤ 2

D∑

ℓ=0

T (ℓ) ≤ 2µφ vol(V) · (D + 1) · (1 + 2µb)D ≤ 4µ · φ · vol(V) ·D · e2bµD .

6.2 Dynamic stream implementation

In the previous sections we analysed Algorithm 3 and Algorithm 4 in an ideal, offline setting with
“free” access to sparsifiers. To get Lemma 6.1, we only need to lift this assumption, and combine
lemmas from the previous section.

Lemma 6.1 (Unified algorithm). Let G = (V,E) be a graph given in a dynamic stream, let b ∈ (0, 1)
be a parameter such that b ≤ 1/log n. Let BalSparseCutα,λ be an (α, λ)-BSCA where α ≤ 1

b logn
and λ = O(1). Also let k be an integer such that k ≥ log (n5α)/log (b−1/2/λ), and k ≤ log n.
Then there is an algorithm that maintains a linear sketch of G in Õ(n/b3) · αO(k) space. For all
ǫ ∈ [n−2, b log n], the algorithm decodes the sketch using BalSparseCutα,λ to compute, with high
probability, a (b, ǫ, φ, γ)-BLD of G for

φ = Ω

(
ǫ

α log n

)
and γ = O(αk+1) .

Moreover, the decoding runs in Õ(n/b3)·αO(k)+S(n, Õ(n/b2)·αO(k)) space and T (n, Õ(n/b2)·αO(k))·
poly(n) time, where S(p, q) and T (p, q), denote the space and time complexity of BalSparseCutα,λ
on a graph with p vertices and q edges respectively. Furthermore, the decoding only makes calls to
BalSparseCutα,λ(·, ψ) with sparsity parameters ψ ∈ (0, 1) that satisfy ψ ≤ 1

10α .

Proof. Let C = 40, c = 1/40, and define the quantities D = 9Cλ · log n, δ = c2b/ log n, and
δj = δ · (α(1 + 1/ log n))−j for j ∈ [k + 1]. We process the stream as follows.

1. We maintain D + 1 independent samples from the distribution Dδ using the algorithm of
Lemma 4.2, resulting in a collection of sparsifiers Hℓ for 0 ≤ ℓ ≤ D.

2. For every j ∈ [k + 1], we maintain (D + 1) · 1/b samples from the distribution Dδj using
the algorithm of Lemma 4.2, resulting in a collection of sparsifiers Hℓ,j,h for 0 ≤ ℓ ≤ D,
j ∈ [k + 1], h ∈ [1/b].

After having processed the stream as described above, we want to use Algorithm 3 and Algorithm 4
to decode these samples into a BLD. In Algorithm 3 and Algorithm 4 we have hardwired parameters
k, α, λ,C, c: the parameters k, α, λ are as in the lemma statement, and C, c are set as defined above
(i.e. C = 40, c = 1/40). Algorithm 3 and Algorithm 4 also use BLD parameters b, φ: b is just the
value in the lemma statement, and we set

φ =
ǫ

4(3Cλ+ 2α) ·D · e2b(3Cλ+2α)D
.

The only thing left to specify about the algorithms is the sparsifier-access. Since we process the
stream by essentially computing a number of sparsifiers, there is a natural way to do this: for
0 ≤ ℓ ≤ D, we define the procedure Sparsifierc

ℓ(U, ·) from line (5) in Algorithm 3 to return Hℓ

for every U ⊆ V ; similarly, for 0 ≤ ℓ ≤ D, j ∈ [k + 1], h ∈ [1/b], we define the procedure
Sparsifierc

ℓ,j,h(A, ·) from line (10) in Algorithm 4 to return Hℓ,j,h for every A ⊆ V .

53

Correctness. Since C, λ = O(1), αb ≤ 1/ log n, D = O(log n), one can see that φ = Ω(ǫ
α logn).

From this value of φ we also get φ < b, since C, λ, α ≥ 1, ǫ ≤ b log n, the exponential is at least 1, and
D > log n . Then, our parameter regime has all the conditions for using Lemma 6.12, Lemma 6.9,
Lemma 6.13: we have an (α, λ)-BSCA BalSparseCutα,λ, φ < b, b ≤ 1/ log n ≤ c ≤ 1/30,
C ≥ 31, α ≤ 1

b logn ≤ 1
144Cλb ≤ 1

2b , λ = O(1) so λ ≤ min{ 1
18b ,

1
15C

√
b
, c
2b}, k ≥

logn5α
log b−1/2/λ

implies

k ≥ log n2

φ / log
c
λ·b (since φ = Ω(ǫ

α logn), ǫ ≥ 1/n2, and c is a constant), and k ≤ log n. We now just
want to lift Assumption 1 and Assumption 2, so as to apply these lemmas. From our definition of
Sparsifierℓ(U, ·) and Sparsifierℓ,j,h(A, ·) above, we have the following claim.

Claim 6.16. Assumptions 1 and 2 hold with high probability as long as ℓ ≤ D and h ≤ 1/b.

Proof. The claim follows from the way we process the stream, described above, and from our
definition of Sparsifierc

ℓ(U, ·) and Sparsifierc
ℓ,j,h(A, ·).

• For every 0 ≤ ℓ ≤ D and any U ⊆ V , Sparsifierc
ℓ(U, ·) outputs the graph Hℓ, independently

sampled from Dδ. Algorithm 3 only calls Sparsifierc
ℓ(U, b) for a cluster U that was found

using randomness from levels before ℓ (simply by the description of the algorithm, see recursive
calls in lines (9), (12), (14) of Algorithm 3). Thus, by Lemma 4.2 we know that Hℓ[U] ≈δ G[U]
with high probability. Since there can be at most n calls to Sparsifierc

ℓ(U, b) for any ℓ, we
can conclude that Hℓ works for each of them with high probability.

• For every 0 ≤ ℓ ≤ D, j ∈ [k + 1], h ∈ [1/b] and any A ⊆ V , Sparsifierc
ℓ,j,h(A, ·) outputs

the graph Hℓ,j,h, independently sampled from Dδj . Similarly as before, we can see from
the description of Algorithm 4 that Sparsifierc

ℓ,j,h(A, bj) can only be called on a cluster A
that depends on the randomness of a previous level (in case A equals the input cluster U
to Algorithm 4) or a previous iteration (in case A was updated in line (16)). Thus, A is
independent from Hℓ,j,h. Thus, by Lemma 4.2 we know that Hℓ,j,h[A] ≈δj G[A] with high
probability. Also in this case there can be at most n calls to Sparsifierc

ℓ,j,h(A, bj) for any
triple ℓ, j, h, so Hℓ,j,h works for each of them with high probability.

Provided Assumption 1 and Assumption 2 hold, Lemma 6.12 and Lemma 6.9 are guaranteeing
that there is no point in the execution of the algorithm with recursion level ℓ larger than D or
with inner loop index h (see line (9)) larger than 1/b. On the other hand, Claim 6.16 ensures that
Assumption 1 and Assumption 2 hold with high probability as long as ℓ ≤ D and h ≤ 1/b. Hence,
we have that the results from Lemma 6.12, Lemma 6.9, Lemma 6.13 hold simultaneously with high
probability. In particular, the output U of Decompose(V, 0) is a (b, ǫ, φ, γ)-BLD of G with high
probability for γ = O(αk+1) (note that we set φ exactly by rearranging the value of ǫ given by
Lemma 6.13).

Space complexity. The space requirement for processing the stream is dominated by the spar-
sifiers that we maintain, plus the space used by any call to BalSparseCutα,λ for the decoding
phase. From Lemma 4.2 we know that sampling from Dδ can be done by maintaining a linear
sketch of Õ(n/δ2) bits, and sampling from Dδj can be done maintaining a linear sketch of Õ(n/δ2j)
bits. Since we maintain D + 1 samples from Dδ, and (D + 1) · 1/b samples from Dδj for every
j ∈ [k + 1], the space complexity for processing the stream is

(D + 1) · Õ
(n
δ2

)
+ (D + 1) · 1

b
·
k+1∑

j=1

Õ

(
n

δ2j

)
.

54

Because we defined D = 9Cλ · log n, δ = c2b/ log n, δj = δ · (α(1 + 1/ log n))−j , and we have
C, λ = O(1), k = O(log n), c = Ω(1), we use at most

O(log n)Õ
(n
b2

)
+O(log n)O

(
1

b

)
O(k) · Õ

(n
b2

)
· αO(k) = Õ

(n
b3

)
· αO(k)

bits of space for the sparsifiers. Finally, note that Algorithms 3 and 4 run BalSparseCutα,λ on
sparsifiers with at most n vertices and at most

max

{
Õ(n/δ2), max

j∈[k+1]

{
Õ(n/δ2j)

}}
= Õ

(n
b2

)
· αO(k)

edges, by Lemma 4.2. As we can reuse the space for each call, this takes an extra S(n, Õ(n/b2)αO(k))
bits of space, leading to the claimed space complexity for the decoding.

Time complexity. Throughout the recursion of Decompose(V, 0), Algorithms 3 and 4 make at
most poly(n) calls to BalSparseCutα,λ. As noted above, each of these calls is on a graph with
at most n vertices and Õ(n/b2)αO(k) edges. Lemma 4.2 also guarantees that decoding the linear
sketch to get a sample from Dδ and Dδj takes poly(n) time. Hence the running time of the decoding
is poly(n) · T (n, Õ(n/b2)αO(k)).

Sparsity parameter in BSCA calls. By the way we set φ and by definition of the algorithm,
we have that every call to BalSparseCutα,λ(·, ψ) is made with a sparsity parameter ψ ∈ (0, 1)
that is ψ ≤ φ ≤ 1

10α .

7 Lower bound for two-level expander decomposition

The goal of this section is to show that repeatedly computing EDs on the inter-cluster edges
necessarily incurs a dependence on the sparsity parameter. Formally, the result is the following.

Theorem 3 (RED lower bound). Let ℓ ≥ 2 and let ǫ, φ ∈ (0, 1) such that ǫ = 1 − Ω(1), φ ≤ ǫ,
and φ ≥ C · max{ǫ2, 1/n} for a large enough constant C > 0. Any streaming algorithm that with
probability at least 9/10 computes an ℓ-level (ǫ, φ)-RED requires Ω(n/ǫ) bits of space.

By Yao’s minimax principle, it is sufficient to give a distribution G over graphs with vertex set V
such that any deterministic streaming algorithm that computes, with probability at least 0.9, an
(ǫ, φ, ℓ)-RED of G ∼ G takes Ω(n/ǫ) bits of space. We are not going to use the fact that the stream
can be dynamic to show the lower bound, so any stream that reveals the edges of G ∼ G in an
arbitrary order serves our purposes.

We then proceed as follows. In Section 7.1 we describe our hard distribution over graphs, and
show a structural property of its two-level (ǫ, φ)-RED. In Section 7.2 we introduce a communication
problem, recover, and show a reduction to RED. Finally, in Section 7.3 we give a communication
lower bound for recover. We combine these results into proving Theorem 3 in Section 7.4.

