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Abstract

In the task of differentially private (DP) continual counting, we receive a stream of in-
crements and our goal is to output an approximate running total of these increments, without
revealing too much about any specific increment. Despite its simplicity, differentially private
continual counting has attracted significant attention both in theory and in practice. Existing
algorithms for differentially private continual counting are either inefficient in terms of their
space usage or add an excessive amount of noise, inducing suboptimal utility.

The most practical DP continual counting algorithms add carefully correlated Gaussian
noise to the values. The task of choosing the covariance for this noise can be expressed in terms
of factoring the lower-triangular matrix of ones (which computes prefix sums). We present two
approaches from this class (for different parameter regimes) that achieve near-optimal utility
for DP continual counting and only require logarithmic or polylogarithmic space (and time).

Our first approach is based on a space-efficient streaming matrix multiplication algorithm
for a class of Toeplitz matrices. We show that to instantiate this algorithm for DP continual
counting, it is sufficient to find a low-degree rational function that approximates the square
root on a circle in the complex plane. We then apply and extend tools from approximation
theory to achieve this. We also derive efficient closed-forms for the objective function for arbi-
trarily many steps, and show direct numerical optimization yields a highly practical solution to
the problem. Our second approach combines our first approach with a recursive construction
similar to the binary tree mechanism.
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1 Introduction
The simplest task in differentially private data analysis is counting. This task has an equally simple
(and optimal) algorithm: we simply add Laplace or Gaussian noise to the final count [DMNS06].

Continual counting [DNPR10; CSS11] asks that we not only release the final count, but that we
provide a running total, i.e., we release all the partial sums. This task and its variants have proved
to be a surprisingly complex problem in the theory of differential privacy [BNS13; BNSV15;
BDRS18; ALMM19; KLMNS20; GJK21; CLNSS23].

Continual counting is also critically important in practice. State-of-the-art methods for dif-
ferentially private machine learning rely on (high-dimensional extensions of) continual counting
algorithms to maintain their state in a differentially private manner [KMSTTX21; ZTC22; KM-
STTX21; DMRST22; CCMRT22; CCGMMRGTX24; XZACCKMRZ23]. (See Section 2.3 for
discussion of this application.) This has motivated significant work on making differentially private
continual counting as accurate as possible [Mat93; MNT20; FHU22; HUU23; HUU24; AP24].

Practical algorithms for continual counting add Gaussian noise to the partial sums. However,
this noise is not independent: it must be carefully correlated across steps to achieve good util-
ity. Choosing an appropriate multivariate Gaussian can be formulated as a matrix factorization
problem, as we now describe.

To convey the key ideas in this introduction, we consider summing n scalars; this discussion
readily extends to summing vectors. Let x ∈ Rn contain the n terms we wish to sum (over n
iterations or steps). Let A ∈ {0, 1}n×n be the lower-triangular all-ones matrix so that Ax is the
vector of partial sums – i.e., (Ax)k =

∑
i≤k xi for each k. We factor A = BC, where B,CT ∈

Rn×n′ . The corresponding differentially private continual counting algorithmM is given by

M(x) := B(Cx+ z) = Ax+Bz = A(x+ C†z), (1.1)

where z ← N (0, σ2I) is a vector of independent Gaussian noise.1 Equivalently, the output of the
mechanism can be written asM(x) = Ax+ ẑ where ẑ ← N (0,Σ) with Σ = σ2BBT .

Mechanism privacy: We assume that one person can change only one entry of the input x by at
most 1, which means Cx can change by at most the maximum column norm of C, denoted

∥C∥1→2 := max
j

√∑
i

C2
i,j.

This is the L2 sensitivity of Cx. Then, following the standard privacy analysis of Gaussian noise
addition [DR14; Ste22], to ensure that Cx + z is (ε, δ)-differentially private, we scale the noise
z ← N (0, σ2I) to have standard deviation σ = ζ∥C∥1→2, where ζ = O(1

ε

√
log(1/δ)) is a

noise multiplier depending only on the privacy parameters (ε, δ).2 By postprocessing, this implies
M(x) = B(Cx+ z) is (ε, δ)-differentially private.

1C† = A−1B is the inverse of C whenever C is a square matrix. However, we will also consider settings where C
is not a square matrix and so C† is a suitable pseudo-inverse.

2Importantly, particularly for machine learning applications, this privacy analysis can be extended to the case
where each xk is adaptively chosen depending on the prefix sums 0, . . . , k − 1 already released by the mechanism
[DMRST22].
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Mechanism utility: The error of the mechanismM is given byM(x) − Ax = Bz. Thus, the
root mean squared error of the ith partial sum can be calculated as√

EM(M(x)− Ax)2i =
√
Ez [(Bz)2i ] =

√
σ2
∑
j

B2
i,j,

which scales with the norm of the corresponding row of B. We take our notion of utility to be the
maximum3 such error over all n partial sums released, which scales with the maximum row norm

∥B∥2→∞ := max
i

√∑
j

B2
i,j.

Thus, the maximum root mean squared error of the mechanism’s answers is

max
i

√
E
M

[(M(x)− Ax)2i ] = max
i

√
E

z←N (0,σ2I)
[(Bz)2i ] = max

i

√
σ2
∑
j

B2
i,j

= σ∥B∥2→∞ = ζ∥B∥2→∞∥C∥1→2 =: ζMaxErr(B,C), (1.2)

where we take σ = ζ∥C∥1→2 to ensure (ε, δ)-differential privacy, and we define

MaxErr(B,C) := ∥B∥2→∞∥C∥1→2 =

√
max

i

∑
j

B2
i,j

√
max

j

∑
i

C2
i,j. (1.3)

Since the error in Equation 1.2 can be written as a product of the noise multiplier ζ (which does
not depend on the factorization B,C) and MaxErr(B,C) (which does not depend on the differen-
tial privacy parameters), the same factorization will minimize error for all settings of the privacy
parameters. Thus, we suppress ζ for the remainder of this paper.

Matrix factorization: To summarize, our goal is to solve the matrix factorization problem

minimizeB,C MaxErr(B,C) subject to BC = A. (1.4)

The optimal value of this objective is denoted γ2(A) and is known as the gamma-two factorization
norm of A. Prior work has obtained near-optimal factorizations of A (and related matrices) [Mat93;
MNT20]. The optimal value is

γ2(A) := inf
{
MaxErr(B,C) : B,C ∈ Rn×n, BC = A

}
=

log(n)

π
±O(1). (1.5)

However, the existing factorizations are either far from optimal in terms of their utility or are
impractical due to their high computational cost, which we turn to next.

3We can also consider other measures of error such as sum of variances (rather than the max). This corresponds to
a different norm: E

[
∥Bz∥22

]
= σ2 ∥B∥2F .
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Computationally efficient noise generation: The computational cost of implementing this ma-
trix factorization approach for differentially private continual counting is dominated by the matrix-
vector multiplication Bz, where z ∈ Rn consists of i.i.d. Gaussian noise z ← N (0, σ2I). The
main computational challenge is that our algorithm cannot store the increments x or the seed noise
z (or even the matrices B or C) in memory; this would require memory that is linear in the number
of steps n, which can be prohibitively large.

To give a sense of scale, in private machine learning applications, we often need to compute
n > 106 partial sums (each coming from an iteration of stochastic gradient descent or a related
algorithm), over m > 1010 dimensions (the size of the model and its gradients).4 Thus we need to
be able to computeM(x) without storing all of the data or noise in memory, as this would take
nm > 1016 units of memory – i.e., over 40 petabytes if we use 32-bit floating point numbers.5

In this work, we address the computationally efficiency of sampling the correlated noise.
Specifically, we provide a matrix factorization mechanism for differentially private continual count-
ing attaining near-optimal error with only polylogarithmic memory overhead.

Streaming setting: Our algorithm receives the coordinates of the input x and i.i.d. noise z one at
a time and outputs the approximate partial sumsM(x) one at a time. In particular, we must output
each partial sum (M(x))k ≈

∑
i≤k xi before receiving the next input xk+1.

Ideally, the memory usage should not grow with the stream length n at all. If we use the trivial
factorization given by B = I and C = A, then this corresponds to adding independent noise to
each output. This would only require constant memory and constant time per output, but the noise
scale MaxErr(B,C) =

√
n is far from optimal. Thus, the challenge is to simultaneously obtain

near-optimal error and computational efficiency.
To overcome this challenge we must impose some structure on the factors B and C that al-

lows efficient noise generation without significantly increasing the matrix factorization objective
MaxErr(B,C). The three structures that have been considered in the literature are (i) lower
triangular matrices, (ii) sparse matrices, and (iii) Toeplitz matrices – i.e., constant diagonals,
∀i, j Ci,j = ci−j for some vector c – and combinations of these structures. We focus primar-
ily on lower triangular Toeplitz matrices. The streaming setting naturally corresponds to lower
triangular matrices, as it ensures that the k-th output is only a function of the first k inputs. Adding
the Toeplitz constraint has a minimal impact on the matrix factorization objective (1.4). Further-
more, Toeplitz matrices (and certain specializations we consider) have convenient mathematical
and algorithmic properties. See Figure 2 and Section 2.2 for further discussion about lower tri-
angular Toeplitz factorizations versus other factorizations. We also leverage the sparsity in the B
and C matrices derived from generalizations of the binary tree aggregation mechanism to show
additional results.

4In this introductory discussion, we have considered sums over m = 1 dimension. Extending to m > 1 is
essentially a matter of running m parallel copies of the algorithm. In our technical sections, we take x to be a matrix
whose rows we wish to sum, rather than a vector.

5Throughout this paper we treat real computation as atomic; e.g., a real number takes up one unit of memory. In
practice, floating point implementations can compromise privacy [Mir12], but techniques exist to ensure differential
privacy in discrete settings [CKS20; KLS21].
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1.1 Our Contributions
Our main theoretical result is a lower triangular Toeplitz matrix factorization that is nearly optimal
accompanied by an efficient streaming algorithm for generating the corresponding noise.

Theorem 1.1 (Main Result – Informal version of Theorem 4.6). For each integer n ≥ 1 and error
parameter µ ∈ (0, 1) , there exists a lower triangular Toeplitz matrix factorization B,C ∈ Rn×n

with the following properties.
• Validity: BC = A, where A is the n× n lower-triangular all-ones matrix.
• Near-optimality: MaxErr(B,C) ≤ OptLTToe(n) + µ, where

OptLTToe(n) = 1 +
n−1∑
k=1

(
2−2k

(
2k

k

))2

≤ 1 +
0.57722 + log(n)

π

is the optimal value of MaxErr(B,C) over all lower triangular Toeplitz factorizations A =
BC.

• Efficiency: There exists a streaming algorithm that at each step k takes as input zk and
outputs (Bz)k (or, equivalently, (C−1z)k) and runs in time and space O(log2(n/µ)).

In order to ensure that the error term µ in our result is o(1), we have space and time complexity
d = Θ(log2 n). It is natural to wonder whether this computational complexity can be improved. We
show that it can be improved to Õ(log n) at the expense of a weaker multiplicative near-optimality
guarantee for the matrix factorization objective.6

Theorem 1.2 (Secondary Result – Informal version of Theorem 6.6). For each integer n ≥ 1,
there exists an integer n′ = O(n) and a matrix factorization B,CT ∈ Rn×n′

with the following
properties.

• Validity: BC = A, where A is the n× n lower-triangular all-ones matrix.
• Near-optimality: MaxErr(B,C) ≤ (1 + o(1)) · Opt(n), where Opt(n) = log(n)

π
± O(1) is

the optimal value of MaxErr(B,C) over all factorizations.
• Efficiency: There exists a streaming algorithm that at each step k takes as input some coor-

dinates of z (but never reads the same coordinate more than once) and outputs (Bz)k and
runs in space (and amortized time per iteration) Õ(log n).

The optimal matrix factorization objective value over lower-triangular Toeplitz factorizations
OptLTToe(n) is a small additive constant (specifically, 0.365) away from the optimal over all
factorizations Opt(n) (cf. Corollary 2.4). Thus, Theorem 1.1’s approximation bound on the class
of lower triangular Toeplitz matrices can be directly compared to Theorem 1.2’s approximation
bound over all possible factorizations.

More generally, we can smoothly trade off between the matrix factorization objective and com-
putational efficiency. That is, we can interpolate between Theorems 1.1 and 1.2; see Proposi-
tion 6.5 for a general statement.

6In this problem, the multiplicative constants in the error have a larger practical impact on the mechanism’s utility
than an additive error. For instance, the binary tree mechanism is suboptimal by a multiplicative factor of π/ log 2 ≈
4.5, which yields a much worse MaxErr than the factorization of Fichtenberger, Henzinger, and Upadhyay [FHU22]
(cf. Figure 2, left).
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Theorem 1.2 does not generate a lower triangular Toeplitz factorization; in fact it does not even
produce a square factorization. It also gives a weaker multiplicative near-optimality guarantee. We
leave it as an interesting open problem whether it is possible to improve on log2 n space complexity
with a Toeplitz factorization or with MaxErr(B,C) ≤ Opt(n) +O(1).
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Figure 1: Ratio of MaxErr(B,C) of our RA-BLT and Opt-BLT mechanisms for different num-
bers of steps n and degrees d (which corresponds directly to the space complexity) over that of
the optimal Toeplitz mechanism of Fichtenberger, Henzinger, and Upadhyay [FHU22]. This illus-
trates that even with modest degree d, we obtain very good MaxErr(B,C) even for large numbers
of steps n. For example, Opt-BLT with d = 5 is within 1% of optimal for n = 107 (we do not
plot Opt-BLT for d = 9).

Practical algorithms: Since our work is directly motivated by practical considerations, we also
study the problem numerically. Specifically, we show that the method behind Theorem 1.1 yields
a factorization that is indistinguishable from optimal Toeplitz mechanism for practical purposes,
but which has a highly efficient procedure for generating the noise. Figure 1 shows the ratio of
MaxErr(B,C) for our algorithm over the optimal OptLTToe(n).

To prove Theorem 1.1 we provide closed-form parameters for the matrix factorization. This
is already reasonably practical, but we further optimize the parameters numerically to obtain even
better algorithms. In order to optimize the matrix factorization we (i) choose an appropriate param-
eterization for the class of factorizations B,C that we consider, (ii) give an efficiently computable
expression for the objective MaxErr(B,C) in terms of this parameterization, and (iii) show that
this expression is differentiable. This allows us to numerically optimize our factorization using
gradient-based methods. While we do not prove that this optimization procedure converges, in
practice it yields significantly better solutions than the closed-form parameters used to prove The-
orem 1.1.

To further illustrate the power of our approach, we show in Section 8 that even with constant
memory, we can asymptotically attain MaxErr(B,C) = O(n1/6). This is already an improvement
over MaxErr(I, A) =

√
n obtained by the trivial factorization.

Lower bounds: In Section 2.2 we prove a lower bound that exactly characterizes OptLTToe(n).
Specifically, we show that the lower triangular Toeplitz factorization of Fichtenberger, Henzinger,
and Upadhyay [FHU22] is precisely optimal for this class.
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Further, in Section 7, we develop numerical lower bounds on the objective of any matrix fac-
torization for various classes of matrices for any fixed size n. In particular, we give lower bounds
for arbitrary lower triangular matrices, arbitrary Toeplitz matrices, and Toeplitz matrices that cor-
respond to our algorithm with a specific constant memory constraint.

1.2 Our Algorithms & Techniques
The starting point for our main result is the lower triangular Toeplitz factorization of Fichtenberger,
Henzinger, and Upadhyay [FHU22], which we show is in fact the optimal lower triangular Toeplitz
factorization in Section 2.2. This factorization is given by Bi,j = Ci,j = fi−j where the sequence
f0, f1, · · · is the coefficients of a Taylor series7:

1√
1− x

= f0 + f1x+ f2x
2 + f3x

3 + · · · . (1.6)

This sequence satisfies the recurrence fk = (1 − 1/2k) · fk−1 for k ≥ 1 with f0 = 1. Our task in
this case is to compute the correlated noise (Bz)k =

∑k
j=0Bk,j ·zj =

∑k
j=0 fk−j ·zj in a streaming

fashion for k ∈ [n] := {0, 1, · · · , n − 1}.8 Unfortunately, the factorization of Equation 1.6 does
not seem to admit an efficient sampling or noise generation procedure.

BLTs: Buffered Linear Toeplitz Matrices (§3): Suppose the sequence instead satisfied a linear
recurrence fk = q · fk−1 for all k ≥ 1. Then

(Bz)k =
k∑

j=0

fk−j · zj = f0 · zk +
k−1∑
j=0

(q · fk−j−1) · zj = f0 · zk + q · (Bz)k−1. (1.7)

This equation gives us an efficient algorithm: given the previous output (Bz)k−1 and the current
input zk, we can compute the current output (Bz)k. The memory requirement of this algorithm is
simply to store the previous output in a single memory buffer.

Next, suppose the sequence instead satisfied a linear recurrence of the form

fk = q1 · fk−1 + q2 · fk−2 + · · ·+ qd · fk−d. (1.8)

As we explain next, this recurrence gives an algorithm where the memory requirement is to only
store d memory buffers.

The recurrence fk = qfk−1 implies the closed form fk = qkf0. Similarly, the recurrence
in Equation 1.8 implies a closed form expression fk = uTW kv where W ∈ Rd×d is a matrix
and u, v ∈ Rd are vectors. This closed form is what we use in Section 3.3 for our Algorithm 1.
Specifically, we can extend Equation 1.7 to this matrix-power closed form

(Bz)k =
k∑

j=0

fk−j · zj =
k∑

j=0

uTW k−jv · zj = uTSk+1

7We overload notation and use x both for the input to the algorithm (x ∈ Rn), and the indeterminate in polynomials
and generating functions; the meaning should be clear from context.

8We zero-index sequences, vectors, and matrices throughout. See Table 1 for a summary of symbols and notation.
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for a suitable state vector Sk ∈ Rd, stored in memory. Namely, we initialize S0 = 0 and, at each
iteration, our algorithm updates

Sk+1 = v · zk +WSk

and then outputs (Bz)k = uTSk+1. We refer to the entries of Sk as the d buffers of our algorithm.9

The updates to the buffers on each step are an arbitrary linear function of the previous step’s buffers
(WSk) and the current input (vzk), and the output on each step is an arbitrary linear combination
of the buffers (uTSk+1). Hence, we term this class “Buffered Linear Toeplitz matrices” (BLTs).
We overload the acronym and write BLTs as a shorthand encompassing matrices, factorizations,
and mechanisms.

Unfortunately, the optimal factorization [FHU22] does not satisfy a recurrence like Equa-
tion 1.8 and cannot be expressed as a BLT. Hence, our approach is to approximate the optimal
factorization using BLTs.

Designing BLTs via rational function approximation (§4): If we view the Toeplitz sequence
f0, f1, . . . as being defined by an ordinary generating function10 f as in Equation 1.6, it turns out
that satisfying a linear recurrence as in Equation 1.8 is equivalent to the function being rational with
degree at most d, i.e., f(x) = p(x)/q(x) for polynomials p and q of degree ≤ d. (This equivalence
is analogous to the fact that a real number is rational if and only if its decimal representation is
repeating.)

This equivalence also suggests our first approach to designing BLTs: we need a low-degree
rational approximation to the function f(x) = 1/

√
1− x from Equation 1.6 that underlies the

optimal factorization of Fichtenberger, Henzinger, and Upadhyay [FHU22].
We appeal to known results in approximation theory. Specifically, it is known that the function

x 7→
√
1− x can be uniformly approximated on the unit complex disc {x ∈ C : |x| ≤ 1} with

error η > 0 by a rational function of degree d = O(log2(1/η)) [New64; GT19]. That is, there
exists a rational function r of degree ≤ d, such that |r(x) −

√
1− x| ≤ η for all x ∈ C with

|x| ≤ 1.
It “only” remains to translate this approximation guarantee back to the matrix factorization

objective. Parseval’s identity allows us to bound the difference between the sequences of Taylor
coefficients in terms of an integral: Suppose f(x) =

∑∞
k=0 fkx

k and f̃(x) =
∑∞

k=0 f̃kx
k. Then

∞∑
k=0

|fk − f̃k|2 =
1

2π

∫ π

−π

∣∣∣f(x(θ))− f̃(x(θ))
∣∣∣2 dθ where x(θ) = exp(

√
−1θ). (1.9)

In our case, f(x) = 1/
√
1− x corresponds to the optimal lower triangular Toeplitz factorization

while f̃(x) is our rational approximation – either f̃(x) = 1/r(x) or f̃(x) = r(x)/(1 − x), where
r(x) ≈

√
1− x. We are interested in a finite sum

∑n−1
k=0 |fk − f̃k|2, rather than the infinite sum

9Recall that while we treat these as scalars here, in practical ML applications for example, each of these has size
equal to the number of parameters of the model being trained, e.g. possibly m > 109, so keeping d to a small constant
is critical.

10We use the terms generating function, ordinary generating function, and Taylor series interchangeably; the gen-
erating function view of f emphasizes the sequence being generated and requires (only) a formal power series, while
the Taylor series view emphasizes f is a real or complex function. As long as f is analytic in a non-empty open
neighborhood of zero, no ambiguity is introduced by these two views, see e.g. Thm. 2.8 (Transfer principle) of Kauers
and Paule [KP11].
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in Equation 1.9 (which does not converge in our setting). Thus we consider a weighted version of
Parseval’s identity where the integral goes around a circle in the complex plane centered at 0 with
radius e−1/2n. Note that we require the approximation guarantee to hold on the complex plane, not
just the real line. Once we have this bound on

∑n−1
k=0 |fk − f̃k|2, the near optimality guarantee of

Theorem 1.1 follows from the triangle inequality.
The time and space requirement of Theorem 1.1 is O(log2 n). This dependence arises from the

degree of the rational approximation. A degree at least Ω(log2(1/η)) is necessary for approximat-
ing
√
1− x with error ≤ η even for real values x ∈ [−1, 1] [New64]. Thus, unless we can exploit

some slack in our analysis, it seems we require different techniques to bring the space down to
O(log n).

The proof of Theorem 1.1 gives an explicit rational function approximation, which we can
directly convert into a matrix factorization and feed into our algorithm. We term the BLTs com-
ing from this approach RA-BLTs, with each choice of the degree d leading to a different (and
successively better) approximation to the optimal Toeplitz factorization.

