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GEOMETRY OF PARAQUATERNIONIC CONTACT STRUCTURES

MARINA TCHOMAKOVA, STEFAN IVANOV, AND SIMEON ZAMKOVOY

Abstract. We introduce the notion of paraquaternionic contact structures (pqc structures), which
turns out to be a generalization of the para 3-Sasakian geometry. We derive a distinguished linear
connection preserving the pqc structure. Its torsion tensor is expressed explicitly in terms of the
structure tensors and the structure equations of a pqc manifold are presented. We define pqc-Einstein
manifolds and show that para 3-Sasakian spaces are precisely pqc manifolds, which are pqc-Einstein.
Furthermore, we introduce the paraquaternionic Heisenberg qroup and show that it is the flat model

of the pqc geometry.
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1. Introduction

We investigate and study the sub-Riemannian geometry of 3-contact structures on a 4n+3-dimensional
differentiable manifold related to the algebra of paraquaternions, known also as split quaternions [8],
quaternions of the second kind [18], complex product structures [4].

In the even, 4n-dimensional case, the almost paraquaternionic structures are atractive in theoretical
physics, string theory due to a closed relation with the Born geometry arising in a natural way in string
dinamics (see [10, 11, 9] and references there in).
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In the odd, 4n + 3-dimensional case, the algebra of paraquaternions introduces the notion of para
quaternionic contact structures which turns out to be a substantional generalization of the para 3-
Sasakian geometry developed in [1, 8].

Paraquaternionic contact geometry is a topic with some analogies with the quaternionic contact
geometry introduced by O.Biquard [6] and its developments in connection with finding the extremals
and the best constant in the L2 Folland-Stein inequality on the quaternionic Heisenberg group and
related quaternionic contact Yamabe problem [12, 13, 15, 14, 16], but also with differences mainly
because the paraquaternionic contact structure leads to work with sub-hyperbolic PDE instead of sub-
elliptic PDE in the quaternionic contact case.

In this paper, we develope the geometry of paraquaternionic contact structures. We define a
paraquaternionic contact (pqc) manifold (M, [g],PQ) to be a 4n + 3-dimensional manifold M with
a codimension three distribution H locally given as the kernel of a 1-form η = (η1, η2, η3) with values
in R3. In addition, H has a conformal Sp(n,R)Sp(1,R) structure, i.e. it is equiped with a conformal
class of neutral metrics [g] of signature (2n, 2n) and a rank-three bundle PQ consisting of (1,1)-tensors
on H locally generated by two almost para complex structures I1, I2 and an almost complex structure
I3 on H satisfying the identities of the imaginary unit paraquaternions,

I21 = I22 = idH , I23 = −idH , I1I2 = −I2I1 = I3,

such that

−2g(I1X,Y ) = dη1(X,Y ), −2g(I2X,Y ) = dη2(X,Y ), 2g(I3X,Y ) = dη3(X,Y ), g ∈ [g].

The 1-form η is determined up to a conformal factor and hence H becomes equipped with a confor-
mal class [g] of neutral Riemannian metrics of signature (2n,2n). Transformations preserving a given
paraquaternionic contact structure η, i.e. η̄ = µΦη for a non-vanishing smooth function µ and an
SO(1, 2) valued smooth matrix Φ are called paraquaternionic contact conformal (pqc conformal) trans-
formations.

The main purpose of this paper is to define a “canonical” connection on every pqc-manifold of dimen-
sion at least eleven. We show that in these dimensions there exists a unique space V complementary to
H , TM = H ⊕ V , which is locally generated by a three vector fields ξ1, ξ2, ξ3 satisfying the relations
(3.3) below. For any fixed metric g ∈ [g], we define the canonical connection as the unique connection
preserving the splitting H ⊕ V and the Sp(n,R)Sp(1,R) structure on H with torsion T determined by
T (X,Y ) = −[X,Y ]

V
and the endomorphisms T (ξ, .)

H
of H lies in (sp(n,R) + sp(1,R))⊥ ⊂ gl(4n). We

also describe the torsion endomorphism explicitly in terms of the structure tensors (Theorem 3.1).
In the seven dimensional case the conditions (3.3) do not hold in general. The existence of such a

connection requires the pqc structure to satisfy (3.3). Henceforth, by a pqc structure in dimension 7,
we shall mean a pqc-structure satisfying (3.3).

We define a global 4-form, express the torsion endomorphism in terms of its exterior derivative and
derive structure equations of a pqc manifold.

We introduce the notion of pqc-Einstein manifold such that the horizontal Ricci tensor of the canon-
ical connection is proportional to the horizontal metric and prove that the corresponding pqc scalar
curvature (the horizontal trace of the horizontal Ricci tensor) is constant in dimensions bigger than
seven. We show that pqc-Einstein condition is equivalent to the vanishing of the torsion endomorphism
of the canonical connection.

A basic example of paraquaternionic contact manifold is provided by a para 3-Sasakian manifold,
which can be defined as a (4n+3)-dimensional pseudo Riemannian manifold whose metric cone is a hyper
paraKähler (hypersymplectic) manifold [1, 8]. We characterize (locally) para 3-Sasakian manifolds as a
paraquaternionic contact manifold which are pqc-Einstein, provided the dimension is bigger than seven
and the pqc scalar curvature is not zero. (Theorem 8.5).

We define the paraquaternionic Heisenberg group and show that any flat pqc manifold is locally
isomorphic to the paraquaternionic Heisenberg group.

Convention 1.1. We use the following conventions:

a) We shall use X,Y, Z, U to denote horizontal vector fields, i.e. X,Y, Z, U ∈ H;
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b) {e1, . . . , en, I1e1, . . . , I1en, Ie2, . . . , I2en, I3e1, . . . , I3en} denotes an adapted orthonormal basis of the
horizontal space H.;

c) The summation convention over repeated vectors from the basis {e1, . . . , e4n} will be used,

P (eb, eb) =

4n
∑

b=1

g(eb, eb)R(eb, eb) =

n
∑

b=1

[

P (eb, eb) − P (I1eb, I1eb) − P (I2eb, I2eb) + P (I3eb, I3eb)
]

d) The triple (i, j, k) denotes any cyclic permutation of (1, 2, 3). In particular, any equation involving
i, j, k holds for any such permutation.

e) s and t will be any numbers from the set {1, 2, 3}, s, t ∈ {1, 2, 3}.
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The research of M. Tch. is partially financed by the European Union-Next Generation EU, through

the National Recovery and Resilience Plan of the Republic of Bulgaria, project N:BG-RRP-2.004-0008-
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Science Fund of Bulgaria, by Contract 80-10-181 / 22.4.2024 with the Sofia University ”St.Kl.Ohridski”
and the National Science Fund of Bulgaria, National Scientific Program “VIHREN”, Project KP-06-
DV-7.

2. Paraquaternionic contact structure

2.1. Paraquaternions. The algebra pQ of paraquaternions (sometimes called split quaternions [8]) is
a four-dimensional real vector space with basis 1, r1, r2, r3, satisfying,

(2.1) r21 = r22 = 1, r23 = −1, r1r2 = −r2r1 = r3.

This carries a natural indefinite inner product given by < p, q >= Re(p̄q), where p = t+ r3x+ r1y+ r2z
has p̄ = t− r3x− r1y− r2z. Furthermore, we have ||p||2 = t2 + x2 − y2 − z2 to be a metric of signature
(2,2). This norm is multiplicative, ||pq||2 = ||p||2||q||2, but the presence of elements of length zero means
that pQ contains zero divisors.

We introduce the numbers

(2.2) ǫ1 = ǫ2 = −ǫ3 = 1, satisfying ǫiǫj = −ǫk

and can therefore write (2.1) as follows,

(2.3) r2i = ǫi, rirj = −rjri = −ǫkrk.

We recall the definition of the Lie groups Sp(n, pQ), Sp(1, pQ) and Sp(n, pQ)Sp(1, pQ). The 4n dimen-
sional vector space pQn = R4n inherits the inner product < P,Q >= Re(P̄TQ) of signature (2n,2n) with
authomorphism group Sp(n, pQ) isomorphic to Sp(2n,R) with Lie algebra sp(2n,R). An isomorphism
is induced by the correspondence

t+ xr3 + yr1 + zr2 →

[

t+ y x+ z

−x+ z t− y

]

.

In partucular, the Lie group Sp(1, pQ) ∼= Sl(2,R) ∼= SU(1, 1) ∼= Sp(1,R) is the pseudo-sphere in
pQ = R2,2.

Let pQ act on pQn by right multiplications, λ(p)W = W.p. This defines a homomorphism λ :
{unit paraquaternions} → SO(2n, 2n) with the convention that SO(2n, 2n) acts on R4n on the left.
The image is the group Sp(1, pQ).

Let λ(ri) = Ioi . The Lie algebra of Sp(1, pQ) is sp(1, pQ) = span{Io3 , I
o
1 , I

o
2}. Therefore, the

Lie algebra sp(1, pQ) = Im(pQ) ∼= sp(1,R). The group Sp(n, pQ) = {O ∈ SO(2n, 2n) : OB =
BOfor all B ∈ Sp(1, pQ)} or Sp(n, pQ) = {A ∈ GL(n, pQ) : ĀtA = I}, which is a Lie group iso-
morphic to Sp(n,R) and O ∈ Sp(n, pQ) acts by (p1, . . . , pn)t → O(p1, . . . , pn)t. The group Sp(n, pQ)×
Sp(1, pQ) acts on pQn via (O, p).b = Obp̄ and this action is isometric with the kernel Z2 = {±(1, 1)}.
Hence, Sp(n, pQ)Sp(1, pQ) = (Sp(n, pQ)×Sp(1, pQ))/Z2 is a subgroup of SO(2n, 2n) with a Lie algebra
isomorphic to sp(n,R) + sp(1,R) ∈ so(2n, 2n).
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We also recal that the Lie algebra so(2n, 2n) = {O ∈ GL(4n) : OG +GOt = 0}, where G = (gij) is
the matrics of a neutral metric, i.e. the matrics OG is skew-symmetric.

2.2. Paraquaternionic contact manifold. A paraquaternionic contact (pqc) manifold (M, [g],PQ)
is a 4n + 3-dimensional manifold M with a codimension three distribution H , locally given as the
kernel of a 1-form η = (η1, η2, η3) with values in R3. In addition, H has a conformal Sp(n,R)Sp(1,R)
structure. The precise definition follows:

Definition 2.1. A paraquaternionic contact (pqc) manifold (M, [g],PQ) is a 4n+ 3-dimensional man-
ifold M with a codimension three distribution H, such that

i) H has a conformal Sp(n,R)Sp(1,R) structure. That is, it is equiped with a conformal class of
neutral metrics [g] of signature (2n, 2n) and a rank-three bundle PQ consisting of (1,1)-tensors
on H, locally generated by two almost para complex structures I1, I2 and an almost complex
structure I3 on H, satisfying the identities of the imaginary unit paraquaternions,

(2.4) I21 = I22 = idH , I23 = −idH , I1I2 = −I2I1 = I3; I2s = ǫsidH , IiIj = −IjIi = −ǫkIk,

which are paraquaternionic compatible with any neutral metric g ∈ [g] on H,

(2.5) g(I1., I1.) = g(I2., I2.) = −g(I3., I3.) = −g(., .); g(Is., Is.) = −ǫsg(., .), g ∈ [g].

ii) H is locally given as the kernel of a 1-form η = (η1, η2, η3) with values in R3, H = ∩3
s=1Ker ηs

and the following compatibility condition holds

(2.6) −2ǫsg(IsX,Y ) = dηs(X,Y ), X, Y ∈ H.

The fundamental 2-forms ωs of the para quaternionic structure PQ are defined by

(2.7) −2ǫsωs = dηs|H .

If there is a globally defined form η that anihilates H , we denote the corresponding pqc manifold (M, η).
We observe that given a contact form the paraquaternionic structure and the horizontal metric on

H are unique if they exist. We have

Lemma 2.2. Let (M, [g],PQ) be a pqc manifold. Then:

a) If (η, Is, g) and (η′, I ′s, g
′) are two pqc structures then Is = I ′s and g = g′;

b) If (η, g) and (η′, g) are two pqc structures on M with Ker(η) = Ker(η′) = H then η′ = Φη for
some matrix Φ ∈ SO(1, 2) with smooth functions as entries.

Proof. Let the tensors g, dη3|H , dη1|H , dη2|H , I3, I2, I1 be given in local coordinates by the matrices

G,R3, R1, R2, J3, J1, J2 ∈ GL(4n), respectively. From I2s = ǫs and the condition (2.6) we get

GJs = −
ǫs
2
Rs, Jk = −ǫkJiJj = −ǫkǫiJ

−1
i G−1GJj = ǫj(GJi)

−1(GJj) = ǫiR
−1
i Rj .