7.1 Hard distribution

The randomness of our hard distribution G arises from sampling Erdős-Rényi graphs. We recall
the definition for convenience of the reader.

55

Definition 7.1. Let N be an integer and let p ∈ [0, 1]. The distribution of Erdős-Rényi graphs
ER(N, p) is the distribution over N -vertex graphs H = (U,F) where each pair e ∈

(U
2

)
is in F with

probability p independently of other pairs.

Let d,m be integers such that 3 ≤ d < m < n. We now define our hard distribution G over n-vertex
graphs G = (V,E), and we illustrate it in Figure 4.

Definition 7.2 (Distributions G and G′). We partition V = [n] arbitrarily into two sets S and T
with n/2 vertices each, and further partition S into n/m sets S1, . . . , Sn/m with m/2 vertices each.
The distribution Gn,d,m is supported over graphs G = (V,E) where E is defined as follows.

1. For each i ∈ [n/m], the induced subgraph G[Si] is sampled independently from the Erdős-
Rényi distribution ER(m/2, 4d/m) (see Definition 7.1 above). We denote by G′n,d,m the dis-
tribution of the subgraph G[S], i.e. G′n,d,m = ER(m/2, 4d/m)⊗n/m.

2. The induced subgraph G[T] is a fixed d-regular ψ-expander, for ψ = Ω(1) independent of
d,m, n.

3. We fix for convenience an arbitrary labelling si,1, . . . , si,m/2 of the vertices in each Si, i ∈
[n/m], and we sample K ∼ UNIF([m/2]). Then, for every i ∈ [n/m], we add dm/2 edges
from si,K to T so that each t ∈ T has d incident edges in E(S, T) (one way to do so is by
partitioning T into n/(dm) subsets T1, . . . , Tn/(dm) with dm/2 vertices each and connecting
si,K to each vertex of T⌈i/d⌉ for every i ∈ [n/m]).

Since the parameters n, d,m are fixed hereafter, we may drop the subscript from Gn,d,m and G′n,d,m
and simply denote them by G and G′ respectively.

Roughly speaking, our hard instances should be composed of n/m regular expanders that are
densely connected to T , which is also an expander, through a selection of “special” vertices. We
will show that the hardness arises from recovering information about certain important vertices
and edges, defined below and also illustrated in Figure 4.

Definition 7.3 (Important vertices and edges). Let G = (V,E) ∈ supp(G). Denote by k ∈ [m/2]
the unique index such that {si,k : i ∈ [n/m]} = {s ∈ S : {t ∈ T : {s, t} ∈ E} 6= ∅}. Then, we define
the set of important vertices V ∗ = {si,k : i ∈ [n/m]} to be the set of vertices of S that are adjacent
to T , and define the set of important edges E∗ = {{u, v∗} : u ∈ S , v∗ ∈ V ∗} to be the set of edges
in the induced subgraph G[S] that are incident on V ∗.

Remark 1. Note that any sample G ∼ G can be defined by (G′,K), where G′ = (S,E′) is the
graph consisting of the disjoint union of the subgraphs (G[Si])i∈[n/m], and K ∈ [m/2] is the random
index determining the important vertices and edges. This is because the edges within G[T] are the
same for all G ∼ G, and the edges E(S, T) are determined by K. By virtue of this observation we
abuse notation and write G = (G′,K) ∼ G. Moreover, for any (G′,K) ∼ G one has G′ ∼ G′, and
conversely, for any G′ ∼ G′ and K ∼ UNIF([m/2]) one also has (G′,K) ∼ G.

In the remainder of the section, we call a graph (1±δ)∆-regular for an integer ∆ > 0 and δ ∈ [0, 1],
if each of its vertices has degree in the range [(1− δ)∆, (1 + δ)∆]. With this terminology, we show
that in any valid (ǫ, φ)-ED of G, most of the important edges are crossing edges, as depicted in
Figure 5. This works under the assumption that each G[Si] is a near-regular expander.

56

S1

Sn/m

T is an expander

s1,K

sn/m,K

Si

si,K

degree from vertices in T to the LHS is ddegree from si,K to the RHS is dm/2

. . .
. . .

Figure 4: Illustration of the graph we use for proving the lower bound. Thick bullets represent
important vertices, thick lines represent important edges, dotted lines represent edges connecting
the important vertices to T .

Lemma 7.4. Let G = (V,E) ∈ supp(G), and let ǫ, φ ∈ (0, 1) such that ǫ ≤ 10−5 · ψ · d
m and

φ ≥ 11/m. If n ≥ 100m, m ≥ 500, and every subgraph (G[Si])i∈[n/m] is a (1 ± 1/10)2d-regular
1
3-expander, then any (ǫ, φ)-ED U of G satisfies

|E∗ \ U| ≥ 4

5
· |E∗| .

Proof. Let G = (V,E) ∈ supp(G) and let k ∈ [m/2] such that the important vertices are si,k for
i ∈ [n/m] (note that such value of k can be uniquely inferred from seeing G since the ordering of
the vertices is fixed). Note that by Definition 7.2 together with our assumption, the graph G has
at most 11/10 · dn/2 + 3/4 · dn ≤ 1.3dn edges.

Hereafter, let U be any (ǫ, φ)-ED of G. We begin by arguing that there is a giant cluster in U
that covers most of T and most of the important vertices.

Claim 7.5. There is a component U∗ ∈ U such that

|T ∩ U∗| ≥
(
1− 12

ǫ

ψ

)
|T | and |V ∗ ∩ U∗| ≥

(
1− 12

ǫ

ψ

)
|V ∗| .

Proof. For any valid (ǫ, φ)-ED U , we must have |E \ U| ≤ ǫ · 1.3dn. Since G[T] is a d-regular
ψ-expander, there is a component U∗ ∈ U that contains at least (1 − 3ǫ/ψ) · n/2 vertices from T ,
i.e.

|T ∩ U∗| ≥
(
1− 3

ǫ

ψ

)
· n
2
=

(
1− 3

ǫ

ψ

)
|T | .

To see why, note that if this was not the case then we could construct a cut S = ∪U∈U ′U ∩ T
for some U ′ ⊆ U such that 3ǫ/ψ · |T | < |S| ≤ |T |/2 and conclude that there would be at least
ψ volG[T](S) > ǫ · 1.5dn edges crossing U .

57

First level ED Second level ED

U
∗

.
.
.

.
.
.

.
.
.

.
.
.

Figure 5: Illustration of the ideal expander decomposition of the graph. Thick bullets represent
important vertices, smaller bullets represent ordinary vertices, thick lines represent important edges,
dotted lines represent the rest of the edges. Grey areas represent the clusters in the decomposition.

Since each vertex in T has an edge to d important vertices (see Definition 7.2), there are at
least (1− 6ǫ/ψ) · n/m important vertices with at least dm/4 neighbours in U∗ ∩ T , i.e.

∣∣∣
{
s ∈ V ∗ : |{t ∈ U∗ ∩ T : {s, t} ∈ E}| ≥ 1

4
dm
}∣∣∣ ≥

(
1− 6

ǫ

ψ

)
· n
m

=

(
1− 6

ǫ

ψ

)
· |V ∗| .

To see why, note that if this was not the case, we would have |{s, t} ∈ E : s ∈ V ∗ , t ∈ T \ U∗}| to
be larger than (6ǫ/ψ · n/m) · dm/4, which is impossible since every t ∈ T has d incident edges in
E(S, T) and |T \ U∗| ≤ 3ǫ/ψ · n/2.

Now, because most of the important vertices have many edges to T ∩ U∗, most of these should
also be in U∗, otherwise too many edges would cross: since |E \ U| ≤ ǫ · 1.3dn, there must be at
most 6ǫ/ψ · n/m+ ǫ·1.3dn

dm/4 ≤ 12ǫ/ψ · n/m important vertices that are not in U∗, i.e.

|V ∗ ∩ U∗| ≥
(
1− 12

ǫ

ψ

)
· n
m

=

(
1− 12

ǫ

ψ

)
· |V ∗| .

We want to confine our attention to important vertices whose corresponding subgraph G[Si] locally
preserves property (1) of Definition 1.1, i.e. has few inter-cluster edges as compared to its own
volume. Formally, we consider the set of good vertices, defined as

V ∗
g =

{
si,k ∈ V ∗ : si,k ∈ U∗ ,

∣∣∣∣(E \ U) ∩
(
Si
2

)∣∣∣∣ ≤ 200ǫdm

}
. (7.1)

We next show that the subgraph G[Si] corresponding to a good vertex is covered almost entirely
by a single cluster, except the good vertex itself which is assigned to U∗.

Claim 7.6. Let si,k ∈ V ∗
g . Then, there is a cluster U ∈ U such that

si,k /∈ U and |U ∩ Si| ≥ (1− 700ǫ) |Si| .

58

Proof. Since G[Si] is a (1 ± 1/10)2d-regular 1
3 -expander by assumption, there is at least one com-

ponent U ∈ U containing at least (1− 700ǫ)m/2 vertices in Si, i.e.

|U ∩ Si| ≥ (1− 700ǫ)
m

2
= (1− 700ǫ) |Si| , (7.2)

To see why, note that if this was not the case we could construct a cut R = ∪W∈U ′W ∩Si for some
U ′ ⊆ U such that 10/9 · 700ǫ · |Si| < |R| ≤ 9/11 · |Si|/2 and conclude that there would be at least
1/3 · volG[Si](R) > 230ǫdm edges crossing U inside Si, contradicting the fact that si,k ∈ V ∗

g (see the
definition in (7.1)).

Hereafter, let U ∈ U be the cluster that satisfies (7.2) (which is unique, since ǫ ≤ 10−5). We
know from Claim 7.5 that there is a cluster U∗ ∈ U that contains all good vertices (by definition of
good vertex, see (7.1)) and that covers most of T . To show that si,k /∈ U , we leverage the fact that
si,k ∈ U∗ and that G[U∗] must be a φ-expander by property (2) of Definition 1.1. Suppose towards
a contradiction that U∗ = U , and let Q = (U∗ ∩Si) \ {si,k}. Because G[Si] is (1± 1/10)2d-regular,
the volume of this set in G[U∗] is at least

volG[U∗](Q) ≥ − degG[Si](si,k) +
∑

u∈U∗∩Si

degG[U∗∩Si](u)

≥ −11

10
2d+

∑

u∈U∗∩Si: degG[U∗∩Si]
(u)≥(1−600ǫ) degG[Si]

(u)

degG[U∗∩Si](u) .