Designing BLTs via direct optimization (§5): Recall that our goal is to minimize MaxErr(B,C) =
MaxErr(AC−1, C). In order to ensure computational efficiency, we restrict the matrix C to the
class of BLTs. While approximation theory lets us directly construct a near-optimal C as outlined
above, we can also approach this as an optimization problem and optimize the BLT parameters that
define C numerically.

This optimization is far from straightforward. The class of BLT matrices can be parameter-
ized in multiple ways. Converting the parameters for C into MaxErr(AC−1, C) is nontrivial to
compute – much less optimize – when the size n is large. Nevertheless, the class of BLTs is alge-
braically closed under multiplication and addition, and this structure combined with the connection
to rational generating functions, provides powerful tools for reasoning about them.

We give a parameterization for the class of BLTs that allows us to efficiently compute MaxErr
in time practically independent of the size n, specifically O(poly(d) log n), and also to compute
gradients. Being able to compute gradients allows us to optimize MaxErr(AC−1, C) numerically.

The first challenge is that we need to be able to effectively parameterize both C and AC−1. If
C is a BLT, then, as discussed above, its Toeplitz coefficients are given by the Taylor series for a
rational generating function c(x) = p(x)/q(x) for polynomials p and q. Further, these coefficients
have a simple closed-form expression given by Lemma 3.2 (see also Equation 5.2). Of course
1/c(x) = q(x)/p(x) is also a rational function, and it in fact generates the Toeplitz coefficients of
C−1 (Lemma 3.1), and so C−1 is also a BLT. The lower-triangular matrix of ones, A, is trivially a
BLT, and so Lemma 3.1 also implies B = AC−1 is a BLT.

In Section 5, Lemma 5.2 shows that given a BLT C, we can (explicitly and in closed-form) de-
rive the BLT parameters of C−1, and hence a closed form for its Toeplitz coefficients.11 Using these
closed-form expressions for the Toeplitz coefficients enables us to directly compute MaxErr(B,C)
for B,C ∈ Rn×n in time O(poly(d) log n), see Lemmas 5.3 and 5.4.

This is immediately useful, for example in Figure 2 allowing us to plot the performance of our
mechanisms for n up to 108 using only a few seconds of computer time.12

11More precisely, Lemma 5.2 uses a parameterization of p and q which leads to closed forms for both C and C−1.
12We could have in fact scaled the MaxErr calculations for our mechanisms to arbitrary n; the bottleneck is in the

computation of the exact MaxErr for [FHU22], which requires time O(n).
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More importantly, however, Section 5 shows computing MaxErr(B,C) is a differentiable func-
tion of the parameters of the BLTs B and C, and hence we can use a gradient-based optimization
method such as L-BFGS to directly minimize MaxErr targeting a specific number of steps n, where
B and C are BLTs with d buffers defined by 2d parameters. We term these Opt-BLTmechanisms,
and they perform extremely well in practice. For example, for n = 107, a Opt-BLT(d=4) has
MaxErr that is 1.032× that of the optimal Toeplitz factorization [FHU22], and Opt-BLT(d=7) is
1.001× optimal; for smaller n the results are even better, for example for n = 104, Opt-BLT(d=4)
achieves 1.001× optimal. Figure 2 gives more complete results.

Generalizations of the binary tree mechanism (§6): The starting point for Theorem 1.2 is the
binary tree mechanism of Dwork, Naor, Pitassi, and Rothblum [DNPR10] and Chan, Shi, and
Song [CSS11]. The binary tree mechanism can be viewed as a recursive construction of a matrix
factorization. A recursion of depth ℓ yields a matrix factorization of size n = 2ℓ and an algorithm
running in time and space O(ℓ). The binary tree mechanism does not produce a Toeplitz or square
matrix factorization; the structure that it relies on for computational efficiency is sparsity. The
matrix factorization objective MaxErr(B,C) for this construction is O(log n) – that is, it is within
a constant factor of optimal. Specifically, the binary tree mechanism is asymptotically a factor of
π

log 2
≈ 4.5 from optimal. This factor is significant in practice, as shown in Figure 2.

We combine the binary tree mechanism’s recursive approach with Theorem 1.1 to get the best
of both worlds – near-optimal constants and Õ(log n) space. This proves Theorem 1.2.

We illustrate one step of the recursive construction using the following example for size n = 6.
We can decompose the 6 × 6 all-ones lower triangular matrix A(6) into a sum of expressions
involving a 2× 2 all-ones lower triangular matrix A(2) and a 3× 3 all-ones lower triangular matrix
A(3):

A(6) =


1 0 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0
1 1 1 1 0 0
1 1 1 1 1 0
1 1 1 1 1 1

 =


1 0 0 0 0 0
1 1 0 0 0 0
0 0 1 0 0 0
0 0 1 1 0 0
0 0 0 0 1 0
0 0 0 0 1 1

+


0 0 0 0 0 0
0 0 0 0 0 0
1 1 0 0 0 0
1 1 0 0 0 0
1 1 1 1 0 0
1 1 1 1 0 0

 (1.10)

=

 1 0 0
0 1 0
0 0 1

⊗ ( 1 0
1 1

)
+

 0 0 0
1 0 0
1 1 0

⊗ ( 1 1
1 1

)
= I ⊗ A(2) +

(
S(3)A(3)

)
⊗
(
11T

)
,

where ⊗ denotes the Kronecker product,13 I is the identity matrix, 1 is the all-ones vector, and

S(3) =

 0 0 0
1 0 0
0 1 0

 is a non-cyclic shift matrix. Equation 1.10 can be used to take factorizations

of size 2 and 3 and combine them into a factorization of size 6. Namely, if A(2) = B(2)C(2) and

13A key property of the Kronecker product is that (A ·B)⊗ (C ·D) = (A⊗ C) · (B ⊗D).

11



A(3) = B(3)C(3), then

A(6) = I ⊗ A(2) +
(
S(3)A(3)

)
⊗
(
11T

)
(Equation 1.10)

= (I · I)⊗ (B(2) · C(2)) +
(
S(3)B(3) · C(3)

)
⊗
(
1 · 1T

)
= (I ⊗B(2)) · (I ⊗ C(2)) +

(
S(3)B(3) ⊗ 1

)
·
(
C(3) ⊗ 1T

)
=
(
I ⊗B(2) | S(3)B(3) ⊗ 1

)︸ ︷︷ ︸
=B(6)

·
(

I ⊗ C(2)

C(3) ⊗ 1T

)
︸ ︷︷ ︸

=C(6)

. (1.11)

The factors B(6) and C(6) are non-square matrices represented as block matrices. The reason
we move to non-square matrices is that Equation 1.10 decomposes A(6) as a sum of two matrix
products and we must re-express this as a single matrix product.

Roughly speaking, the binary tree mechanism corresponds to starting with a factorization of
size 2 and applying a recursive step similar to the above ℓ − 1 times to obtain a factorization of
size 2ℓ. Rather than starting with a factorization of size 2, we can start with a larger factorization
of size n1 given by Theorem 1.1 and then repeat the recursive step above ℓ − 1 times to obtain a
factorization of size nℓ

1. Intuitively, by picking a larger factorization as the starting point we get
closer to the optimal constant. With careful analysis and the right choice of parameters, this yields
Theorem 1.2.

This recursive construction attains excellent asymptotics, but, for practical parameter regimes,
we find that the BLT approach is practically indistinguishable from the optimal Toeplitz mecha-
nism.

1.3 An Empirical Comparison of Mechanisms
In this section, we provide an empirical comparison of the primary DP mechanisms discussed,
demonstrating their effectiveness in practical regimes.

Figure 2 compares mechanisms (and lower bounds) in terms of MaxErr from n = 1 to n = 106

iterations. The sub-optimality of the binary tree mechanism is immediately clear. This plot also
shows that little is lost by the restriction from general matrix mechanisms to Toeplitz mechanisms,
where Fichtenberger, Henzinger, and Upadhyay [FHU22] provide the optimal (but inefficient)
construction. Our BLT mechanisms essentially match this performance, while requiring time and
memory Õ(1) instead of O(n).

Figure 1 provides a detailed comparison of our BLT mechanisms and the optimal Toeplitz
mechanism. Several important conclusions can immediately be drawn: (1) For both RA-BLT and
Opt-BLT, increasing the degree (number of allowed memory buffers) increases performance. (2)
A larger number of steps n requires a higher number of buffers d for both of our approaches; this
is expected and necessary, as shown by our theory, see Remark 5.5. (3) A key point to emphasize
is that each blue line for RA-BLT corresponds to a single mechanism (a fixed rational approxima-
tion); for Opt-BLT, we compute an optimized matrix factorization of the given degree for each
different n. This specialization of the mechanism to the specific anticipated number of steps n is
critical to the advantage enjoyed by this approach. For example, we see Opt-BLT with only 5
buffers outperforms RA-BLT with 9 buffers across the full range of n.

12



It is of course possible to run Opt-BLT mechanisms for a different number of steps than the
optimization targeted. Figure 3 (Left column) explores this. We construct three fixed Opt-BLT
factorizations, optimized for n ∈ {100, 1000, 10000}, and compare their performance (in terms of
MaxErr relative to the optimal Toeplitz mechanism) across a range of steps, from 101 to 105. As
expected, the mechanisms work best for the ns for which they were optimized; however, the excess
error is highly asymetric; a mechanism optimized for n∗ will generally perform well for n < n∗

steps, but can quickly perform very badly when n > n∗. This is expected when one considers
that Opt-BLT should intuitively be ensuring a good approximation of the optimal Toeplitz coef-
ficients r0, . . . , rn∗−1, but the approximation of the optimal Toeplitz coefficients for larger n can
become arbitrarily bad. We see this in Figure 3 (Middle column), where we compare the Toeplitz
coefficients defining C and B to the optimal coefficients corresponding to the generating function
1/
√
1− x. To emphasize this issue, we optimize for n∗ = 100, and consider degree d = 2. The

Opt-BLT factorization provides a better approximation to the optimal coefficients for n up to 100
compared to RA-BLT(d=2) (which does not depend on n), and a generally worse approximation
beyond that. Figure 3 (Right column) shows that while both Opt-BLT and RA-BLT correspond
to “reasonable” approximations to

√
1− x (top), they distribute their errors in the approximation

very differently (bottom).
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Figure 2: Comparison of known upper and lower bounds for factorizations A = BC of the all-ones
lower triangular matrix Ai,j = I[i ≥ j]. Note that this includes non-Toeplitz factorizations. This
illustrates that there is a small gap between lower triangular Toeplitz factorizations and general fac-
torizations; furthermore this gap is asymptotically constant. Left: Vertical axis is MaxErr(B,C).
Right: Vertical axis is MaxErr(B,C)− OptLTToe(n).
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Figure 3: (Left column) Comparison of three fixed Opt-BLT mechanisms across a range of n
(extending beyond the optimization targets). (Center) Comparing the first 200 Toeplitz coeffi-
cients defining the C and B matrices for Opt-BLT and RA-BLT for degree d = 2, with the
Opt-BLT mechanism optimized for n∗ = 100. (Right) Differences in the generating functions for
the Opt-BLT and RA-BLT factorizations of the middle column.
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2 Background
We start by formally setting up the problem where each stream entry is a vector of dimension m
(as opposed to a scalar in the introduction). Fix a stream length n ∈ N and let

A = A(n) :=


1 0 0 · · · 0
1 1 0 · · · 0
1 1 1 · · · 0
...

...
... . . . ...

1 1 1 · · · 1

 ∈ {0, 1}n×n (2.1)

be the all-ones lower triangular matrix given by A
(n)
i,j = 1 ⇐⇒ i ≥ j and Ai,j = 0 ⇐⇒ i < j

for all i, j ∈ [n]. Note that A is invertible and its inverse is a lower triangular bi-diagonal matrix:

A−1 =


1 0 0 · · · 0
−1 1 0 · · · 0
0 −1 1 · · · 0
... . . . . . . . . . ...
0 · · · 0 −1 1

 ∈ {−1, 0, 1}n×n. (2.2)

Our goal is to compute a matrix factorization A = BC where B,CT ∈ Rn×n′ that minimizes

MaxErr(B,C) := ∥B∥2→∞ · ∥C∥1→2 :=

√
max
i∈[n]

∑
j∈[n′]

B2
i,j ·
√

max
j∈[n]

∑
i∈[n′]

C2
i,j. (2.3)

Simultaneously we want computational efficiency in the following sense. We need to generate
samples from BZ ∈ Rn×m where Z ∈ Rn′×m is a matrix with independent standard Gaussian
entries. We want to do this in a streaming setting where we output one row at a time and the
memory is limited. Ideally the memory should be linear in m and constant or logarithmic in n.

We do not restrict B and C to be square matrices. Non-square factorizations may be advanta-
geous from a computational perspective. However, computational efficiency aside, we can assume
without loss of generality that they are square (i.e., n′ = n) by taking a singular value decompo-
sition (SVD) of the factors and discarding the rows/columns that do not correspond to a non-zero
singular value.

It is also natural to restrict B and C to be lower triangular matrices, like A. Lower triangu-
lar structure implies each intermediate output (Cx)k is only a function of the inputs seen so far
x0, x1, · · · , xk and not future inputs xk+1, · · · , xn−1. This is particularly valuable for the privacy
analysis in the case where the input stream x1, · · · , xk is chosen adaptively, such as in machine
learning applications. In the adaptive setting, each input xk may depend on the previous intermedi-
ate outputs (Cx)0, (Cx)1, · · · , (Cx)k−1. Lower triangular structure prevents a cyclic dependency.
Fortunately, we can assume the factors are lower triangular without loss of generality, see for ex-
ample Prop 2.2 of [DMRST22].
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2.1 Prior Work on Matrix Factorizations for Continual Counting
There has been a lot of work on factorizing the all-ones lower triangular matrix. However, most of
that work optimizes the matrix factorization objective MaxErr(B,C) with little regard for the com-
putational efficiency of sampling the correlated noise Bz from i.i.d. seed noise z ← N (0, σ2I).

The binary tree mechanism [DNPR10; CSS11] implicitly constructs a factorization which op-
timizes MaxErr(B,C) up to constant factors and is efficiently computable. Prior to our work, this
is the only known approach offering both efficient computation and some form of near-optimality.
The binary tree factorization can be expressed recursively as B(1) = C(1) = (1) ∈ {0, 1}1×1 and

B(2n) =

(
B(n) 0 0

0 B(n) 1⃗

)
∈ {0, 1}2n×(4n−1) and C(2n) =

 C(n) 0
0 C(n)

1⃗T 0

 ∈ {0, 1}(4n−1)×2n.
(2.4)

Note that this only gives a factorization of A(n) when n is a power of 2. By discarding rows/columns
we can extend this to any n. The objective value is given by

MaxErr(B,C) = ∥B(2ℓ)∥22→∞ = ∥C(2ℓ)∥21→2 = ℓ+ 1 =

⌈
log n

log 2

⌉
+ 1. (2.5)

The recursive formulation naturally leads to an efficient sampling algorithm for the correlated noise
Bz using only O(ℓ) space. Subsequent work has attempted to improve the constants [QYL13;
Hon15; AP24].

Observe that the binary tree factorization produces sparse matrices. Specifically, each row
of B(n) and column of C(n) only has O(log n) nonzero entries. Intuitively, this sparsity is what
enables efficient computation; that is, (Bz)k only depends on logarithmically many elements of z.
However, our experience suggests that sparsity requires non-square matrices and cannot produce
near-optimal factorizations like BLTs.

Fichtenberger, Henzinger, and Upadhyay [FHU22] give the following elegant explicit lower
triangular Toeplitz factorization. Let f0 = 1 and, for k ∈ Z≥1, let fk = fk−1 · (1 − 1/2k)
and f−k = 0. Equivalently, fk = 4−k

(
2k
k

)
≤ 1√

πk
for k ≥ 1 [elk]. Define B,C ∈ Rn×n by

Bi,j = Ci,j = fi−j for all i, j ∈ [n], which we denote B = C = M((fi)
n−1
i=0 ) or simply M(f, n).

Then, we have that A = BC and14

MaxErr(B,C) = ∥B∥22→∞ = ∥C∥21→2 =
n−1∑
k=0

f 2
k ≤ 1 +

log(n) + γ

π
, (2.6)

where γ ≤ 0.57722 is the Euler-Mascheroni constant [SW]. This factorization turns out to be op-
timal among the class of lower triangular Toeplitz factorizations; we prove this in Proposition 2.2.

However, unlike the binary tree mechanism, these Toeplitz matrices are dense and we do not
know how to efficiently generate noise according to this factorization in the streaming setting.

The γ2 factorization norm is in fact a norm, i.e., it satisfies the triangle inequality [TJ89].

14Unfortunately there appears to be an off-by-one error in the proof of the bound given by Theorem 1 of Fichten-
berger, Henzinger, and Upadhyay [FHU22]; this has since been corrected.
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Furthermore, there is a dual characterization of the γ2 factorization norm [LSŠ08, Theorem 9].

γ2(A) := inf{MaxErr(B,C) : B,C ∈ Rn×n, A = BC}

= sup

{
∥P 1/2 · A ·Q1/2∥trace :

P,Q non-negative diagonal matrices
with trace(P ) = trace(Q) = 1

}
, (2.7)

where ∥M∥trace = trace(
√
MTM) is the sum of the absolute singular values.

Using the triangle inequality, Mathias [Mat93, Corollary 3.5] gives a non-constructive upper
bound

γ2(A) ≤
1

2
+

1

2n

n∑
j=1

1

sin
(
π 2j−1

2n

) ≤ 1 +
log(n)

π
. (2.8)

On the other hand, using the dual characterization (Equation 2.7 with P = Q = 1
n
I), Matoušek,

Nikolov, and Talwar [MNT20] give a lower bound15

γ2(A) ≥
1

2n

n∑
j=1

1

sin
(
π 2j−1

4n+2

) ≥ log(2n+ 1)

π
. (2.9)

The upper bound in Equation 2.6 or Equation 2.8 and the lower bound in Equation 2.9 match
up to a small additive constant. Thus the optimal value of the matrix factorization objective is
γ2(A) = logn

π
± constant. Numerically, the maximum gap between the Toeplitz upper bound in

Equation 2.6 and the lower bound in Equation 2.9 is less than 0.365.
Figure 2 shows how these upper and lower bounds compare. The binary tree mechanism has

the advantage of computational efficiency, but as we can see, it is far from optimal for the objective.
The leading term for the binary tree is logn

log 2
, while the optimal leading term is logn

π
. Thus the binary

tree is asymptotically suboptimal by a multiplicative factor of π/ log 2 ≈ 4.5.

2.2 Lower Triangular Toeplitz Factorizations versus General Factorizations
Our work mainly focuses on lower triangular Toeplitz factorizations. In particular, Theorem 1.1
gives such a factorization and proves near-optimality with respect to this class. (Although we
consider non-square factorizations in Section 6, where we prove Theorem 1.2.) This structure is
essential to our algorithms in Sections 3 to 5. However, it is natural to wonder how much we lose
in terms of the objective MaxErr(B,C) by restricting B and C to be lower triangular Toeplitz
matrices.

In this subsection we discuss the gap between lower triangular Toeplitz factorizations and gen-
eral factorizations. We do not have an explicit construction for the optimal general matrix factoriza-
tion or even a formula for optimal value γ2(A). For lower triangular Toeplitz matrix factorizations
the best factorization we have is that of Fichtenberger, Henzinger, and Upadhyay [FHU22]. We
show that this is in fact optimal among the class of lower triangular Toeplitz factorizations. This is
– to the best of our knowledge – a novel result which may be of independent interest.

We begin with a lemma stating some basic properties of the factorization of Fichtenberger,
Henzinger, and Upadhyay [FHU22] and we give a proof for completeness.

15Proposition 4.1 of Matoušek, Nikolov, and Talwar [MNT20] simply states an Ω(log n) lower bound, but these
sharper expressions can easily be extracted from the proof. Mathias [Mat93] also gives a lower bound which differs
from the upper bound in Equation 2.8 by less than an additive 1

2 , but this seems slightly weaker than Equation 2.9.
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Lemma 2.1. Define a sequence f0, f1, · · · by f0 = 1 and fk = (1−1/2k)fk−1 for all k ≥ 1. Then,
for all k ≥ 1, we have

fk = 4−k
(
2k

k

)
∈

[
1√

π(k + 1)
,

1√
πk

]
. (2.10)

For all integers n ≥ 0, we have
n∑

k=0

fkfn−k = 1 (2.11)

and
γ + log(n)− 1

π
≤

∞∑
k=1

f 2
k ≤

γ + log(n)

π
, (2.12)

where 0.57721 ≤ γ ≤ 0.57722 is the Euler-Mascheroni constant. Furthermore, for all x ∈ C with
|x| < 1, we have

∞∑
k=0

fkx
k =

1√
1− x

. (2.13)

Proof. The first part of Equation 2.10 can be shown by induction: For k ≥ 1,

4−k
(
2k

k

)
=

1

4
· 4−(k−1)

(
2k − 2

k − 1

)
2k(2k − 1)

k2
=

2k(2k − 1)

4k2
fk−1 =

(
1− 1

2k

)
fk−1 = fk.

Next consider the derivatives of f(x) := 1√
1−x : For k ≥ 1, we have

f (k)(x) = (1− x)−k−1/2
k−1∏
ℓ=0

(
ℓ+

1

2

)
. (2.14)

Thus

f (k)(0)

k!
=

k−1∏
ℓ=0

1

ℓ+ 1

(
ℓ+

1

2

)
=

k−1∏
ℓ=0

(2ℓ+ 1)

2(ℓ+ 1)

(2ℓ+ 2)

2(ℓ+ 1)
=

(2k)!

(k!)222k
= 4−k

(
2k

k

)
= fk.

By Taylor’s theorem, for all x ∈ C with |x| < 1,

1√
1− x

= f(x) =
∞∑
k=0

f (k)(0)

k!
xk =

∞∑
k=0

fkx
k,

as required to prove Equation 2.13. Furthermore, for all x ∈ C with |x| < 1, we have

∞∑
n=0

xn =
1

1− x
= f(x)2 =

(
∞∑
k=0

fkx
k

)2

=
∞∑
n=0

xn

n∑
k=0

fkfn−k.