The conditions Ker(η) = Ker(η′) = H leads to η′s =
∑3

t=1 Φstηt for some matrix Φ ∈ GL(3). Applying

the exterior derivative, we get dη′s =
∑3

t=1(dΦst∧ηt+Φstdηt), which if restricted toH gives g(I ′sX,Y ) =
∑3

t=1 Φstg(ItX,Y ). Equivalently, I ′s =
∑3

t=1 ΦstIt. Hence, Φ ∈ SO(1, 2). �

Besides the non-uniqueness due to the action of SO(1, 2), the 1-form η can be changed by a conformal
factor, in the sense that if η is a form for which we can find associated almost para quaternionic structure
and metric g as above, then for any Φ ∈ SO(1, 2) and a non-vanishing function ν, the form η′ = νΦη
has Ker(η′) = Ker(η) = H and determines an associated paraquaternionic contact structure.

The transformations preserving a given pqc structure η, η′ = νΦη for a nonvanishing smooth function
ν and an SO(1, 2)-matrix Φ with smooth functions as entries, are called para quaternionic contact
conformal (pqc-conformal) transformations. The pqc conformal transformations are studied in more
details in [7].
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Any endomorphism Ψ of H can be uniquely decomposed with respect to the pqc structure (pQ, g)
into four Sp(n,R)-invariant parts Ψ = Ψ+++ + Ψ+−− + Ψ−+− + Ψ−−+, where Ψ+++ commutes with
all three Is, Ψ

+−− commutes with I1, and anti-commutes with the others two, etc. Explicitly, one has

4Ψ+++ = Ψ+ I1ΨI1 + I2ΨI2 − I3ΨI3; 4Ψ+−− = Ψ+ I1ΨI1 − I2ΨI2 + I3ΨI3;

4Ψ−+− = Ψ− I1ΨI1 + I2ΨI2 + I3ΨI3; 4Ψ−−+ = Ψ− I1ΨI1 − I2ΨI2 − I3ΨI3

The two Sp(n,R)Sp(1,R)-invariant components are given by

Ψ[3] = Ψ+++ =
1

4

[

Ψ+ I1ΨI1 + I2ΨI2 − I3ΨI3

]

;

Ψ[−1] = Ψ+−− +Ψ−+− +Ψ−−+ =
1

4

[

3Ψ− I1ΨI1 − I2ΨI2 + I3ΨI3

]

with the following characterising conditions

Ψ = Ψ[3] ⇐⇒ 3Ψ− I1ΨI1 − I2ΨI2 + I3ΨI3 = 0;

Ψ = Ψ[−1] ⇐⇒ Ψ+ I1ΨI1 + I2ΨI2 − I3ΨI3 = 0.

Denoting the corresponding (0,2) tensor via g by the same letter, one sees that the Sp(n,R)Sp(1,R)-
invariant components are the projections on the eigenspaces of the Casimir operator

C = I1 ⊗ I1 + I2 ⊗ I2 + I3 ⊗ I3

corresponding to the eigenvalues 3 and -1, respectively. If n = 1, then the space of symmetric endomor-
phisms commuting with all Is is 1- dimensional, i.e. the [3]-component of any symmetric endomorphism

Ψ on H is proportional to the identity, Ψ[3] =
Tr(Ψ)

4 Id
|H
. Note here that each of the three 2-forms ωs

belongs to its [-1]-component, ωs = ωs[−1] and constitutes a basis of the Lie algebra sp(1,R).

Consider the orthogonal complement (sp(n,R)+sp(1,R)⊥ ⊂ so(2n, 2n) of the Lie algebra (sp(n,R)+
sp(1,R) ⊂ so(2n, 2n) with respect to the standard neutral inner product <,> on so(2n, 2n), comming
from the standard neutral inner product of the general linear algebra gl(4n), defined by < A,B >=
Tr(GAGBt) =< (ea, ea) >< A(ea), B(ea) >,A,B ∈ gl(4n). It is known that a skew-symmetric
endomorphism A ∈ so(2n, 2n), considered as an element of the orthogonal lie algebra so(2n, 2n), belongs
to the orthogonal complement (sp(n,R) + sp(1,R)⊥ ⊂ so(2n, 2n) if and only if A coincides with the
completely trace-free part of its [-1]-component. More precisely, we have

(2.8) A ∈ (sp(n,R) + sp(1,R)⊥ ⊂ so(2n, 2n) ⇐⇒ A = A[−1] −Asp(1,R),

where Asp(1,R) is the orthogonal projection of A onto sp(1,R) given by 4nAsp(1,R) =
∑3

s=1 A(ea, Isea)ωs.

3. The canonical connection

The purpose of this section is to construct our main tool in order to investigate the geometry of pqc
manifolds, namely we construct a canonical connection which preserves the pqc structure having simple
torsion. We have

Theorem 3.1. Let (M, [g],PQ) be a pqc manifold of dimension 4n+ 3 > 7 with a fixed metric g ∈ [g].
Then, there exists a unique connection ∇ with torsion T on M4n+3 and a unique supplementary subspace
V to H in TM , such that:

i) ∇ preserves the decomposition H ⊕ V and the Sp(n,R)Sp(1,R) structure on H, i.e.
∇g = 0,∇σ ∈ Γ(PQ) for a section σ ∈ Γ(PQ),

ii) for X,Y ∈ H, one has T (X,Y ) = −[X,Y ]|V ;

iii) for ξ ∈ V , the endomorphism T (ξ, .)|H of H lies in (sp(n,R)⊕ sp(1,R))⊥ ⊂ gl(4n);
iv) the connection on V is induced by the natural identification ϕ of V with the subspace sp(1,R)

of the endomorphisms of H, i.e. ∇ϕ = 0.

In ii), the neutral inner product <,> of End(H) is given by
< A,B >= Tr(GAGBt) = g(ea, ea)g(A(ea), B(ea)), for A,B ∈ End(H).



6 MARINA TCHOMAKOVA, STEFAN IVANOV, AND SIMEON ZAMKOVOY

Proof. The proof of the theorem follows from several propositions and lemmas and occupies the rest of
the section.

Given a pqc manifold M , we consider the unique complementary to H in TM subbundle V, TM =
H ⊕ V , which is locally generated by vector fields {ξ1, ξ2, ξ3}, such that

(3.1) ηs(ξt) = δst, (ξsydηs)|H = 0.

where y denotes the interior multiplication.

Lemma 3.2. Given the splitting TM = H ⊕ V , there exists a unique H-connection ∇ preserving the
horizontal metric g on H, ∇g = 0, such that its torsion satisfies T (X,Y )|H = 0, where the subscript
|H denotes the projection on H in the direction on V .

The Kozsul formula

2g(∇XY, Z) = Xg(Y, Z) + Y g(X,Z)− Zg(X,Y ) + g([X,Y ]|H , Z)− g([X,Z]|H , Y )− g([Y, Z]|H , X)

gives the existence and uniquennes of the connection, which proves the assertion.
The condition T (X,Y )|H = 0 is equivalent to

(3.2) T (X,Y ) = −[X,Y ]|V =

3
∑

s=1

dηs(X,Y )ξs = −2

3
∑

s=1

ǫsωs(X,Y )ξs.

The next proposition is our fundamental result.

Proposition 3.3. The metric connection ∇ preserves the paraquaternionic structure on H and the
vertical vector fields {ξ1, ξ2, ξ3} satisfy the conditions

(3.3)
ηs(ξt) = δst, (ξsydηs)|H = 0.

(ξjydηi)|H = ǫk(ξiydηj)|H .

Proof. To prove this result we involve the contact condition (2.6). We use the formula expressing the
exterior derivative of a 2-form in terms of a metric connection with torsion and the properties of the
covariant derivative of a two form on a paraquaternionic space.

We begin with the well known formula

(3.4) 0 = d2ηs(D,B,C) = (∇Ddηs)(B,C) + (∇Bdηs)(C,D) + (∇Cdηs)(D,B)

+ dηs(T (D,B), C) + dηs(T (B,C), D) + dηs(T (C,D), B), D,B,C ∈ Γ(TM).

In view of (3.2) and (3.1) the formula (3.4) yields to

(3.5) ǫiA
{

(∇ωi)(X,Y, Z)
}

= −A
{

(

3
∑

s=1

ǫsωs(X,Y )dηi(ξs, Z)
}

= −A
{

ǫjωj(X,Y )dηi(ξj , Z) + ǫkωk(X,Y )dηi(ξk, Z)
}

,

where the symbol A stands for a cyclic sum of the arguments {XY Z} and {ijk} is a cyclic permutation
of the numbers {123}.

Next, we involve the paraquaternionic multiplications. Since the connection preserves the horizontal
metric, we apply (2.4) and (2.5) to obtain

(3.6)

(∇Xωs)(Y, Z) = g((∇XIs)Y, Z) = g(∇XIsY, Z) + g(∇XY, IsZ);

(∇Xωs)(IsY, IsZ) = g(∇XI2sY, IsZ) + g(∇XIsY, I
2
sZ) = ǫs(∇Xωs)(Y, Z);

(∇Xωi)(IjY, IjZ) = −ǫkg(∇XIkY, IjZ)− ǫkg(∇XIjY, IkZ) = ǫi(∇Xωi)(IkY, IkZ).

The three equalities in (3.6) and similar calculations as above, yields to the equalities

(3.7) (∇Xωi)(IjY, IkZ) + (∇Xωj)(IkY, IiZ) + (∇Xωk)(IiY, IjZ) = 0.

Using the identities (3.6) and (3.7) and after some standard calculations, we derive the following lemma.
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Lemma 3.4. The horizontal covariant derivative of the fundamental 2-forms is determined by its skew-
symmetric part as follows

2(∇Xωi)(Y, Z) = A
{

(∇ωi)(X,Y, Z)
}

+ ǫiA
{

(∇ωi)(X, IiY, IiZ)
}

− ǫjA
{

(∇ωj)(IjX, IiY, Z)
}

− ǫjA
{

(∇ωj)(IjX,Y, IiZ)
}

− ǫiA
{

(∇ωk)(IjX,Y, Z)
}

−A
{

(∇ωk)(IjX, IiY, IiZ)
}

.

2(∇Xωi)(Y, Z) = A
{

(∇ωi)(X,Y, Z)
}

+ ǫiA
{

(∇ωi)(X, IiY, IiZ)
}

− ǫkA
{

(∇ωk)(IkX, IiY, Z)
}

− ǫkA
{

(∇ωk)(IkX,Y, IiZ)
}

+ ǫiA
{

(∇ωj)(IkX,Y, Z)
}

+A
{

(∇ωj)(IkX, IiY, IiZ)
}

.

The two equalities in Lemma 3.4 imply the next identities

ǫjA
{

(∇ωj)(IjX, IiY, Z)
}

+ ǫjA
{

(∇ωj)(IjX,Y, IiZ)
}

+ ǫiA
{

(∇ωk)(IjX,Y, Z)
}

+A
{

(∇ωk)(IjX, IiY, IiZ)
}

− ǫkA
{

(∇ωk)(IkX, IiY, Z)
}

− ǫkA
{

(∇ωk)(IkX,Y, IiZ)
}

+ǫiA
{

(∇ωj)(IkX,Y, Z)
}

+A
{

(∇ωj)(IkX, IiY, IiZ)
}

= 0.

(3.8)

Using (3.5), we obtain from (3.8) the formulas

g(X,Y )
[

dηj(ξk, Z)− ǫidηk(ξj , Z)
]

− ωi(X,Y )
[

ǫidηj(ξk, IiZ)− dηk(ξj , IiZ)
]

+ωj(Y, Z)
[

ǫjdηj(ξk, IjX) + ǫkdηk(ξj , IjX)
]

+ ωk(Y, Z)
[

ǫkdηj(ξk, IkX) + ǫjdηk(ξj , IkX)
]

−g(Z,X)
[

dηj(ξk, Y )− ǫidηk(ξj , Y )
]

− ωi(Z,X)
[

ǫidηj(ξk, IiY )− dηk(ξj , IiY )
]

= 0.

(3.9)

Taking the trace with respect to X and Y into (3.9) we obtain

(3.10) 4(n− 1)
[

dηj(ξk, Z)− ǫidηk(ξj , Z)
]

= 0, =⇒
[

dηj(ξk, Z)− ǫidηk(ξj , Z)
]

= 0, since n > 1.

Hence, (3.3) holds.
Next, we obtain from Lemma 3.4 by applying (3.3) and (3.5) the formulas

∇Xωi = αj(X)ωk + ǫkαk(X)ωj , ∇XIi = αj(X)Ik + ǫkαk(X)Ij ,(3.11)

where

(3.12) αk(X) = dηi(ξj , X) = ǫkdηj(ξi, X).

The proof of Proposition 3.3 is completed. �

Notice that (3.3) are invariant under the natural SO(1, 2)-action.