We next observe that the sum above has at least |U∗ ∩ Si|/2 many terms, for if this was not the
case we would have at least 300ǫ|U∗ ∩Si| · 9/10 · 2d ≥ 200ǫdm edges from U∗ ∩Si to Si \U∗, which
would contradict si,k ∈ V ∗

g (see the definition in (7.1)). We then continue from above and hence
get

volG[U∗](Q) ≥ −11

10
2d+

1

2
|U∗ ∩ Si| · (1− 600ǫ) degG[Si](u)

≥ −11

10
2d+

1

2
|U∗ ∩ Si| · (1− 600ǫ)

9

10
2d

since |Si ∩ U∗| ≥ (1− 700ǫ)|Si| ≥ −11

10
2d+

9

10
2d

1

2
(1− 1400ǫ)

m

2
.

Moreover, we know that |U∗ ∩ T | ≥ (1 − 3ǫ/ψ)n/2 ≥ (1 − 1/8000)n/2 by our assumption on ǫ, so
the fact that G[T] is d-regular implies volG[U∗](U

∗) ≥ volG[U∗∩T](U
∗ ∩ T) ≥ dn/10. Also, by near-

regularity of G and because m ≤ n/100, we have volG[U∗](Q) ≤ 3d ·m/2 < dn/20 ≤ 1
2 volG[U∗](U

∗).
This means that Q is the smaller side of the cut. On the other hand, the number of edges crossing
the cut Q in G[U∗] is too small, since vertices in Q can only connect to the rest of U∗ through
edges incident on si,k, i.e.

∂U∗Q = degG[Si](si,k) ≤
11

10
2d .

Therefore, Ui = U∗ implies

ΦG[U∗] ≤ ΦG[U∗](Q) =
∂U∗Q

volG[U∗](Q)
≤

11
102d

9
10d (1− 1400ǫ) m

2 − 11
102d

≤ 10

m
< φ ,

a contradiction. Here we used that m ≥ 500, φ ≥ 11/m, and ǫ ≤ 10−5.

59

By virtue of Claim 7.6, we have the following setting: for every good vertex si,k ∈ V ∗
g , there is

one component U covering a (1− 700ǫ) fraction of Si except si,k itself. Therefore, many important
edges incident on each good vertex are crossing edges, i.e.

{{s, s′} ∈ E∗ : s = si,k, s
′ /∈ U∗} ⊆ E(U∗ ∩ Si, Si \ U∗) ⊆ E \ U for all si,k ∈ V ∗

g ,

and
|U∗ ∩ Si| ≤ |U \ Si| ≤ 700ǫ|Si| = 700ǫ

m

2
for all si,k ∈ V ∗

g .

In particular, the above conditions implies that, among the important edges incident on each good
vertex, at most 700ǫ ·m/2 of them can land in the same cluster U∗ as the good vertex itself, i.e.

|{{s, s′} ∈ E∗ : s = si,k, s
′ /∈ U∗}| ≥ 9

10
2d− 700ǫ

m

2
for all si,k ∈ V ∗

g . (7.3)

If there are many good vertices, we can conclude that a lot of the important edges are crossing.

Claim 7.7. One has |V ∗
g | ≥ 49

50 |V ∗|.

Proof. Since the number of crossing edges is |E \ U| ≤ ǫ · 1.3dn, one has

∣∣∣∣
{
si,k ∈ V ∗ :

∣∣∣∣(E \ U) ∩
(
Si
2

)∣∣∣∣ ≤ 200ǫdm

}∣∣∣∣ ≥
(
1− 1

100

)
n

m
=

(
1− 1

100

)
|V ∗| . (7.4)

Combining Claim 7.5 and the above bound, we know V ∗
g to be large:

|V ∗
g | ≥

(
1− 12

ǫ

ψ
− 1

100

)
· |V ∗| ≥

(
1− 1

50

)
· |V ∗| ,

where we use the assumption that ǫ ≤ 10−5 · ψ · d
m .

By Claim 7.7 and the bound in (7.3), we can conclude the proof:

|E∗ \ U| ≥
∑

si,k∈V ∗
g

|{{s, t} ∈ E∗ : s = si,k}| ≥
(

9

10
− 700ǫ

m

2

1

2d

)
2d · |V ∗

g | ,

and by Claim 7.7 we get

|E∗ \ U| ≥
(

9

10
− 700ǫ

m

2

1

2d

)
2d · 49

50
· n
m
≥ 4

5
· |E∗| ,

where we used ǫ ≤ 10−5ψ d
m in the last inequality.

7.2 Reduction to a communication problem

We introduce the two-party one-way communication problem recover, defined as follows.

Definition 7.8 (Communication problem recover). Let ξ > 0 be a real parameter. In the
communication problem recoverξ, Alice’s input is a graph G′ = (S,E′), and Bob’s output is a set

of pairs of vertices F ⊆
(S
2

)
such that

1. |F | ≤ 6ξ · |E′|, and

2. at least a 1/10 fraction of the pairs in F are edges of G′, i.e. |F ∩ E′| ≥ 1/10 · |E′|.

60

We give a reduction from recoverǫm to (ǫ, φ, 2)-RED, in the setting where Alice’s input G′ is
an n/2-vertex graph drawn from G′. We recall that G′ = G′n,d,m = ER(m/2, 4d/m)⊗n/m is the
distribution over n/2-vertex graphs G′ = (S,E′) consisting of the disjoint union of n/m disjoint
Erdős-Rényi graphs on m/2 vertices (see Definition 7.2). We then begin by verifying that, with
high probability, an input G′ ∼ G′ is a collection of n/m nearly regular expanders.

Lemma 7.9. Let G′ ∼ G′. If m ≥ 500 and d ≥ 600 log n then, with probability at least 1− 1/n, for
every i ∈ [n/m] one has that the subgraph G′[Si] is a (1± 1/10)2d-regular 1/3-expander

Proof. The statement follows from the following fact about Erdős-Rényi graphs, whose proof is
deferred to Appendix A.2.

Fact 7.10. Let N ≥ 10 be an integer and p ∈ [0, 1]. Then, letting d̄ = p(N − 1) one has

Pr
H=(U,F)∼ER(N,p)

[(
ΦH <

1

3

)
or

(
∃u ∈ U s.t.

∣∣degH(u)− d̄
∣∣ > 1

11
d̄

)]
≤ 4N · exp

(
− pN
600

)
.

In our case, each subgraph G′[Si] is drawn from ER(m/2, 4d/m), and note that m/2 ≥ 250 ≥ 10,
thus meeting the precondition of Fact 7.10. Hence, for any i ∈ [n/m] Fact 7.10 gives

Pr

[(
ΦG′[Si] <

1

3

)
or

(
∃u ∈ Si s.t.

∣∣∣degG′[Si](u)− 2d
∣∣∣ > 1

10
2d

)]
≤ 2m · exp

(
− d

300

)
,

where we used m ≥ 500 to express the degree bounds in terms of 2d instead of d̄. Therefore, taking
a union bound gives

Pr

[
∀ i ∈ [n/m] ,

(
ΦG′[Si] ≥

1

3
and ∀u ∈ Si ,

∣∣∣degG′[Si](u)− 2d
∣∣∣ ≤ 1

10
2d

)]
≥ 1− 1

n
,

where we used d ≥ 600 log n ≥ 600 ln n.

By virtue of the above, most of Alice’s inputs can be embedded into a sample from G where a large
fraction of important edges are inter-cluster edges of any ED, as per Lemma 7.4. This will allow
Alice and Bob to solve recoverǫm.

Reduction 7.11. Let A be a deterministic streaming algorithm for computing a 2-level (ǫ, φ)-RED
of a graph given in a stream of edges. For a graph G′ = (S,E′) ∼ G′, we reduce recoverǫm to
computing a 2-level (ǫ, φ)-RED as follows. Alice instantiates A for the vertex set V , and feeds her
edges E′ and the fixed edges of G[T] to A. Then, she sends the memory state Π of A to Bob. Then,
Bob instantiates m/2 copies of A, call them A1, . . . ,Am/2, and sets the memory state of them to Π.
Next, for each k ∈ [m/2] let Gk = (V,Ek) be the graph defined by (G′, k), and note that Bob knows
the edges between S and T (see Definition 7.2). Then, Bob feeds the edges Ek(S, T) to Ak. For each
k ∈ [m/2], let Uk

1 ,Uk
2 be the output of Ak. Bob finally constructs his output set F as follows: for

each k ∈ [m/2], if the number of non-isolated vertices in Uk
2 is at most 3ǫdn, add the pair {s, si,k}

to F for every i ∈ [n/m] and every s ∈ Si that is not an isolated vertex in Uk
2 . More formally, for

a partition U of V , let V \ U = {u ∈ V : {u} /∈ U} be the set of non-isolated vertices in U . With
this notation, Bob outputs

F =
⋃

k∈[m/2]:|V \Uk
2 |≤3ǫdn

Fk , with Fk =
{
{s, si,k} : i ∈ [n/m], s ∈ Si ∩ (V \ Uk

2)
}
. (7.5)

We remark that if Bob learns the important edges E∗
k for all k ∈ [m/2], then he learns all of E′.

61

Remark 2. In the setting of Reduction 7.11, we have E′ =
⋃

k∈[m/2]E
∗
k and |E′| = 1

2

∑
k∈[m/2] |E∗

k |.

As suggested by Remark 2, it is enough to ensure that each instance Ak recovers the important
edges of Gk in order for Bob to learn the edges of G′. We in particular restrict ourselves to indices k
for which the algorithm Ak, the graph Gk, and the RED Uk

1 ,Uk
2 are well behaved, as defined below.

Definition 7.12. In the setting of Reduction 7.11, for every k ∈ [m/2] let Pk be the property that

Uk
1 ,Uk

2 is an (ǫ, φ, 2)-RED of Gk ,
∣∣∣E∗

k \ Uk
1

∣∣∣ ≥ 4

5
· |E∗

k | , |E∗
k | ≥

9

5

dn

m
, |Ek| ≤ 1.3dn . (7.6)

We first show a preliminary result: if there are many k ∈ [m/2] that satisfy Pk, then Bob’s output
set contains many edges of G′.

Lemma 7.13. In the setting of Reduction 7.11, if ǫ ∈ (0, 1) satisfies ǫ ≤ 1
30

√
m
, then

|E′ ∩ F | ≥ 49

100

dn

m
|{k ∈ [m/2] : Pk}| .

Proof. Recall from Reduction 7.11 that F is made by the union of Fk over k ∈ [m/2]. We then
first give a guarantee on the Fk’s individually.

Claim 7.14. Let k ∈ [m/2] such that Pk holds. Then

1. |V \ Uk
2 | ≤ 3ǫdn, and

2. |Fk ∩ (E∗
k \ Uk

1)| ≥ dn
m − ǫ2 · 1.3dn.