Matching coefficients proves Equation 2.11
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To prove the second part of Equation 2.10, we use standard bounds on the central binomial
coefficient [elk; spe]: For all integers k ≥ 1,

4k√
π(k + 1)

≤
(
2k

k

)
≤ 4k√

πk
, (2.15)

whence 1√
π(k+1)

≤ fk ≤ 1√
πk

. Next we use standard bounds on the harmonic numbers to prove

Equation 2.12: For all integers n ≥ 1,

log(n) + γ +
1

2(n+ 1)
≤

n∑
k=1

1

k
≤ log(n) + γ +

1

2n
(2.16)

where 0.57721 ≤ γ ≤ 0.57722 is the Euler-Mascheroni constant [SW]. It follows that, for all
n ≥ 2,

n−1∑
k=1

f 2
k ≤

n−1∑
k=1

1

πk
≤ γ + log(n− 1) + 1/2(n− 1)

π
≤ γ + log(n)

π
. (2.17)

Similarly, for all n ≥ 2

n−1∑
k=1

f 2
k ≥

n−1∑
k=1

1

π(k + 1)
=

n∑
k=2

1

πk
≥ γ + log(n) + 1/(2n+ 2)− 1

π
. (2.18)

Most importantly, we show that the factorization of Fichtenberger, Henzinger, and Upadhyay
[FHU22] is optimal among the class of lower triangular Toeplitz factorizations:

Proposition 2.2 (Optimal lower triangular Toeplitz factorization). For any integer n ≥ 1, consider
the optimization problem

min
b,c∈Rn

∥b∥2 ∥c∥2
s.t. ∀k < n

∑k
i=0 bick−i = 1.

(2.19)

The minimum is achieved at b = c = (fk)
n−1
k=0 , where f0, f1, · · · is given by f0 = 1 and fk =(

1− 1
2k

)
fk−1 for all k ≥ 1, which are the coefficients derived by Fichtenberger, Henzinger, and

Upadhyay [FHU22].

Proof. The proof proceeds in 3 steps: we first reformulate the optimization as a quadratically con-
strained quadratic program, then derive a natural Lagrangian relaxation of it, and finally construct
a primal dual solution to the Lagrangian relaxation that is globally optimal with the primal solution
b = c = (fk)

n−1
k=0 .

We use the following properties of fk’s established by Fichtenberger, Henzinger, and Upadhyay
[FHU22] and also shown in Lemma 2.1:

• fk > 0 ∀k ∈ {0, . . . , n− 1}.

• Let F ∈ Rn×n denote the lower triangular Toeplitz matrix whose first column is f0, f1, . . . , fn−1.
Then, we have F 2 = A.

•
∑∞

k=0 fkxk =
1√
1−x ∀x ∈ [0, 1].
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Reformulation as a quadratically constrained quadratic program: We begin by observing
that the optimization problem can be rewritten as a quadratic optimization as follows:

∥b∥2 ∥c∥2 = inf

{
ν

2
∥b∥22 +

1

2ν
∥c∥22 : ν > 0

}
= min

{
1

2
∥νb∥22 +

1

2

∥∥∥ c
ν

∥∥∥2
2
: ν ∈ R \ {0}

}
.

Furthermore, for any feasible (b, c) that satisfy the constraints of Equation 2.19 and any ν ̸= 0, the
pair (νb, c

ν
) also satisfies the constraints. If S denotes the feasible set of Equation 2.19, we have

min
b,c∈S
∥b∥2 ∥c∥2 = min

b,c∈S
min

ν∈R\{0}

1

2
∥νb∥22 +

1

2

∥∥∥ c
ν

∥∥∥2
2
= min

b,c∈S

1

2
∥b∥22 +

1

2
∥c∥22 .

Thus, we can simply write the overall optimization problem as

min
b,c∈Rn

1
2

(
∥b∥22 + ∥c∥

2
2

)
s.t. ∀k < n

k∑
i=0

bick−i = 1.
(2.20)

Lagrangian relaxation: We write the Lagrangian relaxation of this optimization problem intro-
ducing dual variables λ0, · · · , λn−1 ∈ R corresponding to the constraints:

L (b, c, λ) =
1

2

(
∥b∥22 + ∥c∥

2
2

)
−

n−1∑
k=0

λk

(
k∑

i=0

bick−i − 1

)
(2.21)

=
1

2

(
∥b∥22 + ∥c∥

2
2

)
− b⊤Γ (λ) c+ 1⊤λ

=
1

2

(
b
c

)⊤(
I −Γ (λ)

−Γ (λ) I

)(
b
c

)
+ 1⊤λ,

where Γ (λ) is the symmetric Hankel matrix

Γ (λ) :=


λ0 λ1 λ2 . . . λn−1
λ1 λ2 λ3 . . . 0
λ2 λ3 λ4 . . . 0
...

...
...

...
...

λn−1 0 0 . . . 0

 .

The constrained optimization problem in Equation 2.20 is equivalent to the unconstrained min-max
problem

min
b,c∈Rn

max
λ∈Rn

L(b, c, λ). (2.22)

Letting f⃗ = (f0, . . . , fn−1) ∈ Rn, we will set b = c = f⃗ and exhibit a setting λ = λ∗ such
that ∇b,c,λL(b, c, λ) = 0 and L(b, c, λ) is jointly convex in b, c and concave in λ. It follows that
b = c = f⃗ is the optimal solution to the original problem, as required. Since b = c = f⃗ is feasible,
∇λL(b, c, λ) = ∇λL(f⃗ , f⃗ , λ) = 0. The Lagrangian is linear in λ and hence trivially concave. The
Lagrangian is convex in (b, c) if and only if(

I −Γ (λ)
−Γ (λ) I

)
⪰ 0
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or equivalently (by Schur complements) if ∥Γ (λ)∥⋆ ≤ 1 where ∥Q∥⋆ := sup{∥Qx∥2 : ∥x∥2 ≤ 1}
denotes the operator norm.

Construction of primal-dual optimal solution: Now it only remains to compute λ = λ∗ such
that∇b,cL(b, c, λ) = 0 for b = c = f⃗ and

∥∥Γ (λ)2
∥∥
⋆
≤ 1.

For all k ∈ [n], we have ∂
∂bk

L(b, c, λ) = bk−
∑n−1

i=k λici−k and ∂
∂ck

L(b, c, λ) = ck−
∑n−1

i=k λibi−k.
Equivalently, ∇bL(b, c, λ) = b − Γ(λ)c and ∇cL(b, c, λ) = c − Γ(λ)b. Thus, in order to ensure
∇b,cL(b, c, λ) = 0 when b = c = f⃗ , it suffices to set λ = λ⋆, where λ⋆ is chosen so as to solve

f⃗ = Γ (λ⋆) f⃗ ⇐⇒ P f⃗ = PΓ (λ⋆) f⃗

⇐⇒


fn−1
fn−2

...
f0

 =


λ⋆
n−1 0 0 . . . 0

λ⋆
n−2 λ⋆

n−1 0 . . . 0
λ⋆
n−3 λ⋆

n−2 λ⋆
n−1 . . . 0

...
...

...
...

...
λ⋆
0 λ⋆

1 λ⋆
2 . . . λ⋆

n−1




f0
f1
...

fn−1



⇐⇒


fn−1
fn−2

...
f0

 =


f0 0 0 . . . 0
f1 f0 0 . . . 0
f2 f1 f0 . . . 0
...

...
...

...
...

fn−1 fn−2 fn−3 . . . f0



λ⋆
n−1

λ⋆
n−2
...
λ⋆
0

 ,

where P is the permutation matrix such that Px is the reversal of the vector x. Thus, we can solve
for λ⋆ to obtain

Pλ⋆ =


λ⋆
n−1

λ⋆
n−2
...
λ⋆
0

 =


f0 0 0 . . . 0

f1 − f0 f0 0 . . . 0
f2 − f1 f1 − f0 f0 . . . 0

...
...

...
...

...
fn−1 − fn−2 fn−2 − fn−3 fn−3 − fn−4 . . . f0



fn−1
fn−2

...
f0

 ,
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where we used the fact that f⃗ is a feasible solution:
f0 0 0 . . . 0
f1 f0 0 . . . 0
f2 f1 f0 . . . 0
...

...
...

...
...

fn−1 fn−2 fn−3 . . . f0




f0 0 0 . . . 0
f1 f0 0 . . . 0
f2 f1 f0 . . . 0
...

...
...

...
...

fn−1 fn−2 fn−3 . . . f0

 =


1 0 0 . . . 0
1 1 0 . . . 0
1 1 1 . . . 0
...

...
...

...
...

1 1 1 . . . 1



⇐⇒


f0 0 0 . . . 0
f1 f0 0 . . . 0
f2 f1 f0 . . . 0
...

...
...

...
...

fn−1 fn−2 fn−3 . . . f0


−1

=


1 0 0 . . . 0
1 1 0 . . . 0
1 1 1 . . . 0
...

...
...

...
...

1 1 1 . . . 1


−1

f0 0 0 . . . 0
f1 f0 0 . . . 0
f2 f1 f0 . . . 0
...

...
...

...
...

fn−1 fn−2 fn−3 . . . f0



⇐⇒


f0 0 0 . . . 0
f1 f0 0 . . . 0
f2 f1 f0 . . . 0
...

...
...

...
...

fn−1 fn−2 fn−3 . . . f0


−1

=


1 0 0 . . . 0
−1 1 0 . . . 0
0 −1 1 . . . 0
...

...
...

...
...

0 0 0 . . . 1




f0 0 0 . . . 0
f1 f0 0 . . . 0
f2 f1 f0 . . . 0
...

...
...

...
...

fn−1 fn−2 fn−3 . . . f0

 .

From the definition f0 = 1 and fk = fk−1(1− 1/2k), for all k ≥ 1, we have

λ⋆
n−1−i = f0fn−1−i −

i∑
j=1

(fj − fj−1) fn−1−i+j

= fn−1−i −
i∑

j=1

fj−1

(
1

2j

)
fn−1−i+j

= fn−1−i

(
1−

i∑
j=1

fj−1

(
1

2j

)
fn−1−i+j

fn−1−i

)
.

Since fn−1−i+j

fn−1−i
=
∏j

ℓ=1

(
1− 1

2(n−i+ℓ)

)
≤ 1, we have

λ⋆
n−1−i ≥ fn−1−i

(
1−

i∑
j=1

fj−1

(
1

2j

))
> fn−1−i

(
1−

∞∑
j=1

fj−1

(
1

2j

))
= fn−1−i

(
1−

∞∑
j=0

fj
2(j + 1)

)
.

(2.23)

Since
∑∞

j=0 fjx
j = 1√

1−x for all x ∈ [0, 1), integrating both sides between the limits 0 and t, we
have

∞∑
j=0

fj
j + 1

tj+1 = 2
(
1−
√
1− t

)
.

Taking limits as t→ 1, we obtain
∞∑
j=0

fj
j + 1

= 2.
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Thus, from Equation 2.23, we can conclude that λ⋆
n−1−i > 0 for all i ∈ [n] and hence Γ (λ⋆)2

is a matrix with all entries (Γ(λ⋆)2)i,j =
∑n−1−max{i,j}

k=0 λ⋆
i+kλ

⋆
j+k strictly positive. Hence, by the

Perron-Frobenius theorem, we have that Γ (λ⋆)2 has a unique eigenvector with all coordinates
positive, and this corresponds to the maximum eigenvalue. Since f is an eigenvector of Γ (λ⋆)2 by
construction, it must be the unique leading eigenvector corresponding to the eigenvalue 1. Hence∥∥Γ (λ⋆)2

∥∥
∗ ≤ 1.

Thus, L (b, c, λ⋆) is convex in (b, c), since
∥∥Γ (λ)2

∥∥
⋆
≤ 1 ⇐⇒ ∥Γ (λ)∥⋆ ≤ 1. And λ⋆ was

chosen to ensure ∇b,cL(b, c, λ
⋆) = 0. This lets us conclude that

(
f⃗ , f⃗ , λ⋆

)
is a stationary point of

the Lagrangian that is convex in b, c and concave in λ, hence it is the global optimum.

Proposition 2.2 fully characterizes the optimal lower triangular Toeplitz factorization. We now
compare the value of the matrix factorization objective for lower triangular Toeplitz factorizations
versus general factorizations. For convenience, we define a notation for these values:

Definition 2.3. Let A ∈ {0, 1}n×n be the lower triangular matrix of all ones. Recall that C ∈ Rn×n

is lower triangular Toeplitz if Ci,j = 0 for all i < j and Ci,j = ci−j for all i ≥ j, where c ∈ Rn is
a vector. Define

OptLTToe(n) := inf
{
MaxErr(B,C) : B,C ∈ Rn×n lower triangular Toeplitz, BC = A

}
,

(2.24)

Opt(n) := inf
{
MaxErr(B,C) : B,C ∈ Rn×n, BC = A

}
, (2.25)

where MaxErr(B,C) := ∥B∥2→∞∥C∥1→2 =
√

maxi
∑

j B
2
i,j

√
maxj

∑
i C

2
i,j .

By Proposition 2.2 and Lemma 2.1, for all integers n ≥ 1, we have

1 +
γ − 1 + log(n)

π
≤ OptLTToe(n) = 1 +

n−1∑
k=1

(
2−2k

(
2k

k

))2

≤ 1 +
γ + log(n)

π
. (2.26)

The lower bound of Matoušek, Nikolov, and Talwar [MNT20] in Equation 2.9 states the optimal
over all factorizations is

Opt(n) = γ2(A
(n)) ≥ 1 +

log (2n+ 1)

π
.

Combining these bounds gives a bound on the gap between the optimal general factorization and
the optimal lower triangular Toeplitz factorization.

Corollary 2.4. The gap between the lower triangular Toeplitz and general optimal factorizations
is

OptLTToe(n)− Opt(n) ≤
(
1 +

γ + log(n)

π

)
−
(
1 +

log(2n+ 1)

π

)
≤ γ + log(2)

π
≤ 0.405.
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Numerically, we have OptLTToe(n)− Opt(n) ≤ 0.365 for all n ≥ 1. Figure 2 shows numeri-
cally how the various known upper and lower bounds compare for differing values of n.

We conclude this subsection by remarking that, without the Toeplitz constraint, we can assume
that the factors are lower triangular without loss of generality. This is a consequence of the fact that
two factorizations A = BC and A = B̂Ĉ are functionally equivalent as long as BBT = B̂B̂T . To
see why this fact is true, note that for z ← N (0, σ2I), the distribution of Bz is N (0, σ2BBT ). So
if BBT = B̂B̂T , then Bz and B̂z have the exact same distribution. Note that this fact is specific
to the Gaussian distribution. Given this fact, we can take an arbitrary factorization A = BC
and perform a Cholesky decomposition of BBT to obtain a lower triangular B̂ satisfying BBT =
B̂B̂T . However, if we restrict to Toeplitz matrices, then we cannot assume they are lower triangular
without loss of generality, since the Cholesky decomposition may not preserve this structure.

2.3 Applications of Matrix Factorizations in Machine Learning
In the recent years, Matrix Factorization (MF) have found extensive use both in obtaining opti-
mal private regret/stochastic convex optimization (SCO) guarantees [ST13; AS17; KMSTTX21;
AFKT23; ZTC22], and in practical deployments [KMSTTX21; DMRST22; CCMRT22; CCG-
MMRGTX24; XZACCKMRZ23]. The main observation that maps MF to the (convex) optimiza-
tion setup is that (unconstrained) stochastic graident descent update with constant learning rate can
be viewed as computing prefix sums over adaptively chosen gradient vectors16. Differentially Pri-
vate Follow-the-regularized-leader (DP-FTRL) [KMSTTX21; ST13] is an optimization algorithm
that arises naturally from this mapping. DP-FTRL has found extensive usage in production grade
deployment of DP learning. For example, all next-word-prediction models on Android Gboard is
trained with DP-FTRL [XZACCKMRZ23].

For a given set of ℓ2-Lipschitz loss functions {f1(θ), . . . , fn(θ)} (where each loss function fi
can be thought of as the optimization loss on a disjoint minibatch of data samples), the simplest
version of DP-FTRL can be described as follows:

DP-FTRL: θt ← θ0 − η

(
t−1∑
k=0

∇fk(θk) + ẑk

)
. (2.27)

In Equation 2.27, η is the learning rate, and {ẑt} are the correlated Gaussian noise added to ensure
that the computation of the sequence of {θt}’s are differentially private. Mapping to the MF view
in Equation 1.1, the adaptively chosen data set is set to x = {∇ft(θt) : t ∈ [n]}, and the noise se-
quence {ẑt} is set to Bz, where z ← N (0, σ2I). DP-FTRL captures a large class of noise addition
mechanisms (parameterized by the specific factorization scheme A = BC chosen). In particular,
it captures DP-SGD [SCS13; BST14; ACGMMTZ16] (another heavily used private learning al-
gorithm) as a special case [CCGMMRGTX24], and has much better privacy/utility trade-offs in
general [CCDPGST24]. [KMSTTX21; AFKT23] showed that for obtaining the best regret/SCO
guarantees from DP-FTRL style algorithms, it suffices to optimize for MaxErr(B,C) to instantiate
the noise mechanism in Equation 2.27.

One major challenge in large deployments of DP-FTRL is that noise generation for an arbitrary
matrix mechanism can be prohibitively expensive, as discussed in Section 1. Our work provides

16There are more general mappings for constrained optimization, and adaptive optimizers like momentum methods,
but a detailed discussion on those is tangential to this work.
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a practical approach that only requires a constant factor blow-up (usually at most 4-6 times) in
memory as compared to that of DP-SGD, and at privacy/utility trade-off comparable to DP-FTRL
with an optimal matrix-factorization mechanism. (DP-SGD adds independent Gaussian noise to
the gradients at each state update.)

2.4 Other Related Work
Beyond additive noise: Our algorithms are based on adding Gaussian noise (with a carefully
chosen covariance). Since the noise is additive, the error is independent of the number of data
points.17 The expected maximum error is

∀x E
M

[∥M(x)− Ax∥∞] = E
M

[
max

k
|(M(x)− Ax)k|

]
≤ O(log(n))3/2, (2.28)

while the maximum expected error is

∀x max
k

E
M

[|(M(x)− Ax)k|] ≤ O(log(n)). (2.29)

The additional
√
log(n) term in Equation 2.28 compared to Equation 2.29 comes from taking a

union bound over n Gaussians. Note that, for simplicity, we suppress the privacy parameters;
to achieve (ε, δ)-differential privacy, the error above scales with 1

ε
log(1/δ); to achieve ρ-zCDP

[BS16], the error above scales with 1/
√
ρ.

The bound in Equation 2.29 on the maximum expected error is tight up to constants in the
streaming setting – in fact the lower bound holds for average expected error:

∀M ∃x 1

n

∑
k

E
M

[|(M(x)− Ax)k|] ≥ Ω(log(n)), (2.30)

assumingM is differentially private [HUU23, Theorem 4]. However, the bound in Equation 2.28
on expected maximum error is not tight if we move beyond additive noise mechanisms [DNRR15].
Dwork, Naor, Reingold, and Rothblum [DNRR15] show that we can obtain an improved error
guarantee:18

∃M ∀x E
M

[∥M(x)− Ax∥∞] ≤ O(log(n) + log(|x|)3/2), (2.31)

where |x| is the number of data points.19 The high level idea is to “freeze” the output ofM until
the partial sum has changed significantly and only then update the output. This works because
deciding whether the partial sum has changed significantly is easier than evaluating it. Specifically,
we can use the so-called “sparse vector” technique to decide when to update. This algorithm is a
reduction – when it does decide to update, it uses additive noise – the “win” is that we need to use
additive noise for ≤ |x| updates, rather than n updates. Thus our improvements for additive noise
mechanisms can be applied in this setting.

Equation 2.31 is only an improvement over Equation 2.28 in the sparse setting (|x| ≪ n).
Machine learning applications are typically dense (|x| ≥ n).

17The error of our algorithms depends on the number of iterations n. This is usually closely related to the number
of data points |x|, but, in general, these two quantities can be unrelated.

18Dwork, Naor, Reingold, and Rothblum [DNRR15] stated this result for pure differential privacy, with log(|x|)2
instead of log(|x|)3/2.

19In most of the differential privacy literature n is the number of data points / people, but we use n for the number
of iterations; |x| should be read as the size of the dataset x.
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Offline setting: Our work is in the streaming setting, where we must output an approximation to
each partial sum as soon as it is complete. It is also natural to consider the offline setting, where
we are given the entire input at once. In the offline setting, the memory constraints that we focus
on are not as relevant.

The offline version of continual counting is known as threshold queries or quantiles and this
task has been studied extensively [BNS13; BNSV15; BDRS18; ALMM19; KLMNS20; GJK21;
CLNSS23]. The offline setting permits more sophisticated algorithms, which achieve asymptot-
ically better error guarantees. Cohen, Lyu, Nelson, Sarlós, and Stemmer [CLNSS23] give an
(ε, δ)-differentially private algorithmM with error

∀x E
M

[∥M(x)− Ax∥∞] ≤ Õ

(
1

ε
log2(1/δ) log∗(n)

)
(2.32)

Note that offline algorithms are not applicable in the machine learning applications discussed in
Section 2.3.

Pure differential privacy: The early work on continual counting [DNPR10; CSS11; XWG10]
works under pure (ε, 0)-differential privacy, which rules out Gaussian noise. Instead Laplace noise
can be used. In this case, we must bound the L1 sensitivity. So the objective for the matrix
factorization is to minimize ∥B∥2→∞ · ∥C∥1→1, where ∥C∥1→1 = maxj

∑
i |Ci,j| is the maximum

1-norm of a column. This subtly changes the problem. The binary tree factorization still works
well with this objective. However, Toeplitz factorizations do not work as well. Intuitively, the
binary tree factorization relies on sparsity which controls both the 1- and 2-norms, whereas Toeplitz
factorizations produce dense matrices for which the the 1- and 2-norms differ substantially.

Factoring other matrices: We exclusively look at factorizing the all-ones lower triangular ma-
trix. This is a natural and well-motivated problem. However, there is also work on factorizing
other matrices. Most closely related to the all-ones lower triangular matrix A, Mathias [Mat93]
gives exact expressions for γ2(A + AT ) and γ2(A + AT + I). There is a different line of work
[LMHMR15; MMHM21] considering factorizations of generic workload matrices, which have a
completely different structure than the matrices we consider.

Notation Summary
Before proceeding, we briefly summarize the key symbols and notation used throughout:
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n Number of steps on which DP estimates are released.

d Order of recurrence / degree / number of memory buffers.

m Dimension of per-step user contributions (e.g., model size).

[k] = {0, . . . , k − 1} for k ≥ 1.

N = {0, 1, 2, . . . }, the natural numbers including zero.

f Rational (generating) function where f(x) = f0 + f1x+ f2x
2 · · · .

p Polynomial of degree d with p(x) = p0 + p1x+ p2x
2 + · · ·+ pdx

d.