3.1. Extension of the partial connection to V . On the vertical space V we define the metric of
signature (1,2) by

g|V = (η3)
2 − (η1)

2 − (η2)
2, g(ξs, ξt) = −ǫsδst

to obtain a metric g = g|H+g|V of signature (2n+1,2n+2) on M by requiring span{ξ1, ξ2, ξ3} = V ⊥ H .
Using Proposition 3.3 we extend ∇ naturally to a H-partial Sp(n,R)Sp(1,R)-connection on V as

follows

Lemma 3.5. The H-partial connection on V defined by

∇Xξ = [X, ξ]|V , ξ ∈ V

is metric for the metric gV and it is identified with a connection on the paraquternionic bundle PQ =
span{I1, I2, I3} via the identification ξi → Ii.
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Proof. The definition of the connection together with (3.3) and (3.12) yields

∇Xξi = ǫs

3
∑

s=1

dηs(X, ξi)ξs = αj(X)ξk + ǫkαk(X)ξj .

Taking into account (3.3) we see that the connection matrix is in so(1, 2) and therefore preserves the
vertical metric g|V . �

3.2. Extension of the adapted partial connection. We show in this section how to extend the
H-partial connection to a true connection. We recall the next general result (see e.g. [6, Lemma II.2.1]
and its proof).

Lemma 3.6. Given a complement V to a distribution H with a K-structure on H for a group K ⊂ GL(n)
with Lie algebra k there exists a unique V -partial K-connection on H whose torsion

(3.13) TξX = T (ξs, X) = ∇ξsX − [ξs, X ]|H , ξ ∈ V

satisfies

Tξ : H −→ H ∈ k
⊥.

We apply this result to the group Sp(n,R)Sp(1,R) to obtain the unique V -partial Sp(n,R)Sp(1,R)-
connection ∇ on H whose torsion Tξ ∈ (sp(nR)⊕ sp(1,R)⊥. We can write

(3.14) ∇Ii = αjIk + ǫkαkIj , ∇ωi = αjωk + ǫkαkωj ,

where the connection 1-forms αs(X) are given by (3.12) and αs(ξt) will be determined explicitly below
such that the partial connection has torsion satisfying the conditions of the theorem.

We extend this partial connection to a true connection on M defining ∇ on V by

(3.15) ∇ξi = αjξk + ǫkαkξj .

It follows from (3.15) that ∇ preserves the distribution H due to the following relation

0 = Ag(ξs, X) = g(∇Aξs, X) + g(ξs,∇AX) = g(ξs,∇AX), A ∈ Γ(TM).

Clearly, ∇ preserves the extended metric g = g|H + g|V on M , the vertical space V and the
Sp(n,R)Sp(1,R) structure on H .

It is well known fact that a metric connecion is completely determined by its torsion. Since the
extended metric is parallel with respect to the extended connection ∇, to complete the proof of The-
orem 3.1 it is sufficient to determine the whole torsion T of ∇ in terms of the data supplied by the
paraquaternionic contact structure.

The difference between the Levi-Civita connection ∇g of the extended metric g and the metric
connection ∇ is given by the well known formula

(3.16) 2g(∇AB,C)− 2g(∇g
AB,C) = T (A,B,C)− T (B,C,A) + T (C,A,B),

where T (A,B,C) = g(T (A,B), C) is the torsion of the connection ∇ and A,B,C ∈ Γ(TM).

3.3. Determination of the torsion and the vertical connection forms. The torsion on H is
given by (3.2). We observe that (3.15) agrees with Lemma 3.6. Indeed, the conditions (3.15) imply

dηi(A,B) = −ǫj(αj ∧ ηk)(A,B) − (αk ∧ ηj)(A,B)− ǫiT (A,B, ξi)(3.17)

Set A = ξj , B = X into (3.17) to get

dηi(ξj , X) = αk(X)− ǫiT (ξi, X, ξj)

which, in view of (3.12), yields T (ξs, X, ξt) = 0.
We decompose the torsion endomorphism T (ξ,X, Y ) into a symmetric and an anti-symmetric parts,

T (ξ,X, Y ) = T sym(ξ,X, Y ) + T a(ξ,X, Y );

T sym(ξ,X, Y ) = T sym(ξ, Y,X), T a(ξ,X, Y ) = −T a(ξ, Y,X).
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Proposition 3.7. The torsion endomorphism T (ξ,X, Y ) is completely trace-free,

(3.18) T (ξt, ea, ea) = T (ξt, Isea, ea) = 0.

a) The skew-symmetric part of the torsion endomorphism is given by

(3.19) T a(ξt, X, Y ) = −
1

8

3
∑

s=1

ǫs

[

g((LξtIs)X, IsY )−g((LξtIs)Y, IsX)−
1

4n
g((LξtIs)ea, ea)ωs(X,Y )

]

b) The symmetric part of the torsion endomorphism is determined by

(3.20) T sym(ξt, X, Y ) =
1

2
(Lξtg)(X,Y )

Proof. The skew-symmetric [−1]-component of (3.13) is given by

3
∑

s=1

ǫsg((∇ξtIs)X, IsY )−
1

2

3
∑

s=1

ǫs{g((LξtIs)X, IsY )− g((LξtIs)Y, IsX)}.

We subtract its sp(1,R)-component to obtain (3.19) since g((∇ξtIs)X, IsY ) ∈ sp(1,R) due to (3.14).
Thus, the skew-symmetric part T a(ξ, ., .) ∈ (sp(n,R) + sp(1,R))⊥ ⊂ so(2n, 2n) (c.f. (2.8)). In

particular, T a(ξ, ., .) satisfies the identities

T a(ξt, ea, ea) = 0, T a(ξt, ea, Isea) = 0,

T a(ξt, X, Y )− ǫiT
a(ξt, IiX, IiY )− ǫjT

a(ξt, IjX, IjY )− ǫkT
a(ξt, IkX, IkY ) = 0.

(3.21)

Since ∇ preserves the metric and the splitting H ⊕ V , we have

(Lξtg)(X,Y ) = (∇ξtg)(X,Y ) + T (ξt, X, Y ) + T (ξt, Y,X) = 2T sym(ξt, X, Y )

which proves (3.20).
In terms of ∇, the Lie derivative (LξsIt)X has the form

(3.22) g((LξsIt)X,Y ) = g((∇ξsIt)X,Y )− T (ξs, ItX,Y )− T (ξs, X, ItY ).

Apply (3.14) to get from (3.22) that

(3.23) g((LξsIt)X,X) = g((∇ξsIt)X,X)− 2T sym(ξs, ItX,X) = −2T sym(ξs, ItX,X).

Since the Lee derivative commutes with taking the trace, we obtain from (3.20) and (3.23)

(3.24) 2T sym(ξt, ea, ea) = (Lξtg)(ea, ea) = 0, 2T sym(ξt, Isea, ea) = −g((LξsIt)ea, ea) = 0

which combined with the first identity in (3.21) proves (3.18). �

The next result finishes the proof of Theorem 3.1.

Proposition 3.8. The torsion in the vertical directions is determined as follows

(3.25) T (ξt, ξs, X) = −ǫi(Lξtωi)(ξs, IiX).

(3.26) T (ξi, ξj , ξi) = T (ξi, ξk, ξi) = 0.

(3.27) T (ξj, ξk, ξi) = T (ξk, ξi, ξj) = T (ξi, ξj , ξk) = −λ,

where the function λ is given by

(3.28) λ =
1

2n
g((LξiIk)ea, Ijea)− ǫidηi(ξj , ξk) + ǫjdηj(ξk, ξi) + ǫkdηk(ξi, ξj)

The vertical connection 1-forms are determined with the next formulas

(3.29) αj(ξi) = −ǫjdηi(ξi, ξk), αk(ξi) = −dηi(ξi, ξj),

(3.30) αi(ξi) =
1

2

[

ǫkdηi(ξj , ξk) + dηj(ξk, ξi)− ǫidηk(ξi, ξj)− ǫjλ
]

=
ǫj
4n

g((LξiIk)Ijea, ea).
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Proof. We calculate (Lξtωi)(ξs, IiX) = −ωi([ξt, ξs], IiX) = −ǫiT (ξt, ξs, X) which proves (3.25).
Set A = ξi, B = ξj , B = ξk into (3.17) to get

dηi(ξi, ξj) = −αk(ξi)− ǫiT (ξi, ξj , ξi); dηi(ξi, ξk) = −ǫjαj(ξi)− ǫiT (ξi, ξk, ξi);

dηi(ξj , ξk) = −ǫjαj(ξj) + αk(ξk)− ǫiT (ξj , ξk, ξi).
(3.31)

A suitable cyclic sum of the third equality in (3.31) yields

(3.32) 2αi(ξi) = ǫkdηi(ξj , ξk) + dηj(ξk, ξi)− ǫidηk(ξi, ξj)

+ ǫj

[

T (ξi, ξj , ξk)− T (ξj, ξk, ξi) + T (ξk, ξi, ξj)
]

We will apply the Cartan formula

(3.33) Lξkωl = ξky(dωl) + d(ξkyωl).

Using (2.7) we obtain after some standard calculations that

(3.34) 2ωl = (dηl)|H = −ǫldηl + ǫl

3
∑

s=1

ηs ∧ (ξsydηl)− ǫl
∑

1≤s≤t≤3

dηl(ξs, ξt)ηs ∧ ηt

We get from (3.33) and (3.34) after some calculations the next formulas

(Lξiωi)(X,Y ) = −ǫkωj(X,Y )dηi(ξi, ξj)− ǫjωk(X,Y )dηi(ξi, ξk);(3.35)

2(Lξjωi)(X,Y ) = −ǫid(ξjydηi)(X,Y ) + ǫi(ξjydηk) ∧ (ξkydηi)(X,Y )(3.36)

= −ǫidαk(X,Y ) + ǫj(αi ∧ αj)(X,Y ) + 2dηi(ξj , ξi)ωi(X,Y )− 2ǫjdηi(ξj , ξk)ωk(X,Y );

2(Lξiωj)(X,Y ) = −ǫjd(ξiydηj)(X,Y ) + ǫj(ξiydηk) ∧ (ξkydηj)(X,Y )(3.37)

= ǫidαk(X,Y )− ǫj(αi ∧ αj)(X,Y ) + 2dηj(ξi, ξj)ωj(X,Y )− 2ǫidηj(ξi, ξk)ωk(X,Y ),

where we used (3.12) and (3.3) to achieve the second identites in (3.36) and (3.37), respectively.
On the other hand, we have

(Lξsωt)(X,Y ) = g((∇ξsIt)X,Y )− T (ξs, X, ItY ) + T (ξs, Y, ItX);(3.38)

Apply (3.14) to (3.38) with s = t = i and the obtained equality compare with (3.35) to get (3.29) and

T (ξi, X, IiY ) = T (ξi, Y, IiX) ⇐⇒ T (ξs, IsX, IsY ) = ǫsT (ξs, Y,X).(3.39)

The first two equalities in (3.31) together with the alredy proved (3.29) imply (3.26).
The sum of (3.36) and (3.37) yields

(Lξiωj)(X,Y ) + (Lξjωi)(X,Y ) = dηi(ξj , ξi)ωi(X,Y ) + dηj(ξi, ξj)ωj(X,Y )

− [ǫjdηi(ξj , ξk) + ǫidηj(ξi, ξk)]ωk(X,Y )

On the othe hand, we obtain from (3.38) and (3.14) that

(Lξiωj)(X,Y ) + (Lξjωi)(X,Y ) = αk(ξi)ωi(X,Y ) + ǫkαk(ξj)ωj(X,Y )

+ [αj(ξj) + ǫiαi(ξi)]ωk(X,Y )− T (ξj , X, IiY ) + T (ξj , Y, IiX)− T (ξi, X, IjY ) + T (ξi, Y, IjX)

We compare the last two identities and use (3.29) to get

(3.40) [ǫjdηi(ξj , ξk) + ǫidηj(ξi, ξk) + αj(ξj) + ǫiαi(ξi)]ωk(X,Y )

= T (ξj , X, IiY )− T (ξj, Y, IiX) + T (ξi, X, IjY )− T (ξi, Y, IjX).

Taking the trace in (3.40) and use that the torsion endomorphism is completely trace-free, we obtain

ǫjdηi(ξj , ξk) + ǫidηj(ξi, ξk) + αj(ξj) + ǫiαi(ξi) = 0;(3.41)

T (ξj , X, IiY )− T (ξj, Y, IiX) + T (ξi, X, IjY )− T (ξi, Y, IjX) = 0.(3.42)

On the other hand, we get from (3.32)

αj(ξj) + ǫiαi(ξi) = −ǫjdηi(ξj , ξk)− ǫidηj(ξi, ξk) + ǫk[T (ξj , ξk, ξi)− T (ξk, ξi, ξj)],
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which compared with (3.41) implies (3.27).
Substitute (3.27) into (3.32) to obtain the first equality in (3.30).
To complete the proof of the Proposition 3.8 we need to express the function λ in terms of the Lie

derivatives of the structure. We have from (3.22) using (3.14) that

(3.43) g((LξiIk)IjX,Y )− g((LξiIk)X, IjY ) = g((∇ξiIk)IjX,Y ))− g((∇ξiIk)X, IjY ))

− T (ξi, IkIjX,Y )− T (ξi, IjX, IkY ) + T (ξi, IkX, IjY ) + T (ξi, X, IkIjY )

= 2ǫjαi(ξi)g(X,Y )− ǫiT (ξi, IiX,Y )− T (ξi, IjX, IkY ) + T (ξi, IkX, IjY ) + ǫiT (ξi, X, IiY )

The trace in (3.43) gives

2ǫjαi(ξi) =
1

2n
g((LξiIk)Ijea, ea).