Proof of (1). Since Pk is verified, Uk
1 ,Uk

2 is an (ǫ, φ, 2)-RED of Gk (see Definition 7.12). By def-
inition of RED (see Definition 3.2), we know |Ek \ Uk

1 | ≤ ǫ|Ek|. Moreover, one can note that the
number of non-isolated vertices in Uk

2 is at most twice the number of edges in Ek \ Uk
1 . This is

because every non isolated vertex must have at least one edge incident on it in Ek \ Uk
1 (which is

the input to the second level ED), as otherwise property (2) of Definition 1.1 would be violated for
any φ > 0. Thus,

|V \ Uk
2 | ≤ 2|Ek \ Uk

1 | ≤ 2ǫ|Ek| ≤ 3ǫdn ,

where the last inequality follows because |Ek| ≤ 1.3dn (see Definition 7.12).

Proof of (2). From part (1), together with the assumptions that Uk
1 ,Uk

2 is an (ǫ, φ, 2)-RED of Gk

and |Ek| ≤ 1.3dn (see Definition 7.12), we have

∣∣∣V \ Uk
2

∣∣∣ ≤ 3ǫdn and
∣∣∣Ek \ Uk

2

∣∣∣ =
∣∣∣
(
Ek \ Uk

1

)
\ Uk

2

∣∣∣ ≤ ǫ
∣∣∣Ek \ Uk

1

∣∣∣ ≤ ǫ2 · |Ek| ≤ ǫ21.3dn .

We want to argue that many of the important edges E∗
k of Gk are present in the set of pairs Fk (see

Reduction 7.11). To do this, we make the following observation for any edge {s, s′} ∈ E∗
k \ Uk

1 : if
none of s, s′ is an isolated vertex in Uk

2 , i.e. {s} /∈ Uk
2 and {s′} /∈ Uk

2 , then {s, s′} ∈ Fk; otherwise, if
{s} ∈ Uk

2 or {s′} ∈ Uk
2 , then {s, s′} ∈ (Ek \ Uk

1) \ Uk
2 (and this is because Uk

2 is an ED of the graph
(V,Ek \ Uk

1) and {s, s′} ∈ Ek \ Uk
1 by assumption). Therefore,

|Fk ∩ (E∗
k \ Uk

1)| ≥ |E∗
k \ Uk

1 | − |(Ek \ Uk
1) \ Uk

2 | . (7.7)

To conclude the claim, we use again the property Pk: since Uk
1 ,Uk

2 is an (ǫ, φ, 2)-RED of Gk, we
have ∣∣∣(Ek \ Uk

1) \ Uk
2

∣∣∣ ≤ ǫ|Ek \ Uk
1 | ≤ ǫ2 · |Ek| .

62

Using again Pk, we know |E∗
k \ Uk

1 | ≥ 4
5 · |E∗

k |, |E∗
k | ≥ 9

5dn/m, and |Ek| ≤ 1.3dn, so from (7.7) we
conclude

|Fk ∩ (E∗
k \ Uk

1)| ≥ |E∗
k \ Uk

1 | − |(Ek \ Uk
1) \ Uk

2 | ≥
4

5
· |E∗

k | − ǫ21.3dn ≥
dn

m
− ǫ21.3dn . (7.8)

From the definition of Bob’s output F (see Reduction 7.11) and by Remark 2, one has

|E′ ∩ F | =

∣∣∣∣∣∣

⋃

k∈[m/2]

E∗
k

 ∩

⋃

k∈[m/2]:|V \Uk
2 |≤3ǫdn

Fk

∣∣∣∣∣∣
≥

∣∣∣∣∣∣

⋃

k∈[m/2]:|V \Uk
2 |≤3ǫdn

(E∗
k ∩ Fk)

∣∣∣∣∣∣

by Remark 2 ≥ 1

2

∑

k∈[m/2]:|V \Uk
2 |≤3ǫdn

|E∗
k ∩ Fk| ,

and we finish using Claim 7.14:

|E′ ∩ F | ≥ 1

2

∑

k∈[m/2]:|V \Uk
2 |≤3ǫdn

|E∗
k ∩ Fk|

by part (1) of Claim 7.14 ≥ 1

2

∑

k∈[m/2]:Pk holds

|E∗
k ∩ Fk| ,

and then

|E′ ∩ F | ≥ 1

2

∑

k∈[m/2]:Pk holds

|E∗
k ∩ Fk| ≥

1

2

∑

k∈[m/2]:Pk holds

∣∣∣(E∗
k \ Uk

1) ∩ Fk

∣∣∣ ,

so by part (2) of Claim 7.14 we have

|E′ ∩ F | ≥ 1

2

∑

k∈[m/2]:Pk holds

(
dn

m
− ǫ2 · 1.3dn

)
≥ 49

100

dn

m
|{k ∈ [m/2] : Pk}| ,

where we used ǫ ≤ 1
30

√
m

in the last inequality.

Finally, we prove that an efficient RED algorithm gives an efficient recover protocol, using the
lemma we just showed.

Lemma 7.15. Let ǫ, φ ∈ (0, 1) such that ǫ ≤ min{10−5ψ d
m ,

1
30

√
m
} and φ ≥ 11/m. If n ≥ 100m,

m ≥ 500, d ≥ 600 log n, and there is a deterministic L-bit space streaming algorithm A that com-
putes an (ǫ, φ, 2)-RED with probability at least 9/10 over inputs G ∼ G, then there is a deterministic
protocol that solves recoverǫm with probability at least 3/5 over inputs G′ ∼ G′ with communica-
tion complexity at most L.

Proof. The protocol is given by Reduction 7.11. We observe that the communication complexity
bound immediately follows, since A has space complexity L by assumption, and Alice only sends
to Bob the state of the algorithm.

We now focus on proving correctness of the protocol with constant probability. We do this
by first proving that F satisfies each of the two properties of Definition 7.8 provided that some
conditions hold, and then verify that such conditions occur with constant probability.

63

Claim 7.16 (Property (1) of Definition 7.8). If |{k ∈ [m/2] : Pk}| ≥ m
3 , then |F | ≤ 6 · ǫm|E′|.

Claim 7.17 (Property (2) of Definition 7.8). If |{k ∈ [m/2] : Pk}| ≥ m
3 , then |F ∩E′| ≥ 1/10 · |E′|.

Claim 7.18. One has PrG′∼G′ [|{k ∈ [m/2] : Pk}| ≥ m/3] ≥ 3/5.

By Claim 7.16 and Claim 7.17, the protocol given by Reduction 7.11 succeeds provided that the
input G′ satisfies |{k ∈ [m/2] : Pk}| ≥ m

3 . By Claim 7.18, the latter condition is verified with prob-
ability at least 3/5. The lemma statement is then proven, modulo showing Claim 7.16, Claim 7.16,
and Claim 7.18, which we do next.

Proof of Claim 7.16. As per Reduction 7.11, F is the union of Fk = {{s, si,k} : i ∈ [n/m], s ∈
Si∩ (V \Uk

2)} over k such that |V \Uk
2 | ≤ 3ǫdn. Note that |{{s, si,k} : i ∈ [n/m], s ∈ Si∩ (V \Uk

2)}|
is in fact upper-bounded by |V \ Uk

2 |. One then gets that |F | ≤ 3ǫdnm
2 . In order to relate this

bound to |E′|, we use our assumption: for at least m/3 values of k ∈ [m/2], |E∗
k | ≥ 9/5 · dn/m. By

Remark 2, this means |E′| ≥ 1/2·m/3·(9/5·dn/m) = 3/10·dn, so one concludes |F | ≤ 6ǫ|E′|m.

Proof of Claim 7.17. We can use Lemma 7.13, since our bound on ǫ ensures the precondition of
the lemma. We then have |E′ ∩ F | ≥ 49

100
dn
m |{k ∈ [m/2] : Pk}|. Now, we conclude the claim by

virtue of our assumption:

|E′ ∩ F | ≥ 49

100

dn

m
|{k ∈ [m/2] : Pk}| ≥

m

3

49

100

dn

m
≥ 1

10
|E′| ,

where in the last inequality we used that our assumption further implies |E′| ≤ |Ek| ≤ 1.3dn for
some k ∈ [m/2].

Proof of Claim 7.18. We recall that for G′ ∼ G′ and K ∼ UNIF([m/2]) one has (G′,K) ∼ G
(see Remark 1). For k ∈ [m/2], we then interchangeably write A(G) and A(G′, k) to refer to an
execution of A on the graph G associated with (G′, k). Our assumption on A rewrites as

Pr
G′∼G′,K∼UNIF([m/2])

[
A(G′,K) fails

]
= Pr

(G′,K)∼G

[
A(G′,K) fails

]
≤ 1

10
.

Now recall Reduction 7.11: for each k ∈ [m/2], the result of Ak computed by Bob is exactly
A(G′, k), where G′ denotes Alice’s input. Therefore, using that G′ and K are independent and that
K is drawn uniformly, we get

EG′∼G′ [|{k ∈ [m/2] : Ak fails }|] = EG′∼G′

[∣∣{k ∈ [m/2] : A(G′, k) fails
}∣∣] ≤ 1

10
· m
2
.

Hence, if we sample G′ ∼ G′, only a small fraction of the values of k will make (G′, k) a failing
instance. Specifically, for any α ∈ [1/10, 1], Markov’s inequality gives

Pr
G′∼G′

[∣∣{k ∈ [m/2] : A(G′, k) fails
}∣∣ > 1

α

1

10
· m
2

]
≤ α .

In other words, at least a 1 − α fraction of the probability measure of G′ yields a graph G′ such
that (G′, k) is a succeeding instance for A with at least a 1− 0.1/α fraction of the possible values
for k ∈ [m/2]. By Lemma 7.9 (which applies since we assume m ≥ 500, d ≥ 600 log n), we also
have that a 1 − 1/n fraction of the measure of G′ yields a graph G′ where each component is a
(1± 1/10)2d-regular 1

3 -expander. This in particular implies that at least a 1− α− 1/n fraction of
the probability measure of G′ yields a graph G′ such that:

64

• for every k ∈ [m/2], the graph Gk = (V,Ek) given by (G′, k) has |Ek| ≤ 1.3dn, by near-
regularity and Definition 7.2;

• for every k ∈ [m/2], the graph Gk = (V,Ek) given by (G′, k) has |E∗
k | ≥ 9

5
dn
m , by near

regularity and Definition 7.2;

• with at least a 1− 0.1/α fraction of the possible values for k ∈ [m/2] we have the following:
Ak outputs an (ǫ, φ, 2)-RED Uk

1 ,Uk
2 of the graph G = (V,Ek) given by (G′, k). Moreover, by

Lemma 7.4 (which applies, since our assumptions on n, m, ǫ, φ meet its preconditions) one
has that Uk

1 verifies the property

∣∣∣E∗
k \ Uk

1

∣∣∣ ≥ 4

5
· |E∗

k| .

We have then obtained that at least a 1− α− 1/n fraction of the probability measure of G′ yields
a graph G′ such that Pk holds for at least a 1− 0.1/α fraction of the possible values for k ∈ [m/2].
Setting α = 3/10 gives the claim.