(fk)
∞
k=0 Sequence f0, f1, . . . with corresponding generating function f .

M(f, n) ∈ Rn×n Lower-triangular Toeplitz matrices defined by a generating function f .

· Context-dependent multiplication, used where it improves readability.

f ∗ r Cauchy product / convolution (f ∗ r)n =
∑n

i=0 fi · rn−i.
AT Transpose of a matrix A.

A⋆ A matrix A that is “optimal” in a context-dependent sense.

A† Moore-Penrose pseudoinverse of matrix A.

Ai,j The (i, j)th entry of matrix A, zero-indexed.

Ai,: and A:,j The ith row and j th column.

∥A∥F The Frobenius norm of a matrix A.

A ∈ Rn×n Specifically, the lower-triangular matrix of ones to be factorized as A = BC.

log Natural logarithm, log(2.718) ≈ 1.

Table 1: Summary of notation

3 Efficiently-Sampleable Factorization via Rational Generat-
ing Functions

In this section we describe our main algorithmic tools. First (in §3.1) we present the view of lower
triangular Toeplitz matrices in terms of generating functions or sequences. This is a convenient
mathematical formalism for analysis [FHU22]. Second (in §3.2) we discuss the special case of
rational generating functions or, equivalently, constant-recurrent sequences. Our results focus on
this special case, as the additional structure is useful for our algorithms; this structure is where
we depart from the prior literature. Third (in §3.3) we present our algorithm for sampling from
lower triangular Toeplitz matrices with rational generating functions (that is, the multiplication al-
gorithm for BLT matrices). In subsequent sections (§4, §5) we instantiate these rational generating
functions.
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3.1 Sequences, Lower Triangular Toeplitz Matrices, & Generating Func-
tions

We begin by describing the generating function view of lower triangular Toeplitz matrices used
by Fichtenberger, Henzinger, and Upadhyay [FHU22]. Our analysis moves fluidly between three
different views of the same mathematical object:

• The sequence (fk)
∞
k=0 = f0, f1, f2, . . . with fk ∈ R for each index k.

• The ordinary generating function of the sequence, f : C→ C,

f(x) =
∞∑
k=0

fkx
k =

∞∑
k=0

f (k)(0)

k!
xk.

(It will be clear from context if f refers to the sequence entries or the generating function).

• The family of n× n lower-triangular Toeplitz matrices M(f, n) ∈ Rn×n for n ∈ N that are
generated by f as

∀i, j ∈ [n] M(f, n)i,j :=

{
fi−j if i ≥ j
0 if i < j

}
(3.1)

When the specific n is unimportant or clear from context, we write M(f) to refer to any
matrix in this family (or equivalently, the infinite-dimensional linear operator).

As a canonical example, we have the all-ones sequence,

(gk)
∞
k=0 = 1, 1, 1, 1, . . . , g(x) =

1

1− x
=
∞∑
k=0

xk, A(4) := M(g, 4) =


1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

 (3.2)

It is straightforward to see that addition (under the usual definitions) is equivalent across all
three representations, and (slightly less obviously) the same fact holds for suitable definitions of
multiplication. We denote the Cauchy product or convolution ∗ for sequences f and g by

(fk)
∞
k=0 ∗ (gk)∞k=0 = (hk)

∞
k=0 where hk :=

k∑
i=0

fi · gk−i, (3.3)

and write h = f ∗ g as a shorthand.
Then, the mathematical structure summarized in the following lemma is key to our analysis:

Lemma 3.1. Let f , g, and h be ordinary generating functions with corresponding sequences.
Then the Cauchy product of sequences, multiplication of the generating functions, and matrix
multiplication are all equivalent. That is,

(h = f ∗ g) ⇐⇒
(
h(x) = f(x)g(x)

)
⇐⇒

(
∀n M(h, n) = M(f, n) ·M(g, n)

)
.

Similarly the usual definitions of addition are equivalent:(
∀i hi = fi+gi

)
⇐⇒

(
h(x) = f(x)+g(x)

)
⇐⇒

(
∀n M(h, n) = M(f, n)+M(g, n)

)
.
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Proof. The results for sequences and their ordinary generating functions are well known, see e.g.
Kauers and Paule [KP11] or their equivalent results based on well-known properties of the Z-
transform; cf. [OWN97]. The results for addition are also immediate. Hence, it is sufficient to
show h(x) = f(x)g(x) iff ∀n ∈ N,M(h, n) = M(f, n) ·M(g, n).

Fix i, j ∈ [n]. If i < j, then M(h, n)i,j = 0 and (M(f, n) ·M(g, n))i,j =
∑

k∈[n] M(f, n)i,k ·
M(g, n)k,j =

∑
k 0, since, for all k ∈ [n], either i < k, whence M(f, n)i,k = 0, or k < j, whence

M(g, n)k,j = 0, (or both). Thus we can assume i ≥ j.
By the product rule and induction, we have the derivative h(ℓ)(x) =

∑ℓ
k=0

(
ℓ
k

)
f (ℓ−k)(x) ·g(k)(x)

for all ℓ ≥ 0 and all applicable x. Thus

M(h, n)i,j =
h(i−j)(0)

(i− j)!

=
1

(i− j)!

i−j∑
k=0

(
i− j

k

)
f (i−j−k)(0) · g(k)(0)

=

i−j∑
k=0

f (i−j−k)(0)

(i− j − k)!
· g

(k)(0)

k!

=
i∑

k′=j

f (i−k′)(0)

(i− k′)!
· g

(k′−j)(0)

(k′ − j)!
(k′ = k + j)

=
i∑

k′=j

M(f, n)i,k′ ·M(g, n)k′,j

=
∑
k′∈[n]

M(f, n)i,k′ ·M(g, n)k′,j

(i < k′ =⇒ M(f, n)i,k′ = 0, k′ < j =⇒ M(g, n)k′,j = 0)

= (M(f, n) ·M(g, n))i,j .

Given Equation 3.2 and the above result for multiplication, in order to factorize A = BC, it
is natural to factorize by taking the square root of the generating function. Let f(x) = 1√

1−x .
Since f(x) · f(x) = 1

1−x = g(x) is the generating function of the all ones sequence, it follows that
M(f, n) ·M(f, n) = M(g, n) = A(n). Indeed, this is the factorization given by Fichtenberger,
Henzinger, and Upadhyay [FHU22], which we show to be optimal among the class of lower trian-
gular Toeplitz matrices in Proposition 2.2.

Given any generating function r(x), we can obtain a valid factorization A = BC where B =
M(b, n) for b(x) = r(x)/(1− x) and C = M(c, n) for c(x) = 1/r(x). Our approach is to choose
a generating function such that r(x) ≈

√
1− x but which also permits us to design an efficient

algorithm.
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3.2 Rational Generating Functions and Constant-Recurrent Sequences
We will focus our attention on rational generating functions of the form

r(x) =
p(x)

q(x)
=

∑d−1
i=0 pix

i

1 +
∑d

j=1 qjx
j
. (3.4)

These have convenient algorithmic properties. In this subsection, we discuss several equivalent
representations of rational functions. As a starting point, a rational function of degree d can be rep-
resented as a ratio of polynomials, where the numerator p(x) has degree < d and the denominator
has degree ≤ d. Note that we normalize the denominator so that q(0) = q0 = 1.20

Equation 3.4 is a convenient mathematical representation, but for algorithmic purposes we need
the sequence (rk)

∞
k=0 of Taylor series coefficients

r(x) =
∞∑
k=0

rkx
k. (3.5)

Thus our first task is to map from Equation 3.4 to Equation 3.5 with a convenient representation
that is amenable to efficient computation.

The generating function r(x) being a rational function is equivalent to the sequence (rk)
∞
k=0

being a constant-recurrent sequence (a.k.a. linear-recursive or C-finite sequence); see for example
Kauers and Paule [KP11]. The sequence terms can be computed by taking powers of a matrix; this
is the representation that we will use in our algorithm. We summarize this result in Lemma 3.2 and
provide a proof for completeness.

Lemma 3.2 (Constant-recurrent Taylor series representation of a rational function). Let

r(x) =
p(x)

q(x)
=

∑d−1
i=0 pix

i

1 +
∑d

j=1 qjx
j

be a rational function of degree ≤ d. As in Section 3.1, let

r(x) =
∞∑
k=0

rkx
k.

That is, r(x) generates the sequence (rk)
∞
k=0. Then, for all k ≥ d, this sequence satisfies the

recurrence

rk = −
d∑

j=1

qjrk−j. (3.6)

And, for 0 ≤ k < d, we have rk = pk −
∑k

j=1 qjrk−j . Furthermore, for all k, we have

rk = uTW kv, (3.7)
20We can rescale both the numerator and denominator by a constant to make this assumption true. Thus this

assumption is without loss of generality, unless the rational function has a pole at 0 – but we do not consider such
functions, as they are not valid generating functions.
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where

u :=



1
0
0
0
...
0
0


∈ Rd×1, v :=



p0
p1
p2
p3
...

pd−2
pd−1


∈ Rd×1, (3.8)

and

W :=



−q1 1 0 0 · · · 0 0
−q2 0 1 0 · · · 0 0
−q3 0 0 1 · · · 0 0
−q4 0 0 0 · · · 0 0

...
...

...
... . . . ...

...
−qd−1 0 0 0 · · · 0 1
−qd 0 0 0 · · · 0 0


∈ Rd×d. (3.9)

Proof. We have

r(x) =
p(x)

q(x)
=

∑d−1
i=0 pix

i

1 +
∑d

j=1 qjx
j
=
∞∑
k=0

rkx
k,

which rearranges to

p(x) =
d−1∑
i=0

pix
i = q(x) ·r(x) =

(
1 +

d∑
j=1

qjx
j

)
·

(
∞∑
k=0

rkx
k

)
=
∞∑
k=0

rk +

min{d,k}∑
j=1

qjrk−j

 ·xk.

Matching coefficients gives pk = rk +
∑k

j=1 qjrk−j for 1 ≤ k ≤ d− 1 and 0 = rk +
∑d

j=1 qjrk−j
for k ≥ d, which rearranges to give the recurrence.

Next we turn to the matrix representation. Define p(0)(x) = p(x) – i.e., p(0)i = pi for 0 ≤ i ≤
d− 1. For all k ≥ 1, let p(k)j := p

(k−1)
j+1 − p

(k−1)
0 qj+1 for 0 ≤ j ≤ d− 2 and let p(k)d−1 := −p

(k−1)
0 qd.

We can check that these values satisfy∑d−1
i=0 p

(k−1)
i xi

1 +
∑d

j=1 qjx
j
= p

(k−1)
0 + x ·

∑d−1
i=0 p

(k)
i xi

1 +
∑d

j=1 qjx
j
. (3.10)

The left hand side of Equation 3.10 with k = 1 is simply r(x); from this we can conclude that
r0 = p

(0)
0 = p0. Expanding Equation 3.10 for k = 1 and k = 2 gives r1 = p

(1)
0 . Specifically, we

have

r(x) =

∑d−1
i=0 p

(0)
i xi

1 +
∑d

j=1 qjx
j
= p

(0)
0 + x ·

∑d−1
i=0 p

(1)
i xi

1 +
∑d

j=1 qjx
j
= p

(0)
0 + x ·

(
p
(1)
0 + x ·

∑d−1
i=0 p

(2)
i xi

1 +
∑d

j=1 qjx
j

)
.

We can iteratively repeat this expansion to extract the entire Taylor series. (This algorithm is known
as polynomial long division.) That is, we can show by induction that, for all k, we have

r(x) =
k−1∑
ℓ=0

p
(ℓ)
0 xℓ + xk ·

∑d−1
i=0 p

(k)
i xi

1 +
∑d

j=1 qjx
j
.
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Thus rk = p
(k)
0 for all k.

Now we can write the recursive definition of p(k)j in matrix form: For all k ≥ 1, we have
p
(k)
0

p
(k)
1
...

p
(k)
d−1

 = W ·


p
(k−1)
0

p
(k−1)
1

...
p
(k−1)
d−1

 ,

where W ∈ Rd×d is given in Equation 3.9. Given this, induction shows that, for all k ≥ 0,
p
(k)
0

p
(k)
1
...

p
(k)
d−1

 = W k ·


p
(0)
0

p
(0)
1
...

p
(0)
d−1

 = W k · v

and, hence, rk = p
(k)
0 = uT ·W k · v, as required.

We make some remarks about Lemma 3.2:

1. Lemma 3.2 assumes deg(p) < d and deg(q) ≤ d, but it allows for the possibility that some
of the coefficients pj, qj (including qd) may be zero. Thus by padding, we can accommodate
arbitrary degree of both the numerator and denominator.

2. Lemma 3.2 is in fact an “if and only if” – that is, any Taylor series satisfying either of the
conclusions of the Lemma must be a rational function (see e.g. [KP11]). However, we do
not use the converse of the result.

3. The eigenvalues of W can be related to the poles of the corresponding rational function.
Specifically,

det(λI −W ) = 0 ⇐⇒ λd +
d∑

j=1

qjλ
d−j = 0 ⇐⇒

(
q( 1

λ
) = 0 or λ = 0 = qd

)
. (3.11)

4. Furthermore, the eigenvectors of W can be written in terms of the poles: Suppose q( 1
λ
) =

1 +
∑d

j=1 qj(
1
λ
)j = 0. Let uT = (λd−1, λd−2, · · · , λ, 1) ∈ R1×d (or λ = 0 and qd = 0). Then

uTW = λ · uT or, equivalently, W Tu = λ · u.

5. If the eigenvalues of W are distinct (and real), then the above remark produces a complete
(real) eigenbasis, and so we can diagonalize the matrix W (over R). A diagonal matrix W is
particularly convenient for our streaming algorithm (Algorithm 1).

6. If the eigenvalues of W are contained in the unit circle (i.e., |λ| ≤ 1), then the computation
of W k is numerically stable. By Equation 3.11, this is equivalent to the poles of the rational
function having magnitude ≥ 1.
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7. Suppose the rational function r has distinct poles 1
θi

, and can be presented as21

r(x) =
∑
i∈[d]

ωi

1− θi · x

via a partial-fraction decomposition (instead of as a ratio of polynomials as in Lemma 3.2).
(Indeed, our rational function in Section 4.2 is presented in this form in Equation 4.9.) Then,
we have a simpler closed form for the sequence,

rk =
∑
i∈[d]

ωiθ
k
i .

This immediately yields a matrix representation: W is a diagonal matrix with Wi,i = θi for
all i, and the vectors u and v simply need to satisfy uivi = ωi for all i. This matrix repre-
sentation may be more convenient than the one given by Lemma 3.2; we use this approach
extensively in Section 5.

8. The form of the matrix W in Lemma 3.2 is known as a “companion matrix” [Wik24].
Namely, the matrix W is a companion to the denominator polynomial q(x) since the roots
of the polynomial correspond to the eigenvalues of the matrix (per Equation 3.11).

Our choice in how to represent r(x) has some ramifications for the design of the noise genera-
tion (multiplication) algorithm in the next section.

Remark 3.3. The representation in Equation 3.4 assumes the numerator has lower degree than
the denominator, i.e., deg(p) < d versus deg(q) ≤ d. But, in this work, we typically consider
rational functions with the numerator and denominator both having the same degree, i.e., deg(p) =
deg(q) = d. This case can either be handled by padding (i.e., increment d 7→ d + 1 and set
qd+1 = 0) or by including an additive constant:

r(x) =
p(x)

q(x)
= t+

p(x)

q(x)
=

p(x) + tq(x)

q(x)
, where t =

pd
qd

and p(x) = p(x)− tq(x),

(3.12)
so that deg(p) ≤ d− 1. We then have

rk = uTW kv + tI[k = 0] (3.13)

with (u,W, v) as given in Lemma 3.2 applied to p(x)/q(x). Here I is the indicator function taking
value 1 if the condition holds and 0 otherwise. We prefer the representation with an additive
constant, as it is more efficient to implement algorithmically.

We note the indicator function can also be written as I[k = 0] = 0k for k ≥ 0. Thus we can
incorporate the tI[k = 0] into the matrix representation by appending a row/column of 0s to W ,
appending 1 to u and t to v:(

u
1

)T (
W 0
0T 0

)k (
v
t

)
=

(
u
1

)T (
W k 0
0T 0k

)(
v
t

)
= uTW kv + t · I[k = 0]. (3.14)

This increases the dimension d by 1, which is equivalent to padding. However, for efficient stream-
ing algorithm we introduce next, we can save one memory buffer by working directly with the
rk = uTW kv+tI[k = 0] representation rather than the pure matrix representation in Equation 3.14.

21Diagonalizing the matrix W given by Lemma 3.2 corresponds to finding a representation of this form.
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3.3 Efficient Sampling via BLT Multiplication
The generating function view outlined in Section 3.1 gives us a matrix factorization from any
function r(x). Namely, A(n) = M(b, n) ·M(c, n) for b(x) = r(x)/(1 − x) and c(x) = 1/r(x).
This turns out to be a good matrix factorization as long as r(x) ≈

√
1− x. The other desideratum

is being able to efficiently sample noise according to the matrix factorization.
In this subsection, we show that if r(x) is a rational function of low degree, then there exists

an efficient sampling algorithm or, equivalently, an efficient algorithm for streaming multiplication
by the lower-triangular Toeplitz matrix M(r(x), n). This algorithm relies on the representation in
Section 3.2. The final missing ingredient, which we provide in Sections 4 and 5, is to instantiate
r(x).

Our algorithmic task is as follows. Fix a lower-triangular Toeplitz matrix M(r, n) ∈ Rn×n

with a generating function r. We are given as input a matrix Z ∈ Rn×m and must produce as
output Ẑ := M(r, n) · Z ∈ Rn×m. The obvious algorithm for this task is to use standard matrix
multiplication; this would take O(n2m) time and O(nm) space. Another approach is to exploit
the Toeplitz structure of M(r, n) which makes the matrix multiplication a convolution; this means
it can be accelerated using the fast Fourier transform to take O(nm log n) time, but this is not a
streaming algorithm and it still requires O(nm) space. In order to reduce the space required we
need an algorithm that is tailored to the streaming setting.

For streaming prefix sum applications (and private deep learning applications like DP-SGD
and DP-FTRL in particular), the input Z consists of nm independent samples from a Gaussian
and Ẑ = M(r, n) · Z is the correlated noise we add to our private learning procedure – each row
corresponds to one training iteration and each column to one parameter of the model. In particular,
the rows Z can be sampled as needed – since they are independent noise – and the output Ẑ can be
returned one row at a time.

This is our streaming setting: At each iteration k, our algorithm receives as input the next row
Zk,· ∈ Rm and must output the next row Ẑk,· ∈ Rm. Our goal is to develop an algorithm that runs
in time and space O(m) per iteration (i.e., O(nm) time in total). Reducing the space usage relies
on the fact that we do not need to store all of Z or Ẑ in the streaming setting. Accomplishing
this relies on the structure of the lower triangular Toeplitz matrix M(r, n) ∈ Rd×d generated by a
rational function

r(x) = t+

∑d−1
i=0 pix

i

1 +
∑d

j=1 qjx
j
= r0 + r1x+ r2x

2 + r3x
3 + · · · .

Following Remark 3.3 and Lemma 3.2, we use the representation of the sequence (rk)∞k=0 in terms
of matrix powers: rk = uTW kv + tI[k = 0]. This is the representation that we use for our
algorithm.

For a BLT given via a rational generating function r in the matrix representation of Lemma 3.2,
Algorithm 1 in fact computes Ẑ = M(r)Z in row-by-row streaming fashion:

Lemma 3.4 (Properties of Algorithm 1). Algorithm 1 taskes as input a stream Z0,·, Z1,·, · · · , Zn−1,· ∈
R1×m and outputs a stream Ẑ0,·, Ẑ1,·, · · · , Ẑn−1,· ∈ R1×m. It takes parameters u, v ∈ Rd×1 and
W ∈ Rd×d and t ∈ R. At each iteration k, output satisfies

Ẑk,· =
k∑

j=0

rk−j · Zj,· = tZk,· +
k∑

j=0

uTW k−jv · Zj,·, (3.15)
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Algorithm 1 Streaming Multiplication by a BLT Matrix
Parameters: Matrix M(r, n) defined following Lemma 3.2 and Remark 3.3 via column vectors
u, v ∈ Rd×1, a matrix W ∈ Rd×d, and a scalar t ∈ R.
Streaming Input: Row vectors Z0,·, Z1,·, · · · , Zn−1,· ∈ R1×m.
Streaming Output: Row vectors Ẑ0,·, Ẑ1,·, · · · , Ẑn−1,· ∈ R1×m satisfying Ẑk = (M(r)Z)k.
Goal: Ẑk,· =

∑k
i=0 riZk−i,·, where rk = uTW kv + tI[k = 0].

Initialize S0 = 0 ∈ Rd×m. ▷ State of the Algorithm
for k = 0, · · · , n− 1 do

Receive input Zk,· ∈ R1×m.
Compute Sk+1 = vZk,· +W · Sk ∈ Rd×m.
Return output Ẑk,· = tZk,· + uTSk+1 ∈ R1×m.

where rk = uTW kv + tI[k = 0]. The space usage is O(dm + d2) and the runtime per iteration is
dominated by a matrix multiplication W · S, where S ∈ Rd×m.

Proof. By induction, for all k, we have

Sk+1 =
k∑

j=0

W k−jvZj,·

and, hence,

tZk,· + uTSk+1 = tZk,· +
k∑

j=0

uTW k−jvZj,· =
k∑

j=0

rk−jZj,· = Ẑk,·,

where Ẑ = M(r, n)Z.
The state of the algorithm after iteration k is given by Sk+1 ∈ Rd×m. The space usage of the

algorithm is dominated by storing this state (dm registers) plus storing the parameters u, v,W (2d+
d2 registers). More precisely, the only space that the algorithm requires is the state, plus whatever
registers are required to perform the update Sk+1 = vZk,· + W · Sk. (The output computation
Ẑk,· = tZk,· + uTSk+1 requires m registers to store the output.) The exact number of registers
required for this update depends on the structure of v and W . If W is a diagonal matrix or has the
structure given in Equation 3.9, then the update can be performed “in place” and we only require
m extra registers to store the input Zk,·. In general, we can always perform this update using dm
additional registers.