Combine the latter with the already proved first identity in (3.30) to get (3.28) and the second identity
in (3.30). �

Thus, the proof of Theorem 3.1 is completed. �

Definition 3.9. We call the connection, ∇ constructed in Theorem 3.1, the canonical paraquaternionic
contact connection (canonical pqc-connection). We call the vertical vector fields ξs the Reeb vector fields.

3.4. Description of the torsion endomorphism. Now, we describe the torsion endomorphism.
The symmetric and anti-symmetric parts of (3.39) imply

T sym(ξs, IsX, IsY ) = ǫsT
sym(ξs, X, Y ) ⇐⇒ T sym(ξs, X, IsY ) = T sym(ξs, IsX,Y )(3.44)

T a(ξs, IsX, IsY ) = −ǫsT
a(ξs, X, Y ) ⇐⇒ T a(ξs, X, IsY ) = −T a(ξs, IsX,Y )(3.45)

The symmetric and skew-symmetric parts of (3.42), with the help of (3.39), give

T sym(ξj , IiX, IiY )− ǫiT
sym(ξj , X, Y ) + T sym(ξi, IiX, IjY ) + T sym(ξi, IjX, IiY ) = 0(3.46)

T a(ξj , IiX, IiY ) + ǫiT
a(ξj , X, Y ) + T a(ξi, IiX, IjY ) + T a(ξi, IjX, IiY ) = 0.(3.47)

We define the tensor τ(X,Y ) on H by the formula

(3.48) τ(X,Y ) = −ǫiT
sym(ξi, IiX,Y )− ǫjT

sym(ξj , IjX,Y )− ǫkT
sym(ξk, IkX,Y ).

The tensor τ does not depend on the particular choice of the Reeb vector fields and is invariant under

the natural action of SO(1, 2). Indeed, if η̄s =
∑3

t=1 Φstηt,Φst ∈ SO(1, 2), we have ξ̄s =
∑3

t=1 Φstξt
and Īs =

∑3
t=1 ΦstIt, which substituted into (3.48) does not change it. The properties of the symmetric

part of the torsion endomorphism are encoded in the tensor τ .

Proposition 3.10. The SO(1, 2)-invariant tensor τ on H is symmetric, trace-free, belongs to the [-1]-
component and determines the symmetric part of the torsion endomorphism, i.e. it satisfies the relations

τ(X,Y ) = τ(Y,X), τ(ea, ea) = τ(Isea, ea) = 0;(3.49)

τ(X,Y )− τ(I1, X, I1, Y )− τ(I2X, I2Y ) + τ(I3X, I3Y ) = 0;(3.50)

T sym(ξs, X, Y ) = −
1

4

[

τ(IsX,Y ) + τ(X, IsY )
]

(3.51)

Proof. The formulas in (3.49) are consequences of (3.48), (3.44) and (3.24).
The equality (3.50) follows by a small calculation from (3.48) and (3.44).
To prove (3.51) we combine (3.48), (3.44) and (3.46). It follows from (3.46) that

T sym(ξj , IkX, IiY )− ǫjT
sym(ξj , IjX,Y ) + T sym(ξi, IkX, IjY ) + ǫiT

sym(ξi, IiX,Y ) = 0;

−T sym(ξk, IjX, IiY )− ǫkT
sym(ξk, IkX,Y )− T sym(ξi, IjX, IkY ) + ǫiT

sym(ξi, IiX,Y ) = 0.
(3.52)
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We calculate from (3.48) by applying (3.52) and (3.44)

(3.53) τ(X,Y ) + ǫiτ(IiX, IiY ) = −2ǫiT
sym(ξi, IiX,Y )− ǫjT

sym(ξj , IjX,Y )

+ T sym(ξj , IkX, IiY )− ǫkT
sym(ξk, IkX,Y )− T sym(ξk, IjX, IiY )

= −4ǫiT
sym(ξi, IiX,Y )− T sym(ξi, IkX, IjY ) + T sym(ξi, IjX, IkY ) = −4ǫiT

sym(ξi, IiX,Y ),

where we use (3.44) in the final step. Clearly, (3.53) is equivalent to (3.51). �

Next, we characterize the skew-symmetrict part of the torsion endomorphism. We define

(3.54) µs(X,Y ) = ǫsT
a(ξs, IsX,Y ).

Proposition 3.11. The following holds true:

a) The tensors µs are trace-free, symmetric and equal;
b) The symmetric trace-free tensor, defined by µ = µi, has the properties

(3.55) µ(IsX, IsY ) = −ǫsµ(X,Y )

and therefore it is SO(1, 2)-invariant.
c) If the dimension is seven, then µ = 0.
d) The SO(1, 2)-invariant tensor µ determines the skew-symmetric part of the torsion by

(3.56) T a(ξs, X, Y ) = µ(IsX,Y ).

Proof. The equality (3.45) yields

µs(X,Y ) = ǫsT
a(ξs, IsX,Y ) = −ǫsT

a(ξs, X, IsY ) = ǫsT
a(ξs, IsY,X) = µs(Y,X) = −ǫsµs(IsX, IsY ).

Further, (3.47), (3.45) and (3.54) together imply

(3.57) µj(X,Y )− ǫkµj(IkX, IkY ) + ǫkµi(IkX, IkY )− µi(X,Y ) = 0.

The equality (3.21), written with the help of (3.45) in terms of µs, reads

ǫiµi(X,Y )− µi(IiX, IiY )− ǫkµi(IjX, IjY )− ǫjµi(IkX, IkY ) = 0,

which, in view of (3.55), leads to

(3.58) µi(X,Y ) = −ǫkµi(IkX, IkY ) = −ǫjµi(IjX, IJY ).

A combination of (3.58) with (3.57) shows that µi = µj = µk = µ. �

If the dimension of M is seven, n = 1, the conditions (3.3) do not always hold. It follows from the
proof of Theorem 3.1 that in dimension seven the canonical pqc-connection exists, if we additionally
assume the existence of a complementary to H vertical space V , TM = H⊕V , satisfying the properties
(3.3) of Lemma 3.3. In this case, the tensor µ = 0 and the torsion endomorphism T (ξ, ., .) is symmetric.
Henceforth, by a pqc-structure in dimension 7 we shall mean a pqc-structure satisfying (3.3).

We write Theorem 3.1 in the following more explicit form

Theorem 3.12. Let (M, [g],PQ) be a pqc manifold of dimension 4n+3 > 7 with a fixed metric g ∈ [g].
Then, there exists a unique supplementary subspace V to H in TM satisfying (3.3) and a unique
connection ∇ with torsion T on M preserving the splitting H ⊕ V , the extended metric g,∇g = 0 and
the paraquaternionic structure on H, satisfying the conditions (3.14) and (3.15), where the connection
1-forms αs are given by (3.12), (3.29) and (3.30) with λ determined by (3.28).

The torsion is determined in (3.2), (3.13), (3.26), (3.27), (3.20), (3.19) with the conditions in
Lemma 3.10 and Lemma 3.11.

Suppose that the Reeb vector fields exist in dimension seven and denote V = span{ξ1, ξ2, ξ3} the
vertical space to H. Then, all conclusions above are true in dimension seven.

Applying (3.16), we obtain the next corollary.
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Corollary 3.13. The canonical pqc connection ∇ and the Levi-Civita connection ∇g of the extended
metric g are connected by

g(∇Xξi, Y ) = g(∇g
Xξi, Y ) +

1

4

[

τ(IiX,Y ) + τ(X, IiY )
]

− ωi(X,Y );

g(∇XY, Z) = g(∇g
XY, Z); g(∇ξiX,Y ) = g(∇g

ξi
X,Y ) + µ(IiX,Y )− ωi(X,Y );

g(∇ξiX, ξj) = g(∇g
ξi
X, ξj) +

1

2
T (ξi, ξj , X); g(∇Xξi, ξj) = g(∇g

Xξi, ξj)−
1

2
T (ξi, ξj , X);

g(∇ξkξi, ξj) = g(∇g
ξk
ξi, ξj)−

1

2
λ, g(∇ξiξi, ξj) = g(∇g

ξi
ξi, ξj); g(∇ξjξi, ξj) = g(∇g

ξj
ξi, ξj).

(3.59)

4. Basic Examples

The 4n+ 4 dimensional vector space pQn+1 = R4n+4 has standard coordinates

{t1, x1, y1, z1 . . . , tn+1, xn+1, yn+1, zn+1}.

The standard paraquaternionic structure (J3, J1, J2) and the neutral metric g are defined by

g(∂/∂ta, ∂/∂ta) = g(∂/∂xa, ∂/∂xa) = −g(∂/∂ya, ∂/∂ya) = −g(∂/∂za, ∂/∂za) = 1;

J3∂/∂ta = ∂/∂xa, J1∂/∂ta = ∂/∂ya, J2∂/∂ta = ∂/∂za for a = 1, . . . , n.

4.1. The paraquaternionic Heisenberg group. Define the 2-step nilpotent group G(pH) = pQn ×
Im(pQ) with the group law given by

(q′, ω′) = (qo, ωo)o(q, ω) = (qo + q, ωo + ω + 2Im(qoq̄)),

where q, qo ∈ pQn and ω, ωo ∈ Im(pQ).
On G(pH) we define the paraquaternionic contact form in paraquaternionic variables as follows

(4.1) Θ̃ = (Θ̃3, Θ̃1Θ̃2) =
1

2
(dω − qdq̄ + dqq̄).

In real coordinates, the structure equations of G(pH) are

dΘ̃3 = 2
[

dta ∧ dxa + dya ∧ dza
]

;

dΘ̃1 = 2
[

dta ∧ dya + dxa ∧ dza
]

;

dΘ̃2 = 2
[

dta ∧ dza − dxa ∧ dya
]

.

The left-invariant horizontal vector fields Ta, Xa = J3Ta, Ya = J1Ta, Za = J2Ta are given by

Ta = ∂/∂ta + 2xa∂/∂x+ 2ya∂/∂y + 2za∂/∂z; Xa = ∂/∂xa − 2ta∂/∂x− 2za∂/∂y + 2ya∂/∂z;

Ya = ∂/∂ya + 2za∂/∂x− 2ta∂/∂y − 2xa∂/∂z; Za = ∂/∂za − 2ya∂/∂x+ 2xa∂/∂y − 2ta∂/∂z.

The horizontal metric of signature (2n,2n) is defined by

g(Ta, Ta) = g(Xa, Xa) = −g(Ya, Ya) = −g(Za, Za).

The central (left-invariant vertical) Reeb vector fields are

ξ3 = 2∂/∂x, ξ1 = 2∂/∂y, ξ2 = 2∂/∂z.

A small calculation shows the following commutation relations

[JiTa, Ta] = 2ξi, [JiTa, JjTa] = −2ξk.

It is easy to verify that the left-invariant flat connection on G(pH) coincides with the canonical pqc

connection of the pqc manifold (G(pH), Θ̃). This flat pqc structure on the para-quaternionic Heisenberg
group G(pH) turns out to be (locally) the unique pqc structure with flat canonical connection according
to Theorem 7.1 below.

By a hyperbolic rotation of the 1-forms, defining the horizontal space of G(pH), we obtain an
equivalent pqc-structure (with the same canonical connection). It is possible to introduce a different
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not two step nilpotent group structure on pQn × Im(pQ) with respect to which the rotated forms are
left invariant (but not parallel!). Following is an explicit description of this construction in dimension
seven.

Consider the seven dimensional paraquaternionic Heisenberg group described above. We define a
non-left-invariant pqc structure on this manifold as follows. For each c ∈ R, let

γ1 = dt1, γ4 = dz1, γ7 = Θ̃3

γ2 = sinh(cz1) dx1 + cosh(cz1) dy1, γ3 = cosh(cz1) dx1 + sinh(cz1) dy1,

γ5 = sinh(cz1) Θ̃1 + cosh(cz1) Θ̃2, γ6 = cosh(cz1) Θ̃1 + sinh(cz1) Θ̃2.

A direct calculation shows that for c 6= 0 the forms {γl, 1 ≤ l ≤ 7} define a unique Lie algebra l0 with
the following structure equations

(4.2)

dγ1 = 0, dγ2 = −cγ34, dγ3 = −cγ24, dγ4 = 0,

dγ5 = 2γ12 + 2γ34 + cγ46, dγ6 = 2γ13 + 2γ24 + cγ45,

dγ7 = 2γ14 − 2γ23.

In particular, l0 is an indecomposable solvable Lie algebra.
Let el, 1 ≤ l ≤ 7 be the left invariant vector fields dual to the 1-forms γl, 1 ≤ l ≤ 7. The (global) flat

pqc structure on pQn × Im(pQ) can also be described as follows η3 = γ5, η1 = γ6, η2 = γ7, H =
span{γ1, . . . , γ4}, ω3 = dγ5

|H
= γ12 + γ34, −ω1 = dγ6

|H
= γ13 + γ24, −ω2 = dγ7

|H
= γ14 − γ23.