7.3 Hardness of the communication problem

We show that recoverξ requires linear communication in the number of edges when G′ ∼ G′
and ξ = ǫm. Intuitively, this is because Bob is only allowed to output an ≈ ǫm factor more pairs
than |E′|, and for an appropriate parameter regime ǫm|E′| < 1

1000

(m/2
2

)
n
m (where

(m/2
2

)
n
m is the

total number of vertex pairs in a graph consisting of n/m disjoint subgraphs on m/2 vertices).

Lemma 7.19. Let ǫ ∈ (0, 1) such that ǫ ≤ 10−33/d. If m ≥ 500 and d ≥ 600 log n, then any
deterministic protocol that solves recoverǫm with probability at least 3/5 over inputs G′ ∼ G′
requires Ω(dn) bits of communication.

Proof. Let us fix hereafter Q to be a deterministic protocol that solves recoverǫm with probability
at least 3/5 over inputs G′ ∼ G′. We define I(1) ⊆ supp(G′) to be the subset of input graphs
G′ = (S,E′) in the support of G′ such that Q outputs correctly on input G′. We also partition
supp(G′) based on the number of edges, so for every integer t we define It ⊆ supp(G′) to be the
subset of graphs G′ = (S,E′) ∈ supp(G′) with |E′| = t. We also let for convenience I(1)t = I(1) ∩ It
be the subset of correct graphs with t edges. For any G′ = (S,E′) ∈ supp(G′), we denote by
MG′ ∈ {0, 1}∗ the message sent by Alice on input G′ using the protocol Q.

Claim 7.20. If t is an integer such that t ∈ [9/10 · dn/2, 11/10 · dn/2] and |I(1)t | ≥ 1/2 · |It|, then

H

(
MG′

∣∣∣G′ ∈ I(1)t

)
≥ dn

3
.

Proof. For any G′ ∈ I(1)t , following the reception of MG′ , Bob deterministically outputs at most
6 · (ǫm) · |E′| = 6 · ǫmt pairs of vertices F ⊆

(S
2

)
, such that at least 1/10 · |E′| = t/10 of them

are actually edges of G′. Thus, for any t and any message M ∈ {0, 1}≤nm (where we restrained
messages to be at most nm-bit long without loss of generality), the number of G′ ∈ I(1)t such that

65

MG′ =M is at most

∣∣∣
{
G′ ∈ I(1)t : MG′ =M

}∣∣∣ ≤
t∑

j=0.1t

(
6 · ǫmt
j

)
·
(n

m

(m/2
2

)

t− j

)

≤
t∑

j=0.1t

(
e · 6 · ǫmt

j

)j

·
(
e · nm/8
t− j

)t−j

= et
t∑

j=0.1t

(
60 · ǫmt

t

)j

·
(
nm/8

t

)t−j

·
(

t

t− j

)t−j

.

We employ the following fact to bound the above, whose proof is deferred to Appendix A.3.

Fact 7.21. For any 0 < x ≤ y, (y/x)x ≤ ey/e.

We apply Fact 7.21 to the factor (t/t− j)(t−j) with x = t− j and y = t, and hence we get

∣∣∣
{
G′ ∈ I(1)t : MG′ =M

}∣∣∣ ≤ e(1+1/e)t
t∑

j=0.1t

(60ǫm)j ·
(
nm/8

t

)t−j

(7.9)

= e(1+1/e)t
(nm

8t

)t t∑

j=0.1t

(
60 · ǫ8t

n

)j

(7.10)

≤ e(1+1/e)t
(nm

8t

)t(
500 · ǫt

n

)t/10

t , (7.11)

where in the last inequality we used the upper bounds on ǫ and t. On the other hand, by virtue of

our assumption that |I(1)t | ≥ 1/2 · |It|, one has

∣∣∣I(1)t

∣∣∣ ≥ 1

2

∣∣{G′ = (S,E′) ∈ supp(G′) : |E′| = t
}∣∣ (7.12)

≥ 1

2

∣∣∣∣
{
G′ = (S,E′) ∈ supp(G′) : ∀ i ∈ [n/m],

∣∣∣∣E
′ ∩
(
Si
2

)∣∣∣∣ =
t

n/m

}∣∣∣∣ (7.13)

=
1

2

((m/2
2

)

t
n/m

)n/m

≥ 1

2

(m2

16
t

n/m

)n/m

≥ 1

2

(
m2

16
t

n/m

) t
n/m

·n/m

=
1

2

(nm
16t

)t
. (7.14)

Next, we rewrite

H

(
MG′

∣∣∣G′ ∈ I(1)t

)
≥ I

(
G′;MG′

∣∣∣G′ ∈ I(1)t

)

= H

(
G′
∣∣∣G′ ∈ I(1)t

)
− H

(
G′
∣∣∣MG′ , G′ ∈ I(1)t

)
.

Now, observing that all the graphs with same number of edges have the same probability of being
sampled, one can employ the upper and lower bounds derived above:

H

(
G′
∣∣∣G′ ∈ I(1)t

)
− H

(
G′
∣∣∣MG′ , G′ ∈ I(1)t

)

≥ log
(∣∣∣I(1)t

∣∣∣
)
− log

(
max

M∈{0,1}≤nm

∣∣∣
{
H ∈ I(1)t : MH =MG′

}∣∣∣
)

by (7.14) and (7.11) ≥ t log
(

1
2
nm
16t

e(1+1/e) · nm8t · (t)
1/t ·

(
500 · ǫtn

)1/10

)
.

66

Then, we finish using 9/10 · dn/2 ≤ t ≤ 11/10 · dn/2 and ǫ ≤ 10−33/d:

H

(
MG′

∣∣∣G′ ∈ I(1)t

)
≥ t log

(
1/120

(
500 · ǫ11dn20n

)1/10

)
≥ t log 6 ≥ 9

10

dn

2
≥ dn

3
.

Claim 7.22. One has

Pr
G′=(S,E′)∼G′

|E′| ∈

[
9

20
dn,

11

20
dn

]
and

∣∣∣I(1)|E′|

∣∣∣
∣∣I|E′|

∣∣ ≥
1

2

 ≥ 1

10
.

Proof. We begin by defining for convenience

x = Pr
G′=(S,E′)∼G′

∣∣∣I(1)|E′|

∣∣∣
∣∣I|E′|

∣∣ <
1

2

 .

Then, by Lemma 7.9 (which applies by our assumption on m and d), one has

Pr
G′=(S,E′)∼G′

|E′| ∈

[
9

20
dn,

11

20
dn

]
and

∣∣∣I(1)|E′|

∣∣∣
∣∣I|E′|

∣∣ ≥
1

2

 ≥ 1− 1

n
− x . (7.15)

We are left with the task of upper-bounding the probability x. Letting T = {0, . . . ,
(m/2

2

)
n
m} be

the set of possible numbers of edges in G′ ∼ G′, we have

Pr
G′=(S,E′)∼G′

[
Q outputs correctly on input G′]

= Pr
G′=(S,E′)∼G′

[
G′ ∈ I(1)

]

=
∑

t∈T
Pr

G′=(S,E′)∼G′
[|E′| = t] Pr

G′=(S,E′)∼G′
[G′ ∈ I(1) | |E′| = t]

=
∑

t∈T
Pr

G′=(S,E′)∼G′
[|E′| = t] ·

∣∣∣I(1)t

∣∣∣
|It|

,

where the last equality holds because all the graphs with t edges have the same probability of being
sampled. Hence, splitting the sum one has

Pr
G′=(S,E′)∼G′

[
Q outputs correctly on input G′]

≤
∑

t∈T :

|I(
t1)|< 1

2
|I(

t1)|

Pr
G′=(S,E′)∼G′

[|E′| = t] · 1
2
+

∑

t∈T :

|I(
t1)|≥ 1

2
|I(

t1)|

Pr
G′=(S,E′)∼G′

[|E′| = t] · 1

= Pr
G′=(S,E′)∼G′

∣∣∣I(1)|E′|

∣∣∣
∣∣I|E′|

∣∣ <
1

2

 · 1

2
+ Pr

G′=(S,E′)∼G′

∣∣∣I(1)|E′|

∣∣∣
∣∣I|E′|

∣∣ ≥
1

2

 · 1

= x · 1
2
+ (1− x) · 1 = 1− x

2
.

67

If we suppose for the sake of a contradiction that x ≥ 449/500, then

Pr
G′=(S,E′)∼G′

[
Q outputs correctly on input G′] ≤ 551

1000
<

3

5
,

which contradicts our assumption on Q. Therefore, we plug x < 449/500 into (7.15) together with
the assumption n > m ≥ 500, thus getting the claim.

Let now C be the event that |E′| ∈ [9/10 · dn/2, 11/10 · dn/2] and |I(1)|E′|| ≥ 1/2 · |I|E′||. The size of
Alice’s message on input G′ = (S,E′) ∼ G′ is lower bounded by

H (MG′) ≥ H
(
MG′

∣∣
1C , |E′|

)

≥ Pr [C]
∑

t∈[9
20

dn, 11
20

dn]∩N:∣∣∣I(1)
t

∣∣∣≥1/2·|It|

Pr
[
|E′| = t

∣∣ C
]
· H
(
MG′

∣∣ C, |E′| = t
)
,

and because conditioning does not increase entropy we rewrite

H (MG′) ≥ Pr [C]
∑

9
20

dn≤t≤ 11
20

dn:

|I(1)
t |≥1/2·|It|

Pr
[
|E′| = t

∣∣ C
]
· H
(
MG′

∣∣
1G′∈I(1) , C, |E′| = t

)

≥ Pr [C]
∑

9
20

dn≤t≤ 11
20

dn:

|I(1)
t |≥1/2·|It|

Pr
[
|E′| = t

∣∣ C
]
· Pr

[
G′ ∈ I(1)

∣∣∣ |E′| = t
]
· H
(
MG′

∣∣∣G′ ∈ I(1)t

)
.

Finally, we use Claim 7.20 and Claim 7.22 and get

H (MG′) ≥ Pr [C]
∑

9
20

dn≤t≤ 11
20

dn:

|I(1)
t |≥1/2·|It|

Pr
[
|E′| = t

∣∣ C
]
· 1
2
· dn
3

=
dn

6
Pr

G′=(S,E′)∼G′

|E′| ∈

[
9

20
dn,

11

20
dn

]
and

∣∣∣I(1)|E′|

∣∣∣
∣∣I|E′|

∣∣ ≥
1

2

≥ dn

60
.

7.4 Proving the lower bound

Finally, we set d and m depending on ǫ, φ, n so as to combine Lemma 7.15 and Lemma 7.19 and
conclude our streaming lower bound.

Theorem 3 (RED lower bound). Let ℓ ≥ 2 and let ǫ, φ ∈ (0, 1) such that ǫ = 1 − Ω(1), φ ≤ ǫ,
and φ ≥ C · max{ǫ2, 1/n} for a large enough constant C > 0. Any streaming algorithm that with
probability at least 9/10 computes an ℓ-level (ǫ, φ)-RED requires Ω(n/ǫ) bits of space.