The running time of one iteration consists of the update Sk+1 = vZk,·+W ·Sk and the matrix-
vector product Ẑk,· = uTSk+1. The matrix-matrix product will dominate over the matrix-vector
products. The runtime of the matrix-matrix product depends on the structure of W . If W is sparse
(e.g., if it is diagonal), then this is O(dm) time. In general, we can perform this update in O(d2m)
time.

4 Factorizations via Rational Function Approximation
In this section we prove Theorem 1.1. We follow the generating functions view presented in Sec-
tion 3 and use the corresponding sampling algorithm (Algorithm 1). The proof is split into three
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steps. In Section 4.1 we recap how a generating function r yields a valid matrix factorization and
prove that, if r(x) ≈

√
1− x, then this yields an approximately optimal factorization. In Sec-

tion 4.2 we construct a low-degree rational function r that appropriately approximates the square
root. Finally we assemble the parts of the proof in Section 4.3.

4.1 Reduction to Approximating the Square Root
Proposition 2.2 shows that the optimal matrix factorization is given by A(n) = BC where B =
C = M(f, n) and f(x) = 1/

√
1− x. Suppose we have a generating function r(x) ≈

√
1− x. Let

b(x) := r(x)
1−x ≈

1√
1−x = f(x) and c(x) := 1

r(x)
≈ 1√

1−x . Since b(x)·c(x) = r(x)
1−x ·

1
r(x)

= 1
1−x = g(x),

we always obtain a valid factorization M(b, n) ·M(c, n) = A(n). We can bound the objective value
of this factorization in terms of the approximation r(x) ≈

√
1− x.

Proposition 4.1 (Approximating the square root approximates the matrix factorization objective).
Let τ > 0 and n ∈ N. Let r : C → C, where C := {z ∈ C : |z| < 1} is the open unit disc in the
complex plane centered at zero. Let

γτ := sup
{
|r(x)−

√
1− x| : x ∈ C, |x| = exp(−τ)

}
.

Let b(x) := r(x)
1−x and c(x) := 1

r(x)
and f(x) = 1√

1−x . Then M(b, n)·M(c, n) = M(c, n)·M(b, n) =

A(n) = M(f, n)2, where M(·, n) is defined in Equation 3.1 and A(n) is defined in Equation 2.1.

Moreover, if γτ ≤
(

1−exp(−2τ)
4

)2
, then

∥M(b, n)∥2→∞ ≤ ∥M(f, n)∥2→∞ +
exp(τn) · γτ√
exp(2τ)− 1

,

∥M(c, n)∥1→2 ≤ ∥M(f, n)∥1→2 +
exp(τn) · γτ

4
√

(exp(2τ)− 1)2 − 27/2γτ exp(4τ)
.

We will end up setting τ = 1
2n

. This ensures that exp(τn)·γτ√
exp(2τ)−1

≤
√
n · exp(1/2) · γτ < 2

√
nγτ

and, if n ≥ 6 and γτ ≤ 1
32·n2 , then exp(τn)·γτ

4
√

(exp(2τ)−1)2−27/2γτ exp(4τ)
≤ 4
√
2 ·
√
n · exp(1/2) · γτ < 2

√
nγτ .

Proof. Let b(x) =
∑∞

k=0 bkx
k, c(x) =

∑∞
k=0 ckx

k, and f(x) =
∑∞

k=0 fkx
k. By linearity and the

triangle inequality,

∥M(b, n)∥2→∞ = ∥M(f, n) +M(b− f, n)∥2→∞ ≤ ∥M(f, n)∥2→∞ + ∥M(b− f, n)∥2→∞,
∥M(c, n)∥1→2 = ∥M(f, n) +M(c− f, n)∥1→2 ≤ ∥M(f, n)∥1→2 + ∥M(c− f, n)∥1→2.

Thus it suffices to bound ∥M(b − f, n)∥2→∞ =
√∑n−1

k=0(bk − fk)2 and ∥M(c − f, n)∥1→2 =√∑n−1
k=0(ck − fk)2. We bound these using a weighted version of Parseval’s identity.

Lemma 4.2 (Weighted Parseval’s Identity). Let g, h : C → C be analytic, where C := {z ∈ C :
|z| < 1} is the open unit disc in the complex plane centered at zero. Let g(x) =

∑∞
k=0 gkx

k and
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h(x) =
∑∞

k=0 hkx
k for x ∈ C, where gk, hk ∈ C. Let τ > 0. Then

1

2π

∫ π

−π
|g(exp(

√
−1θ − τ))− h(exp(

√
−1θ − τ))|2dθ =

∞∑
k=0

|gk − hk|2 · exp(−2τk)

≥ exp(−2τ(n− 1))
n−1∑
k=0

|gk − hk|2.

Proof. Let w(x) = g(x)− h(x) =
∑∞

k=0 wkx
k, where wk = gk − hk. Then

1

2π

∫ π

−π
|g(exp(

√
−1θ − τ))− h(exp(

√
−1θ − τ))|2dθ

=
1

2π

∫ π

−π
|w(exp(

√
−1θ − τ))|2dθ

=
1

2π

∫ π

−π
w(exp(

√
−1θ − τ)) · w(exp(

√
−1θ − τ))dθ

=
1

2π

∫ π

−π

(
∞∑
k=0

wk · (exp(
√
−1θ − τ))k

)
·

(
∞∑
ℓ=0

wℓ · (exp(
√
−1θ − τ))ℓ

)
dθ

=
∞∑

k,ℓ=0

1

2π

∫ π

−π
wk · (exp(

√
−1θ − τ))k · wℓ · (exp(−

√
−1θ − τ))ℓdθ

=
∞∑

k,ℓ=0

wk · wℓ · exp(−(k + ℓ)τ) · 1

2π

∫ π

−π
exp((k − ℓ)

√
−1θ)dθ

=
∞∑

k,ℓ=0

wk · wℓ · exp(−(k + ℓ)τ) · I[k − ℓ = 0]

=
∞∑
k=0

|wk|2 · exp(−2kτ)

=
∞∑
k=0

|gk − hk|2 · exp(−2τk).
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Recall b(x) := r(x)
1−x and f(x) = 1√

1−x , whence b(x)− f(x) = r(x)−
√
1−x

1−x . Now we have

∥M(b− f, n)∥2→∞ =

√√√√n−1∑
k=0

(bk − fk)2

≤ exp(τ(n− 1))

√
1

2π

∫ π

−π
|b(exp(

√
−1θ − τ))− f(exp(

√
−1θ − τ))|2dθ

= exp(τ(n− 1))

√√√√√√ 1

2π

∫ π

−π

∣∣∣∣r(exp(√−1θ − τ))−
√

1− exp(
√
−1θ − τ))

∣∣∣∣2∣∣1− exp(
√
−1θ − τ))

∣∣2 dθ

≤ exp(τ(n− 1))

√
1

2π

∫ π

−π

γ2
τ∣∣1− exp(
√
−1θ − τ))

∣∣2dθ
= exp(τ(n− 1)) · γτ ·

√
exp(τ)

4π

∫ π

−π

1

cosh(τ) + cos(θ)
dθ

= exp(τ(n− 1)) · γτ ·
√

exp(τ)

2

1√
cosh(τ)2 − 1

=
exp(τ(n− 1)) · γτ√

1− exp(−2τ)
=

exp(τn) · γτ√
exp(2τ)− 1

≤ exp(τn) · γτ√
2τ

.

In the above we use the identity

|1− exp(
√
−1θ − τ)|2 = (1− e−τ cos θ)2 + (e−τ sin θ)2 = 1− 2e−τ cos θ + e−2τ (cos2 θ + sin2 θ)

= e−τ ·
(
eτ − 2 cos θ + e−τ

)
= 2e−τ · (cosh τ + cos θ)

and the integral

∀σ > 1
1

2π

∫ π

−π

1

σ + cos(θ)
dθ =

1

2π

∫ π

−π

1

σ + sin(θ)
dθ =

1√
σ2 − 1

, (4.1)

which follows from the derivative d
dθ

[
2√

σ2−1 tan
−1
(

1+σ tan(θ/2)√
σ2−1

)]
= 1

σ+sin(θ)
.

Similarly, recall c(x) := 1
r(x)

and f(x) = 1√
1−x , whence c(x) − f(x) =

√
1−x−r(x)

r(x)·
√
1−x . Assuming
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γτ < (1−exp(−2τ))2
27/2

, we have

∥M(c− f, n)∥1→2

=

√√√√n−1∑
k=0

(ck − fk)2

≤ exp(τ(n− 1))

√
1

2π

∫ π

−π
|c(exp(

√
−1θ − τ))− f(exp(

√
−1θ − τ))|2dθ

= exp(τ(n−1))

√√√√√√√√ 1

2π

∫ π

−π

∣∣∣∣r(exp(√−1θ − τ))−
√

1− exp(
√
−1θ − τ)

∣∣∣∣2∣∣∣∣r(exp(√−1θ−τ))·√1−exp(
√
−1θ−τ)

∣∣∣∣2
dθ

= exp(τ(n−1))

√√√√√√√√ 1

2π

∫ π

−π

∣∣∣∣r(exp(√−1θ − τ))−
√

1− exp(
√
−1θ − τ)

∣∣∣∣2∣∣∣∣1−exp(√−1θ−τ)+(r(exp(√−1θ−τ))−√1−exp(
√
−1θ−τ)

)
·
√
1−exp(

√
−1θ−τ)

∣∣∣∣2
dθ

≤ exp(τ(n−1))
√√√√√ 1

2π

∫ π

−π

γ2τ(∣∣1−exp(√−1θ−τ)∣∣− γτ ·
√
|1− exp(

√
−1θ − τ)|

)2dθ

≤ exp(τ(n−1))
√

1

2π

∫ π

−π

γ2τ∣∣1−exp(√−1θ−τ)∣∣2 − 2
√
2γτ

dθ

= exp(τ(n−1))·γτ ·

√
exp(τ)

4π

∫ π

−π

1

cosh(τ)−
√
2 exp(τ)γτ + cos(θ)

dθ

= exp(τ(n−1))·γτ ·
√√√√exp(τ)

2

1√
(cosh(τ)−

√
2 exp(τ)γτ )2 − 1

=
exp(τn) · γτ√

2 exp(τ)
√
(cosh(τ)−

√
2 exp(τ)γτ )2 − 1

=
exp(τn) · γτ

4

√
(exp(2τ)(1− 2

√
2γτ ) + 1)2 − 4 exp(2τ)

=
exp(τn) · γτ

4
√
1− 2(1 + 23/2γτ ) exp(2τ) + (1− 23/2γτ )2 exp(4τ)

=
exp(τn) · γτ

4
√
(exp(2τ)− 1)2 − 25/2γτ exp(2τ)− 25/2γτ exp(4τ) + 23γ2τ exp(4τ)

≤ exp(τn) · γτ
4
√
(exp(2τ)− 1)2 − 25/2γτ exp(2τ)(1 + exp(2τ))

≤ exp(τn) · γτ
4
√
(exp(2τ)− 1)2 − 27/2γτ exp(4τ)

.
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Combining the bounds yields the result.

4.2 Rational Approximation of
√
x

Sections 3 and 4.1 reduce the problem to finding a low-degree rational function that uniformly
approximates

√
1− x for x ∈ C with |x| ≤ 1. Fortunately, such functions are known to exist. In

this subsection we construct the required rational functions. The proof is included for completeness
and because it provides an explicit construction with explicit bounds.

For notational simplicity and consistency with the literature, we rescale so that we are approx-
imating

√
x instead of

√
1− x. To get an equivalent result, we must uniformly approximate

√
x

for x ∈ C with |x− 1/2| ≤ 1/2.
Newman [New64] gave an explicit rational function that approximates

√
x for x ∈ [0, 1].

Specifically, let

p(x) =
d−1∏
k=0

(x+ exp(−k/
√
d)) and r(x) =

√
x · (p(

√
x)− p(−

√
x))

p(
√
x) + p(−

√
x)

. (4.2)

Then r(x) is a rational function of degree ⌈d/2⌉ – specifically, r(x) is the ratio where the numerator
is a polynomial in x of degree ⌈d/2⌉ and the denominator is a polynomial in x of degree ⌊d/2⌋.
Furthermore,

sup
x∈[0,1]

|r(x)−
√
x| ≤ 3 · exp(−

√
d). (4.3)

The surprising aspect of this result is that the dependence on the degree is exponential rather
than polynomial, as is the case if we restrict to polynomial approximations, rather than rational
approximations. Newman also showed that this result was optimal up to constant factors in the
degree d and the approximation error. Subsequent work [Sta93] obtained optimal constants for
this approximation.

In order to apply Proposition 4.1, we need to extend Newman’s result into the complex plane.
We provide a proof adapted from that of Gopal and Trefethen [GT19].

Theorem 4.3. Let d ∈ N with d ≥ 2. Then there exists a rational function r of degree d with real
coefficients and real negative simple poles such that

|r(x)−
√
x| ≤

(
4 +

4

π

)
· exp

(
−π

√
1

2

⌊
d− 1

2

⌋)
≤ 6 · exp

(
−π

2

√
d− 2

)
(4.4)

for all x ∈ C with ℜ(x) ≥ 0 and |x| ≤ 1. Specifically,

r(x) =
2h

π

d+∑
k=−d−

x · exp(hk)
x+ exp(2hk)

, where d+ =

⌊
d− 1

2

⌋
, d− =

⌈
d− 1

2

⌉
, and h =

π√
2d+

.

(4.5)

Proof. We invoke Proposition 4.5. Let d− = ⌈(d−1)/2⌉ and d+ = ⌊(d−1)/2⌋ and let h ∈ (0, 4.9)
be determined later. Let r(x) = rd+,d−,h(x) be as in Equation 4.11. Clearly r(x) is a rational
function of degree d++d−+1 = d with real coefficients and the poles are given by− exp(2hk) ∈
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(−∞, 0) for k ∈ {−d−,−d− + 1, · · · , d+}. It remains to simplify the approximation guarantee
and set h. From Equation 4.11, for all x ∈ C with ℜ(x) ≥ 0 and |x| ≤ 1, we have

|r(x)−
√
x| ≤ 2

√
|x|
(

1

exp((1− c)π2/h)− 1
+

1

exp((1 + c)π2/h)− 1

)
+

2h

π(exp(h)− 1)

(
|x| · exp(−hd+) + exp(−hd−)

)
≤ 2

(
1

exp((1− |c|)π2/h)− 1
+

1

exp((1 + |c|)π2/h)− 1

)
(|x| ≤ 1 & symmetry in c)

+
4h exp(−hd+)
π(exp(h)− 1)

(d− ≥ d+)

≤ 2

(
1

exp(π2/2h)− 1
+

1

exp(π2/h)− 1

)
+

4

π
· exp(−hd+) ·

h

exp(h)− 1
(|c| = | 1

π
arg(x)| ≤ 1

2
)

≤ 4 · exp(−π2/2h) +
4

π
· exp(−hd+) (4.6)

=
(
4 +

4

π

)
· exp

(
−π
√

d+
2

)
(4.7)

=
(
4 +

4

π

)
· exp

(
−π

√
1

2

⌊
d− 1

2

⌋)
≤ 6 · exp

(
−π

2

√
d− 1

)
.

The fourth inequality Equation 4.6 follows from two simple facts: First, h ≥ 0 implies h
exp(h)−1 ≤

1.Second, 1
a−1+

1
a2−1 ≤

2
a

when a = exp(π2/2h) ≥ 1+
√
3 or, equivalently, h ≤ π2

2 log(1+
√
3)
≈ 4.91.

The penultimate equality Equation 4.7 follows by setting h = π√
2d+
≤ π√

2
< 2.5.

Corollary 4.4 (Rescaling of Theorem 4.3). Let d ≥ 2 be an integer. Then there exists a rational
function r̃ of degree d with real coefficients such that all poles are simple and > 1 and we have

|r̃(x)−
√
1− x| ≤ 8 · exp

(
−π

2

√
d− 2

)
(4.8)

for all x ∈ C with |x| ≤ 1. Specifically,

r̃(x) =
2h
√
2

π

d+∑
k=−d−

(1− x) · exp(hk)
1− x+ 2 · exp(2hk)

=
2h
√
2

π

d+∑
k=−d−

exp(hk)− 2 · exp(3hk)
1 + 2 · exp(2hk)− x

(4.9)
where d+ = ⌊(d− 1)/2⌋, d− = ⌈(d− 1)/2⌉, and h = π√

2d+
.

Proof. Let r be the rational function of degree ≤ d promised by Theorem 4.3. Define r̃(x) =√
2 · r(1−x

2
). Suppose x ∈ C with |x| ≤ 1. Then ℜ(1−x

2
) = 1

2
− 1

2
ℜ(x) ≥ 0, |1−x

2
| ≤ 1+|x|

2
≤ 1,
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and

|r̃(x)−
√
1− x| =

√
2·
∣∣∣∣r(1−x2 )−

√
1−x
2

∣∣∣∣ ≤ √2·(4 + 4

π

)
·exp

(
−π

√
1

2

⌈
d− 1

2

⌉)
≤ 8 exp

(
−π

2

√
d− 1

)
.

If x̃ is a pole of r̃, then 1−x̃
2

is a pole of r; since the poles of r are negative we have 1−x̃
2

< 0 and,
hence, x̃ > 1.

The general form of the approximation promised by Theorem 4.3 is given below.

Proposition 4.5. Let d+, d− ∈ N and h > 0. For x ∈ C \ [− exp(2d+h),− exp(−2d−h)], define

rd+,d−,h(x) :=
2h

π

d+∑
k=−d−

x · exp(hk)
x+ exp(2hk)

. (4.10)

Then, for all x ∈ C with ℜ(x) ≥ 0, we have

|rd+,d−,h(x)−
√
x| ≤ 2

√
|x|
(

1

exp((1− c)π2/h)− 1
+

1

exp((1 + c)π2/h)− 1

)
+

2h

π(exp(h)− 1)

(
|x| · exp(−hd+) + exp(−hd−)

)
, (4.11)

where c = 1
π
arg(x) ∈

[
−1

2
, 1
2

]
.

Proof. Fix x ∈ C with ℜ(x) > 0.22 Let arg(x) = tan−1
(
ℑ(x)
ℜ(x)

)
= cπ ∈

(
−π

2
, π
2

)
.

We begin with the Cauchy distribution integral∫ ∞
0

1

1 + u2
du =

∫ ∞
0

(
d

du
tan−1(u)

)
du =

π

2
.

We perform the variable substitutions u = v/
√
x and v = exp(s) and rearrange to obtain

√
x =

2

π

∫ ∞
0

x

x+ v2
dv =

2

π

∫ ∞
−∞

x · exp(s)
x+ exp(2s)

ds. (4.12)

Now we make the approximation

√
x =

2

π

∫ ∞
−∞

x · exp(s)
x+ exp(2s)

ds ≈ 2h

π

∑
k∈Z

x · exp(hk)
x+ exp(2hk)

≈ 2h

π

d+∑
k=−d−

x · exp(hk)
x+ exp(2hk)

= rd+,d−,h(x).

(4.13)
Thus all that remains to complete the proof is to make the the two approximations precise. Intu-
itively, the first approximation replaces the continuous integral with a discrete-but-infinite Riemann
sum. If the function is smooth and h is small, this approximation should be good. The second ap-
proximation truncates the infinite sum, which is a good approximation as long as the tails of the
function decay rapidly and hd+ and hd− are large.

22For the proof we assume ℜ(x) > 0. The case ℜ(x) = 0 follows by continuity.
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Define f(z) := 2h
π

x·exp(hz)
x+exp(2hz)

. Let

f̂(t) :=

∫ ∞
−∞

f(z) · exp(−2πzt
√
−1)dz

=

∫ ∞
−∞

2h

π

x · exp(hz − 2πzt
√
−1)

x+ exp(2hz)
dz

=
2h

π

∫ ∞
−∞

exp(−2πzt
√
−1)

exp(−hz) + exp(hz − log x)
dz

=
2h

π

∫ ∞
−∞

exp(−2π(y + log x
2h

)t
√
−1)

exp(−hy − 1
2
log x) + exp(hy − 1

2
log x)

dy (z = y + log x
2h

)

=
√
x · 2h

π
· exp

(
−πt log x

h

√
−1
)
·
∫ ∞
−∞

exp(−2πyt
√
−1)

exp(−hy) + exp(hy)
dy

=
√
x · 2h

π
· exp

(
−πt log x

h

√
−1
)
· 1
2

∫ ∞
−∞

exp(−2πyt
√
−1)

cosh(hy)
dy

=
√
x · 2h

π
· exp

(
−πt log x

h

√
−1
)
· π

2h · cosh(π2t/h)
(4.14)

=
√
x · exp

(
−πt log x

h

√
−1
)
· 1

cosh(π2t/h)
.

The penultimate equality (4.14) is the Fourier transform of the hyperbolic secant [use14]. The
Poisson summation formula states that∑

k∈Z

f(k) =
∑
t∈Z

f̂(t). (4.15)

Per Equation 4.12, we have

f̂(0) =

∫ ∞
−∞

f(z)dz =

∫ ∞
−∞

2h

π

x · exp(hz)
x+ exp(2hz)

dz =

∫ ∞
−∞

2

π

x · exp(s)
x+ exp(2s)

ds =
√
x.