It is easy to derive from (4.2) that vector fields ξ3 = e5, ξ1 = e6, ξ2 = e7 satisfy the compatibility
conditions (3.3) and therefore the canonical connection exists and ξs are the Reeb vector fields.

Let (L0, η, pQ) be the simply connected Lie group with Lie algebra l0, equipped with the left invariant
pqc structure (η, pQ) defined above. Then, as a consequence of the above construction, the torsion
endomorphism and the curvature of the canonical connection are identically zero but the basis γ1, . . . , γ7
is not parallel. The Sp(1,R)-connection 1-forms in the basis γ1, . . . , γ7 are given by α3 = 0, α1 =
0, α2 = −cγ4.

4.1.1. An embeding of the paraquaternionic Heisenberg group G(pH). Consider the hypersurface

Σ ⊂ pHn × pH : Σ = (q′, p′) ∈ pH × pH : Re(p′) = −|q′|2.

Clearly, Σ is the 0-level set of ρ = |q′|2 + t and

(4.3) dρ = q′dq̄′ + dq′q̄′ + dt = 2(tadta + xadxa − yadya − zadza) + dt.

Apply the standard para quaternionic structure J3, J1, J2 on R4n+4, induced by the multiplication on
the right by the para quaternions r3, r1, r2 ∈ pHn+1 to (4.3) and compare the result with (4.1) to get

J3dρ = 2Θ̃3; J1dρ = 2Θ̃1; J2dρ = 2Θ̃2.

We identify G(pH) with Σ by

(q′, ω′) → (q′, p′ = −|q′|2 + ω′).

Since dp′ = −q′dq̄′ − dq′q̄′ + dω′, we write Θ̃ = 1
2 (dω − q′dq̄′ + dq′q̄′) = 1

2dp
′ + dq′q̄′.

Taking into account that Θ̃ is pure imaginary the last equation takes the form

(4.4) Θ̃ =
1

4
(dp′ − dp̄′) +

1

2
(dq′q̄′ − q′dq̄′).

4.2. Para 3-Sasakian manifolds. We recall the definition of para 3-Sasakian spaces [8, 2, 3, 1].

Definition 4.1. A 4n+3-dimensional pseudo-Riemannian manifold (PS, g) with a metric of signature
(2n+1, 2n+2) is said to be a para 3-Sasakian manifold if it admits three orthogonal Kiling vector fields
ξ1, ξ2, ξ3 of length squared g(ξs, ξs) = −ǫs with commutators

(4.5) [ξi, ξj ] = 2ǫkξk
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and the endomorphisms ΦiB = ∇g
Bξi satisfy

(4.6) (∇g
AΦi)B = g(ξi, B)A− g(A,B)ξi.

The Kozul formula and (4.5) give Φiξj = −ǫkξk = −Φjξi, Φsξs = 0, which combined with (4.6) yields

Φ2
sA = ǫsA+ g(A, ξs)ξs;

ǫkΦk = −ΦiΦjA+ g(A, ξj)ξi = ΦjΦiA− g(A, ξi)ξj .

It is known that these structures are Einstein with scalar curvature (4n+ 3)(4n+ 2) [8, 2, 3, 1].
Consider the 1-forms ηs dual to the Killing vector fields ξs via the metric, i.e

ηs(A) = −ǫsg(A, ξs).

and define H to be the kernel of a 1-form η = (η1, η2, η3) with values in R3, H = ∩3
s=1Ker ηs. It is easy

to see that the restrictions of the metric g
|H

and of the endomorphisms Φs on H , Is = Φs|H satisfy

(2.4) and (2.5) and define a paraquaternionic structure on H .
The Killing conditions imply

(4.7) dηs(A,B) = −2ǫsg(∇
g
Aξs, B) = −2ǫsg(ΦsA,B) = 2ǫsg(A,ΦsB).

which shows that compatibility condition −2ǫsg(IsX,Y ) = dηs(X,Y ), X, Y ∈ H holds. Thus,
we have a paraquaternionic contact structure on a para 3-Sasakian spaces and ortogonal splitting
H ⊕ {ξi, ξ2, ξ3} of the tangent bundle.

The comutators (4.5) yield

dηs(ξt, X) = dηs(ξt, ξs) = 0; dηi(ξj , ξk) = −2ǫi, dηi = −2ǫiωi − 2ǫiηj ∧ ηk;

dωi = 2ǫjωj ∧ ηk − 2ǫkωk ∧ ηj .
(4.8)

Hence, the conditions (3.3) of Theorem 3.1 hold and therefore there exists a canonical connection ∇ on
any para 3-Sasakian space. We have the following proposition.

Proposition 4.2. The torsion endomorphisms of any para 3-Sasakian structure vanishes, τ = µ = 0.

Proof. Since the vector fields ξs are Killing, (3.20) shows that the symmetric part of the torsion endo-
morphism vanish, 0 = (Lξsg)(X,Y ) = 2T sym(ξs, X, Y ) and therefore τ = 0. The general formula

(Lξsωt)(X,Y ) = (Lξsg)(ItX,Y ) + g((LξsIt)X,Y )

and the Cartan identity (3.33) together with (4.8) yield

g((Lξj Ii)X,Y ) = (Lξjωi)(X,Y ) = (ξjydωi)(X,Y ) = −2ǫkωk

and the trace-free part of (3.43) implies µ = 0. �

An equivalent definition of para-3-Sasakian spaces is that the cone metric dt2 + t2g on the product
PS × R+ is hypersymplectic (or hyper para Kaehler) [8, 2, 3, 1], i.e. it has holonomy contained in
Sp(n+ 1,R). Indeed, the three 2-forms defined by

(4.9) Fi = t2ωi + t2ηj ∧ ηk + ǫitηi ∧ dt

constitute a hyper para quaternionic structure on the cone and

(4.10) dFi = tdt ∧ (2ωi + 2ηj ∧ ηk + ǫidηi) + t2d(ωi + ηj ∧ ηk)

Using (4.8) one checks that these forms are closed, dFi = 0. After applying the Atiyah-Hitchin com-
putations from [5], one sees that we have a hypersymplectic (hyper para-Kaehler) structure on the
cone.
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4.2.1. The para 3-Sasakian pseudo sphere. An important explicit example is the pqc-structure on the
para 3-Sasakian pseudosphere. The para 3-Sasakian structure on the pseudosphere (hyperboloid)
pS4n+3 = {|q|2 + |p|2 = 1} ⊂ pHn × pH is inherited from the standard flat hypersymplectic struc-
ture on R4n+4 = pHn × pH . In paraquaternionic variables, the pqc 1-form on the pseudo sphere
pS4n+3 = {|q|2 + |p|2 = 1} ⊂ pHn × pH is defined as follows

(4.11) η̃ = dq.q̄ + dp.p̄− q.dq̄ − p.dp̄.

It is shown in [7] that the praquaternionic Heisenberg group G(pH) and the para 3-Sasakian pseudo-
sphere pS4n+3 are locally paraquaternionic contact conformally equivalent.

We explain briedly the construction from [7]. Consider the map from the pseudo-sphere pS4n+3

minus the points Σ0,

Σ0 = (q, p) ∈ pS4n+3 : |p− 1|2 = (t− 1)2 + x2 − y2 − z2 = 0

to the paraquaternionic Heisenberg group G(pH) ∼= Σ, defined by

C :
(

pS4n+3 − Σ0

)

→ Σ, (q′, p′) = C

(

(q, p)
)

, q′ = (p− 1)−1q, p′ = (p− 1)−1(p+ 1).

The inverse map (q, p) = C−1
(

(q′, p′)
)

is given by

q = 2(p′ − 1)−1q′, p = (p′ − 1)−1(p′ + 1).

It is shown in [7, Section 3.3] that

2C∗Θ̃ =
1

|p− 1|2
λ.η̃.λ̄,

where λ = |p−1|
p−1 is a unit paraquaternion, η̃ is the paraquaternionic contact form on the pseudo-sphere

pS4n+3, given by (4.11) and Θ̃ is the paraquaternionic contact form on G(pH) written in (4.4).

5. The curvature of the canonical connection

The main purpose of this section is to show that the curvature of the canonical pqc connection is
completely determined by its restriction to H and the torsion endomorphism τ and µ.

Let R = [∇,∇] − ∇[,] be the curvature tensor of ∇. We denote the curvature of type (0,4) by the
same letter, R(A,B,C,D) = g(R(A,B)C,D), A,B,C,D ∈ Γ(TM).

We define the following Ricci-type contractions:

ρs(B,C) =
1

4n
R(B,C, ea, Isea) = −ρs(C,B), The Ricci 2− forms;

Ric(B,C) = R(ea, B, C, ea), The pqc−Ricci tensor;

Scal = Ric(ea, ea), The pqc− scalar curvature;

ζs(B,C) =
1

4n
R(ea, B, C, Isea); ̺s(B,C) =

1

4n
R(ea, Isea, B, C) = −̺s(C,B).

The curvature operator R(B,C) preserves the pqc structure on M since the connection ∇ preserves
it. In particular, R(B,C) preserves the splitting H ⊕ V and the paraquaternionic structure on H , so
R(B,C) ∈ sp(n,R)⊕sp(1,R) onH . Denote by R0 the sp(n,R)-part of the curvature, simple calculations
yield the decomposition

(5.1) R(B,C)X = R0(B,C)X −

3
∑

s=1

ǫsρs(B,C)IsX
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Lemma 5.1. On a pqc manifold the next identities hold

R(B,C)IiX − IiR(B,C)X = 2ǫi

[

ρj(B,C)IkX − ρk(B,C)IjX
]

;(5.2)

ρi =
1

2

[

ǫkdαi − ǫjαj ∧ αk

]

;(5.3)

R(B,C)ξi = −2ǫiρk(B,C)ξj + 2ǫiρj(B,C)ξk;(5.4)

where the connection 1-forms αs are given by (3.12), (3.29) and (3.30).

Proof. The identity (5.2) follows directly from (5.1) since R0 commutes with all Is.
Furthermore, the identities (3.14) imply

R(B,C)Ii − IiR(B,C) = ∇B∇CIi −∇B∇CIi −∇[B,C]Ii

= ∇B[αj(C)Ik + ǫkαk(C)Ij ]−∇B [αj(C)Ik + ǫkαk(C)Ij ]− [αj([B,C])Ik + ǫkαk([B,C])Ij

= (ǫkdαk + αi ∧ αj)(B,C)Ij + (dαj + ǫjαk ∧ αi)(B,C)Ik

which compared with (5.2) proves (5.3).
Similarly, using (3.15) we obtain R(B,C)ξi = (ǫkdαk +αi ∧αj)(B,C)ξj +(dαj + ǫjαk ∧αi)(B,C)ξk

by applying (5.3) we get (5.4). �

An application of (3.36) to the horizontal part of (5.3) implies the next

Corollary 5.2. The Ricci 2 forms restricted to H are given by

ρi(X,Y ) = ǫi(Lξkωj)(X,Y )− ǫidηj(ξk, ξj)ωj(X,Y )− ǫjdηj(ξk, ξi)ωi(X,Y ).

5.1. The first Bianchi identity and the Ricci-type tensors. In this section we describe the ho-
risontal Ricci tensors in terms of the torsion endomorphism of the canonical pqc connection and pqc
scalar curvature based on Lemma 3.10, Lemma 3.11 and the first Bianchi identity.

Let b(A,B,C) be the Bianchi projector,

(5.5) b(A,B,C) :=
∑

(A,B,C)

{

(∇AT )(B,C) + T (T (A,B), C)
}

,

where
∑

(A,B,C) denotes the cyclic sum over the three tangent vectors A,B,C.

With this notation the first Bianchi identity reads as follows

(5.6)
∑

(A,B,C)

{

R(A,B,C,D)
}

= g
(

b(A,B,C), D
)

= b(A,B,C,D).

The curvature of a metric connection is skew-symmetric with respect to the last two arguments,
R(A,B,C,D) = −R(A,B,D,C). It can be derived from the first Bianchi identity (5.6) that (see [6])

(5.7) 2R(A,B,C,D)− 2R(C,D,A,B) = b(A,B,C,D) + b(B,C,D,A)

− b(A,C,D,B) − b(A,B,D,C).