Proof. We recall that for any ǫ = 1 − Ω(1), computing an (ǫ, φ)-ED with constant probability
requires Ω(n log n) bits for all φ ∈ (0, ǫ]. To see why, consider an input graph that is a matching of

68

size n/10, and notice that an ED is a 1− ǫ fraction the edges. Therefore, we now consider the case
ǫ = O(1/ log n) and prove an Ω(n/ǫ) lower bound.

Let ǫ, φ ∈ (0, 1) be any ED parameters and define c = ψ · 10−40. Note that c is a constant since
ψ = Ω(1) is the fixed sparsity from Definition 7.2. In order to apply Lemma 7.15 and Lemma 7.19,
we use distributions G and G′ from Definition 7.2 with d and m set as follows:

d =
ǫ

2c3φ
+

c

2ǫ
and m =

11

cφ
. (7.16)

We verify that these values meet the preconditions set by Lemma 7.15 and Lemma 7.19, i.e. we
show that d and m satisfy

ǫ ≤ min

{
10−5ψ

d

m
,

1

30
√
m
,
10−33

d

}
, φ ≥ 11

m
, 500 ≤ m ≤ n

100
, 600 log n ≤ d < m , (7.17)

for all ǫ, φ such that

ǫ ≤ c2

log n
, φ ≥ 1

c2n
, and

ǫ2

c4
≤ φ ≤ ǫ . (7.18)

Substituting d and m as defined in (7.16) into (7.17) we get

10−5ψ
d

m
= 10−5ψ

(
ǫ

2c3φ
+

c

2ǫ

)
· cφ
11
≥ 10−5ψ

ǫ

2c211
= 1075

ǫ

2ψ11
≥ ǫ ,

1

30
√
m

=

√
c
√
φ

30
√
11
≥

√
cǫ

30
√
11c2

≥ ǫ ,

10−33

d
= 10−33 4c3ǫφ

2ǫ2 + 2c4φ
= 10−33 4c3ǫ

2ǫ2/φ+ 2c4
≥ 10−33 4c3ǫ

2c4 + 2c4
= 10−33 ǫ

c
≥ ǫ ,

11

m
= cφ ≤ φ ,

m =
11

cφ
≥ 11

cǫ
≥ log n ≥ 500 ,

m =
11

cφ
≤ 11cn ≤ n

100
,

d =
ǫ

2c3φ
+

c

2ǫ
≥ c

2ǫ
≥ log n

2c
≥ 600 log n ,

d =
ǫ

2c3φ
+

c

2ǫ
≤ ǫ

2c3φ
+

c

2φ
≤ 1

2c log nφ
+

c

2φ
<

11

cφ
= m,

so all the conditions (7.17) are verified.
With any ǫ, φ as in (7.18) and for our choice of d,m as in (7.17), Lemma 7.15 gives that if there

is an L-bit space deterministic streaming algorithm A that outputs an (ǫ, φ, 2)-RED of G ∼ Gn,d,m
with probability at least 9/10, then there is a deterministic protocol Q that solves recoverǫm with
probability at least 3/5 over inputs G′ ∼ G′ with communication complexity L. On the other hand,
by Lemma 7.19 we know that, in the parameter regime of (7.17), the complexity of Q over G′ is at
least Ω(dn). Hence,

L = Ω(dn) = Ω

((
ǫ

φ
+

1

ǫ

)
· n
)

= Ω
(n
ǫ

)
.

By Yao’s minimax principle, the theorem statement is proved with C = c−4.

69

References

[AALG18] Vedat Levi Alev, Nima Anari, Lap Chi Lau, and Shayan Oveis Gharan. Graph Cluster-
ing using Effective Resistance. In Anna R. Karlin, editor, 9th Innovations in Theoretical
Computer Science Conference (ITCS 2018), volume 94 of Leibniz International Pro-
ceedings in Informatics (LIPIcs), pages 41:1–41:16, Dagstuhl, Germany, 2018. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

[AG09] Kook Jin Ahn and Sudipto Guha. Graph sparsification in the semi-streaming model.
In Proceedings of the 36th Internatilonal Collogquium on Automata, Languages and
Programming: Part II, ICALP ’09, page 328–338, Berlin, Heidelberg, 2009. Springer-
Verlag.

[AGM12a] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Analyzing graph structure
via linear measurements. In Proceedings of the Twenty-Third Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 459–467, 2012.

[AGM12b] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Graph sketches: Sparsification,
spanners, and subgraphs. In Proceedings of the 31st ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, PODS ’12, page 5–14, New York, NY,
USA, 2012. Association for Computing Machinery.

[AKLP22] Arpit Agarwal, Sanjeev Khanna, Huan Li, and Prathamesh Patil. Sublinear algorithms
for hierarchical clustering. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho,
and A. Oh, editors, Advances in Neural Information Processing Systems, volume 35,
pages 3417–3430. Curran Associates, Inc., 2022.

[APP+23] A. Ahmadinejad, J. Peebles, E. Pyne, A. Sidford, and S. Vadhan. Singular value
approximation and sparsifying random walks on directed graphs. In 2023 IEEE 64th
Annual Symposium on Foundations of Computer Science (FOCS), pages 846–854, Los
Alamitos, CA, USA, nov 2023. IEEE Computer Society.

[BK15] András A. Benczúr and David R. Karger. Randomized approximation schemes for cuts
and flows in capacitated graphs. SIAM Journal on Computing, 44(2):290–319, 2015.

[CGL+20] Julia Chuzhoy, Yu Gao, Jason Li, Danupon Nanongkai, Richard Peng, and Thatchaphol
Saranurak. A deterministic algorithm for balanced cut with applications to dynamic
connectivity, flows, and beyond. In 2020 IEEE 61st Annual Symposium on Foundations
of Computer Science (FOCS), pages 1158–1167, 2020.

[CGP+18] Timothy Chu, Yu Gao, Richard Peng, Sushant Sachdeva, Saurabh Sawlani, and Junx-
ing Wang. Graph sparsification, spectral sketches, and faster resistance computation,
via short cycle decompositions. In 2018 IEEE 59th Annual Symposium on Foundations
of Computer Science (FOCS), pages 361–372, 2018.

[CKK+06] Shuchi Chawla, Robert Krauthgamer, Ravi Kumar, Yuval Rabani, and D. Sivakumar.
On the hardness of approximating multicut and sparsest-cut. Computational Complex-
ity, 1506:94–114, 06 2006.

[CKL+22a] Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg,
and Sushant Sachdeva. Maximum flow and minimum-cost flow in almost-linear time.

70

In 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS),
pages 612–623, 2022.

[CKL22b] Yu Chen, Sanjeev Khanna, and Huan Li. On weighted graph sparsification by linear
sketching. In 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science
(FOCS), pages 474–485, 2022.

[CPSZ21] Yi-Jun Chang, Seth Pettie, Thatchaphol Saranurak, and Hengjie Zhang. Near-optimal
distributed triangle enumeration via expander decompositions. J. ACM, 68(3):21:1–
21:36, 2021.

[CS19] Yi-Jun Chang and Thatchaphol Saranurak. Improved distributed expander decompo-
sition and nearly optimal triangle enumeration. In Proceedings of the 2019 ACM Sym-
posium on Principles of Distributed Computing, PODC ’19, page 66–73, New York,
NY, USA, 2019. Association for Computing Machinery.

[FHHP11] Wai Shing Fung, Ramesh Hariharan, Nicholas J.A. Harvey, and Debmalya Panigrahi. A
general framework for graph sparsification. In Proceedings of the Forty-Third Annual
ACM Symposium on Theory of Computing, STOC ’11, page 71–80, New York, NY,
USA, 2011. Association for Computing Machinery.

[FKM23] Arnold Filtser, Michael Kapralov, and Mikhail Makarov. Expander Decomposition
in Dynamic Streams. In Yael Tauman Kalai, editor, 14th Innovations in Theoretical
Computer Science Conference (ITCS 2023), volume 251 of Leibniz International Pro-
ceedings in Informatics (LIPIcs), pages 50:1–50:13, Dagstuhl, Germany, 2023. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik.

[GHKM23] V. Guruswami, J. Hsieh, P. K. Kothari, and P. Manohar. Efficient algorithms for
semirandom planted csps at the refutation threshold. In 2023 IEEE 64th Annual Sym-
posium on Foundations of Computer Science (FOCS), pages 307–327, Los Alamitos,
CA, USA, nov 2023. IEEE Computer Society.

[GHN+23] Gramoz Goranci, Monika Henzinger, Danupon Nanongkai, Thatchaphol Saranurak,
Mikkel Thorup, and Christian Wulff-Nilsen. Fully dynamic exact edge connectivity in
sublinear time. In Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 70–86, 2023.

[GRST21] Gramoz Goranci, Harald Räcke, Thatchaphol Saranurak, and Zihan Tan. The expander
hierarchy and its applications to dynamic graph algorithms. In Proceedings of the
Thirty-Second Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), page
2212–2228, 2021.

[HKGW23] Yiding Hua, Rasmus Kyng, Maximilian Probst Gutenberg, and Zihang Wu. Main-
taining expander decompositions via sparse cuts. In Proceedings of the 2023 Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 48–69, 2023.

[Ind06] Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and data
stream computation. J. ACM, 53(3):307–323, may 2006.

[Kar93] David R. Karger. Global min-cuts in rnc, and other ramifications of a simple min-cut
algorithm. In Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’93, page 21–30, USA, 1993. Society for Industrial and Applied
Mathematics.

71

[Kar94] David R Karger. Random sampling in cut, flow, and network design problems. In
Proceedings of the twenty-sixth annual ACM symposium on Theory of computing, pages
648–657, 1994.

[KKTY21] Michael Kapralov, Robert Krauthgamer, Jakab Tardos, and Yuichi Yoshida. Towards
tight bounds for spectral sparsification of hypergraphs. In Proceedings of the 53rd An-
nual ACM SIGACT Symposium on Theory of Computing, STOC 2021, page 598–611,
New York, NY, USA, 2021. Association for Computing Machinery.

[KLM+14] Michael Kapralov, Yin Tat Lee, Cameron Musco, Christopher Musco, and Aaron Sid-
ford. Single pass spectral sparsification in dynamic streams. In 2014 IEEE 55th Annual
Symposium on Foundations of Computer Science, pages 561–570, 2014.

[KMM+20] Michael Kapralov, Aida Mousavifar, Cameron Musco, Christopher Musco, Navid
Nouri, Aaron Sidford, and Jakab Tardos. Fast and space efficient spectral sparsifi-
cation in dynamic streams. In Proceedings of the 2020 ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 1814–1833, 2020.