Thus the Poisson summation formula allows us to analyze the first approximation in Equation 4.13.
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Namely,∣∣∣∣∣√x− 2h

π

∑
k∈Z

x · exp(hk)
x+ exp(2hk)

∣∣∣∣∣
=

∣∣∣∣∣f̂(0)−∑
k∈Z

f(k)

∣∣∣∣∣
=

∣∣∣∣∣f̂(0)−∑
t∈Z

f̂(t)

∣∣∣∣∣
≤

∞∑
t=1

|f̂(t)|+ |f̂(−t)|

=
∞∑
t=1

|
√
x| ·
(∣∣∣∣exp(−πt log xh √

−1
)∣∣∣∣+ ∣∣∣∣exp(πt log xh √

−1
)∣∣∣∣) · 1

cosh(π2t/h)

=
∞∑
t=1

|
√
x| ·
(
exp

(
ℑ
(
πt

log x

h

))
+ exp

(
ℑ
(
−πt log x

h

)))
· 1

cosh(π2t/h)

(| exp(v
√
−1)| = exp(ℜ(v

√
−1)) = exp(ℑ(−v)))

=
√
|x|

∞∑
t=1

2 cosh

(
π
t

h
ℑ(log x)

)
· 1

cosh(π2t/h)

=
√
|x|

∞∑
t=1

2 cosh

(
π
t

h
· cπ
)
· 1

cosh(π2t/h)
(ℑ(log x) = arg(x) = cπ)

= 2
√
|x|

∞∑
t=1

exp(cπ2t/h) + exp(−cπ2t/h)

exp(π2t/h) + exp(−π2t/h)

≤ 2
√
|x|

∞∑
t=1

exp(cπ2t/h) + exp(−cπ2t/h)

exp(π2t/h) + 0

= 2
√
|x|

∞∑
t=1

exp(−(1− c)π2t/h) + exp(−(1 + c)π2t/h)

= 2
√
|x|
(

1

exp((1− c)π2/h)− 1
+

1

exp((1 + c)π2/h)− 1

)
. (4.16)

The final equality (4.16) follows from the usual geometric series formula: If a > 0, then
∑∞

t=1 exp(−at) =
exp(−a)

1−exp(−a) =
1

exp(a)−1 .
Next we analyze the second approximation in Equation 4.13, which requires bounding the tails
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of f . On one side, for k ∈ N, we have

|f(k)| =
∣∣∣∣2hπ x · exp(hk)

x+ exp(2hk)

∣∣∣∣
=

2h

π

|x|
|x · exp(−hk) + exp(hk)|

=
2h

π

|x|√
ℜ(x · exp(−hk) + exp(hk))2 + ℑ(x · exp(−hk) + exp(hk))2

≤ 2h

π

|x|
|ℜ(x · exp(−hk) + exp(hk)|

=
2h

π

|x|
|ℜ(x) · exp(−hk) + exp(hk)|

(hk ∈ R)

=
2h

π

|x|
ℜ(x) · exp(−hk) + exp(hk)

(ℜ(x) > 0)

≤ 2h

π

|x|
exp(hk)

. (4.17)

On the other side, for k ∈ N, we have

|f(−k)| =
∣∣∣∣2hπ x · exp(−hk)

x+ exp(−2hk)

∣∣∣∣
=

2h

π

exp(−hk)
|1 + exp(−2hk)/x|

≤ 2h

π

exp(−hk)
|ℜ(1 + exp(−2hk)/x)|

=
2h

π

exp(−hk)
|1 + exp(−2hk)/ℜ(x)|

(ℜ(1/x) = 1/ℜ(x))

=
2h

π

exp(−hk)
1 + exp(−2hk)/ℜ(x)

(ℜ(x) > 0)

≤ 2h

π
exp(−hk). (4.18)
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Combining Equations 4.17 and 4.18, we have∣∣∣∣∣2hπ ∑
k∈Z

x · exp(hk)
x+ exp(2hk)

− rd+,d−,h(x)

∣∣∣∣∣ = 2h

π

∣∣∣∣∣∣
∑
k∈Z

x · exp(hk)
x+ exp(2hk)

−
d+∑

k=−d−

x · exp(hk)
x+ exp(2hk)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∞∑

k=d++1

f(k) +
∞∑

k=d−+1

f(−k)

∣∣∣∣∣∣
≤

∞∑
k=d++1

|f(k)|+
∞∑

k=d−+1

|f(−k)|

≤ 2h

π

∞∑
k=d++1

|x|
exp(hk)

+
2h

π

∞∑
k=d−+1

exp(−hk)

=
2h

π
|x|exp(−h(d+ + 1))

1− exp(−h)
+

2h

π

exp(−h(d− + 1))

1− exp(−h)
(4.19)

=
2h

π(exp(h)− 1)

(
|x| · exp(−hd+) + exp(−hd−)

)
.

(4.20)

Combining Equations 4.16 and 4.20 yields the result in Equation 4.11.

4.3 Putting Everything Together
Now we can assemble the tools we have developed to prove our main result (Theorem 1.1). In
Section 4.1 we connected near-optimal lower triangular Toeplitz matrix factorizations to approxi-
mating the square root function. In Sections 3.1 and 3.3 we connected low-degree rational func-
tions to efficient streaming algorithms. In Section 4.2 we gave a low-degree rational function that
approximates the square root function. The combination of these three tools gives a near-optimal
matrix factorization with a corresponding efficient streaming algorithm.

Theorem 4.6 (Main Theorem - Formal version of Theorem 1.1). Let n, d,m ∈ N satisfy n ≥ 5

and d ≥ 2 +
(
12+4 logn

π

)2
. There exists a lower triangular Toeplitz matrix factorization B,C,A =

BC ∈ Rn×n with the following properties.

• Near-Optimality: Let B∗ = C∗ = M(f, n) for f(x) = 1/
√
1− x be the optimal lower

triangular Toeplitz matrix factorization of size n. Then

∥B∥2→∞ ≤ ∥B∗∥2→∞ + 16
√
n exp

(
−π

2

√
d− 2

)
,

∥C∥1→2 ≤ ∥C∗∥1→2 + 16
√
n exp

(
−π

2

√
d− 2

)
.

• Efficiency: There is an algorithm that takes as input a stream Z1,·, Z2,·, · · · , Zn,· ∈ R1×m

and outputs a stream Ẑ1,·, Ẑ2,·, · · · , Ẑn,· ∈ R1×m such that Ẑ = C−1Z and the space and
time (per iteration) required by the algorithm is O(dm).
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To obtain Theorem 1.1 in the introduction from Theorem 4.6, we simply need to set d =

O(log(n/µ))2 such that d ≥ 2 +
(
12+4 logn

π

)2
and 16

√
n exp

(
−π

2

√
d− 2

)
≤ µ

4+log(n)
.

Proof. Corollary 4.4 gives us a rational function r of degree d with real coefficients such that

|r(x)−
√
1− x| ≤ 8 · exp

(
−π

2

√
d− 2

)
for all x ∈ C with |x| ≤ 1.

Let b(x) := r(x)
1−x and c(x) := 1

r(x)
and f(x) := 1√

1−x and g(x) := 1/(1 − x) = b(x)c(x). Let
B := M(b, n), C := M(c, n) ∈ Rn×n be as in Equation 3.1. By Lemma 3.1, this is a valid matrix
factorization, as B · C = M(b, n) ·M(c, n) = M(g, n).

Let τ > 0 and

γτ := sup
{
|r(x)−

√
1− x| : x ∈ C, |x| = exp(−τ)

}
≤ 8 · exp

(
−π

2

√
d− 2

)
.

By Proposition 4.1, if γτ ≤
(

1−exp(−2τ)
4

)2
, then

∥M(b, n)∥2→∞ ≤ ∥M(f, n)∥2→∞ +
exp(τn) · γτ√
exp(2τ)− 1

,

∥M(c, n)∥1→2 ≤ ∥M(f, n)∥1→2 +
exp(τn) · γτ

4
√

(exp(2τ)− 1)2 − 27/2γτ exp(4τ)
.

Set τ = 1
2n

. Then exp(2τ)− 1 ≥ 1/n and exp(τn) = exp(1/2). Thus

exp(τn) · γτ√
exp(2τ)− 1

≤
√
n · exp(1/2) · γτ < 2

√
nγτ

and, if n ≥ 5 and γτ ≤
(

1
6·n

)2, then

exp(τn) · γτ
4
√

(exp(2τ)− 1)2 − 27/2γτ exp(4τ)
≤ exp(1/2) · γτ

4
√
1/n2 − 27/2γτ exp(2/n)

≤ exp(1/2)γτ

4

√
1
n2 − 27/2 exp(2/5)

36n2

< 2
√
nγτ .

Assuming n ≥ 5 and d ≥ 2 +
(
2
π
log(8 · (6n)2)

)2, we have γτ ≤
(

1
6n

)2 ≤ (1−exp(−2τ)
4

)2
, which

means all the above inequalities hold. Combining inequalities yields the first part of the result.
Per Remark 3.3, we can write

r(x) = t+
p(x)

q(x)

where deg(p) < d and deg(q) ≤ d and t ∈ R. Lemma 3.2 states that there exist u, v ∈ Rd and
W ∈ Rd×d such that we can express

r(x) =
∞∑
k=0

rkx
k for rk = uTW kv + tI[k = 0].
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Furthermore W is sparse in the sense that each row has only two nonzero entries. Now we can feed
u, v,W, t as parameters to Algorithm 1. Lemma 3.4 tells us that Algorithm 1 receives the rows of
Z ∈ Rn×m as a stream and returns the rows of Ẑ ∈ Rn×m as a stream, where Ẑ = M(r, n)Z =
C−1Z. (The fact that M(r, n) = C−1 follows from Lemma 3.1.) The space required by the
algorithm is O(dm) and the time per iteration is dominated by computing the matrix multiplication
WS for S ∈ Rd×m. Since W is sparse, this takes O(dm) time.

5 Factorizations via Direct Optimization
In this section, we begin (in §5.1) by showing the following result:

Theorem 5.1 (Informal). Let r be a rational generating function. Then, for the matrix factorization
of A given by B = M(r(x)/(1− x), n) and C = M(1/r(x), n), we can compute in “closed-form”
(more specifically, in time O(poly(d) log n)) the sensitivity and error of this matrix factorization,
namely ∥B∥22→∞ and ∥C∥21→2.

Proof. The result follows from Lemmas 5.2 to 5.4.

We remark that the log n dependence in Theorem 5.1 comes (only) from the need to compute
quantities like θk for θ ∈ R and k ≤ n, which can be done via iterated squaring. For practical
n and modern hardware, this term can essentially be ignored, making the running time practically
independent of n. If the roots of the numerator and denominator of r are already known (as
assumed in Lemma 5.2) then MaxErr can be computed in time O(d2 log(n)); and such roots can
always be found in timeO(poly(d)) (omitting the dependence on the desired numerical accuracy).

In Section 5.2 we then show how Theorem 5.1 can be used to directly optimize the parameters
of a BLT factorization to minimize MaxErr for a specific n.

5.1 Fast and Exact Error Computation
In addition to enabling efficient streaming multiplication, the rational function structure of the ma-
trix factorizations we consider allows us to compute the total error of these mechanisms efficiently
for any n.

Lemma 5.2. Let r(x) = p(x)/q(x) be a rational function where deg(p) = deg(q) = d with
q(0) = p(0) = 1. Further, suppose p and q have pairwise distinct real roots, in particular there
exist θi, θ̂i ∈ (0, 1] for i ∈ [d] such that

p(x) = (1− θ̂0x)(1− θ̂1x) · · · (1− θ̂d−1x),

q(x) = (1− θ0x)(1− θ1x) · · · (1− θd−1x)

with θi ̸= θj and θ̂i ̸= θ̂j when i ̸= j. Then, there exist ωi, ω̂i ∈ R for i ∈ [d] such that

r(x) = 1 + x

(
d−1∑
i=0

ωi

1− θix

)
and s(x) :=

1

r(x)
= 1 + x

(
d−1∑
i=0

ω̂i

1− θ̂ix

)
. (5.1)
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These ωi, ω̂i can in fact be computed in closed form, Equation 5.3. Further, the coefficients of the
corresponding sequences can be computed directly as

ri =

{
1 i = 0∑

j∈[d] ωjθ
i−1
j i > 0.

and si =

{
1 i = 0∑

j∈[d] ω̂j θ̂
i−1
j i > 0.

(5.2)

Before giving a proof, we observe that Equation 5.2 yields a diagonalized companion matrix of
the form of Lemma 3.2, and using the representation of Remark 3.3 we can take t = 1−

∑d−1
i=0 ωi/θi

so

rk = tI[k = 0] + uTW kv :=


1
1
...
1


T 

θ0 0 0 0

0 θ1 0
...

... 0
. . . 0

0 0 . . . θd−1


k 

ω0/θ0
ω1/θ1

...
ωd−1/θd−1

 ,

and hence we can efficiently multiply by M(r) using Algorithm 1; a similar construction with
(ω̂, θ̂) enables efficient multiplication by M(1/r) using only d buffers.

This construction is particularly useful for optimization, but assumes we already have factored
p and q; one can of course always find the roots of p and q if they are given in some other poly-
nomial representation.23 Specifically, if one is instead given the matrix-power representation of r,
Proposition 5.6 of Section 5.3 shows these can directly be converted to a parameterization of 1/r.

Proof of Lemma 5.2. Equation 5.2 follows from Equation 5.1 and the Taylor series

ωx

1− θx
=
∞∑
i=1

ωθi−1xi.

It remains to show we can find ωi to instantiate Equation 5.1 for r(x) (the case of ω̂i for s(x) is
completely symmetric). Letting

q(−i)(x) :=
q(x)

1− θix
=
∏
j∈[d]
j ̸=i

(1− θjx),

we need ωi that satisfy

1 + x

(
d−1∑
i=0

ωi

1− θix

)
=

q(x) +
∑d−1

i=0 ωixq
(−i)(x)

q(x)
=

p(x)

q(x)
.

Since p(0) = q(0) = 1, p(x) − q(x) is divisible by x, so f(x) := 1
x
(p(x) − q(x)) is a polynomial

of degree d− 1. Hence, we wish to solve

d−1∑
i=0

ωiq
(−i)(x) = f(x)

23While we only need to consider real roots in our constructions and our optimization, the results of this section go
through for complex roots as well.
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for ω0, . . . , ωd−1. Equating the polynomial coefficients, this is a linear system of d equations and
d unknowns. It remains to show that this system has full-rank or, equivalently, that the set of
polynomials {q(−i)}i∈[d] forms a basis for the vector space of polynomials of degree ≤ d− 1.

Let z :=
∏

i∈[d]−θi and wi :=
(∏

j ̸=i(θ
−1
i − θ−1j )

)−1
and define

ℓ(x) :=
q(x)

z
= (x− θ−10 )(x− θ−11 ) · · · (x− θ−1d−1) and ℓ(−i)(x) := ℓ(x)

wi

x− θ−1i

.

Then {ℓ(−i)}i∈[d] is exactly the Lagrange polynomial basis for interpolating points at θ−10 , . . . , θ−1d−1;
further, we have

q(−i)(x) =
q(x)

−θi(x− θ−1i )
=
−z
θiwi

ℓ(−i)(x),

and since the θi are distinct and non-zero, −θiz
wi

is non-zero. It follows from Lagrange interpolation
that

f(x) =
∑
i∈[d]

f(θ−1i )ℓ(−i)(x) =
∑
i∈[d]

f(θ−1i )
−θiwi

z
q(−i)(x)

and so
ωi = f(θ−1i )

−θiwi

z
. (5.3)

It will be useful to define the prefix sums of the geometric series by

γn(θ) := 1 + θ + θ2 + · · ·+ θn−1 =
n−1∑
i=0

θi.

with γ∞(θ) = 1/(1− θ) and γ0(θ) = 0. When |θ| < 1, we have of course

γn(θ) =
n−1∑
i=0

θi =
1− θn

1− θ
. (5.4)

(This use of γ is unrelated to the γ2(A) factorization norm discussed earlier.)

Lemma 5.3. Let C(n) = M(s(x), n) for a rational function

s(x) = 1 + x

(
d−1∑
i=0

ω̂i

1− θ̂ix

)
,

for distinct θ̂i as per the assumptions of Lemma 5.2. Then, there exists a closed form expres-
sion for the sensitivity of C(n), sens(C(n)) = ∥C(n)∥1→2 allowing computation in time and space
O(d2 log n).
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Proof. The squared sensitivity can be computed as

sens2(C) =
n−1∑
i=0

s2i = 1 +
n−2∑
i=0

∑
j∈[d]

ω̂j θ̂
i
j

2

by Equation 5.2

= 1 +
n−2∑
i=0

∑
j∈[d]

∑
k∈[d]

ω̂jω̂kθ̂
i
j θ̂

i
k


= 1 +

∑
j∈[d]

∑
k∈[d]

(
n−2∑
i=0

ω̂jω̂k(θ̂j θ̂k)
i

)
= 1 +

∑
j∈[d]

∑
k∈[d]

ω̂jω̂kγn−1(θ̂j θ̂k),

and taking a square root completes the proof.

Lemma 5.4. Let B(n) = A(n)(C(n))−1 = A(n) M(r(x), n) = M(r(x)/(1 − x), n) for a rational
function

r(x) = 1 + x

(
d−1∑
i=0

ωi

1− θix

)
for distinct θi as per the assumptions of Lemma 5.2. Then, there exists a closed form expression for
the variance induced in the nth prefix sum, ∥B(n)∥22→∞ allowing computation in time and space
O(d2 log n).

Proof. In order to make our notation more compact, we will compute sensitivity for an arbitrary
row index n of M(r(x)/(1 − x), n + 1). Since multiplication by (1 − x)−1 corresponds to taking
prefix sums, we know B = M(t) where t0 = r0 = 1 and for any n > 0,

tn :=
n∑

i=0

ri = 1 +
∑
j∈[d]

n−1∑
i=0

ωjθ
i
j = 1 +

∑
j∈[d]

ωjγn(θj) (5.5)

and we calculate

t2n =

1 +
∑
j∈[d]

ωjγn(θj)

2

= 1 + 2
∑
j∈[d]

ωjγn(θj) +
∑
j∈[d]

∑
k∈[d]

ωjγn(θj)ωkγn(θk). (5.6)

It is thus sufficient to compute

∥Bn,:∥22 =
n−1∑
i=0

t2i (5.7)

= 1 +
n−1∑
i=1

t2i

= 1 +
n−1∑
i=1

1 + 2
∑
j∈[d]

ωjγi(θj) +
∑
j∈[d]

∑
k∈[d]

ωjγi(θj)ωkγi(θk)

 .
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where we used Equation 5.6 for the last step. Bringing the sum over i inside the sums over the
buffers j and k, it will be sufficient to consider the following terms. For any j ∈ [b],

Γj :=
n−1∑
i=1

ωjγi(θj) =
n−1∑
i=1

ωj(1− θij)

1− θj
assuming 0 ≤ θ < 1

=
ωj

1− θj

(
(n− 1)−

n−1∑
i=1

θij

)
=

ωj

1− θj
(n− γn(1, θj))) (5.8)

Similarly, for any j ∈ [d], k ∈ [d], let

Γj,k :=
n−1∑
i=1

ωjγi(θj)ωkγi(θk)

=
n−1∑
i=1

ωj(1− θij)

1− θj

ωk(1− θik)

1− θk
since 0 ≤ θ < 1

=
ωjωk

(1− θj)(1− θk)

n−1∑
i=1

(
1− θij − θik + (θjθk)

i
)

=
ωjωk

(1− θj)(1− θk)

n−1∑
i=0

(
1− θij − θik + (θjθk)

i
)

=
ωjωk

(1− θj)(1− θk)

(
n− γn(1, θj)− γn(1, θk) + γn(1, θjθk)

)
. (5.9)

Putting everything together we have

∥Bn,:∥22 =
n−1∑
i=0

t2i = n+ 2
∑
j∈[d]

Γj +
∑
j∈[d]

∑
k∈[d]

Γj,k. (5.10)

Since Equation 5.10 computes the L2-norm squared for the row indexed by n, and this quantity is
non-decreasing in n, it follows that

∥B(n)∥2→∞ =
√
∥Bn−1,:∥22,

which can be computed using Equation 5.10.

Remark 5.5. Rearranging Equation 5.10 and in particular expanding the terms Γj (Equation 5.8)
and Γj,k (Equation 5.9) reveals there exists constants α0, α1 ∈ R and ω̃i ∈ R, θ̃i ∈ (0, 1] for
i ∈ [d+ d2] such that

∥B(n)∥2→∞ = α0 + α1 · n+
∑

i∈[d+d2]

ω̃θ̃n−1

where in particular

α1 = 1 + 2
∑
j∈[d]

ωj

1− θj
+
∑
j∈[d]

∑
k∈[d]

ωjωk

(1− θj)(1− θk)
.
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We must have α1 ≥ 0 as for a valid factorization the norm must remain positive for all n, and
limn→∞ ω̃iθ̃

n−1 = 0 (or another constant ω̃i if θ̃i = 1). For all the BLTs we consider (and we
believe all useful BLTs), we find α1 > 0. Since sensitivity, Lemma 5.3, is non-decreasing in n,
for any such BLT, eventually MaxErr must grow linearly. Hence, one must either increase d with
n or optimize the BLT for a specific n in order to hope for good performance. In particular, by
optimizing for a specific n (§5.2), we must keep α small enough that the α1n term remains relatively
small (say, of the same order as α0). However, for larger n this term can quickly explode; we see
exactly this behavior in Figure 3 (Left column).

5.2 Direct Optimization of BLTs
Inspection of Lemmas 5.2 to 5.4 reveals that the function (θ, θ̂)→ MaxErr is in fact differentiable.
With this result, together with the automatic differentiation capabilities of JAX [Bra+18], we can
in fact directly optimize for rational functions of a given degree d which minimize MaxErr for a
given number of steps n.

Some care is needed in the implementation. In particular, we find:

• Using float64 precision is necessary, particularly when optimizing for n > 106.

• As n becomes large, maxi∈[d] θi tends to 1. Eqs. (5.4), (5.8) and (5.9) can be numerically un-
stable in such situations; this can be remedied by switching to a Taylor-series approximation
taken around θ = 1 for θ sufficiently near (or equal to) 1.

• The optimization is more stable (particularly for larger n) if we add a barrier function

ℓ(θ, ω) = 10−7
∑
i∈[d]

− log(θi)− log(ωi)

to ensure these parameters remain strictly positive.

• For large n (e.g n > 107), larger numbers of buffers d can make the optimization less stable.
For example, with our current implementation we find for n = 108, optimizing for more
than d = 6 buffers actually slightly decreases performance (while theoretically it should
only help).

With the above setup, we find the L-BFGS optimizer works well. Convergence generally takes
less than a second running on CPUs on a modern workstration24, even from a naive initialization
(initialization from Section 4 would likely require even fewer iterations). Numerical results for
these Opt-BLT mechanisms are given in Figures 1 and 3.

Proving the convergence properties of this approach and deriving more robust optimization
algorithms are interesting directions for future work.

24There is approximately 5-15 seconds of overhead for JAX to just-in-time compile the loss function; this is only
incurred once even if mechanisms are optimized for many different n.
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5.3 Derivation of the Inverse BLT Parameterization
We now show that the matrix-power representation of a rational function r(x) (see Lemma 3.2)
can be converted to a matrix-power representation for its reciprocal 1/r(x). This is useful for our
algorithm. Note that the dimension of the representation increases by one.