Theorem 5.3. On a (4n+3)-dimensional pqc manifold, the horizontal Ricci tensors Ric and ζs(X, IsY )
are symmetric, the horizontal Ricci tensors ρs(X, IsY ), ̺s(X, IsY ) are symmetric (1,1) tensors with
respect to Is,

ρs(X, IsY ) = −ρs(IsX,Y ), ̺s(X, IsY ) = −̺(IsX,Y )

and the next formulas hold
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Ric(X,Y ) =
Scal

4n
g(X,Y ) + (2n+ 2)τ(X,Y ) + (4n+ 10)µ(X,Y );(5.8)

ρs(X, IsY ) = ǫs
Scal

8n(n+ 2)
g(X,Y ) +

1

2

[

ǫsτ(X,Y )− τ(IsX, IsY )
]

+ 2ǫsµ(X,Y );(5.9)

̺s(X, IsY ) = ǫs
Scal

8n(n+ 2)
g(X,Y ) +

n+ 2

2n

[

ǫsτ(X,Y )− τ(IsX, IsY )
]

;(5.10)

−ǫsζs(X, IsY ) =
Scal

16n(n+ 2)
g(X,Y ) +

2n+ 1

4n
τ(X,Y )− ǫs

1

4n
τ(IsX, IsY ) +

2n+ 1

2n
µ(X,Y );(5.11)

Scal = −8n(n+ 2)g(T (ξ1, ξ2), ξ3) = 8n(n+ 2)λ;(5.12)

T (ξi, ξj) = ǫk
Scal

8n(n+ 2)
ξk − [ξi, ξj ]H ;(5.13)

T (ξi, ξj , IkX) = ρk(IjX, ξi) = −ρk(IiX, ξj) = ωk([ξi, ξj ], X);(5.14)

−ǫiρi(X, ξi) = −
X(Scal)

32n(n+ 2)
+

1

2
(−ρi(ξj , IkX) + ρj(ξk, IiX) + ρk(ξi, IjX)) .(5.15)

−ǫiρi(ξi, ξj)− ǫkρk(ξk, ξj) =
1

16n(n+ 2)
ξj(Scal).(5.16)

For n = 1 the above formulas hold with µ = 0.

Proof. Since ∇ preserves the orthogonal splitting H ⊕ V , then (3.2), (3.26)and (3.27) yield

X.T (Y, Z, V ) = T (∇XY, Z, V ) = 0 ⇒ (∇XT )(Y, Z, V ) = 0;(5.17)

b(X,Y, Z, V ) =
∑

(X,Y,Z)

T (T (X,Y ), Z, V ) = −2
∑

(X,Y,Z)

3
∑

s=1

ǫsωs(X,Y )T (ξs, Z, V )(5.18)

= −2
∑

(X,Y,Z)

3
∑

s=1

ǫsωs(X,Y )
[

µ(IsZ, V )−
1

4

(

τ(IsZ, V ) + τ(Z, IsV )
)]

We calculate from (5.6) by taking into account (5.17)and (5.18) that

Ric(X,Y )− Ric(Y,X) = T (T (ea, X), Y, ea) + T (T (X,Y ), ea, ea) + T (T (Y, ea), X, ea)

= −2
3

∑

s=1

ǫsωs(ea, X)T (ξs, Y, ea)+2
3

∑

s=1

ǫsωs(ea, Y )T (ξs, X, ea) = 2
3

∑

s=1

(T (ξs, X, IsY )−T (ξs, Y, IsX)) = 0

where we used (3.39) in the final step. Therefore, the horizontal Ricci tensor is symmetric.
The trace in (5.2) gives

(5.19) Ric(C, IiY ) + 4nζi(C, Y ) = −2ǫiρj(C, IkY ) + 2ǫiρk(C, IjY ).

Taking the trace in the first Bianchi identity (5.6) and using the properties of the curvature, we obtain

(5.20) 4n̺s(X,Y ) + 8nζs(X,Y ) = b(ea, Isea, X, Y ).

The trace in (5.7) with an application of (5.20) gives

(5.21) 8n̺s(X,Y )− 8nρs(X,Y ) = b(ea, Isea, X, Y )− b(ea, Isea, Y,X)− 2b(ea, X, Y, Isea)

= 4n̺s(X,Y ) + 8nζs(X,Y )− 4n̺s(Y,X)− 8nζs(Y,X)− 2b(ea, X, Y, Isea).

We get from (5.20) and (5.21)

8nρs(X,Y ) + 8nζs(X,Y )− 8nζs(Y,X) = 2b(ea, X, Y, Isea);

8nζs(X,Y ) + 8nζs(Y,X) = b(ea, Isea, X, Y ) + b(ea, Isea, Y,X);

8nρs(X,Y ) + 16nζs(X,Y ) = b(ea, Isea, X, Y ) + b(ea, Isea, Y,X) + 2b(ea, X, Y, Isea),

(5.22)
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where we used that ̺s are skew-symmetric.
We obtain from (5.18) by applying the identity (3.50) that

(5.23) b(ea, Iiea, Z, V ) = T (T (ea, Iiea), Z, V ) + 2T (T (Z, ea), Iiea, V )

= 8nµ(IiZ, V )− 2nτ(IiZ, V )− 2nτ(Z, IiV ) + 4µ(IiZ, V )− 2τ(IiZ, V ) + 2τ(Z, IiV )

= (8n+ 4)µ(IiZ, V )− (2n+ 2)τ(IiZ, V )− (2n− 2)τ(Z, IiV ),

(5.24) b(ea, Z, V, Iiea) = T (T (ea, Z), V, Iiea)− T (T (ea, V ), Z, Iiea) + T (T (Z, V ), ea, Iiea)

= 4µ(IiZ, V ) + 2τ(IiZ, V )− 2τ(Z, IiV ).

Furthermore, since ∇ preserves the orthogonal splitting H⊕V , the first Bianchi identity (5.6) and (5.4)
together with (3.2), (3.26) and (3.27) imply

(5.25) − 2ǫiρi(X,Y ) = R(X,Y, ξj, ξk) = b(X,Y, ξj , ξk) = (∇ξjT )(X,Y, ξk)

+ T (T (X,Y ), ξj , ξk) + T (T (Y, ξj), X, ξk) + T (T (ξj, X), Y, ξk)

= 2(∇ξjωk)(X,Y )− 2T (X,Y,∇ξjξk)

− 2ǫiωi(X,Y )T (ξi, ξj , ξk) + 2ωk(T (ξj , X), Y )− 2ωk(T (ξj , Y ), X)

= 2ǫiλωi(X,Y )− 2T (ξj, X, IkY ) + 2T (ξj, Y, IkX),

where we used that T (ξs, X) is a horizontal vector field to conclude the vanishing of terms of the type
(∇AT )(X, ξj, ξk) and (3.2), (3.14) and (3.15) to see that (∇ξjωk)(X,Y )− T (X,Y,∇ξjξk) = 0 .

Applying (3.56), (3.51), Lemma 3.10 and Lemma 3.11, we calculate from (5.25) that

(5.26) − ǫiρi(X,Y ) = ǫiλωi(X,Y )

− T sym(ξj , X, IkY )− T a(ξj , X, IkY ) + T sym(ξj , Y, IkX) + T a(ξj , Y, IkX)

= µ(IjY, IkX)− µ(IjX, IkY ) +
1

4

[

τ(IjX, IkY ) + τ(X, IjIkY )− τ(IjY, IkX)− τ(Y, IjIkX)
]

= ǫiλωi(X,Y ) + 2ǫiµ(IiX,Y ) + ǫi
1

4

[

τ(IiX,Y )− τ(X, IiY )
]

+
1

4

[

ǫkτ(IjX, IjIiY ) + ǫjτ(IkX, IkIiY )
]

= ǫiλωi(X,Y ) + 2ǫiµ(IiX,Y ) + ǫi
1

2

[

τ(IiX,Y )− τ(X, IiY )
]

We obtain from (5.21), (5.26), (5.23) and (5.24)

(5.27) 8n̺i(X,Y ) = 8nρi(X,Y ) + b(ea, Iiea, X, Y )− b(ea, Iiea, Y,X)− 2b(ea, X, Y, Iiea)

= −8nλωi(X,Y )− 16µ(IiX,Y )− 4n
[

τ(IiX,Y )− τ(X, IiY )
]

+ (16n+ 8)µ(IiX,Y )− 4τ(IiX,Y ) + 4τ(X, IiY )− 8µ(IiX,Y )− 4τ(IiX,Y ) + 4τ(X, IiY )

= −8nλωi(X,Y )− (4n+ 8)
[

τ(IiX,Y )− τ(X, IiY )
]

We get from (5.22),(5.23), (5.24) and (5.26)

(5.28) 16nζi(X,Y ) = −8n
[

− λωi(X,Y )− 2µ(IiX,Y )−
1

2

[

τ(IiX,Y )− τ(X, IiY )
]

+ (8n+ 4)µ(IiX,Y )− (2n+ 2)τ(IiX,Y )− (2n− 2)τ(X, IiY )

+ (8n+ 4)µ(IiY,X)− (2n+ 2)τ(IiY,X)− (2n− 2)τ(Y, IiX)

+ 8µ(IiX,Y ) + 4τ(IiX,Y )− 4τ(X, IiY )

= 8nλωi(X,Y ) + (16n+ 8)µ(IiX,Y ) + 4τ(IiX,Y )− (8n+ 4)τ(X, IiY )
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Using (5.28) and (5.26), we obtain from (5.19)

(5.29) Ric(X, IiY ) = −4nζi(X,Y )− 4λωi(X,Y )− 8µ(IiX,Y ) + τ(IiX,Y ) + τ(X, IiY )

= −2nλωi(X,Y )− (4n+ 2)µ(IiX,Y )− τ(IiX,Y ) + (2n+ 1)τ(X, IiY )

− 4λωi(X,Y )− 8µ(IiX,Y ) + τ(IiX,Y ) + τ(X, IiY )

= −(2n+ 4)λωi(X,Y ) + (2n+ 2)τ(X, IiY ) + (4n+ 10)µ(X, IiY )

Since the tensors τ and µ are completely trace-free, the trace in (5.29) yields

(5.30) λ =
Scal

8n(n+ 2)
.

By substituting (5.30) into (5.29), (5.26), (5.27), (5.28) we get the proof of (5.8)-(5.13).
Furthermore, (5.4) , the first Bianchi adentity (5.6) and the fact that ∇ preserves the ortoghonal

splitting H ⊕ V imply

(5.31) − ǫk2ρk(ξj , X) = R(ξj , X, ξi, ξj) =
∑

ξi,ξj ,X

{(∇ξiT )(ξj , X, ξj) + T (T (ξi, ξj), X, ξj)}

= (∇XT )(ξi, ξj , ξj) + T (T (ξi, ξj), X, ξj) = −T (ξi,∇Xξj , ξj)− T (ξi, ξj ,∇Xξj)− T ([ξi, ξj ]|H , X, ξj)

= −2ωj([ξi, ξj ], X) = −2T (ξi, ξj , IjX),

where we used (3.2), (3.15), (3.13) and the just proved (5.13). So, (5.14) follows from (5.31) because

−ǫk2ρk(ξi, X) = R(ξi, X, ξi, ξj) = −R(ξi, X, ξj , ξi) = 2T (ξj, ξi, IiX) = −2T (ξi, ξj , IiX).

Similarly, by taking into account (3.2) and (5.14) we have

(5.32) 2(−ǫiρi(X, ξi)− ǫjρj(X, ξj)) = R(X, ξi, ξj , ξk) +R(X, ξj, ξk, ξi)

=
∑

ξi,ξj,X

{(∇ξiT )(ξj , X, ξk) + T (T (ξi, ξj), X, ξk)} = (∇XT )(ξi, ξj , ξk) + T (T (ξi, ξj), X, ξk)

= −
X(Scal)

8n(n+ 2)
− 2ωk([ξi, ξj ], X) = −

X(Scal)

8n(n+ 2)
− 2ρk(IjX, ξi)

Making a cyclic permutation of {i, j, k} into (5.32), summing the first and the third and subtracting
the second, we obtain (5.15).

We apply (5.13) and calculate

− 2(ǫiρi(ξi, ξj) + ǫkρk(ξk, ξj)) = R(ξi, ξj , ξj , ξk) +R(ξk, ξj , ξi, ξj)

= −
∑

ξi,ξj ,ξk

{(∇ξiT )(ξj , ξk, ξj) + T (T (ξi, ξj), ξk, ξj)} =
ξj(Scal)

8n(n+ 2)

Finally, (5.16) follows. The proof is complete. �

Due to (5.30) we call the function λ the normalized pqc scalar curvatur which also satisfies (3.28).
Based on (5.12), (3.28) and Theorem (5.3), we get the next corollary.

Corollary 5.4. The pqc scalar curvature Scal does not depend on the canonical pqc connection. It

is given by Scal = 8n(n+ 2)
[

− 1
2ng((LξjIi)Ikea, ea) − ǫjdηj(ξk, ξi) + ǫkdηk(ξi, ξj) + ǫidηi(ξj , ξk)

]

and

satisfies the equalities Scal = 2(n+ 2)ρs(Isea, ea) = 2(n+ 2)̺s(Isea, ea) = −4(n+ 2)ζs(Isea, ea).

Comparing the Sp(n,R).Sp(1,R)-parts of the Ricci-type tensors from Theorem 5.3 we conclude the
following corollary.

Corollary 5.5. The tensor τ determines the traceless [-1]-component of the horizontal Ricci-type ten-
sors while the tensor µ determines the traceless part of the [3]-component of the horizontal Ricci-type
tensors. For example, (5.8) implies τ = 1

2n+2Ric[−1], µ = 1
4n+10Ric[3][0].
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6. The second Bianchi identity and the curvature of the pqc connection

In this section we describe the curvature of ∇ and show that the whole curvature is determined from
the horizontal curvature. We have the following theorem.