[KVV00] Ravi Kannan, Santosh Vempala, and Adrian Vetta. On clusterings-good, bad and
spectral. In Proceedings 41st Annual Symposium on Foundations of Computer Science,
pages 367–377, 2000.

[Li21] Jason Li. Deterministic mincut in almost-linear time. In Proceedings of the 53rd Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2021, page 384–395, New
York, NY, USA, 2021. Association for Computing Machinery.

[LNPS23] Jason Li, Danupon Nanongkai, Debmalya Panigrahi, and Thatchaphol Saranurak.
Near-linear time approximations for cut problems via fair cuts. In Proceedings of the
2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 240–275,
2023.

[Nis92] Noam Nisan. Pseudorandom generators for space-bounded computation. Combinator-
ica, 12:449–461, 1992.

[ST04] Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph
partitioning, graph sparsification, and solving linear systems. In Proceedings of the
Thirty-Sixth Annual ACM Symposium on Theory of Computing, STOC ’04, page 81–90,
New York, NY, USA, 2004. Association for Computing Machinery.

[ST11] Daniel A. Spielman and Shang-Hua Teng. Spectral sparsification of graphs. SIAM
Journal on Computing, 40(4):981–1025, 2011.

[SW19] Thatchaphol Saranurak and Di Wang. Expander decomposition and pruning: Faster,
stronger, and simpler. In Proceedings of the 2019 Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 2616–2635, 2019.

[Tre08] Luca Trevisan. Approximation algorithms for unique games. Theory Comput.,
4(1):111–128, 2008.

[Tro15] Joel A. Tropp. An introduction to matrix concentration inequalities. Foundations and
Trends in Machine Learning, 8(1-2):1–230, 2015.

72

A Technical facts

A.1 Fast balanced sparse cut algorithm

In this section, we prove the following fast BSCA, used for our polynomial time BLD construction.

Theorem 6.2 ([SW19, LNPS23]). For p-vertex q-edge input graphs with polynomially bounded edge
weights and self-loops, there is a (cbsc log

3 p,Cbsc)-BSCA that runs in time Õ(p + q) and works
with high probability for every input sparsity parameter 0 < ψ ≤ 1

10cbsc log
3 p

, where cbsc, Cbsc ≥ 1
are absolute constants.

Proof. Hereafter we use n and m to denote the number of vertices and edges respectively. An
algorithm was recently given that, for n-vertex m-edge input graphs with polynomially bounded
edge weights, produces a (O(φ log3 n), φ)-ED5 with high probability in Õ(m) time, for any φ ∈
(0, 1) [LNPS23]. One can then use this ED algorithm to efficiently compute a an approximate
balanced ψ-sparse cut for all ψ ∈ (0, 1): as it was observed in [SW19], given access to a graph and its
(O(ψ log3 n), ψ)-ED, one can easily obtain a (ψ, c′ ·log3 n,C ′, 0)-BSCW for some constants c′, C ′ ≥ 1.
This gives a (c′ ·log3 n,C ′)-BSCA that runs in Õ(m) time for all input sparsity parameters ψ ∈ (0, 1).
However, these results were not stated for graphs with arbitrary self-loops, which is what we need.
Hence, we give a simple reduction from the self-loop case to the self-loop free one, without increasing
the size of the graph by more than constant factors, so as to fit our setting.

Let G = (V,E,w) be a weighted undirected graph with one weighted self-loop per vertex, where
w : E ∪ V → R≥0 and E ⊆

(V
2

)
. The idea is to construct a graph with two copies of every vertex,

where the surplus vertices are solely connected to their corresponding vertex with weight equal to
half the weight of the self-loop. If a vertex has no self-loops then we make only one copy for it.
Formally, let A = {u ∈ V : w(u) > 0} be the set of vertices with self-loops. Then let B be a
copy of A representing the self-loops of vertices in A, and let s : A → B be a bijection mapping
u ∈ A to its corresponding self-loop vertex s(u) ∈ B. We define the self-loop free graph to be
Ĝ = (V̂ , Ê, ŵ), where V̂ = V ∪ s(A), Ê = E ∪ (∪u∈A{{u, s(u)}}), and ŵ(e) = w(e) for every e ∈ E
and ŵ({u, s(u)}) = 1

2w(u) for all u ∈ A. This is illustrated in Figure 6. We highlight that Ĝ has
the same number of vertices and edges as G, up to constants.
We run a BSCA for self-loop free graphs on Ĝ, and if it asserts Ĝ to be an expander we conclude the
same for G, whereas if it returns a cut then we tweak it to get a solution for G. This is summarised
in Algorithm 5. The following claim gives the correctness of the reduction. The idea is that the
subgraphs given by {u, s(u)} for u ∈ A are expanders, so there is no good reason for a sparse cut
to cross them. Hence, u and s(u) should be on the same side of the sparse cuts.

Claim A.1. Let BalSparseCutα,λ be an (α, λ)-BSCA. Then SelfLoopBalSparseCut is a
(2α, 4λ)-BSCA, provided that the input sparsity parameter φ ∈ (0, 1) satisfies φ ≤ 1

10α .

Proof. For any cut ∅ 6= X (V , let us define for convenience ∂GX = w(X,V \X) to be the total
weight of the edges crossing the cut X in G, and for any cut ∅ 6= R (V̂ define ∂ĜR = ŵ(R, V̂ \R)
to be the total weight of edges crossing R in Ĝ. A preliminary observation is that for any cut ∅ 6=
X (V we have that volĜ(X ∪ s(X ∩A)) = volG(X), ∂Ĝ(X ∪ s(X ∩A)) = ∂GX, and consequently
Φ
Ĝ
(X ∪ s(X ∩A)) = ΦG(X). By definition of BalSparseCutα,λ, we know that ω̂ is a (φ, α, λ, 0)-

BSCW of Ĝ, i.e.

1. if ω̂ = ⊥, then Ĝ is a φ-expander;

5In this case, the definition of ED uses the weight of edges across cuts, and weighted volumes, including self-loops.

73

3.6

6

2.4

10

4

7

1.8

3

1.2

5

2

3.5

ĜG

Figure 6: On the left: the original graph with self-loops G. On the right: its self-loop free version Ĝ.
The weights of the internal edges of G are copied verbatim (not shown in the figure), while the
weights of self-loops are halved.

Algorithm 5 SelfLoopBalSparseCut: reduction to self-loop free BSCA

1: ⊲ G = (V,E,w) is a weighted undirected graph
2: ⊲ φ ∈ (0, 1) is the sparsity parameter
3: procedure SelfLoopBalSparseCut(G,φ)
4: ω̂ ← BalSparseCutα,λ(Ĝ, φ) ⊲ Ĝ is the self-loop free version of G as described above
5: if ω̂ = ⊥ then

6: ω ← ⊥
7: else

8: (R, ν)← ω̂
9: X ← R ∩ V

10: X∗ ← argmin{volG(X), volG(V \X)}
11: ω ← (X∗, volG(X∗))
12: return ω

2. if ω̂ = (R, ν), then:

(a) ΦĜ(R) < α · φ,
(b) volĜ(R) ≤ volĜ(V̂ \R),
(c) for every other cut ∅ 6= T (V̂ with Φ

Ĝ
(T) < φ and vol

Ĝ
(T) ≤ vol

Ĝ
(V̂ \ T) one has

vol
Ĝ
(T) ≤ λ vol

Ĝ
(R):

(d) ν = vol
Ĝ
(R).

Our goal is to translate these properties to G by showing that ω, as constructed in SelfLoop-
BalSparseCut, is a (φ, 2α, 4λ, 0)-BSCW of G, i.e.

1. if ω = ⊥, then G is a φ-expander;

2. if ω = (X∗, ν), then:

(a) ΦG(X
∗) < α · φ,

(b) volG(X
∗) ≤ volG(V \X∗),

74

(c) for every other cut ∅ 6= T (V with ΦG(T) < φ and volG(T) ≤ volG(V \ T) one has
volG(T) ≤ λ volG(X∗):

(d) ν = volG(X
∗).

Correctness of the case ω̂ = ⊥. This means that for every cut ∅ 6= R (V̂ one has Φ
Ĝ
(R) ≥ φ.

This in particular holds for cuts of the form X ∪ s(X ∩ A) with ∅ 6= X (V . As we observed that
ΦĜ(X ∪ s(X ∩A)) = ΦG(X), we conclude that G is also a φ-expander.

Correctness of the case ω̂ = (R, ν). The idea is that adding missing self-loops and removing
dangling self-loops makes R a solution for G. This is illustrated in Figure 7.

G Ĝ

Figure 7: There is a straightforward correspondence between the shaded cuts in G and Ĝ, since
they have same volume and same number of crossing edges. The dashed cut has missing self-loops
and dangling self-loops (think of it as the cut R). The dotted cut adds the missing self-loops (think
of it as the cut Q). The shaded cut in Ĝ removes the dangling self-loops (think of it as the cut P),
and corresponds to the shaded cut in G (think of it as the cut X).

We know from (2a) that
∂ĜR

vol
Ĝ
(R)

< αφ .

Consider the cut Q = R∪ s(R∩A), i.e. a version of R where we have added the self-loops of all the
vertices in R that have one. Then Q (V̂ , as otherwise V ⊆ R, which would imply that R contains
more than half the volume of volĜ(V̂), contradicting (2b). Next, we remark that the volume of Q
cannot decrease compared to R, since we added vertices, i.e.

vol
Ĝ
(Q) = vol

Ĝ
(R) + ∂

Ĝ
(s(R ∩A) \ (R ∩B)) ≥ vol

Ĝ
(R) . (A.1)

At the same time, we do not increase the number of crossing edges since we move the self-loop
edges inside the cut, so

∂
Ĝ
Q

volĜ(Q)
=

∂
Ĝ
R− ∂

Ĝ
(s(R ∩A) \ (R ∩B))

volĜ(R) + ∂Ĝ(s(R ∩A) \ (R ∩B))
≤ ∂

Ĝ
R

volĜ(R)
.

Thus, we have added self-loops to R without increasing its sparsity nor decreasing its volume. Now
we remove the dangling self-loops from Q, i.e. we remove the set D = (Q ∩ B) \ s(Q ∩ A), and

75

consider the cut P = Q \ D. We remark that P 6= ∅, as otherwise R is solely made of vertices
from s(A), which contradicts ΦH(R) < αφ ≤ 1/10 < 1. Since we removed an equal amount of mass
from both the crossing edges and the volume, we get

∂ĜP

volĜ(P)
≤ min

{
∂ĜP

volĜ(P)
, 1

}
≤ ∂ĜP + ∂ĜD

volĜ(P) + ∂ĜD
=

∂ĜQ

volĜ(Q)
.