Proposition 5.6 (Representation of the reciprocal of a rational generating function). Let u, v ∈ Rd

and W ∈ Rd×d. Assume ⟨u, v⟩ = 1.25 Define r(x) =
∑∞

k=0 u
TW kv · xk. Then

1

r(x)
= 1−

∞∑
ℓ=1

uTW (W − vuTW )ℓ−1v · xℓ (5.11)

=
∞∑
k=0

ũT W̃ k
0 ṽ · xk (5.12)

and
1

r(x) · (1− x)
=
∞∑
k=0

ũT W̃ k
1 ṽ · xk (5.13)

where, for both β ∈ {0, 1},

W̃β =

(
β 0 · · · 0
v W − vuTW

)
∈ R(d+1)×(d+1), (5.14)

ũ =

(
1

−W Tu

)
∈ Rd+1, (5.15)

ṽ =


1
0
...
0

 ∈ Rd+1. (5.16)

Proof. To prove the first part of the result (5.11) it suffices to show that

r(x) ·

(
1−

∞∑
ℓ=1

uTW (W − vuTW )ℓ−1v · xℓ

)
= 1.

25This assumption is only made for simplicity and holds without loss of generality, as we can always rescale the
function by r(0) = uT v: That is, let r̂(x) := r(x)/r(0), apply the result, and rescale back 1/r(x) = r(0) · 1/r̂(x).
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We have

r(x) ·

(
1−

∞∑
ℓ=1

uTW (W − vuTW )ℓ−1v · xℓ

)

=
∞∑
k=0

uTW kv · xk ·

(
1−

∞∑
ℓ=1

uTW (W − vuTW )ℓ−1v · xℓ

)

=
∞∑
i=0

(
uTW iv −

i∑
ℓ=1

uTW i−ℓv · uTW (W − vuTW )ℓ−1v

)
· xi

=
∞∑
i=0

(
uTW iv − uTW (W − vuTW )i−1v −

i−1∑
ℓ=1

uTW i−ℓv · uTW (W − vuTW )ℓ−1v

)
· xi

= uTv +
∞∑
i=1

uT

(
W i −W (W − vuTW )i−1 −

i−1∑
ℓ=1

W i−ℓv · uTW (W − vuTW )ℓ−1

)
v · xi

= 1 +
∞∑
i=1

uT

(
W i−1 − (W −WvuT )i−1 −

i−1∑
ℓ=1

W i−ℓv · uT (W −WvuT )ℓ−1

)
Wv · xi,

where the final equality uses the fact

W (W − vuTW )ℓ−1 = W ((I − vuT )W )ℓ−1 = (W (I − vuT ))ℓ−1W = (W −WvuT )ℓ−1W.

Now it suffices to show that, for all i ≥ 1, we have

W i−1 = (W −WvuT )i−1 +
i−1∑
ℓ=1

W i−ℓv · uT (W −WvuT )ℓ−1. (5.17)

We prove Equation 5.17 by induction on i. For i = 1, the equation is trivially true (both sides are
the identity). Assuming Equation 5.17 holds for a given i ≥ 1, we have

W i = W ·W i−1 = ((W −WvuT ) +WvuT ) ·W i

= ((W −WvuT ) +WvuT ) · (W −WvuT )i−1 +W ·
i−1∑
ℓ=1

W i−ℓv · uT (W −WvuT )ℓ−1

= (W −WvuT )i +WvuT · (W −WvuT )i−1 +
i−1∑
ℓ=1

W i+1−ℓv · uT (W −WvuT )ℓ−1

= (W −WvuT )i +
i∑

ℓ=1

W i+1−ℓv · uT (W −WvuT )ℓ−1

−W i+1−iv · uT (W −WvuT )i−1 +WvuT · (W −WvuT )i−1

= (W −WvuT )i +
i∑

ℓ=1

W i+1−ℓv · uT (W −WvuT )ℓ−1,

which establishes that Equation 5.17 holds for the next value of i.
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To prove Equation 5.12, we must show that ũT W̃ 0
0 ṽ = 1 and ũT W̃ k

0 ṽ = −uTW (W −
vuTW )k−1v for k ≥ 1. We immediately have ũT ṽ = 1. By induction we can show that, for
all k ≥ 1, we have

W̃ k
0 =

(
0 0 · · · 0

(W − vuTW )k−1v (W − vuTW )k

)
∈ R(d+1)×(d+1).

From this it follows that ũT W̃ k
0 ṽ = −uTW (W − vuTW )k−1v for all k ≥ 1, as required.

More generally, for all β ∈ R and k ≥ 1,

W̃ k
β =

(
βk 0 · · · 0∑k−1

ℓ=0 β
k−1−ℓ(W − vuTW )ℓv (W − vuTW )k

)
∈ R(d+1)×(d+1).

Setting β = 1 still gives ũT W̃ 0
1 ṽ = 1 and now

ũT W̃ k
1 ṽ = 1−

k−1∑
ℓ=0

uTW (W − vuTW )ℓv = 1 +
k−1∑
ℓ=0

ũT W̃ ℓ+1
0 ṽ =

k∑
j=0

ũT W̃ j
0 ṽ

for k ≥ 1.
We have 1

r(x)
=
∑∞

k=0 ũ
T W̃ k

0 ṽ · xk and, hence,

1

r(x) · (1− x)
=

(
∞∑
k=0

ũT W̃ k
0 ṽ · xk

)
·

(
∞∑
i=0

xi

)
=
∞∑
ℓ=0

xℓ

ℓ∑
j=0

ũT W̃ j
0 ṽ =

∞∑
ℓ=0

ũT W̃ ℓ
1 ṽ · xℓ,

which completes the proof.

6 Generalizing the Binary Tree Approach
In this section we prove Theorem 1.2. Compared to Theorem 1.1 this attains a weaker approxima-
tion to the optimal matrix factorization, but is asymptotically better in terms of space usage.

Our starting point is the binary tree mechanism of Dwork, Naor, Pitassi, and Rothblum [DNPR10]
and Chan, Shi, and Song [CSS11]. The binary tree mechanism can be viewed as a recursive con-
struction of a matrix factorization; see Equation 2.5 for a precise statement. A recursion of depth ℓ
yields a matrix factorization of size n = 2ℓ and an algorithm running in time and space O(ℓ). The
binary tree mechanism is within a constant factor of optimal; we will improve the constant factor
to be arbitrarily close to optimal. Our approach is to combine a recursive construction with the
factorization we already developed to prove Theorem 1.1. We will start with a matrix factorization
of size n1 and, after a recursion of depth ℓ, we obtain a matrix factorization of size nℓ

1. The space
required is O(ℓ · log2 n1). Appropriately setting the parameters yields Theorem 1.2.

First we define the non-cyclic shift matrix S(n) ∈ {0, 1}n×n by Si,j = 1 ⇐⇒ i = j + 1 for
all i, j ∈ [n]. If we multply the non-cyclic shift matrix with the lower-triangular all-ones matrix,
it has the effect of zeroing out the diagonal and producing a strictly lower-triangular matrix. For
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example,

S(6) =


0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

 and A(6)S(6) = S(6)A(6) =


0 0 0 0 0 0
1 0 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0
1 1 1 1 0 0
1 1 1 1 1 0

 .

The non-cyclic shift matrix corresponds to the generating function h(x) = x – i.e., S(n) =
M(h, n).

Given matrices M ∈ Rn×m and M ′ ∈ Rn′×m′ , define the Kronecker product

M ⊗M ′ =


M0,0 ·M ′ M0,1 ·M ′ · · · M0,m−1 ·M ′

M1,0 ·M ′ M1,1 ·M ′ · · · M1,m−1 ·M ′

...
... . . . ...

Mn−1,0 ·M ′ Mn−1,1 ·M ′ · · · Mn−1,m−1 ·M ′

 ∈ R(n·n′)×(m·m′) (6.1)

by (M ⊗M ′)i,j = Mi1,j1 ·M ′
i2,j2

where i = i1 · n′ + i2 ∈ [n · n′] and j = j1 ·m′ + j2 ∈ [m ·m′].
The Kronecker product has the “mixed-product property” with matrix multiplication: We have
(A⊗B)(A′⊗B′) = (AA′)⊗ (BB′) whenever the matrix dimensions match so that AA′ and BB′

are well-defined.

6.1 Recursive Matrix Factorization
Without further ado, we present the basis of our recursive construction. Suppose we are given two
matrix factorizations A(n1) = B1C2 and A(n2) = B2C2. We will combine these into one matrix
factorization for A(n1·n2).

Definition 6.1 (Combining Matrix Factorizations). For B1 ∈ Rn1×n′
1 and B2 ∈ Rn2×n′

2 , define

B1⃝b B2 :=
(

I(n1) ⊗B2︸ ︷︷ ︸
∈R(n1n2)×(n1n

′
2)

S(n1)B1 ⊗ 1(n2)︸ ︷︷ ︸
∈R(n1n2)×n′

1

)
∈ R(n1n2)×(n1n′

2+n′
1), (6.2)

where I(n1) is the n1 × n1 identity matrix and 1(n2) is the all-ones column vector of length n2. For
C1 ∈ Rn′

1×n1 and C2 ∈ Rn′
2×n2 , define

C1⃝c C2 :=

(
I(n1) ⊗ C2

C1 ⊗ (1(n2))T

)
∈ R(n1n′

2+n′
1)×(n1n2), (6.3)

where I(n1) is the n1 × n1 identitiy matrix and (1(n2))T is the all-ones row vector of length n2

Lemma 6.2 (Properties of Definition 6.1). Let B1, C
T
1 ∈ Rn1×n′

1 and B2, C
T
2 ∈ Rn2×n′

2 . Suppose
B1C1 = A(n1) and B2C2 = A(n2), where A(n) is the all-ones lower triangular matrix defined in
Equation 2.1. Then

(B1⃝b B2)(C1⃝c C2) = A(n1n2).

Furthermore,

∥B1⃝b B2∥22→∞ = ∥S(n1)B1∥22→∞ + ∥B2∥22→∞ ≤ ∥B1∥22→∞ + ∥B2∥22→∞,
∥C1⃝c C2∥21→2 = ∥C1∥21→2 + ∥C2∥21→2.
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Proof. We have

(B1⃝b B2)(C1⃝c C2) =
(
I(n1) ⊗B2 S(n1)B1 ⊗ 1(n2)

)( I(n1) ⊗ C2

C1 ⊗ (1(n2))T

)
= (I(n1) ⊗B2)(I

(n1) ⊗ C2) + (S(n1)B1 ⊗ 1(n2))(C1 ⊗ (1(n2))T )

= (I(n1)I(n1))⊗ (B2C2) + (S(n1)B1C1)⊗ (1(n2)(1(n2))T )

= I(n1) ⊗ A(n2) + (S(n1)A(n2))⊗ (1(n2)(1(n2))T )

= A(n1n2).

The last equality is best understood by looking at an example for n1 = 3 and n2 = 2:26

I(3) ⊗ A(2) +
(
S(3)A(3)

)
⊗
(
1(2)(1(2))T

)
=

 1 0 0
0 1 0
0 0 1

⊗ ( 1 0
1 1

)
+

 0 0 0
1 0 0
1 1 0

⊗ ( 1 1
1 1

)

=


1 0 0 0 0 0
1 1 0 0 0 0
0 0 1 0 0 0
0 0 1 1 0 0
0 0 0 0 1 0
0 0 0 0 1 1

+


0 0 0 0 0 0
0 0 0 0 0 0
1 1 0 0 0 0
1 1 0 0 0 0
1 1 1 1 0 0
1 1 1 1 0 0



=


1 0 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0
1 1 1 1 0 0
1 1 1 1 1 0
1 1 1 1 1 1


= A(6).

26If you don’t like this proof by example, imagine some ellipses (· · · ,
...,

. . .) inserted into the matrices and it will
look like a general proof. Formally, we can do an index-by-index case analysis.
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Now we have

∥B1⃝b B2∥22→∞ = max
i∈[n1n2]

∑
j∈[n1n′

2+n′
1]

(B1⃝b B2)
2
i,j

= max
i∈[n1n2]

∑
j′∈[n1n′

2]

(I(n1) ⊗B2)
2
i,j′ +

∑
j′′∈[n1]

(S(n1)B1 ⊗ 1(n2))2i,j′′

= max
i1∈[n1],i2∈[n2]

∑
j′1∈[n1],j′2∈[n′

2]

(I
(n1)
i1,j1
· (B2)i2,j′2)

2 +
∑

j′′∈[n1]

((S(n1)B1)i1,j′′ · 1(n2))j′′)
2

= max
i1∈[n1],i2∈[n2]

∑
j′2∈[n′

2]

(B2)
2
i2,j′2

+
∑

j′′∈[n1]

(S(n1)B1)
2
i1,j′′

= max
i1∈[n1]

∑
j′2∈[n′

2]

(B2)
2
i2,j′2

+ max
i2∈[n2]

∑
j′′∈[n1]

(S(n1)B1)
2
i1,j′′

= ∥B2∥22→∞ + ∥S(n1)B1∥22→∞.

Similarly, ∥C1⃝c C2∥21→2 = ∥C1∥21→2 + ∥C2∥21→2. Finally,

∥S(n1)B1∥22→∞ = max
i∈[n1]

∑
j∈[n′

1]

(S(n1)B1)
2
i,j = max

i∈[n1−1]

∑
j∈[n′

1]

(B1)
2
i,j ≤ ∥B1∥22→∞.

Lemma 6.2 can be applied recursively. We start with some base factorization B1C1 = A(n1)

and inductively define a factorization satisfying BℓCℓ = A(nℓ
1) and

∥Bℓ∥2→∞ · ∥Cℓ∥1→2 ≤ ℓ · ∥B1∥2→∞ · ∥C1∥1→2.

Proposition 6.3. Let B1, C
T
1 ∈ Rn1×n′

1 . Following Definition 6.1, for ℓ ≥ 2, define

Bℓ = B1⃝b Bℓ−1 and Cℓ = C1⃝c Cℓ−1. (6.4)

Then, for all ℓ ≥ 1, we have Bℓ, C
T
ℓ ∈ Rnℓ×n′

ℓ , where nℓ := nℓ
1 and

n′ℓ := n′1 ·
ℓ−1∑
k=0

nk
1 = n′1 ·

nℓ
1 − 1

n1 − 1

If B1C1 = A(n1), then BℓCℓ = A(nℓ) for all ℓ ≥ 1. Furthermore,

∥Bℓ∥2→∞ ≤
√
ℓ · ∥B1∥2→∞,

∥Cℓ∥1→2 =
√
ℓ · ∥C1∥1→2.

Proof. Perform induction on ℓ using Lemma 6.2 with B2 = Bℓ−1 and C2 = Cℓ−1.
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6.2 Recursive Algorithm
Now we show that the recursive matrix factorization in Proposition 6.3 corresponds to an efficient
algorithm. The recursive construction naturally corresponds to a recursive algorithm. That is,
for streaming multiplication by Bℓ we must call a base algorithm for B1 and recursively call the
algorithm for Bℓ−1.

Recall the streaming multiplication setting: We receive the rows of Z ∈ Rn′
ℓ×m one by one as

a stream and we must output the rows of Bℓ · Z ∈ Rnℓ×m as a stream. Note that our matrix Bℓ

is not a lower triangular matrix; in fact, it is not even square. This makes the problem setting not
entirely straightforward, as we do not have a one-to-one correspondence between streaming inputs
and outputs.

In our application, the input Z is independent random noise. In particular, the order of the
rows is unimportant. The time when we read each row is also not important as the noise can be
generated as needed. The constraint is simply that we can only read each row once. (We can store
the rows for later use, but that requires memory, so we want to avoid this.) In other words, the input
is a stream of independent random noise, which we can read at any time, but we cannot “rewind”
it.

Algorithm 2 Recursive Streaming Algorithm corresponding to Proposition 6.3
Parameters: Base streaming algorithm A1. Recursion depth ℓ ≥ 1.
Streaming Input: Row vectors Z0,·, Z1,·, · · · , Zn′

ℓ−1,· ∈ R1×m.
Streaming Output: Row vectors Z̃0,·, Z̃1,·, · · · , Z̃nℓ−1,· ∈ R1×m such that Z̃ = Bℓ · Z.
if ℓ = 1 then

Run A1 and directly output what it outputs.
else

Start a copy of A1. (Copy I)
Let z′0 = (0(m))T ∈ R1×m.
for i = 0 · · ·n1 − 1 do

Start a copy of Aℓ−1. (Copy II) ▷ Recursion ℓ 7→ ℓ− 1.
for j = 0 · · ·nℓ−1 − 1 do

Get z′′i,j ∈ R1×m the next output of Aℓ−1 (copy II).
Output Z̃nℓ−1i+j+1,· = z′i + z′′i,j ∈ R1×m.
Delete z′′i,j .

Terminate Aℓ−1 (copy II) and delete z′i. ▷ Free up memory.
Get z′i+1 ∈ R1×m the next output of A1 (copy I).

Terminate A1 (copy I).

Our recursive streaming algorithm is presented as Algorithm 2. We will instantiate the base
streaming algorithm A1 with Algorithm 1. The recursive algorithm runs many copies of A1. The
streaming input is simply split among these copies. For simplicity, we do not belabor the precise
order in which the input stream is read.

Lemma 6.4 (Properties of Algorithm 2). For ℓ ≥ 1, let Bℓ, C
T
ℓ ∈ Rnℓ×n′

ℓ be as in Proposition 6.3.
Let A1 be a streaming algorithm that takes as input a stream Z0,·, Z1,·, · · · , Zn′

ℓ−1−1,· ∈ R1×m and
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outputs a stream Ẑ0,·, Ẑ1,·, · · · , Ẑnℓ−1−1,· ∈ R1×m such that Ẑ = B1Z. Let Aℓ denote Algorithm 2
instantiated with the base algorithm A1 and recursion depth ℓ ≥ 1.

Then Aℓ is a streaming algorithm that takes as input a stream Z0,·, Z1,·, · · · , Zn′
ℓ−1,· ∈ R1×m

(in an arbitrary – but fixed – order) and outputs a stream Z̃0,·, Z̃1,·, · · · , Z̃nℓ−1,· ∈ R1×m such that
Z̃ = B1Z.

Moreover, the space required by Aℓ is at most ℓ times the space required by A1. And the time
required by Aℓ is nℓ+1

1 −1
n1−1 ≤ O(nℓ) times the time required by A1.

Proof. We may inductively assume that the lemma holds for ℓ − 1 in place of ℓ. That is, we
assume Aℓ−1 is a streaming algorithm that takes as input a stream Z0,·, Z1,·, · · · , Zn′

ℓ−1,· ∈ R1×m

(in an arbitrary – but fixed – order) and outputs a stream Ž0,·, Ž1,·, · · · , Žnℓ−1−1,· ∈ R1×m such that
Ž = Bℓ−1Z. Let

Z ′ =



z′0
z′0
...
z′0
z′1
z′1
...
z′1
...

z′n1−1
z′n1−1

...
z′n1−1



=


z′0
z′1
...

z′n1−1

⊗ 1(nℓ−1) ∈ Rn1nℓ−1×m

and

Z ′′ =



z′′0,0
z′′0,1

...
z′′0,nℓ−1

z′′1,0
z′′1,1

...
z′′1,nℓ−1

...
z′′n1−1,0
z′′n1−1,1

...
z′′n1−1,nℓ−1



∈ Rn1nℓ−1×m.
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We have Z̃ = Z ′ + Z ′′. We want to show that

Z̃ = BℓZ = (B1⃝b Bℓ)Z =
(
I(n1) ⊗B2 S(n1)B1 ⊗ 1(n2)

)( Z0:n1n′
ℓ−1,·

Zn1n′
ℓ−1:n

′
ℓ,·

)
,

where Zn1n′
ℓ−1:n

′
ℓ,· ∈ Rn′

1×m and Z0:n1n′
ℓ−1,· ∈ Rn1n′

ℓ−1×m are a partition of the rows of Z ∈ Rn′
ℓ×m.

(Note that n′ℓ = n1n
′
ℓ−1 + n′1. The notation Zi:j,· denotes the submatrix of Z formed by rows

i, i+1, · · · , j−1 and all columns.) Thus it suffices to show that Z ′ = (S(n1)B1⊗1(n2))Zn1n′
ℓ−1:n

′
ℓ,·

and Z ′′ = (I(n1) ⊗B2)Z0:n1n′
ℓ−1,·. By our inductive assumption on Aℓ−1, for all i ∈ [n1],

z′′i,0
z′′i,1

...
z′′i,nℓ−1

 = Bℓ · Zin′
ℓ−1:(i+1)n′

ℓ−1,·.

Thus

Z ′′ =


Bℓ · Z0:n′

ℓ−1,·

Bℓ · Zn′
ℓ−1:2n

′
ℓ−1,·

...
Bℓ · Z(n1−1)n′

ℓ−1:n1n′
ℓ−1,·

 = (I(n1) ⊗Bℓ−1) · Z0:n1nℓ−1,·,

as required. By our assumption about the base algorithm A1, we have
z′1
z′2
...

z′n1

 = B1 · Zn1n′
ℓ−1:n

′
ℓ,· ∈ Rn1×m.

(Note that z′n1
is never actually used in the algorithm.) With z′0 = (0(m))T , the non-cyclic shift

S(n1) gives 
z′0
z′1
...

z′n1−1

 = S(n1) ·B1 · Zn1n′
ℓ−1:n

′
ℓ,· ∈ Rn1×m.

Thus

Z ′ =


z′0
z′1
...

z′n1−1

⊗1(nℓ−1) = (S(n1)·B1·Zn1n′
ℓ−1:n

′
ℓ,·)⊗1

(nℓ−1) =
(
(S(n1)·B1)⊗1(nℓ−1)

)
·Zn1n′

ℓ−1:n
′
ℓ,·,

which establishes the correctness of the algorithm.
The space usage of Aℓ is is comprised of that of A1 plus that of Aℓ−1. (Note that, although

many copies of Aℓ−1 are run, they are run sequentially, so the space usage does not add up.) Thus,
by induction, the space usage of Aℓ is ℓ times that of A1.

The runtime of Aℓ is comprised of that of A1 plus n1 times that of Aℓ−1. By induction, this
gives a runtime of 1 + n1 + n2

1 + · · ·+ nℓ
1 =

nℓ+1
1 −1
n1−1 =

n′
ℓ

n′
1

times that of A1, as required.
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6.3 Combining Recursion with BLTs
The algorithm in Section 6.2 requires a base factorization and a corresponding algorithm. We can
instantiate this with the RA-BLT rational function approximation algorithm from Sections 3 and 4.
This combination yields the following result.