Theorem 6.1. On a pqc manifold the curvature of the canonical connection satisfies the equalities:

(6.1) R(ξi, X, Y, Z) = −(∇Xµ)(IiY, Z)−
1

4

[

(∇Y τ)(IiZ,X) + (∇Y τ)(Z, IiX)
]

+
1

4

[

(∇Zτ)(IiY,X) + (∇Zτ)(Y, IiX)
]

+ ωj(X,Y )ρk(IiZ, ξi)− ωk(X,Y )ρj(IiZ, ξi)

− ωj(X,Z)ρk(IiY, ξi) + ωk(X,Z)ρj(IiY, ξi)− ωj(Y, Z)ρk(IiX, ξi) + ωk(Y, Z)ρj(IiX, ξi).

(6.2) R(ξi, ξj , X, Y ) = (∇ξiµ)(IjX,Y )− (∇ξjµ)(IiX,Y ) + ǫj(∇Xρk)(IiY, ξi)

−
1

4

[

(∇ξiτ)(IjX,Y ) + (∇ξiτ)(X, IjY )
]

+
1

4

[

(∇ξj τ)(IiX,Y ) + (∇ξj τ)(X, IiY )
]

+ ǫk
Scal

8n(n+ 2)
T (ξk, X, Y )− T (ξj , X, ea)T (ξi, ea, Y ) + T (ξj, ea, Y )T (ξi, X, ea),

where the Ricci 2-forms are given by

(6.3) 3(2n+ 1)ρi(ξi, X) = −ǫi
1

4
(∇eaτ)(ea, X)−

3

4
(∇eaτ)(Iiea, IiX)

+ ǫi(∇eaµ)(X, ea)− ǫi
2n+ 1

16n(n+ 2)
X(Scal),

(6.4) 3(2n+ 1)ρi(IkX, ξj) = −3(2n+ 1)ρi(IjX, ξk) = −
(2n+ 1)(2n− 1)

16n(n+ 2)
X(Scal)

+ 2(n+ 1)(∇eaµ)(X, ea) +
4n+ 1

4
(∇eaτ)(ea, X)− ǫi

3

4
(∇eaτ)(Iiea, IiX).

Proof. We know R(X,Y, Z, ξ) = 0 since ∇ preserves the splitting H ⊕ V . Therefore, (5.7) yields

(6.5) 2R(ξi, X, Y, Z) = b(ξi, X, Y, Z) + b(X,Y, Z, ξi)− b(ξi, Y, Z,X)− b(ξi, X, Z, Y ).

We calculate using (5.5), applying (3.2) and Theorem 5.3 that b(X,Y, Z, ξi) = 0 and

(6.6) b(ξi, X, Y, Z) = −(∇XT )(ξi, Y, Z) + (∇Y T )(ξi, X, Z)

+ 2ωj(X,Y )ρk(IiZ, ξi)− 2ωk(X,Y )ρj(IiZ, ξi)

=
1

4
(∇Xτ)(IiY, Z) +

1

4
(∇Xτ)(Y, IiZ)− (∇Xµ)(IiY, Z)

−
1

4
(∇Y τ)(IiX,Z)−

1

4
(∇Y τ)(X, IiZ) + (∇Y µ)(IiX,Z)

+ 2ωj(X,Y )ρk(IiZ, ξi)− 2ωk(X,Y )ρj(IiZ, ξi),

where we used Lemma 3.10, Lemma 3.11 and the equalities (3.14) and (3.15) to pass from the second
to the third equality. Substitute (6.6) into (6.5) to get (6.1).

The first Bianchi identity (5.6) and the fact that ∇ preserves the splitting H ⊕ V imply

(6.7) R(ξi, ξj , X, Y ) = (∇ξiT )(ξj , X, Y )− (∇ξjT )(ξi, X, Y ) + (∇XT )(ξi, ξj , Y )

+ ǫk
Scal

8n(n+ 2)
T (ξk, X, Y ) + T (T (ξj, X), ξi, Y )− T (T (ξi, X), ξj , Y ),

where we applied (5.13). Evaluating the first two terms similarly as in (6.6) and the third term using
equality (5.14), we obtain (6.2) from (6.7).
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The trace in (6.1) leads to the next equality

(6.8) nρi(ξi, X) −
1

2
ǫiρk(IjX, ξi) −

1

2
ǫiρj(IiX, ξk) = −

1

8
ǫi(∇eaτ)(ea, X) −

1

8
(∇eaτ)(Iiea, IiX).

The sum of (6.8) and (5.15) gives

(6.9) (n + 1)ρi(ξi, X) −
1

2
ǫiρi(IkX, ξj) = −

1

8
ǫi(∇eaτ)(ea, X) −

1

8
(∇eaτ)(Iiea, IiX) −

ǫiX(Scal)

32n(n+ 2)
.

We involve the second Bianchi identity

(6.10)
∑

(A,B,C)

{

(∇AR)(B,C,D,E) +R(T (A,B), C,D,E)
}

= 0

which combined with (3.2) implies

(6.11)
∑

(X,Y,Z)

[

(∇XR)(Y, Z, V,W )− 2
3

∑

s=1

ǫsωs(X,Y )R(ξs, Z, V,W )
]

= 0.

The trace in (6.11) leads to

(6.12) (∇eaR)(Iiea, Z, V,W ) + 2n(∇Z̺i)(V,W ) + 2(2n− 1)R(ξi, Z, V,W )

− 2ǫiR(ξj , IkZ, V,W ) + 2ǫiR(ξk, IjZ, V,W ) = 0.

After taking the trace in (6.12) and applying the formulas in Theorem 5.3 we come to

(6.13) (2n− 1)ρi(ξi, X) + 2ǫiρi(IkX, ξj) = −ǫi
2n− 1

16n(n+ 2)
X(Scal)

+
1

4

[

ǫi(∇eaτ)(ea, X)− (∇eaτ)(Iiea, IiX)
]

+ ǫi(∇eaµ)(X, ea).

Now, (6.9) and (6.13) yield (6.3) and (6.4), which completes the proof. �

We arrive to two conclusions based on Theorem 6.1. First, substituting (6.4) and (6.3) into (5.15),
we obtain the following theorem.

Theorem 6.2. The contracted second Bianchi identity. On a pqc manifold of dimension 4n+ 3
the next formula holds

(6.14) (n− 1)(∇eaτ)(ea, X) + 2(n+ 2)(∇eaµ)(ea, X)−
(n− 1)(2n+ 1)

8n(n+ 2)
d(Scal)(X) = 0.

Proposition 6.3. Let the curvature of the canonical pqc-connection vanishes on H, R
|H

= 0. Then,

∇ is flat, R = 0 and the non-zero part of the torsion is given by (3.2).

Proof. The condition R
|H

= 0 implies that all the horizontal Ricci-type tensors vanish. Then, The-

orem 5.3 yields τ = µ = Scal = 0. These conditions and Theorem 6.1, (6.3) and (6.4) lead to
ρs(ξs, X) = ρs(ξt, X) = 0, which substituted into (6.1), (6.2) and (5.14) give

(6.15) R(ξ,X, Y, Z) = R(ξs, ξt, X, Y ) = 0, T (ξi, ξj , IkX) = ωk([ξi, ξj ], X) = ρk(IjX, ξi) = 0.

In particular, the vertical distribution V is involutive.
Taking into account Scal = 0 and (6.15), we get from (5.13) together with (3.26) that T (ξs, ξt) = 0.
The equation (5.4) implies R(X,Y, ξi, ξj) = −2ǫkρk(X,Y ) = 0, R(X, ξ, ξi.ξj) = −2ǫkρk(X, ξ) = 0.

A combination of (5.4) and (6.15) yields 2nR(ξs, ξt, ξi, ξj) = −4nǫkρk(ξs, ξt) = −ǫkR(ξs, ξt, ea, Ikea) =
0, which ends the proof. �
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6.1. Local structure equations of pqc manifolds. The fundamental 2-forms ωs of a pqc structure
are locally defined horizontal 2-forms. We define a global horizontal four form Ω, whose exterior
derivative contains the essential information about the torsion endomorphism of the canonical pqc-
connection, provided the dimension of the manifold is grater than seven. The Sp(n,R)Sp(1,R)-invariant
fundamental four form of a given pqc manifold is defined globally on the horizontal distribution H by

(6.16) Ω = −ω1 ∧ ω1 − ω2 ∧ ω2 + ω3 ∧ ω3.

First, we derive the local structure equations of a pqc structure in terms of the sp(1,R)-connection
forms of the canonical pqc-connection and the pqc scalar curvature.

Proposition 6.4. Let (M4n+3, η,PQ) be a (4n+3)- dimensional pqc manifold with pqc normalized
scalar curvature λ. The following equations hold

dηi = −ǫi2ωi + ηj ∧ αk + ǫjηk ∧ αj + ǫiληj ∧ ηk,(6.17)

(6.18) ǫidωi = ωj ∧ [−ǫjαk + ǫkληk] + ωk ∧ [ǫiαj − ǫjληj ]− ǫjρk ∧ ηj + ǫkρj ∧ ηk +
1

2
ǫidλ ∧ ηj ∧ ηk,

dΩ =
∑

(ijk)

−ǫi

[

2ηi ∧ (ρ0k ∧ ωj − ρ0j ∧ ωk) + dλ ∧ ωi ∧ ηj ∧ ηk

]

,(6.19)

where αs are the sp(1,R)-connection 1-forms of the canonical pqc-connection,
∑

(ijk) is the cyclic sum

of even permutations of {1, 2, 3} and

(6.20) ρ0s(X,Y ) =
1

2

[

τ(X, IsY )− τ(IsX,Y )
]

+ 2µ(X, IsY )

are the trace-free part of the Ricci 2-forms.

Proof. A straightforward calculation using (3.12), (3.31), (3.30) and (5.12) gives the equivalence of
(3.34) and (6.17). Taking the exterior derivative of (6.17), followed by an application of (6.17) and
(5.3) implies (6.18). The exterior derivative of (6.18) and the definition (6.16) of the 4-form Ω imply

(6.21) dΩ =
∑

(ijk)

−ǫi

[

2ηi ∧ (ρk ∧ ωj − ρj ∧ ωk) + dλ ∧ ωi ∧ ηj ∧ ηk

]

.

The last formula, (6.19) follows from (6.21) by taking into account (5.9). �

The next result expresses the tensors τ and µ in terms of the exterior derivative of the fundamental
four form. We have the following

Theorem 6.5. On a pqc manifold of dimension (4n+ 3) > 7 we have the identities

µ(X,Y ) = −
1

32n

[

dΩ(ξi, X, IkY, ea, Ijea)− ǫkdΩ(ξi, IiX, IjY, ea, Ijea)
]

;(6.22)

τ(X,Y ) =
1

16(1− n)

∑

(ijk)

[

dΩ(ξi, X, IkY, ea, Ijea) + ǫkdΩ(ξi, IiX, IjY, ea, Ijea)
]

.(6.23)

Proof. Equation (6.19)yields

(6.24) dΩ(ξi, X, IkY, ea, Ijea) = −8ǫk(n− 1)ρ0k(X, IkY )− 4ǫjρ
0
j (X, IjY )− 4ρ0j(IiX, IkY ),

A substitution of (6.20) in (6.24), combined with the properties of the tensors τ and µ described in
Lemma 3.10 and Lemma 3.11 give

(6.25) dΩ(ξi, X, IkY, ea, Ijea) = −4(n− 1)
[

τ(X,Y )− ǫkτ(IkX, IkY )
]

− 16nµ(X,Y ).

Applying again Lemma 3.10 and Lemma 3.11 to (6.25), we see that µ and τ satisfy (6.22) and (6.23),
respectively, which completes the proof. �
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7. The flat model

Theorem 7.1. Let (M, η,PQ, g) be a para quaternionic contact manifold of dimension 4n + 3. Then
(M, η,PQ, g) is locally isomorphic to the para quaternionic Heisenberg group exactly when the canonical
pqc connection has vanishing horizontal curvature, R(X,Y, Z, V ) = 0.

Proof. First we prove the following

Lemma 7.2. On a pqc manifold the torsion tensor of the canonical pqc connection ∇, restricted to H,
is ∇-parallel, (∇AT )(X,Y ) = 0.