Thus, removing the dangling self-loops does not increase sparsity. However we may have decreased
the volume, which threatens the balancedness property of the cut. We then bound the decrease:
because we proved before ∂ĜQ/volĜ(Q) < αφ, we know

∂ĜD <
αφ

1− αφ volĜ(P) ,

so
vol

Ĝ
(Q) = vol

Ĝ
(P) + ∂

Ĝ
D < 2 vol

Ĝ
(P) . (A.2)

Now one can see that P is identical to (R∩ V)∪ s(R∩A), and X as defined in Algorithm 5 equals
R ∩ V . Hence ∂GX = ∂

Ĝ
P and volG(X) = vol

Ĝ
(P). Therefore,

∂GX

volG(X)
< αφ . (A.3)

To handle the case where X is the larger volume side of the cut, Algorithm 5 takes X∗ to be the side
of (X,V \X) with smaller volume. We show that the volume of V \X is within a small constant
factor of the volume of X. To do so, recall that Φ

Ĝ
(R) < αφ, so

∂
Ĝ
Q+ ∂

Ĝ
(s(R ∩A) \ (R ∩B))

volĜ(Q)− ∂Ĝ(s(R ∩A) \ (R ∩B))
< αφ ,

which implies
∂Ĝ(s(R ∩A) \ (R ∩B)) < αφ volĜ(Q) .

Hence, by property (2b) of R, we have

volG(X) ≤ vol
Ĝ
(Q) <

1

1− αφ vol
Ĝ
(R) ≤ 1

2
· 1

1− αφ vol
Ĝ
(V̂) =

1

2
· 1

1− αφ volG(V) .

Therefore, we have that X∗ = argmin{volG(X), volG(V \X)} satisfies

(1− 2αφ) volG(X) ≤ volG(X
∗) ≤ volG(V \X∗) , (A.4)

and

volĜ(R) <
2

1− 2αφ
volG(X

∗) , (A.5)

by (A.1), (A.2). We now conclude by verifying properties (2a), (2b), (2c), (2d).

• Property (2a). From (A.3) and (A.4), we get ΦG(X
∗) < αφ/(1 − 2αφ) ≤ 2αφ.

• Property (2b). This property follows by definition of X∗ in Algorithm 5.

76

• Property (2c). Consider any cut ∅ 6= T (V such that ΦG(T) < φ and volG(T) ≤ volG(V \T).
Then we know that

ΦG(T) = Φ
Ĝ
(T ∪ s(T ∩A)) < φ ,

and
volĜ(T ∪ s(T ∩A)) = volG(T) ≤ volG(V \ T) = volĜ(V̂ \ (T ∪ s(T ∩A)) ,

as well as

volG(T) = vol
Ĝ
(T ∪ s(T ∩A)) ≤ λ · vol

Ĝ
(R) <

2λ

1− 2αφ
volG(X

∗) ≤ 4λ volG(X
∗) ,

by an application of (2c) to the cut T ∪ s(T ∩A) and (A.5).

• Property (2d). Follows directly by definition of ω in Algorithm 5.

We use Claim A.1 with α = c′ log3 n and λ = C ′ (where c′, C ′ ≥ 1 are the constants one gets from the
self-loop free BSCA of [SW19, LNPS23]). Then, we get a (cbsc log

3 n,Cbsc)-BSCA where cbsc = 2c′

and Cbsc = 4C ′, provided that φ ≤ 1
10α . Using φ = ψ and since we impose ψ ≤ 1

10cbsc log3 n
, we get

φ ≤ 1
10α . This concludes the proof of Theorem 6.2.

A.2 Expansion and regularity of random graphs

Fact 7.10. Let N ≥ 10 be an integer and p ∈ [0, 1]. Then, letting d̄ = p(N − 1) one has

Pr
H=(U,F)∼ER(N,p)

[(
ΦH <

1

3

)
or

(
∃u ∈ U s.t.

∣∣degH(u)− d̄
∣∣ > 1

11
d̄

)]
≤ 4N · exp

(
− pN
600

)
.

Proof. Let H = (U,F) be a sample from ER(N, p), so that |U | = N . Also let L = D − A be the
Laplacian matrix of H, where D denotes its degree diagonal matrix and A denotes its adjacency
matrix. We use the following matrix Bernstein concentration bound on L to lower bound its second
eigenvalue, and then lower bound the expansion of H using Cheeger’s inequality.

Theorem A.2 (Theorem 1.6.2 in [Tro15]). Let S1, . . . , Sκ ∈ RN×N be independent symmetric
random matrices such that E[Sι] = 0 and ‖Sι‖ ≤ λ for every ι ∈ [κ], and let S =

∑κ
ι=1 Sι. Then,

for all θ ≥ 0

Pr[‖S‖ ≥ θ] ≤ 2N · exp
(
− θ2/2

‖∑κ
ι=1 E[S

2
ι]‖+ λθ/3

)
.

We start by rewriting L so that we can apply the above result. For each e = {u, v} ∈
(V
2

)
let

ze ∼ Ber(p) be an independent Bernoulli random variable with bias p, and also let Le be the
Laplacian matrix of the graph (U, {e}), i.e. (Le)ab = 1 if a = b = u or a = b = v, (Le)ab = −1
if {a, b} = e, and (Le)ab = 0 otherwise. Define Se = zeLe − E[zeLe] and S =

∑
e∈(V2)

Se. One can
now note that

E[Se] = 0 and ‖Se‖ ≤ max {‖(1− p)Le‖ , ‖−pLe‖} ≤ 2 for all e ∈
(
V

2

)
.

Letting J be the all-ones N ×N matrix we also have

S =
∑

e∈(V2)

zeLe −
∑

e∈(V2)

E[zeLe] = L− p · (N · I − J) .

77

Hence, Theorem A.2 with λ = 2 gives

Pr[‖L− p · (N · I − J)‖ ≥ θ] ≤ 2N · exp

− θ2/2∥∥∥

∑
e∈(V2)

E[(zeLe − E[zeLe])2]
∥∥∥+ 2θ/3

 . (A.6)

Now we observe that the first term in the denominator can be rewritten as∥∥∥∥∥∥∥

∑

e∈(V2)

E
[
(zeLe − E[zeLe])

2
]
∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥

∑

e∈(V2)

2Le E
[
(ze − ze · p+ p2)

]
∥∥∥∥∥∥∥

=

∥∥∥∥∥∥∥

∑

e∈(V2)

2pLe

∥∥∥∥∥∥∥
= 2p ‖N · I − J‖
= 2pN ,

where the last equality holds because K := N · I −J is the Laplacian matrix of the complete graph
on N vertices. If we now set θ = pN/10 in (A.6), we get

Pr

[
‖L− p ·K‖ ≥ 1

10
pN

]
≤ 2N · exp

(
− pN
600

)
. (A.7)

Now, in order to use a Cheeger type of inequality, it is convenient to view H as a regular graph,
so that its normalized Laplacian matrix is simply a scalar multiple of L. If we denote with deg(u)
the degree of u ∈ U in H, we get by a Chernoff bound that

Pr

[
∃u ∈ U , |deg(u)− p · (N − 1)| > 1

14
p · (N − 1)

]
≤ 2N · exp

(
−p · (N − 1)

600

)
. (A.8)

From (A.7) and (A.8), we then have

Pr

[(
‖L− pK‖ ≥ 1

10
pN

)
or

(
∃u ∈ U :

∣∣degH(u)− d̄
∣∣ > 1

14
d̄

)]
≤ 4N · exp

(
− pN
600

)
. (A.9)

We conclude by showing that if the event in the above probability does not occur, then the event
argument of the probability in the statement of Fact 7.10 does not occur either. To see this,
let λ2 be the second smallest eigenvalue of 1/d̄ · L, and µ2 be the second smallest eigenvalue of
1/(N −1) ·K. Hence, ‖L− pK‖ < 1

10pN implies λ2 ≥ µ2−1/9 by Weyl’s inequality. Moreover, we
know that µ2 = N/(N − 1), so λ2 ≥ 9/10. Finally, let ∅ 6= S (U be a cut with vol(S) ≤ vol(U \S)
such that ΦH(S) = ΦH . Assuming

∣∣degH(u)− d̄
∣∣ ≤ 1

14 d̄ for all u ∈ U , we have that vol(S) ∈
[(1− 1/14)d̄|S|, (1 + 1/14)d̄|S|]. Let y ∈ RU be defined as yu = 1/|S| if u ∈ S and yu = −1/|U \ S|
otherwise. By Courant-Fischer we then have

λ2 = min
x∈RU\{0}:
〈x,1〉=0

1

d̄
· x

⊤Lx
x⊤x

≤ 1

d̄
· y

⊤Ly
y⊤y

=
∂US

d̄|S| ·
|U |
|U \ S| ≤

(
1 +

1

14

)
ΦH ·

|U |
|U \ S| . (A.10)

Again assuming
∣∣degH(u)− d̄

∣∣ ≤ 1
14 d̄ for all u ∈ U , one can check that vol(S) ≤ vol(U \ S) implies

|U \ S| ≥ 6/7 · |S|. Thus, (A.10) gives

λ2 ≤
(
1 +

1

14

)
·
(
1 +

7

6

)
ΦH ≤

27

10
ΦH ,

so ΦH ≥ 1/3.

78

A.3 A useful inequality

Fact 7.21. For any 0 < x ≤ y, (y/x)x ≤ ey/e.

Proof. Write x = y · eρ−1 for some ρ ≤ 1. Then (y/x)x ≤ ey/e if and only if (1 − ρ)eρ−1 ≤ 1/e.
Define f(ρ) = (1− ρ)eρ. We prove the claim by showing that f(ρ) ≤ 1 for all ρ ∈ (−∞, 1].

We begin by noting that f is continuous over (−∞, 1]. Then, we take the derivative of f , and
we get f ′(ρ) = −ρeρ. We observe that f ′(ρ) > 0 for ρ < 0, and f ′(ρ) > 0 for ρ > 0. We further
observe that f(0) = 1, f(1) = 0, and limρ→−∞ f(ρ) = 0. Hence, f(ρ) is upper-bounded by 1 for
all ρ ∈ (−∞, 1].

79

	Introduction
	Previous work
	Our contribution
	Basic notation

	Technical overview
	Sparsity-independent one-level expander decomposition
	Two-level expander decomposition incurs a sparsity dependence

	Preliminaries
	Sparsification for vertex-induced subgraphs
	Sparsification primer
	Sampling algorithm for dynamic streams
	Cut counting and proving the sparsification lemma

	Testing expansion and finding sparse cuts in sparsifiers
	Characterizing boundary-linked cuts
	Preserving volumes and sparsities
	Proving the proxying lemma

	Space efficient recursive partitioning
	Offline analysis
	Properties of nested cuts
	Relations between volume estimates
	Bounding the number of iterations
	Bounding the recursion depth
	Correctness

	Dynamic stream implementation

	Lower bound for two-level expander decomposition
	Hard distribution
	Reduction to a communication problem
	Hardness of the communication problem
	Proving the lower bound

	References
	Technical facts
	Fast balanced sparse cut algorithm
	Expansion and regularity of random graphs
	A useful inequality