Proposition 6.5 (Instantiating the recursive construction with the rational function approximation).
Let m, ℓ ≥ 1, n1 ≥ 5, and d ≥ 2 +

(
12+4 logn1

π

)2
be integers. Let n = nℓ

1 and n′ =
nℓ+1
1 −n1

n1−1 . Then
there exist matrices B,CT ∈ Rn×n′

and a streaming algorithm A satisfying the following.

• Valid Matrix Factorization: BC = A(n).

• Near-Optimality:

MaxErr(B,C) ≤ ℓ ·
(√

OptLTToe(n1) + 16
√
n1 exp

(
−π

2

√
d− 2

))2
,

where OptLTToe(n1) = 1 +
∑n1−1

k=1

(
2−2k

(
2k
k

))2 ≤ 1 + 0.57722+log(n1)
π

.

• Valid Algorithm: The algorithm A takes as input a stream Z0,·, Z1,·, · · · , Zn′−1,· ∈ R1×m

in some arbitrary-but-fixed order (but only reading each Zi,· once) and outputs a stream
Z̃0,·, Z̃1,·, · · · , Z̃n−1,· ∈ R1×m such that Z̃ = B · Z.

• Efficient Algorithm: The algorithm A uses space O(ℓdm) and has total runtime O(ndm).

Proof. Theorem 4.6 provides a base factorization B1, C1 ∈ Rn1×n1 and a base algorithm A1 (Al-
gorithm 1) for computing B1Z in a streaming manner. We are guaranteed that

∥B1∥2→∞ ≤ ∥B∗1∥2→∞ + 16
√
n1 exp

(
−π

2

√
d− 2

)
,

∥C1∥1→2 ≤ ∥C∗1∥1→2 + 16
√
n1 exp

(
−π

2

√
d− 2

)
,

where B∗1 = C∗1 = M(f, n1) for f(x) = 1/
√
1− x. By Proposition 2.2, B∗1 , C

∗
1 is the optimal

matrix factorization. In particular,

∥B∗1∥2→∞ = ∥C∗1∥1→2 =
√

OptLTToe(n1) =

√√√√1 +

n1−1∑
k=1

(
2−2k

(
2k

k

))2

≤
√

1 +
γ + log(n1)

π
,

where γ ≤ 0.57722 is the Euler-Mascheroni constant. The algorithm A1 runs in space and time
(per iteration) O(dm).

Now we apply the recursive algorithm with this base construction. By Proposition 6.3, we
obtain a matrix factorization Bℓ, Cℓ ∈ Rn×n′ such that BℓCℓ = A(n),

∥Bℓ∥2→∞ ≤
√
ℓ∥B1∥2→∞ ≤

√
ℓ
(√

OptLTToe(n1) + 16
√
n1 exp

(
−π

2

√
d− 2

))
,

and

∥Cℓ∥1→2 =
√
ℓ∥C1∥1→2 ≤

√
ℓ
(√

OptLTToe(n1) + 16
√
n1 exp

(
−π

2

√
d− 2

))
.

By Lemma 6.4, Algorithm 2 is a valid streaming algorithm for computing Z̃ = BℓZ and runs
in space O(ℓdm) and total time O(ndm), as required.
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Setting parameters in Proposition 6.5 yields our result.

Theorem 6.6 (Formal version of Theorem 1.2). Let n, n1,m ≥ 1 be integers. Then there ex-
ist matrices B,CT ∈ Rn×n′

(for some n′ ≤ O(n)) and a streaming algorithm A satisfying the
following.

• Valid Matrix Factorization: BC = A(n).

• Near-Optimality:

MaxErr(B,C) ≤ Opt(n) ·
(
1 +O

(
1

log(n1)

))
+O(log(n1)),

where Opt(n) = inf{MaxErr(B∗, C∗) : B∗C∗ = A(n)} = logn
π
± O(1) is the optimal value

of the matrix factorization objective over all possible factorizations.

• Valid Algorithm: The algorithm A takes as input a stream Z0,·, Z1,·, · · · , Zn′−1,· ∈ R1×m

in some arbitrary-but-fixed order (but only reading each Zi,· once) and outputs a stream
Z̃0,·, Z̃1,·, · · · , Z̃n−1,· ∈ R1×m such that Z̃ = B · Z.

• Efficient Algorithm: The algorithmA uses space O(log(n) log(n1)m) and has total runtime
O(n log(n1)

2m).

To obtain Theorem 1.2 from Theorem 6.6 we simply need to set n1 to a value that is supercon-
stant (so that 1/O(log(n1)) = o(1)) but not too large (so that O(log(n) log(n1)m) = Õ(log(n)m)).
For example, we can set n1 = Θ(log(n)).

Proof. Let n1 ≥ 5, d =
⌈
2 +

(
12+4 logn1

π

)2⌉
, ℓ = ⌈log(n)/ log(n1)⌉, and n′ =

nℓ+1
1 −n1

n1−1 be integers.

Then n ≤ nℓ
1 < n·n1. We will provide a matrix factorization of size nℓ

1, which can be truncated
to one of size n.

Proposition 6.5 provides the matrix factorization and algorithm. It gives the near-optimality
guarantee

∥Bℓ∥2→∞ · ∥Cℓ∥1→2 ≤ ℓ ·
(√

OptLTToe(n1) + 16
√
n1 exp

(
−π

2

√
d− 2

))2
,

where OptLTToe(n1) = 1+
∑n1−1

k=1

(
2−2k

(
2k
k

))2 ≤ 1+ γ+log(n1)
π

. It only remains for us to simplify
this guarantee.

We assume d ≥ 2 +
(

2 log(16)+3 log(n1)
π

)2
so that 16

√
n1 exp

(
−π

2

√
d− 2

)
≤ 1/n1.
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Thus

∥Bℓ∥2→∞∥Cℓ∥1→2 ≤ ℓ ·
(√

OptLTToe(n1) +
1

n1

)2

= ℓ · OptLTToe(n1) +
ℓ

n1

·
(
2
√

OptLTToe(n1) +
1

n1

)
≤ ℓ ·

(
1 +

γ + log(n1)

π

)
+

ℓ

n1

·
(
2
√
n1 +

1

n1

)
=

ℓ log(n1)

π
+ ℓ · (1 + γ/π) + ℓ ·

(
2
√
n1

+
1

n2
1

)
=

log(nℓ
1)

π
+ ℓ ·

(
1 +

γ

π
+

2
√
n1

+
1

n2
1

)
≤ log(n) + log(n1)

π
+ ℓ ·

(
1 +

γ

π
+

2√
5
+

1
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)
≤ log(n)

π
+ 3ℓ+

log(n1)

π
.

Now we invoke the lower bound of Matoušek, Nikolov, and Talwar [MNT20] or Mathias [Mat93]
(see Equation 2.9), which tells us

Opt(n) ≥ log(n)

π
− 1,

where Opt(n) is the optimal value of the objective function over all factorizations of size n. Thus

∥Bℓ∥2→∞∥Cℓ∥1→2 ≤ Opt(n) + 1 + 3ℓ+
log(n1)

π

≤ Opt(n) + 4 + 3
log(n)

log(n1)
+

log(n1)

π

≤ Opt(n) + 4 + 3
1 + πOpt(n)

log(n1)
+

log(n1)

π

= Opt(n) ·
(
1 +

3π

log(n1)

)
+ 4 +

3

log(n1)
+

log(n1)

π
.

By Proposition 6.5, the space usage of the algorithm is O(ℓdm) = O
(

log(n)
log(n1)

(log(n1))
2m
)

=

O(log(n) log(n1)m) and the total runtime is O(ndm) = O(n log(n1)
2m).

7 Numerical Lower Bound on Optimal Performance
In this section, we develop numerical lower bounds on the optimal matrix factorizations of the
all-ones lower triangular matrix A(n) for various classes of matrices. More precisely, given the
sequence length n, we write down a semidefinite program that provides a lower bound on the
lowest achievable error over a specific class of correlation matrices (for example, Toeplitz matrices
or triangular matrices).
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In general, we consider mechanisms whose matrices can be written as C = J (c) =
∑

i Jici
where c ∈ Rm denotes the parameters of the mechanism (to be optimized) and J : Rm 7→ Rn×n is
an linear operator and Ji ∈ Rn×n are “basis” matrices. Any linear subspace of the space of n× n
matrices (including lower triangular matrices and Toeplitz matrices) can be expressed in this form.

All results in this section derive from the following fundamental result which is a straightfor-
ward consequence of weak duality:

Theorem 7.1. Let A denote the n× n lower triangular matrix with all entries equal to 1. For any
c ∈ Rm, define the objective for the correlated mechanism with correlation matrix J (c) by

F (c) = MaxErr((J (c))−1A, J (c)) = ∥J (c)∥21→2

∥∥(J (c))−1A∥∥2
2→∞ .

Further, for any set C ⊆ Rm, we have

min
c∈C

F (c) ≥ 1

min
Γ0,...,ΓN∈Sn+∑

i AT
i ΓiAi=1

max
∥J(c)∥1 7→2=1

〈
J (c)⊤J (c),

∑
i

Γi

〉 (7.1)

where Sn
+ denotes the space of symmetric positive semidefinite n× n matrices, Ai denotes the i-th

column of A and ⟨A,B⟩ = trace (AB) denotes the standard inner product between symmetric
matrices A,B ∈ SN .

Furthermore, if the inner maximization can be relaxed to a concave maximization problem, i.e,
there exists a compact convex set C ⊂ SN such that

max
c∈C

∥J(c)∥1 7→2=1

〈
J (c)⊤J (c),Γ

〉
= max

S∈C
⟨S,Γ⟩ ∀Γ ∈ SN

+

then the inequality in Equation 7.1 is an equality.

Proof. Since the objective is invariant to scaling c by any positive constant, i.e., F (αc) = F (c)
for all α ∈ R, α > 0, we can set α = 1

∥Jc∥1→2
so that the optimization problem becomes

min
c∈C

∥J(c)∥1→2=1

∥∥(J (c))−1A∥∥2
2→inf

= min
c∈C

∥J(c)∥1→2=1

max
i

∥∥∥∥(J (c)⊤)−1Ai

∥∥∥∥2 (7.2)

From Lemma 7.3, we have that

e⊤(M)−1e =
1

minΓ∈SN+
e⊤Γe

⟨Γ,M⟩

for any M ∈ Sn
++. Applying this to M = J (c)⊤J (c) and e = Ai (for i = 0, . . . , n) and plugging

this into (7.2), we obtain

max
i

∥∥∥∥(J (c)⊤)−1Ai

∥∥∥∥2 = max
i

max
Γi⪰0

AT
i ΓiAi=1

1〈
J (c)⊤J (c),Γi

〉 =
1

mini min Γi⪰0
AT
i ΓiAi=1

〈
J (c)⊤J (c),Γi

〉
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The denominator can be rewritten as

min
ν∈∆n

∑
i

νi

 min
Γi⪰0

AT
i ΓiAi=1

〈
J (c)⊤J (c),Γi

〉 = min
ν∈∆n

∑
i

min
Γi⪰0

AT
i ΓiAi=νi

〈
J (c)⊤J (c),Γi

〉

= min
Γ0,...,ΓN∈Sn+∑

i AT
i ΓiAi=1

〈
J (c)⊤J (c),

∑
i

Γi

〉

where ∆n is the simplex in n dimensions. Thus, the optimization problem (7.2) can be rewritten
as

min
∥J(c)∥1→2≤1

1

min Γ0,...,ΓN∈Sn+∑
i AT

i ΓiAi=1

〈
J (c)⊤J (c),

∑
i Γi

〉 =
1

max
∥J(c)∥1→2≤1

min
Γ0,...,Γn∈Sn+∑

i AT
i ΓiAi=1

〈
J (c)⊤J (c),

∑
i

Γi

〉

By weak duality, we have that the optimal value is bounded below by

1

min
Γ0,...,Γn∈Sn+∑

i AT
i ΓiAi=1

max
∥J(c)∥1→2≤1

〈
J (c)⊤J (c),

∑
i

Γi

〉

which gives Equation 7.1.
Furthermore, if the inner maximization can be rewritten as a concave maximization problem,

the overall problem is a convex-concave problem and strong duality holds by the Von-Neumann
minimax theorem [Neu28], so that the order of the min and max can be interchanged without
changing the optimal value. Hence, the lower bound is tight.

Corollary 7.2. Let J = {J (c) : c ∈ C}. A tight lower bound in Theorem 7.1 is achieved in the
following 3 cases:

• J is the set of all lower triangular matrices.

• J is the set of all lower triangular Toeplitz matrices.

• J is the set of all lower triangular Toeplitz matrices formed from a degree 1 constant recur-
rent sequence.

Proof. 1. If J is the set of all lower triangular matrices, for any J ∈ J , letting ∆ = J⊤J, we have
that

max
∥J∥1→2≤1,J∈J

〈
J⊤J,Γ

〉
≤ max

∆⪰0
diag(∆)≤1

⟨∆,Γ⟩

since for any feasible J, ∆ = J⊤J satisfies the constraints listed in the optimization problem on the
right hand side (note that diag (∆) refers to the vector of diagonal elements of the matrix ∆).
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Conversely, given any feasible solution ∆ satisfying the constraints, one can compute its upper
triangular Cholesky factorization (the regular Cholesky factorization multiplied by the matrix with
anti-diagonals equal to 1), to obtain J that satisfies the constraint ∥J∥1→2 ≤ 1 and ∆ = J⊤J. Hence
the two optimization problems have equal optimal values, and hence the lower bound in theorem
7.1 is tight.

2. If J is the set of all n × n lower triangular Toeplitz matrices, let J (c) denote the lower
triangular Toeplitz matrix whose first column is c. Then, we have

∥J (c)∥1→2 = ∥c∥ , J (c) =
∑
i

ciHi

where Hi is the matrix with 0s everywhere except the i-th subdiagonal equal to 1. Thus

max
∥J(c)∥1→2≤1,J(c)∈J

〈
J⊤J,Γ

〉
= max
∥c∥=1

〈
J (c)⊤J (c),Γ

〉
and the right hand side is a standard trust region subproblem with a quadratic objective and a single
quadratic constraint, that can be solved exactly via an SDP relaxation by the S-lemma [PT07], i.e,
there exists an affine map Q : Sn → Sn such that the right hand side equals maxC⪰0,trace(C)=1 ⟨Q (Γ), C⟩.
Hence, the lower bound in Theorem 7.1 is tight.

3. If J is the set of all n × n lower triangular Toeplitz matrices formed from a degree 1
constant recurrent sequence, we have that J = J (c) where ci = αθi. where α, θ ∈ R are arbitrary
real numbers. Then, the problem

max
∥c∥=1

〈
J (c)⊤J (c),Γ

〉
= max

c

〈
J (c)⊤J (c),Γ

〉
c⊤c

can be written as

max
θ,α

α2p (θ; Γ)

α2q (θ)
= max

θ

p (θ; Γ)

q (θ)

where p, q are polynomials in θ and the coefficients of q are independent of Γ while the coefficients
of p are affine functions of Γ. Using the fact that

p (θ)− βq (θ) ≤ 0 ⇐⇒ p (θ)− βq (θ) is a sum of squares polynomial

we can write the maximization problem as being equal to

min
p(θ;Γ)−βq(θ) is a sum of squares polynomial

β

Thus, the inner maximization can be written as a concave maximization problem of the form
required for lower bound tightness in Theorem 7.1 [Par12].

Lemma 7.3. [Lower bound on matrix fractional function] For any e ∈ Rn and M ∈ Sn
++, we have

e⊤(M)−1e =
1

min Γ∈Sn+
e⊤Γe=1

⟨Γ,M⟩
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Figure 4: Semidefinite programming based lower bounds on optimal performance for various
classes of matrices based on the results from theorem 7.1

Proof. Let e ∈ Rn be an arbitrary vector. Now, consider any positive definite matrix M ∈ Sn
+ and

eigendecomposition M =
∑

i λiuiui
⊤ for some orthogonal basis {ui}. Further, expressed in this

basis, suppose that e =
∑

i σiui.
Then, we have

e⊤M−1e =
∑
i

1

λi

(
ui
⊤1
)2

=
∑
i

σ2
i

λi

Let ⟨M,Γ⟩ denote the inner product in Sn, i.e., ⟨M,Γ⟩ = trace (MΓ). Further, for any matrix
Γ ∈ Sn

+, we have(
e⊤M−1e

)
⟨M,Γ⟩ =

(∑
i

σ2
i

λi

)(∑
i

λiui
⊤Γui

)
=

(∑
i

σ2
i

λi

)(∑
i

λi

∥∥Γ1/2ui

∥∥2)

≥

(∑
i

σi

∥∥Γ1/2ui

∥∥)2

≥

∥∥∥∥∥∑
i

σiΓ
1/2ui

∥∥∥∥∥
2

= eTΓe

where the first inequality is an application of the Cauchy-Schwartz inequality and the second in-
equality is an application of the triangle inequality.

Thus, for any M,Γ ∈ Sn
+, we have

e⊤M−1e ≥ eTΓe

⟨M,Γ⟩

Further, choosing Γ = (M)−1ee⊤(M)−1, the inequality is replaced with equality. Hence, we have

e⊤M−1e = max
Γ⪰0

eTΓe

⟨M,Γ⟩
= max

Γ⪰0
eTΓe=1

1

⟨M,Γ⟩
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8 BLT with d = 1 Buffers
In this section, we show that it is possible to achieve MaxErr(B,C) = O(n1/6) error for a degree
d = 1 constant recurrent sequence, without appealing to the sophisticated machinery of rational
function approximation that build the crux of the paper. Unfortunately, this approach does not
naturally extend to degrees d > 1. In comparison, adding independent noise (that is when d = 0)
results in an ℓ∞ error of O(n).

We consider the factorization A = BC, where B = AC−1 and C and C−1 are parameterized
as follows. Let a, λ ∈ [−1, 1] with |λ− a2| ≤ 1. Define

C =


1 0 0 0 · · · 0
a2 1 0 0 · · · 0
a2λ a2 1 0 · · · 0
a2λ2 a2λ a2 1 · · · 0

...
...

...
...

...
...

 , C−1 =


1 0 0 0 · · · 0
−a2 1 0 0 · · · 0

−a2(λ− a2) −a2 1 0 · · · 0
−a2(λ− a2)2 −a2(λ− a2) −a2 1 · · · 0

...
...

...
...

...
...

 .

(8.1)
That is, C corresponds to the generating function c(x) = 1 + a2x

1−λx , which clearly has degree 1. It
can be checked that the expression for C−1 is correct (via Lemma 3.1) as 1/c(x) = 1− a2x

1−(λ−a2)x .

Theorem 8.1. Setting λ = 1− 1
n2/3 , and a2 = 1

n1/3

(
1− 1

n1/3

)
in Equation 8.1 gives

∥C∥21→2 ≤ O(1), (8.2)

∥B∥2→∞ = ∥AC−1∥2→∞ ≤ O(n1/6) (8.3)

Proof. The maximum squared column norm of C is

∥C∥21→2 = 1 + a4
(
1 + λ2 + λ4 + · · ·λ2(n−2)) ≤ 1 +

a4

1− λ2
. (8.4)

Since 1 − λ2 = 2n−2/3 − n−4/3 = Θ(n−2/3) and a4 = n−2/3(1 − n−1/3)2 = Θ(n−2/3), we have
∥C∥1→2 = Θ(1).

Let b = [bn−1, · · · , b0] be the last row of B = AC−1. This is the longest row, so ∥B∥22→∞ =
∥b∥22. In the following, we bound each element of the vector b. We have b0 = 1 and, for any
i ∈ {1, · · ·n− 1},

bi = 1− a2
(
1 + (λ− a2) + · · ·+ (λ− a2)i−2

)
= 1− a2(1− (λ− a2)i−1)

1 + a2 − λ
. (8.5)
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Thus

∥B∥22→∞ = 1 +
n−1∑
i=1

(
1− a2(1− (λ− a2)i−1

1 + a2 − λ

)2

= 1 +
n−1∑
i=1

(
(1− λ) + a2(λ− a2)i−1

1 + a2 − λ

)2

= 1 +
1

(1 + a2 − λ)2

n−1∑
i=1

(1− λ)2 + 2(1− λ)a2(λ− a2)i−1 + a4(λ− a2)2(i−1)

= 1 +
(n− 1)(1− λ)2 + 2(1− λ)a2 1−(λ−a

2)n−1

1+a2−λ + a4 1−(λ−a
2)2(n−1)

1−(λ−a2)2

(1 + a2 − λ)2
(8.6)

≤ 1 +
(n− 1)(1− λ)2 + 2(1− λ)a2 1

1+a2−λ + a4 1
1−(λ−a2)2

(1 + a2 − λ)2
. (8.7)

Now a2 = n−1/3−n−2/3, 1−λ = −n−2/3, 1−λ+a2 = n−1/3 and 1−(λ−a2)2 = 2n−1/3−n−2/3 =
Θ(n−1/3). Substituting these into Equation 8.7 gives

∥B∥22→∞ ≤ 1 +
(n− 1)n−4/3 − 2n−2/3(n−1/3 − n−2/3)/n−1/3 + (n−1/3 − n−2/3)2/(2n−1/3 − n−2/3)

n−2/3

= 1 +
n− 1

n2/3
− 2 +

2

n1/3
+

n−2/3 − 2n−1 + n−4/3

2n−1 − n−4/3

= 1 +
n− 1

n2/3
− 2 +

2

n1/3
+

n1/3 − 2 + n−1/3

2− n−1/3

= Θ(n1/3)

as required.

9 Conjecture
We give the following conjecture which improves the results in Section 4. If true, this would imply
that BLTs can work with d = O(log n) space complexity.

Conjecture 9.1. For all n ∈ N there exists a rational function r : C→ C of degree d = O(log n)
such that the following hold.

1

2π

∫ π

−π

∣∣∣∣ 1

r(x)
− 1√

1− x

∣∣∣∣2 dθ ≤ 1

n
where x = exp(

√
−1θ − 1/n).

1

2π

∫ π

−π

∣∣∣∣ r(x)1− x
− 1√

1− x

∣∣∣∣2 dθ ≤ 1

n
where x = exp(

√
−1θ − 1/n).

Compared to what we prove in Sections 4.1 and 4.2, this conjecture is quantitatively stronger
in that d = O(log n) instead of d = O(log2 n) but qualitatively weaker in that (i) we prove an
approximation guarantee for |x| ≤ exp(−1/n) rather than |x| ≤ 1 and, (ii) rather than a uniform
bound on |r(x)−

√
1− x|, we bound the integrals directly.
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