The equality (5.17) yields (∇AT )(X,Y, Z) = 0.
Since ∇ preserves the orthogonal splitting H ⊕ V , then (3.2), (3.26), (3.27), (3.15) and (3.14) yield

(7.1) (∇AT )(Y, Z, ξi) = 2(∇Aωi)(Y, Z)− 2

3
∑

s=1

ǫsωs(Y, Z)g(ξs,∇Aξi)

= 2αj(A)ωk(Y, Z) + 2ǫkαk(A)ωj(Y, Z)− 2αj(A)ωk(Y, Z)− 2ǫkαk(A)ωj(Y, Z) = 0

which proves the Lemma 7.2.
It is easy to see that the canonical pqc connection on the para quaternionic Heisenberg group is the

left-invariant connection on the group which is flat and the torsion is non-vanishing only on H, T =
T

|H
.
For the converse, by applying Proposition 6.3 we can conclude that ∇ is flat and the torsion is non-

zero only on H . Taking into account Lemma 7.2, we conclude that the torsion is parallel, ∇T = 0 and
the first Bianchi identity (5.6) reads

(7.2) T (T (A,B), C) + T (T (B,C), A) + T (T (C,A), B) = 0

Hence, the manifold has a local Lie group structure T by the Lie theorem. The structure equations of
this Lie group determined by (3.2) are dηs = −2ǫsωs which are precisely the structure equations of the
para-quaternionic Heisenberg group. Therefore, by applying again the Lie theorem, we can conclude
that the manifold has a local Lie group structure, which is locally isomorphic to G(pH). In other words,

there is a local diffeomorphism Φ : M → G(pH), such that η = Φ ∗ Θ̃, where Θ̃ is the the standard
contact form on G(pH), see (4.1). �

8. pqc-Einstein paraquaternionic contact structures

The aim of this section is to show that the vanishing of the torsion endomorphism of the canonical
pqc connection implies that the pqc-scalar curvature is constant. The Bianchi identities will have an
important role in the analysis.

Definition 8.1. A pqc structure is pqc-Einstein if the pqc-Ricci tensor is trace-free,

(8.1) Ric(X,Y ) =
Scal

4n
g(X,Y )

The next result describes the structure of the pqc-Einstein spaces.

Theorem 8.2. Let (M, g,PQ) be a para-quaternionic contact manifold of dimension (4n+ 3). Then,

a). (M, g,PQ) is a pqc-Einstein if and only if the tensors τ = µ = 0, i.e. the torsion endomorphism
vanishes identically, T (ξ,X) = 0.

b). On a pqc-Einstein manifold of dimension bigger than seven the pqc scalar curvature is constant,
d(Scal) = 0 and the vertical space spanned by the Reeb vector fields is integrble, [ξs, ξt] ∈ V.

c). If n > 1, then (M, g,PQ) is pqc-Einstein if and only if the fundamental four form is closed,
dΩ = 0.

Proof. Part a) of the assertion follows from (5.8) and the defining condition (8.1).
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The first part of b) is a consequence of part a) and (6.14), since n > 1. Substitute T 0 = U = d(Scal) =
0 into (6.4) to conclude ρi(ξj , X) = 0 and compare this with (5.14) to establish the integrability of the
vertical distribution V .

To proof c), assume T 0 = U = 0 and n > 1. Then, Theorem 5.3 implies

(8.2)
ρs(X,Y ) = −λωs(X,Y ), ρs(ξt, X) = 0,

ǫiρi(ξi, ξj) + ǫjρk(ξk, ξj) = 0,

since Scal is a constant and the horizontal distribution is integrable. Using the just obtained identities
in (8.2), we derive from (6.19) that dΩ = 0.

The converse of c) follows directly from Theorem 6.5, which completes the proof of the theorem. �

The well known Cartan formula applied for the fundamental four form gives

LξsΩ = ξsydΩ+ d(ξsyΩ) = ξsydΩ,

since Ω is horizontal. The latter formula and Theorem 6.5 together with Theorem 8.2 yield

Corollary 8.3. If one of the Reeb vector fields preserves the fundamental four form on a pqc manifold
of dimension (4n + 3) > 7, then µ = 0 and the torsion endomorphism of the canonical connection is
symmetric, Tξs = T sym.

If on a pqc manifold of dimension (4n+3) > 7 each Reeb vector field preserves the fundamental four
form, LξsΩ = 0, then the torsion endomorphism of the canonical connection vanishes, Tξs = τ = µ = 0
and the manifold is pqc-Einstein.

Basic examples of pqc-Einstein spaces are provided by the para 3-Sasakian spaces. Indeed, in view
of (5.8) the pqc-Einstein condition is equivalent to the fact that the torsion endomorphism vanishes,
τ = µ = 0 and Proposition 4.2 implies that any para 3-Sasakian space is pqc-Einstein. More precisely,
we have

Proposition 8.4. Any para 3-Sasakian manifold is a pqc-Einstein with pqc-scalar curvature

(8.3) Scal = 16n(n+ 2).

The structure equations of a para 3-Sasakian manifolds are the equations (4.8).
The pqc Ricci-type tensors of para 3-Sasakian manifolds are given by

ρs(X,Y ) = ̺s(X,Y ) = −2ζs(X,Y ) = −2ωs(X,Y );

Ric(ξs, X) = ρs(ξt, X) = ζs(ξt, X) = ρs(ξt, ξr) = 0
(8.4)

The curvature R of the canonical pqc connection is expressed in terms of the curvature of the Levi-Civita
connection Rg as follows

R(X,Y, Z, V ) = Rg(X,Y, Z, V )(8.5)

+

3
∑

s=1

[

ǫsωs(X,Z)ωs(Y, V )− ǫsωs(Y, Z)ωs(X,V )− 2ωs(X,Y )ωs(Z, V )
]

;

0 = R(ξs, Y, Z, V ) = Rg(ξs, Y, Z, V ),(8.6)

0 = R(ξs, ξt, Z, V ) = Rg(ξs, ξt, Z, V ) = Rg(Z, V, ξs, ξt).(8.7)

Proof. For a para 3-Sasakian manifolds, the equalities (4.8), (3.29), (3.30) and (5.12) imply

(8.8) 2αi = −ǫj(2 + λ)ηi

We calculate from (5.3) using (8.8) and (4.8) that ρi(X,Y ) = 1
2ǫkdαi(X,Y ) = −(1+ λ

2 )ωi(X,Y ), which
compared with the first equality in (8.2) gives λ = 2 which combined with (5.30) proves (8.3). The
equalities (8.4),(8.6) and (8.7) follow from (3.59), Theorem 5.3 and Theorem 6.1 taking into account
τ = µ = 0, λ = 2 and the properties of the curvature of the Levi-Civita connection.
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The equalities (3.59) and the fact that the vertical space is integrable yield

(8.9) ∇Y Z = ∇g
Y Z −

3
∑

s=1

ǫsωs(Y, Z)ξs, ∇Xξi = ∇g
Xξi + IiX.

The first equality in (8.9) implies (8.5). �

It turns out that the para 3-Sasakian spaces are locally the only pqc-Einstein manifolds. We have

Theorem 8.5. Let (M4n+3, η, pQ) be a 4n + 3-dimensional pqc manifold with non-zero pqc scalar
curvature Scal. For n > 1 the following conditions are equivalent

a) (M4n+3, g, pQ) is pqc-Einstein manifold;
b) M4n+3 is locally pqc homothetic to a para 3-Sasakian manifold, i.e., locally, there exists a

SO(1, 2)-matrix Ψ with smooth entries depending on an auxiliary parameter, such that the local

pqc structure (16n(n+2)
Scal

Ψ · η, pQ) is para 3-Sasakian.

Proof. Let τ = µ = 0 and n > 1. Theorem 8.2 shows that the pqc scalar curvature is constant and

the vertical distribution is integrable. The pqc structure η′ = 16n(n+2)
ǫScal

η has normalized pqc scalar
curvature λ′ = 2 and dΩ′ = 0, provided Scal 6= 0. For simplicity, we shall denote η′ with η and, in fact,
omit the ′ everywhere.

In the first step of the proof we show that the pseudo Riemannian cone N = M ×R+ with the metric
gN = t2(g−

∑3
s=1 ǫsηs⊗ηs)+dt⊗dt has holonomy contained in Sp(n+1,R), i.e. it is hypersymplectic.

To this end we consider the following four form on N

(8.10) F = −ǫiFi ∧ Fi − ǫjFj ∧ Fj − ǫkFk ∧ Fk,

where the two forms Fs are defined by

(8.11) Fi = t2(ωi + ηj ∧ ηk) + ǫitηi ∧ dt

Applying (6.17), (6.18) and (6.19), we calculate from (8.11) applying (8.2) and λ = 2 that

(8.12) dFi = tdt ∧
(

2ωi + 2ηj ∧ ηk + ǫidηi

)

+ t2d(ωi + ηj ∧ ηk)

= t dt ∧
(

4ηj ∧ ηk + ǫiηj ∧ αk − ǫkηk ∧ αj

)

+ t2
[

ωj ∧ (ǫkαk − ǫjsηk) + ωk ∧ (αj + ǫksηj) + ǫkρk ∧ ηj − ǫjρj ∧ ηk

]

− t2
(

2ǫjωj − ǫkηi ∧ αk

)

∧ ηk + t2
(

2ǫkωk − ηi ∧ αj

)

∧ ηj

= t dt ∧
(

4ηj ∧ ηk + ǫiηj ∧ αk − ǫkηk ∧ αj

)

+ t2
[

ǫkωj ∧ αk + ωk ∧ αj

]

− t2
(

2ǫjωj − ǫkηi ∧ αk

)

∧ ηk + t2
(

2ǫkωk − ηi ∧ αj

)

∧ ηj

A short computation, using (6.17), (6.18), (6.19) and (8.12), gives

(8.13)
1

2
dF = −

3
∑

s=1

ǫsdFs ∧ Fs = t3dt ∧
∑

(ijk)

[

−4ǫiωi ∧ ηk ∧ ηj + 2ǫjωj ∧ ηk ∧ ηi − 2ǫkωk ∧ ηj ∧ ηi

]

− t3dt ∧
∑

(ijk)

[ωi ∧ ηj ∧ αk + ǫjωi ∧ ηk ∧ αj + ǫkωj ∧ αk ∧ ηi + ωk ∧ αj ∧ ηi]

+ t4
∑

(ijk)

[ǫjωi ∧ ωj ∧ αk − ǫiωi ∧ ωk ∧ αj ] + t4
∑

(ijk)

[2ǫjωi ∧ ωk ∧ ηj − 2ǫkωi ∧ ωj ∧ ηk]

+ t4
∑

(ijk)

[ǫjωj ∧ ηj ∧ ηk ∧ αk − ǫiωk ∧ ηj ∧ ηk ∧ αj − ǫjωi ∧ ηi ∧ ηk ∧ αk − ǫiωi ∧ ηi ∧ ηj ∧ αj ] = 0.
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Hence, dF = 0 and the holonomy of the cone metric is contained in Sp(n + 1,R)Sp(1,R), provided
n > 1 [8], i.e. the cone is para-quaternionic Kähler manifold, provided n > 1.

It is well known (see e.g [8]) that a para-quaternionic Kähler manifolds of dimension bigger than four
are Einstein. This fact implies that the cone N = M × R+ with the metric gN must be Ricci flat and
therefore it is locally hyper-para-kähler, since the sp(1,R)-part of the Riemannian curvature vanishes
and therefore it can be trivialized locally by a parallel sections (see e.g. [8]). This means that locally
there exists a SO(1, 2)-matrix Ψ with smooth entries, possibly depending on t, such that the triple of

two forms (F̃1, F̃2, F̃3) = Ψ · (F1, F2, F3)
T consists of closed 2-forms defining a local hyper-para-kähler

structure. Consequently, (M,Ψ · η) is locally a para 3-Sasakian manifold [8].
The fact that b) implies a) is trivial in view of Theorem 8.2 since the 4-form Ω is invariant under

hyperbolic rotations and rescales by a constant when the metric on the horizontal space H is replaced
by another metric, homothetic to it. �

Remark 8.6. An example of a pqc structure satisfying τ = µ = Scal = 0 can be obtained as follows.
Let M4n be a hyper-para-kähler (hypersymplectic) manifold with closed and locally exact Kähler forms
ωl = dηl. The total space of an R3-bundle over the hyper-para-kähler manifold M4n with connection
1-forms ηl is an example of a pqc structure with τ = µ = Scal = 0. The pqc structure is determined
by the three 1-forms ηl satisfying dηl = ωl, which yield τ = µ = Scal = 0. In particular, the para
quaternionic Heisenberg group, which locally is the unique pqc structure with flat canonical connection,
can be considered as an R3 bundle over a 4n-dimensional flat hyper-para-kähler R4n. A compact example
is provided by a T 3-bundle over a compact hyperk-para-kähler manifold M4n, such that each closed
Kähler form ωl represents integral cohomology classes. Indeed, since [ωl], 1 ≤ l ≤ 3 defines integral
cohomology classes on M4n, the well-known result of Kobayashi [17] implies that there exists a circle
bundle S1 →֒ M4n+1 → M4n with connection 1-form η1 on M4n+1, whose curvature form is dη1 = ω1.
Because ωl (l = 2, 3) defines an integral cohomology class on M4n+1, there exists a principal circle
bundle S1 →֒ M4n+2 → M4n+1 corresponding to [ω2] and a connection 1-form η2 on M4n+2, such that
ω2 = dη2 is the curvature form of η2. Using again the result of Kobayashi, one gets a T 3-bundle over
M4n, whose total space has a pqc structure satisfying dηl = ωl, which yield τ = µ = Scal = 0.
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